Optimal investments under dynamic performance critria

Lecture IV

Utility-based measurement of performance

Deterministic environment

Utility traits

$$
u(x, t): x \text { "wealth" and } t \text { "time" }
$$

- Monotonicity $u_{x}(x, t)>0$
- Risk aversion $u_{x x}(x, t)<0$
- Impatience $u_{t}(x, t)<0$

Fisher (1913, 1918), Koopmans (1951),
Koopmans-Diamond-Williamson (1964) ...

Stochastic environment

Important ingredients

- Time evolution concurrent with the one of the investment universe
- Consistency with up to date information
- Incorporation of available opportunities and constraints
- Meaningful optimal utility volume

Dynamic utility

$$
U(x, t) \text { is an } \mathcal{F}_{t} \text {-adapted process }
$$

- As a function of x, U is increasing and concave
- For each self-financing strategy, represented by π, the associated (discounted) wealth X_{t} satisfies

$$
E_{\mathbb{P}}\left(U\left(X_{t}^{\pi}, t\right) \mid \mathcal{F}_{s}\right) \geq U\left(X_{s}^{\pi}, s\right) \quad 0 \leq s \leq t
$$

- There exists a self-financing strategy, represented by π^{*}, for which the associated (discounted) wealth $X_{t}^{\pi^{*}}$ satisfies

$$
E_{\mathbb{P}}\left(U\left(X_{t}^{\pi^{*}}, t\right) \mid \mathcal{F}_{s}\right)=U\left(X_{s}^{\pi^{*}}, s\right) \quad 0 \leq s \leq t
$$

Traditional framework

A deterministic utility datum $u_{T}(x)$ is assigned at the end of a fixed investment horizon

$$
U(x, T)=u_{T}(x)
$$

Backwards in time generation of optimal utility volume

$$
\begin{gathered}
V(x, t)=\sup _{\pi} E_{\mathbb{P}}\left(u\left(X_{T}^{\pi}, T\right) \mid \mathcal{F}_{t} ; X_{t}^{\pi}=x\right) \\
V(x, t)=\sup _{\pi} E_{\mathbb{P}}\left(V\left(X_{s}^{\pi}, s\right) \mid \mathcal{F}_{t} ; X_{t}^{\pi}=x\right) \quad(\mathrm{DPP}) \\
V(x, t)=E_{\mathbb{P}}\left(V\left(X_{s}^{\pi^{*}}, s\right) \mid \mathcal{F}_{t} ; X_{t}^{\pi^{*}}=x\right) \\
\Downarrow \\
U(x, t) \equiv V(x, t) \quad 0 \leq t<T
\end{gathered}
$$

The dynamic utility coincides with the traditional value function

A deterministic utility datum $u_{0}(x)$ is assigned at the beginning of the trading horizon, $t=0$

$$
U(x, 0)=u_{0}(x)
$$

Forward in time generation of optimal utility volume

$$
U\left(X_{s}^{\pi^{*}}, s\right)=E_{\mathbb{P}}\left(U\left(X_{t}^{\pi^{*}}, t\right) \mid \mathcal{F}_{s}\right) \quad 0 \leq s \leq t
$$

- Dynamic utility can be defined for all trading horizons
- Utility and allocations take a very intuitive form
- Difficulties due to the "inverse in time" nature of the problem

Utility is not exogeneously given but is implied/calibrated w.r.t. investment opportunities

Motivational examples

An incomplete multiperiod binomial example

Exponential utility datum

- Traded security: $S_{t}, t=0,1, \ldots$

$$
\xi_{t+1}=\frac{S_{t+1}}{S_{t}}, \xi_{t+1}=\xi_{t+1}^{d}, \xi_{t+1}^{u} \quad \text { with } 0<\xi_{t+1}^{d}<1<\xi_{t+1}^{u}
$$

Second traded asset is riskless yielding zero interest rate

- Stochastic factor: $Y_{t}, t=0,1, \ldots$

$$
\eta_{t+1}=\frac{Y_{t+1}}{Y_{t}}, \eta_{t+1}=\eta_{t+1}^{d}, \eta_{t+1}^{u} \quad \text { with } \eta_{t}^{d}<\eta_{t}^{u}
$$

- Probability space $\left(\Omega,\left(\mathcal{F}_{t}\right), \mathbb{P}\right)$ $\left\{S_{t}, Y_{t}: t=0,1, \ldots\right\}:$ a two-dimensional stochastic process
- State wealth process: $X_{t}, t=s+1, s+2, \ldots, \ldots$
α_{i} : the number of shares of the traded security held in this portfolio over the time period $[i-1, i]$

$$
X_{t}=X_{s}+\sum_{i=s+1}^{t} \alpha_{i} \triangle S_{i}
$$

- Forward dynamic exponential utility

$$
\left\{\begin{array}{l}
U\left(X_{s}^{\alpha^{*}}, s\right)=E_{\mathbb{P}}\left(U\left(X_{t}^{\alpha^{*}}, t\right) \mid \mathcal{F}_{s}\right) \\
U(x, 0)=-e^{-\gamma x}, \quad \gamma>0
\end{array}\right.
$$

- A forward dynamic utility

$$
U(x, t)=\left\{\begin{array}{cl}
-e^{-\gamma x} & \text { if } \quad t=0 \\
-e^{-\gamma x+\sum_{i=1}^{t} h_{i}} & \text { if } \quad t \geq 1
\end{array}\right.
$$

- Auxiliary quantities: local entropies h_{i}

$$
h_{i}=q_{i} \log \frac{q_{i}}{\mathbb{P}\left(A_{i} \mid \mathcal{F}_{i-1}\right)}+\left(1-q_{i}\right) \log \frac{1-q_{i}}{1-\mathbb{P}\left(A_{i} \mid \mathcal{F}_{i-1}\right)}
$$

with

$$
A_{i}=\left\{\xi_{i}=\xi_{i}^{u}\right\} \quad \text { and } \quad q_{i}=\mathbb{Q}\left(A_{i} \mid \mathcal{F}_{i-1}\right)
$$

for $i=0,1, \ldots$ and \mathbb{Q} being the minimal relative entropy measure

Important insights

The forward utility process

$$
U(x, t)=-e^{-\gamma x+\sum_{i=1}^{t} h_{i}}
$$

is of the form

$$
U(x, t)=u\left(x, A_{t}\right)
$$

where $u(x, t)$ is the deterministic utility function

$$
u(x, t)=-e^{-\gamma x+\frac{1}{2} t}
$$

and A_{t} corresponds to a time change depending on the "market input"

$$
A_{t}=2 \sum_{i=1}^{t} h_{i}
$$

Important insights (continued)

- The variational utility input

$$
u(x, t)=-e^{-\gamma x+\frac{1}{2} t}
$$

solves the partial differential equation

$$
\left\{\begin{array}{l}
u_{t} u_{x x}=\frac{1}{2} u_{x}^{2} \\
u(x, 0)=-e^{-\gamma x}
\end{array}\right.
$$

- The stochastic market input

$$
A_{t}=2 \sum_{i=1}^{t} h_{i}
$$

plays now the role of "time". It depends exclusively on the market parameters.

A continuous-time example

- Investment opportunities

Riskless bond : $r=0$
Risky security : $\quad d S_{t}=\sigma_{t} S_{t}\left(\lambda_{t} d t+d W_{t}\right)$

- Utility datum at $t=0: u_{0}(x)$
- Wealth process

$$
\left\{\begin{array}{l}
d X_{t}=\sigma_{t} \pi_{t}\left(\lambda_{t} d t+d W_{t}\right) \\
X_{0}=x
\end{array}\right.
$$

- Market input: λ_{t}, A_{t}

$$
\left\{\begin{array}{l}
d A_{t}=\lambda_{t}^{2} d t \\
A_{0}=0
\end{array}\right.
$$

- Building the martingale $U\left(X_{t}^{\pi^{*}}, t\right)$

Assume that we can construct $U(x, t)$ via

$$
\left\{\begin{array}{l}
U\left(X_{t}^{\pi^{*}}, t\right)=u\left(X_{t}^{\pi^{*}}, A_{t}\right) \\
U(x, 0)=u(x, 0)=u_{0}(x)
\end{array}\right.
$$

where $u(x, t)$ is the variational utility input and A_{t} the stochastic market input

$$
\begin{gathered}
d U\left(X_{t}^{\pi}, t\right)=u_{x}\left(X_{t}, A_{t}\right) \sigma_{t} \pi_{t} d W_{t} \\
+(u_{t}(\underbrace{\left.X_{t}^{\pi}, A_{t}\right) \lambda_{t}^{2}+u_{x}\left(X_{t}^{\pi}, A_{t}\right) \sigma_{t} \pi_{t} \lambda_{t}+\frac{1}{2} u_{x x}\left(X_{t}^{\pi}, A_{t}\right.}_{\leq 0}) \sigma_{t}^{2} \pi_{t}^{2}) d t
\end{gathered}
$$

- Variational utility input condition

$$
\left\{\begin{array}{l}
u_{t} u_{x x}=\frac{1}{2} u_{x}^{2} \\
u(x, 0)=u_{0}(x)
\end{array}\right.
$$

- The optimal allocations in stock, π_{t}^{*}, and in bond, $\pi_{t}^{0, *}$,

$$
\begin{aligned}
& \left\{\begin{array}{l}
\pi_{t}^{*}=-\sigma_{t}^{-1} \lambda_{t} \frac{u_{x}\left(X_{t}^{\pi^{*}}, A_{t}\right)}{u_{x x}\left(X_{t}^{\pi^{*}}, A_{t}\right)}=\sigma_{t}^{-1} \lambda_{t} R_{t} \\
\pi_{t}^{0, *}=X_{t}^{\pi^{*}}-\sigma_{t}^{-1} \lambda_{t} R_{t}
\end{array}\right. \\
& R_{t}=r\left(X_{t}^{\pi^{*}}, A_{t}\right) ; \quad r(x, t)=-\frac{u_{x}(x, t)}{u_{x x}(x, t)}
\end{aligned}
$$

The local risk tolerance $r(x, t)$ and the subordinated risk tolerance process R_{t} emerge as important quantities

Dynamic utility measurement

time t_{1}, information $\mathcal{F}_{t_{1}}$
asset returns
constraints
market view
away from equilibrium
benchmark numeraire
calendar time subordination

$$
U\left(x, t_{1} ; M I\right) \in \mathcal{F}_{t_{1}} \quad \pi\left(x, t_{1} ; M I\right) \in \mathcal{F}_{t_{1}}
$$

Dynamic utility measurement

time t_{2}, information $\mathcal{F}_{t_{2}}$

$$
U\left(x, t_{2} ; M I\right) \in \mathcal{F}_{t_{2}} \quad \pi\left(x, t_{2} ; M I\right) \in \mathcal{F}_{t_{2}}
$$

Dynamic utility measurement

time t_{3}, information $\mathcal{F}_{t_{3}}$

$$
U\left(x, t_{3} ; M I\right) \in \mathcal{F}_{t_{3}} \quad \pi\left(x, t_{3} ; M I\right) \in \mathcal{F}_{t_{3}}
$$

Dynamic utility measurement

$$
\text { time } t \text {, information } \mathcal{F}_{t}
$$

asset returns
additional
market input

$$
U\left(X_{t}^{*}, t\right) \in \mathcal{F}_{t} \quad \pi^{*}\left(X_{t}^{*}, t\right) \in \mathcal{F}_{t}
$$

Dynamic utility measurement

time t_{1}, information $\mathcal{F}_{t_{1}}$

$$
U\left(X_{t_{1}}^{*}, t_{1}\right) \in \mathcal{F}_{t_{1}} \quad \pi^{*}\left(X_{t_{1}}^{*}, t_{1}\right) \in \mathcal{F}_{t_{1}}
$$

Dynamic utility measurement

time t_{2}, information $\mathcal{F}_{t_{2}}$

Dynamic utility measurement

time t_{3}, information $\mathcal{F}_{t_{3}}$

$$
U\left(X_{t_{3}}^{*}, t_{3}\right) \in \mathcal{F}_{t_{3}} \quad \pi^{*}\left(X_{t_{3}}^{*}, t_{3}\right) \in \mathcal{F}_{t_{3}}
$$

Construction of a class of forward dynamic utilities

Creating the martingale that yields the optimal utility volume

Minimal model assumptions
Stochastic optimization problem "inverse" in time

Key idea
Stochastic input
Market
Variational input
Individual
Maximal utility - Optimal allocation

Variational input - utility surfaces

Utility surface

A model independent variational constraint on impatience, risk aversion and monotonicity

- Initial utility datum

$$
u_{0}(x)=u(x, 0)
$$

- Fully non-linear pde

$$
\left\{\begin{array}{l}
u_{t} u_{x x}=\frac{1}{2} u_{x}^{2} \\
u(x, 0)=u_{0}(x)
\end{array}\right.
$$

Utility transport equation

The utility equation can be alternatively viewed as a transport equation with slope of its characteristics equal to (half of) the risk tolerance

$$
\begin{aligned}
& r(x, t)=-\frac{u_{x}(x, t)}{u_{x x}(x, t)} \\
& \left\{\begin{array}{l}
u_{t}+\frac{1}{2} r(x, t) u_{x}=0 \\
u(x, 0)=u_{0}(x)
\end{array}\right.
\end{aligned}
$$

Characteristic curves:

$$
\frac{d x(t)}{d t}=\frac{1}{2} r(x(t), t)
$$

Construction of utility surface $u(x, t)$ using characteristics

$$
\frac{d x(t)}{d t}=\frac{1}{2} r(x(t), t)
$$

Utility datum $u_{0}(x)$

Construction of characteristics

$$
\frac{d x(t)}{d t}=\frac{1}{2} r(x(t), t)
$$

Utility datum $u(x, 0)$
Characteristic curves

Propagation of utility datum along characteristics

Propagation of utility datum along characteristics

Utility surface $u(x, t)$

Two related pdes

- Fast diffusion equation for risk tolerance

$$
\left\{\begin{array}{l}
r_{t}+\frac{1}{2} r^{2} r_{x x}=0 \tag{FDE}\\
r(x, 0)=r_{0}(x)
\end{array}\right.
$$

Conductivity: $\quad r^{2}$

- Porous medium equation for risk aversion

$$
\begin{gather*}
\gamma(x, t)=\frac{1}{r(x, t)} \\
\left\{\begin{array}{l}
\gamma_{t}=\left(\frac{1}{\gamma}\right)_{x x} \\
\gamma(x, 0)=\frac{1}{r_{0}(x)}
\end{array}\right. \tag{PME}
\end{gather*}
$$

Pressure: r^{2} and (PME) exponent: $\quad m=-1$

Difficulties

- Utility equation: $u_{t} u_{x x}=\frac{1}{2} u_{x}^{2}$

Inverse problem and fully nonlinear

- Utility transport equation: $u_{t}+\frac{1}{2} r(x, t) u_{x}=0$

Shocks, solutions past singularities

- Fast diffusion equation: $\quad r_{t}+\frac{1}{2} r^{2} r_{x x}=0$

Inverse problem and backward parabolic, solutions might not exist, locally integrable data might not produce locally bounded slns in finite time

- Porous medium equation: $\quad \gamma_{t}=\left(\frac{1}{\gamma}\right)_{x x}$

Majority of results for (PME), $\gamma_{t}=\left(\gamma^{m}\right)_{x x}$,
are for $m>1$, partial results for $-1<m<0$

A rich class of risk tolerance inputs

- Addititively separable risk tolerance

$$
r^{2}(x, t ; \alpha, \beta)=m(x ; \alpha, \beta)+n(t ; \alpha, \beta)
$$

Example

$$
\begin{aligned}
m(x ; \alpha, \beta) & =\alpha x^{2} \quad n(x ; \alpha, \beta)=\beta e^{-\alpha t} \\
r(x, t ; \alpha, \beta) & =\sqrt{\alpha x^{2}+\beta e^{-\alpha t}} \quad \alpha, \beta>0
\end{aligned}
$$

(Very) special cases

$$
\begin{aligned}
& r(x, t ; 0, \beta)=\sqrt{\beta} \quad \longrightarrow u(x, t)=-e^{-\frac{x}{\sqrt{\beta}}+\frac{t}{2}} \\
& r(x, t ; 1,0)=|x| \longrightarrow u(x, t)=\log x-\frac{t}{2} \\
& r(x, t ; \alpha, 0)=\sqrt{\alpha}|x| \longrightarrow u(x, t)=\frac{1}{\gamma} x^{\gamma} e^{-\frac{\gamma}{2(1-\gamma)} t}, \quad \gamma=\frac{\sqrt{\alpha}-1}{\sqrt{\alpha}}
\end{aligned}
$$

Risk tolerance $\quad r(x, t)=\sqrt{0.05 x^{2}+15.5 e^{-0.05 t}}$

Utility surface $u(x, t)$ generated by

 risk tolerance $\quad r(x, t)=\sqrt{0.05 x^{2}+15.5 e^{-0.05 t}}$

Characteristics: $\quad \frac{d x(t)}{d t}=\frac{1}{2} \sqrt{0.05 x(t)^{2}+15.5 e^{-0.05 t}}$

Risk tolerance $\quad r(x, t)=\sqrt{10 x^{2}+e^{-10 t}}$

Utility surface $u(x, t)$ generated by

 risk tolerance $\quad r(x, t)=\sqrt{10 x^{2}+e^{-10 t}}$

Risk tolerance $\quad r(x, t ; 0,1)=\sqrt{0 x^{2}+1}=1$

Utility surface $u(x, t)=-e^{-x+\frac{t}{2}}$ generated by
risk tolerance $\quad r(x, t)=1$

Risk tolerance $\quad r(x, t ; 1,0)=\sqrt{x^{2}+0 e^{-t}}=|x|$

Utility surface $u(x, t)=\log x-\frac{t}{2}, x>0$ generated by
risk tolerance $\quad r(x)=x$

Risk tolerance $r(x, t ; 4,0)=\sqrt{4 x^{2}+0 e^{-4 t}}=2|x|$

Utility surface $u(x, t)=2 \sqrt{x} e^{-\frac{t}{2}}, x>0$ generated by
risk tolerance $\quad r(x, t)=2 x$

Characteristics: $\frac{d x(t)}{d t}=x(t)$

Multiplicatively separable risk tolerance

$$
r(x, t ; \alpha, \beta)=m(x ; \alpha) n(t ; \beta)
$$

Example

$$
\begin{gathered}
m(x ; \alpha)=\varphi\left(\Phi^{-1}(x ; \alpha)\right) \quad n(t ; \beta)=\frac{1}{\sqrt{t+\beta}}, \quad \beta>0 \\
\Phi(x ; \alpha)=\int_{\alpha}^{x} e^{z^{2} / 2} d z \quad \varphi=\Phi^{\prime} \\
r(x, t ; \alpha, \beta)=\varphi\left(\Phi^{-1}(x ; \alpha)\right)
\end{gathered}
$$

(Very) special cases

$$
\begin{aligned}
& m(x ; \alpha)=\alpha, n(t ; \beta)=1 \quad \longrightarrow u(x, t)=-e^{-\frac{x}{\alpha}+\frac{t}{2}} \\
& m(x ; \alpha)=x, n(t ; \beta)=1 \quad \longrightarrow u(x, t)=\log x-\frac{t}{2} \\
& m(x ; \alpha)=\alpha x, n(t ; \beta)=1 \quad \longrightarrow u(x, t)=\frac{1}{\gamma} x^{\gamma} e^{-\frac{\gamma}{2(1-\gamma)} t}, \quad \gamma=\frac{\alpha-1}{\alpha}
\end{aligned}
$$

Risk tolerance $\quad r(x, t)=\frac{\varphi\left(\Phi^{-1}(x ; 0.5)\right.}{\sqrt{t+5}}$

Utility surface $\quad u(x, t)=\Phi\left(\Phi^{-1}(x ; 0.5)-\sqrt{t+5}\right)$ generated by risk tolerance $\quad r(x, t)=\frac{\varphi\left(\Phi^{-1}(x ; 0.5)\right)}{\sqrt{t+5}}$

Characteristics: $\quad \frac{d x(t)}{d t}=\frac{\varphi\left(\Phi^{-1}(x(t) ; 0.5)\right)}{\sqrt{t+5}}$

Utility function $u\left(x, t_{0}\right)$
(fixed time)

$$
t_{0}=2
$$

Utility function $u\left(x_{0}, t\right)$
(fixed wealth level)

$$
x_{0}=3.5
$$

Summary on variational utility input

- Key state variables: wealth and risk tolerance
- Risk tolerance solves a fast diffusion equation posed inversely in time

$$
\left\{\begin{array}{l}
r_{t}+\frac{1}{2} r^{2} r_{x x}=0 \\
r(x, 0)=-\frac{u_{0}^{\prime}(x)}{u_{0}^{\prime \prime}(x)}
\end{array}\right.
$$

- Utility surface generated by a transport equation

$$
\left\{\begin{array}{l}
u_{t}+\frac{1}{2} r(x, t) u_{x}=0 \\
u(x, 0)=u_{0}(x)
\end{array}\right.
$$

- Forward dynamic utility process constructed by compiling variational utility input and stochastic market input

