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Abstract In this paper we develop a new model for the dynamics of forward curves
of commodities exhibiting seasonalities, such as natural gas, electricity or agricul-
tural commodities. In the existing literature on the subject, the first state variable in
multi-factor models is the commodity price, which combines seasonal and stochastic
features and may be unobservable. We propose to use instead the average forward
price, which is devoid of seasonality and conveys a more robust representation of
the current forward curve level. The second factor in the model is a quantity analo-
gous to the stochastic convenience yield, which accounts for the random changes in
the forward curve shape. The well-known cost-of-carry relationship is significantly
improved by introducing a deterministic seasonal premium within the convenience
yield. We develop model estimation procedures and apply them to a number of energy
markets.
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1 Introduction

Commodity markets have recently experienced a dramatic growth, in terms of vol-
umes and variety of traded contracts, number of operating exchanges and market
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participants. The most important expansion has been in the trading of commodity
derivatives, such as futures and options. Trading volumes in commodity futures have
risen steadily over the past two decades on exchanges such as the InterContinen-
tal Exchange (ICE) and the New York Mercantile Exchange (NYMEX). Moreover,
exchanges continually introduce futures and options on new commodities, such as
electricity futures that are now trading in many countries after the liberalization of
electricity markets. It is important to note at the start that forwards and futures com-
modity markets are the ones where most of the activity is taking place. In the case of
oil for instance, volumes in these markets are nine times larger than those occuring
in the spot market, and this ratio is consistently increasing with the arrival of new
financial players.

Traditional pricing, hedging and volatility modelling techniques from equity and
fixed income markets are not directly applicable to commodities, whose specific prop-
erties need to be taken into account. One such characteristic feature is seasonality.
Seasonality in the spot prices of many agricultural and energy commodities—natu-
rally arising from seasonal patterns in supply (e.g., harvest) and demand (e.g., cold
weather)–is relatively well understood. It has been studied by a number of authors
(see e.g., Milonas 1991) and can be successfully modelled by traditional time-series
techniques. However, less attention has been given to seasonal effects in commodity
forward curves. The shape of the forward curve reflects in all cases market funda-
mentals and anticipated price trends. Consequently, seasonal components of forward
curves provide additional insight into how seasonality affects expected future spot
prices. At the same time, however, seasonal features may bring noise to the analysis
of the commodity price’s evolution from an economic perspective.

For seasonal commodities, the shape of the forward curve is largely determined by
the anticipation of seasonal demand and/or supply. In the case of energy commodities
such as electricity and natural gas, prices are driven by seasonal demand: for instance,
in the UK there is always a higher demand for gas and electricity during winter months,
resulting in a price premium for futures expiring then. Typical forward curves for IPE1

electricity and natural gas futures, up to respectively 9 and 12 months to expiry, are
shown on Fig. 1. These curves are observed on July 19, 2001, so the front-month con-
tract is July. As expected, the peak in futures prices occurs for the contracts expiring
in 6 months, i.e., in January 2002.

For agricultural commodities (e.g., soybean, wheat, coffee, cocoa), prices are driven
by seasonal supply, hence they are generally higher before the harvest. Seasonal
forward curves are not observed in the crude oil market, which is a world market.

Outside seasonality, a fundamental piece of information on commodity forward
curves comes from the cash and carry relationship derived from the no-arbitrage
assumption. Its early version (Brennan and Schwartz 1985) is the following:

F(t, T ) = S(t)e(r+c−ỹ)(T −t), (1)

1 The London-based International Petroleum Exchange (IPE) has been absorbed by the ICE.
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Fig. 1 UK electricity and natural gas forward curves on July 19, 2001

where S(t) denotes the commodity spot price at date t , F(t, T ) the forward price2

for maturity T ; r, c and ỹ respectively denote constant (continuously compounded)
interest rate, cost of storage and convenience yield. As discussed by Kaldor (1939)
and Working (1948), ỹ accounts for the benefit of owning the physical commodity
rather than a futures contract written on it. The crucial value of this relationship is
fully appreciated by the market participants. For instance, a trader who sold an option
on the spot commodity will hedge his position in an opaque spot market through a
liquid forward contract and its quantity will be defined by Eq. 1.

Denoting y = ỹ − c, the convenience yield net of storage cost, Eq. 1 implies that
the forward curve at date t is an increasing or decreasing function of the maturity
T , depending on the sign of (r − y), respectively called contango or backwardation.
In a simple backwardated market, forward contracts with shorter maturities are more
expensive than contracts expiring later. The contango market represents the opposite
situation. These two types of forward curves are depicted in Fig. 2.

Whether the market is in backwardation or in contango depends on current price
and inventory levels, transportation and storage costs, supply and demand equilibria,
strategic and political reasons and possibly many other factors.

Allowing now interest rates and convenience yield to depend on time, the spot-
forward relationship becomes

F(t, T ) = S(t)e[r(t)−y(t)](T −t). (2)

Regarding the oil market, forward curves observed in the 1980s, 1990s and early
2000s were essentially backwardated, with a contango shape observed during crisis
periods such as the Gulf war. For the first time, a hump-shaped curve has consistently
prevailed since the beginning of the year 2006, with forward prices increasing up to

2 Throughout the paper, we assume non-stochastic interest rates. Hence F(t, T ) indifferently denotes the
forward price and the futures price.
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Fig. 2 Crude oil forward curves, backwardation and contango

12 or 13 months expiry and decreasing afterwards3 (see Geman 2007). We know from
the theory of interest rate yield curves that a change in convexity along the forward
curve does not contradict the no-arbitrage assumption. It is however inconsistent with
a convenience yield independent of the maturity T , as stated in the classical form of
the cost of carry relationship. The approach developed below would allow to capture
this curvature change; our goal in this paper is to focus on seasonal commodities.

In the financial literature, the spot-forward relationship (2) is considered with var-
ious specifications of the convenience yield. In Brennan and Schwartz (1985), it is
constant, while Black (1976) and Amin et al. (1994) consider the convenience yield
y(t) as a deterministic function of time. Gibson and Schwartz (1990), Schwartz (1997)
and Litzenberger and Rabinowitz (1995) consider a more general situation, by defining
y(t) as a stochastic process.

The dependence of y on time expresses the fact that the “reward” received by the
holder of the physical commodity changes with the world inventories and, in turn,
economic agents’ preferences for the physical good rather than a paper contract. Our
view in this paper agrees with this perspective but goes one step further, by considering
y = y(t, T ) as a function of the forward contract’s maturity T as well as t . This is
particularly indispensable in the case of seasonal commodities such as natural gas,
sugar, corn: all of them presently in the spotlight because of the focus on energy and
energy-related agricultural commodities.

Figure 3 shows a UK natural gas forward curve with maturities up to 68 months
(i.e., more that 5 years ahead) and depicts the remarkable seasonality exhibited by
the UK (and other regions) gas prices. This seasonality is essentially explained by
demand, which is much higher in winter than in summer, and symmetrically observed
by all market participants. Whether deterministic or not, this seasonality does not cre-
ate arbitrage opportunities, namely positions built at zero initial cost and leading to
positive or strictly positive liquidation values at maturity. In this respect the example

3 This phenomenon is generally explained by the massive arrival of hedge funds and other short term
investors in the oil market; more distant maturities forward contracts remain only traded by the traditional
players of the oil industry.
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Fig. 3 UK natural gas forward
curve, March 7, 2007
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Natural gas forward curve, March 7, 2007

of the hedge fund Amaranth is quite instructive: this fund lost $6 billion in summer
2006, after gaining $1.5 billion in summer 2005, through the same type of calendar
spread positions in natural gas futures.

Returning to Eq. 2, the seasonality existing in the T argument of the futures price
F(t, T ) should be reflected in the cost of carry relationship. Since this T -seasonality
cannot lie in the commodity spot price S(t), it has to be embedded in the convenience
yield y. Observe that this is in sharp contrast with the case of a stock making a contin-
uous dividend payment at the rate g(t) as in Merton (1973), where the spot-forward
relationship is given by

F(t, T ) = S(t)e[r(t)−g(t)](T −t), (3)

and the rate g(t) may vary with time but does not exhibit any dependence on T .
As of now we shall denote the convenience yield (whether deterministic or sto-

chastic) by y(t, T ) and rewrite Eq. 2 as

F(t, T ) = S(t)e[r(t)−y(t,T )](T −t). (4)

Note that this representation allows to emphasize the character of time-spread option
carried by the convenience yield, as discussed for instance in Heinkel et al. (1990), or
in Routledge et al. (2000).

To model the dynamics of the forward curve, one can follow the route familiar
in yield curve stochastic modelling: choose one, two or three stochastic factors that
drive the evolution of the forward curve and derive the futures prices from the as-
sumed dynamics of these factors and no-arbitrage arguments. For instance in one-
factor models, the single source of uncertainty is the commodity spot price (following
e.g., a mean-reverting process), which also drives futures prices. In the more realistic
two-factor models, proposed in the case of oil by Gibson and Schwartz (1990) and
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Litzenberger and Rabinowitz (1995), there are two sources of uncertainty: for instance,
the spot price and the convenience yield, and futures prices are derived from these two
factors by arbitrage arguments.

One problem with such models is that the derived forward curves are not consistent
with the ones observed for seasonal commodities. To introduce seasonality into the
model, Sorensen (2002) and Lucia and Schwartz (2002) use a two-factor model with
the factors being a mean-reverting spot price with seasonal mean and a long-term
equilibrium price. Geman and Nguyen (2005) extract a deterministic seasonal com-
ponent in their three-factor model of the soybean forward curve. In all these models,
seasonality is represented in the t argument, but not in the delivery date T of the futures
price F(t, T ).

One step in our proposed direction was made by Amin et al. (1994). They consider
the cost-of-carry model with seasonal (but deterministic) convenience yield and one
stochastic factor, the spot price. Their model is related to the observation by Fama and
French (1987) who find seasonalities in convenience yields, that can be explained by
inventory fluctuations.

Futures prices of seasonal commodities are also driven by external stochastic factors
other than the spot price: such as extreme weather circumstances (outside the average
seasonal pattern), political crises within producing countries, market risk aversion and
so forth. We choose to express these external influences by a stochastic convenience
yield, while directly representing forward prices by a deterministic seasonal premium
within the convenience yield. The case of non-seasonal but “segmented” oil forward
curves can be treated by the same type of approach but is outside the scope of this paper.

The paper is organized as follows. In the next section we introduce the factors
and the model. There we also discuss the dynamics of these factors and derive the
corresponding futures prices and their volatilities. Section 3 addresses the problem of
model estimation and Sect. 4 its application to energy markets. Section 5 concludes.

2 Seasonal cost-of-carry model

We construct a two-state variable model consistent with the points argued in the pre-
vious section. The first one is the average level of the forward curve, or the average
forward price prevailing at date t , which we denote by F̄(t). We define F̄(t) as the
geometric average of the current forward prices:

F̄(t) = N

√
√
√
√

N
∏

T =1

F(t, T ), (5)

or, equivalently,

ln F̄(t) = 1

N

N
∑

T =1

ln F(t, T ), (6)

where N is the most distant liquid maturity.
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For seasonal commodities, we assume that N is a multiple of 12, i.e., we include
maturities up to a whole year or an integer number of years. This assumption ensures
that F̄(t) does not have any seasonal features. Other constructions of a non-seasonal
F̄ are possible. Furthermore, we are not limited to futures with regularly-spaced matu-
rities, but can include all traded liquid maturities. To include all traded maturities, we
could modify definition (6) by using a traded-volume-weighted average instead of the
regular average.

Next, we define the seasonal premia (s(M))M=1,...,12 as the collection of long-
term–average premia (expressed in %) on futures expiring in the calendar month
M (M = 1, . . . , 12) with respect to the average forward price F̄(t). We assume that
the vector (s(1), . . . , s(12)) is deterministic (its estimation from historical data will
be described in Sect. 4). Furthermore, we shall require that

∑12
M=1 s(M) = 0. This

is a reasonable assumption, since s(M) is defined with respect to the average price
level. The seasonal premium could also be expressed as a trigonometric function of
time with a period of 1 year; however, we find such a representation less appropriate,
especially as futures expire monthly.

To relate the parameter M (calendar month) to T (the expiry date), the follow-
ing rule is used: if T is in a particular calendar month M (M = 1, . . . , 12), then
s(T ) = s(M). For instance, if a futures contract expires on February 25, 2008, then
the seasonal premium for the contract always equals s(2), regardless of the current
date. Note that the same seasonal premium will be applicable to contracts expiring in
February 2008 and 2009.

Now we introduce the seasonal cost-of-carry model. For any maturity T , we write

F(t, T ) = F̄(t)e[s(T )−γ (t,T −t)(T −t)], (7)

where s(T ) is the deterministic seasonal premium, and γ (t, τ ), τ = T − t , defined by
the relationship above, is called the stochastic convenience yield, or stochastic cost of
carry net of seasonal premium, observed at date t for time to maturity τ .

Note that, in the seasonal cost-of-carry model (7) we have separated the depen-
dence on maturity date T from the dependence on time to maturity τ = T − t . The
maturity date (or, rather, maturity calendar month) influences the futures price via
the seasonal premium s(T ), while the effect of time to maturity τ enters the futures
price via the stochastic cost of carry aggregated up to time to maturity τγ (t, τ )). The
average forward price F̄(t) is only parameterized by the current date t . The choice of
this first state variable is a key feature of our model.

Relationship (7) has a clear interpretation: futures expiring on date T can either be
at a premium or discount with respect to the current average forward price F̄(t), and
this premium or discount is largely determined by the component s(T ), attached to the
calendar month when the futures expire. For example, futures expiring in January will
on average be at a premium (given by s(1)) with respect to F̄(t), independent of the
current date t . This is why we define the seasonal premium as an absolute quantity and
not as a rate: the premium for January futures is the same, whether today is March or
September. In addition, the premium or discount of F(t, T ) with respect to F̄(t) also
depends on factors other than the expiry month, and these stochastic factors (which
also include “relative cost of financing”) are summarized in γ (t, τ ). The collection of
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stochastic convenience yields {γ (t, τ )} describes how the shape of the forward curve
deviates from the typical seasonal pattern; it can be analyzed by principal component
analysis techniques, introduced in Borovkova (2004) in the case of oil forward curves.

The quantity γ , defined by (7), is applicable to storable and non-storable commod-
ities. Note that in the case of electricity, some authors (see e.g., Eydeland and Geman
1998) have argued that the notion of convenience yield does not really make sense
since the absence of storability prevents any cash and carry argument, and in turn any
spot-forward relationship between the spot price of electricity and forward prices. In
the setting of this paper, the spot price plays no role and we are focusing on the random
moves of the forward curve as a whole and at specific points. Hence, the stochastic
cost of carry γ as defined by Eq. 7 may be extended to the case of electricity.

The state variables in our model being the average forward price F̄(t) and the sto-
chastic cost of carry γ (t, τ ), we first consider two particular cases. If γ (t, τ ) ≡ 0,
then our model is a one-factor model, driven only by the average forward price F̄(t);
hence, the futures prices are completely determined by this quantity and the determin-
istic seasonal premium. If s(T ) = 0 for all T , then there is no deterministic seasonality
in the futures prices and γ (t, τ ) is reduced to the classical cost of carry and our model
is similar to the Gibson and Schwartz (1990) two-factor model but with a spot price
replaced by F̄(t).

In fact, by using F̄(t) as a new state variable, we circumvent many problems related
to the spot price, while still having a factor indicative of the overall profile of the com-
modity market under investigation. It is known that spot prices are not readily available
for many commodities. In such cases the futures price for the closest maturity is gen-
erally used as a proxy for the spot price. However, spot and futures markets are often
quite dissimilar, and this approximation becomes questionable. As said before, the
prime example of this situation is the electricity market, where spot prices can have
huge spikes, while futures prices do not. In the Scandinavian electricity market Nord-
pool, the correlation between the spot and the nearby futures price ranged from 0.65 to
−0.15 in the past few years, indicating that the futures price is a poor proxy for the spot
price in the case of electricity, even in a market with a high ratio of hydroelectricity
generation (see Geman 2005).

In all cases, the average forward price F̄(t) is more stable and reflects the over-
all price level better than the volatile spot price, and the argument applies to those
commodity markets where the spot price is non-transparent because of the absence
of a reliable index. There is finally an interesting theoretical relationship between the
seasonal cost-of-carry model and the spot price. Let S(t) denote the spot price. On the
expiry day t = T we have the following convergence relationship:4 F(t, t) = S(t).
Hence, the model implies that

S(t) = F̄(t)es(t). (8)

In those markets where there is no reliable proxy for the spot price, the model becomes
highly useful as relationship (8) can be used to define such a proxy.

4 However, in many markets (such as electricity) this convergence is not gradual but abrupt, i.e. discontin-
uous, and hence, does not hold in practice.
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An important advantage of introducing the quantity F̄(t) is that it is not seasonal (by
construction), even if the spot price is. Hence, F̄(t) (or its logarithm) can be modelled
as a positive mean-reverting process with a constant mean. The process γ (t, τ ), on the
other hand, may be viewed as fluctuating around zero, since all systematic deviations
of futures prices from F̄ are assumed to be due to season and hence, incorporated into
s(T ). So γ (t, τ ) can also be modelled as a mean-reverting process with mean zero.

Next, we are going to specify the stochastic dynamics of the state variables. Define
X (t) = ln F̄(t). We describe the dynamics of X (t) and γ under the real probability
measure P by the stochastic differential equations

d X (t) = α(m − X (t))dt + σdW1(t) (9)

dγ τ (t) = −aτ γ τ (t)dt + ητ dW2(t), (10)

where the volatility of ln F̄(t) is assumed to be constant (but, brought together with
volatilities of γ τ, still leads to a term structure of futures prices volatilities, as shown
below). The convenience yields of all maturities γ τ (t) are subject to a single source
of uncertainty, given by the Brownian motion W2, uncorrelated with the Brownian
motion W1 driving the average forward price. We view γ τ as fluctuating around zero
over time, since shocks to inventories get eventually absorbed by adjustment of the
production, and ln F̄ reverts to a long-term value m, here supposed to be constant. The
set (ητ )τ=1,2,...,N represents the stochastic convenience yield volatilities for different
maturities.

We can substitute the stochastic differential Eqs. 9 and 10 into 7 and derive the
dynamics of the futures log-prices Y (t, T ) = ln F(t, T ) under the real probability
measure:

d(Y (t, T )) = [α(m − X (t)) + γ τ (t)(aτ τ + 1)]dt + σdW1(t) − ητ τdW2(t). (11)

So Y (t, T ) is obtained by integrating the above differential equation with the initial
condition

F(0, T ) = F̄(0)es(T )−γ τ (0)T . (12)

Then F(t, T ) is log-normally distributed with variance

δ2(t, τ ) = σ 2 + (ητ τ )2, τ = T − t. (13)

We can observe that, as in the case of the “extended” Vasicek model of interest rates
(see Hull and White 1990), we obtain in our model a term structure of futures prices
volatilities denoted by δ(t, τ ), τ = 1, . . . , N . Note that the dynamics and the volatility
of the futures price only depend on the time to maturity τ , and the dependence on the
maturity date T is reduced to the seasonal premium s(T ).
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3 Model estimation and applications

Suppose we have an historical dataset of n daily forward curves with maturities up
to one year: (F(t, 1), F(t, 2), . . . , F(t, 12))t=1,...,n . The first unknown parameters of
the seasonal cost-of-carry model are the collection of seasonal premia (s(T ))T =1,...,12.
The statistical formulation of the model is the following.

We first note that the Eq. 7 can be written in logarithmic form as

ln F(t, T ) = ln F̄(t) + s(T ) + τγ (t, τ ), τ = T − t, (14)

or, if we denote �(t, T ) = τγ (t, τ ),

Y (t, T ) = X (t) + s(T ) + �(t, T ). (15)

This is the so-called two-way fixed effects model, often used in the analysis of panel
data (see e.g. Wooldridge 1999), or the two-way ANOVA5 model without replications,
well-known in statistics. Such a model reflects the view that the current date and the
maturity calendar month have different effects on the futures price, but the maturity
calendar month essentially has a similar effect on futures prices of different dates t .
In the statistical representation (15), X (t) is the day effect, s(T ) is the (deterministic)
maturity month effect, satisfying

∑12
T =1 s(T ) = 0, and �(t, T ) are mean-zero idio-

syncratic errors.6 Note that the choice of F̄ as the first state variable of our model does
not induce a flat shape of the forward curve (never observed in the markets). Its value,
however, immediately reflects where the market sees future spot prices. In the case of
oil for instance, F̄ went from values of the order of $20 per barrel at the beginning of
2000 to levels of $60 TO $70 today.

The least squares estimator for the daily effect X (t) is exactly the arithmetic average
of log-futures prices, i.e., ln F̄(t). The least squares estimator for the maturity month
effect s(T ) is the average deviation of the log-futures price from these daily averages:

ŝ(T ) = 1

n

n
∑

t=1

(Y (t, T ) − X (t)) = 1

n

n
∑

t=1

(ln F(t, T ) − ln F̄(t)), (16)

where n denotes the number of days in the historical dataset. These estimates are unbi-
ased and consistent since �(t, T ) is uncorrelated with X (t) as we argued before, and
with s(T ) (which is obvious, as s(T ) is non-random). Although the random variables
(�(t, T ))t are serially correlated, the estimators are still unbiased and consistent; for
an overview of related asymptotic results, see Wooldridge (1999). In our case, the var-
iance of the seasonal premium estimate ŝ(T ) involves autocorrelations of (�(t, T ))t ,
but can still be consistently estimated from the data. The model residuals

5 ANalysis Of Variance.
6 For a given maturity, the quantity �(t, T ) contains the (log) differential cost of financing with respect to
F̄ . The average of � is indeed zero and each of them is arguably independent of the shocks driving F̄ , the
“backbone” of the forward curve.
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�̂(t, T ) = X (T ) − Y (t, T ) + ŝ(T ) = ln
F̄(t)

F(t, T )
+ ŝ(T ) (17)

are the estimates of the daily aggregated convenience yields ((T −t)γ (t, T −t))t=1,...,n ,
and the stochastic convenience yield itself can be obtained by

γ̂ (t, T − t) = �̂(t, T )

T − t

for all available times to maturity τ = T − t = 1, . . . , N − t (expressed in months).
By definition, the daily average forward price F̄(t) is non-seasonal as long as we

average futures prices up to a year or an integer number of years, e.g., 12, 24, or
36 months to maturity. If we have fewer than 12 expiries, then the unbiased estimates
of F̄(t) (and hence s(M)) are not available. In this case we propose to use the estima-
tion procedure described in the Appendix.

The nearby futures prices (i.e., those expiring in the current month) are often unsta-
ble, due to expiration effects and we chose to exclude them from the estimation pro-
cedure. If we have futures prices for expiries beyond 1 year ahead, we can estimate
ln F̄(t) by 1

12

∑13
T =2 ln F(t, T ). If fewer than 13 consecutive expiry months are avail-

able, then the Appendix procedure can be employed.
Next, the parameters of the mean-reversion dynamics (9) and (10) can be estimated

from the observed series of (F̄(t))n
t=1 and (γ (t, τ ))n

t=1, for all liquid times to maturity
τ . Since Eqs. 9 and 10 can be solved explicitly, we can apply for parameter estimation
the exact maximum likelihood method.

In the next section we estimate the model parameters for oil, heating oil, natural gas
and electricity futures prices. We use the estimated seasonal premium to deseasonalize
the forward curves. This allows us to observe less prominent non-seasonal features of
forward prices, normally obscured by the dominant seasonal effect.

4 Application to energy futures

We estimated the seasonal premia for natural gas, electricity, heating oil and crude oil
futures. Our estimates are based on historical datasets of IPE futures prices, for natu-
ral gas (06.00–04.04), electricity (04.01–12.02), heating oil (01.00–04.04) and Brent
crude oil (09.99–04.04). The seasonal premia for natural gas, electricity and heating
oil are depicted in Fig. 4. The standard errors of the seasonal premia estimates are
approximately 0.005 (half of a percent) for gasoil and natural gas and 0.003 (one-third
of a percent) for electricity.

As expected, the estimated seasonal premium for crude oil is not significantly dif-
ferent from zero for all calendar months, and hence is not shown. For other energy
commodities, futures expiring in winter are at a premium with respect to the aver-
age price level, and summer futures at a discount. This premium is the highest for
natural gas futures: December gas futures are on average at a 28% (±1%) premium.
For electricity the December premium is also the highest, at 7% (±1%). The seasonal
premium for heating oil is generally smaller, and is at most 3%. This reflects a wider
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availability of storage for heating oil and a more mature market, similar to the crude
oil market.

The residuals of model (17) are approximately normal for all commodities; Fig. 5
displays them for gasoil futures.

The model residuals provide us with the estimates for the stochastic convenience
yield series, for all available times to maturity. Figure 6 shows the estimated conve-
nience yields for natural gas and gasoil futures maturing in 2 months.

We estimated the parameters of the dynamics of γ τ , given in (10), for all available
times to maturity τ . Figure 7 shows the estimated term structure of the convenience
yield volatilities (ητ ) for τ = 1, . . . , 12, for natural gas and gasoil. Note that, for times
to maturity longer than 3 months, the convenience yield volatility drops significantly.
In our model, the futures price volatilities for a large part are determined by the conve-
nience yield volatilities (see Eq. 13); we thus obtain consistency with the “Samuelson
effect” of futures price volatility decreasing with maturity.

We also estimated the parameters of the mean-reverting process of F̄ , for four
considered energy markets. Figure 8 shows the historical series of the logarithm of
F̄(t) for the natural gas (June 2000–March 2004), gasoil (Jan. 2000–May 2004) and
crude oil (Oct. 1999–May 2004) futures. All these series are devoid of seasonality, as
expected from the definition of F̄ .

Table 1 summarizes the estimated mean-reversion parameters for the process X (t)=
ln(F̄(t)) specified in (9), the standard errors are reported in parenthesis. The mean-
reversion rates and volatilities are classically expressed as annualized quantities.

Note that, for crude oil and gasoil, the mean-reversion rates and the volatilities of
F̄(t) are comparable to those frequently reported in the literature for the corresponding
spot prices. The mean-reversion rate of 2 (or the average reversion time of 6 months)
is often reported for crude oil spot prices, while the volatility of F̄(t), at 28%, is lower
than the spot price historical volatility, which is in the range 30–40% (Carmona and
Ludkovski 2004 report a crude oil spot price volatility of 45% in the period 1994–
2002). However, for natural gas and electricity, the volatility of F̄(t) is much lower
than historical volatilities of the spot prices, confirming that F̄(t) is indeed a stable
quantity, which reflects the overall state of the futures market in a more robust way
than the volatile spot price.

The estimated model can be used to generate realistic forward curves for seasonal
commodities, for applications such as risk management of commodity portfolios, or
any other application where a large amount of market scenarios—essentially forward
curves in the case of commodities—is necessary. First, one can simulate sample paths
of a daily average forward price F̄(t) and a vector of the stochastic convenience yields
(γ τ (t))τ using Eqs. 9 and 10 with parameters estimated from historical data. Then,
using these simulated daily values and the estimated seasonal premia (ŝ(T ))T =1,...,12,
a forward curve can be generated using the seasonal cost-of-carry model (7) and the
same procedure is repeated a number of times to generate a family of forward curves.
These simulated forward curves will contain seasonal features as well as the stochas-
tic behavior observed in historical forward curves. Moreover, the time evolution of
daily generated forward curves will reflect the autoregressive structure observed in the
market.
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Fig. 5 Histogram and QQ-plot of the model residuals for gasoil futures
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Table 1 Parameters of the mean-reverting process for X (t) = ln(F̄(t))

Electricity Gas Gasoil Oil

m 2.95 (0.01) 3.06 (0.01) 5.44 (0.01) 3.26 (0.01)
α 2.18 (0.03) 3.08 (0.02) 2.60 (0.02) 2.62 (0.02)
σ 0.23 (0.04) 0.25 (0.03) 0.28 (0.03) 0.28 (0.03)

Figure 9 shows three simulated forward curves up to 12 months to maturity, for
gasoil, natural gas and electricity, all for June 1, 2007. Note that, for gasoil futures,
the backwardation shape is slightly distorted by the anticipated seasonal premium; for
natural gas and electricity, the seasonal component dominates.

The seasonal cost-of-carry model (and in particular, the estimated seasonal premia)
can be also used to deseasonalize forward curves and reveal their stochastic features.
Having estimated the seasonal forward premium (ŝ(T ))T =1,...,12, we can discount
the futures prices by the corresponding ŝ(T ), to obtain the so-called deseasonalized
forward curve

F̃(t, T ) = F(t, T )e−ŝ(T ).

The left graph in Fig. 10 is the deseasonalized gasoil forward curve on October
6, 2000. Now that all seasonal effects are removed, a clear backwardation pattern
emerges, typical of the oil market around that date. The right graph is the desea-
sonalized forward curve of natural gas, plotted for the same date, October 6, 2000.
Note that, after subtracting the seasonal premium it appears that the futures expir-
ing in the next 3 months (November, December 2000 and January 2001) are less
expensive than the average forward price F̄ , showing the importance of the stochastic
factor γ .

Note that, according to the cost-of-carry model, the deseasonalized forward price
can be expressed as

F̃(t, T ) = F̄(t)e−τγ (t,τ ), τ = T − t,

and its deviations from F̄(t) reflected in the stochastic convenience yield γ (t, τ ).
The higher (in absolute value) γ̂ (t, τ ), the greater discrepancy between the observed
F(t, T ) and “expected” futures price F̄(t)es(T ). Figure 11 shows the estimates of the
stochastic convenience yields for 2 and 6 months to maturity for natural gas futures
prices in the period 2000–2003. The dotted lines indicate overall 95% confidence
intervals around the zero mean.

Note that there are periods when γ̂ (t, τ ) is outside the 95% confidence interval.
During such periods, the corresponding futures prices are significantly higher or lower
than the average seasonal premium would imply. On the basis of this information, a
speculative trader may decide to sell highly priced futures contracts and buy them
back when the market correction occurs.
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Fig. 11 Natural gas stochastic convenience yield, τ = 2 and 6; May 2000–March 2004

5 Conclusions

We introduced in this paper a new model for forward curves of seasonal commodities.
The characteristic seasonal features of forward prices are captured by the seasonal
forward premium, a meaningful quantity estimated from the historical data. The first
fundamental factor in our model is the average forward price. It is a robust, non-sea-
sonal quantity, which reflects the state of the forward market much better than a volatile
and often unreliable spot price. The second factor is the stochastic forward premium.
It allows us to extend the notion of convenience yield to non-storable commodities
such as electricity, since it is defined with respect to the average forward price rather
than the spot price. The model can be used to generate realistic seasonal commodities
forward curves, for activities such as risk management of commodity portfolios and
energy companies.

Appendix

This Appendix describes the procedure for estimating the seasonal premium and the
daily average forward price if we have fewer than 12 maturities in our historical dataset.
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First, we obtain estimates of the differences (s(M) − s(L)) for all possible com-
binations of months (M, L), by averaging (ln F(t, M) − ln F(t, L)) over the entire
historical dataset. (Here we again use the fact that γ τ (t) is zero on average for all τ ).
In this way we obtain the matrix of difference estimates:

̂s(1) − s(2)

̂s(1) − s(3) ̂s(2) − s(3)

̂s(1) − s(4) ̂s(2) − s(4) ̂s(3) − s(4)
...

...
...

̂s(1) − s(12) ̂s(2) − s(12) · · · · · · ̂s(11) − s(12)

The individual estimates for s(M) can be obtained by adding up the columns of
the above matrix and using the restriction

∑12
M=1 s(M) = 0. Denoting the sum of the

first column by �1, we observe that

�1 = 11s(1) −
12
∑

M=2

s(M) = 12s(1).

So from the first column sum �1 we obtain the estimate for s(1):

ŝ(1) = �1

12
.

If �2 denotes the sum of the second column, then we have

�2 = 10s(2) −
12
∑

M=3

s(M) = 11s(2) − s(1),

and the estimate for s(2) is then

ŝ(2) = �2 + ŝ(1)

11
.

Continuing this procedure, we find the estimates for all s(M), M = 1, 2, . . . , 12.
The unbiased estimates for F̄(t) can now be computed for all days in the historical

database. If N is the number of available expiries and suppose that at date t , the first
expiry month is January. Note that in this case

12 ln F̄(t) =
12
∑

M=1

F(t, M) ≈
N

∑

M=1

F(t, M) + (12 − N ) ln F̄(t) +
12
∑

M=N+1

s(M),
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again, due to the fact that γ τ (t) is essentially zero. Hence, the estimate of ln F̄(t) is

̂ln F̄(t) =
∑N

M=1 ln F(t, M) + ∑12
M=N+1 ŝ(M)

N
.

If the first expiry month is not January, then in the numerator of the above expression
we add to all available futures prices the estimated seasonal premia of the months that
are missing from the historical dataset on the date t .
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