
MANAGING RISK IN LIFE
INSURANCE AND PENSIONS

Ragnar Norberg

R.Norberg@lse.ac.uk
http://stats.lse.ac.uk/norberg

Abstract: Stochastic processes in life history analysis, life
insurance, and finance (jump processes and their associ-
ated random measures and martingales, Levy processes);
Traditional paradigms in life insurance (the principle of
equivalence, notions of reserves); Management of finan-
cial risk and longevity risk (the with profit scheme, unit-
linked insurance, securitization of mortality risk); The
role of financial instruments in life insurance and pen-
sions - can the markets come to our rescue?
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1 Background

Savings contract:
ct, amount deposited at time t = 1, 2, ...,m
bt, amount withdrawn at time t = m + 1, ..., T
St, price of unit of asset portfolio at time t = 0, 1, 2, ...
Deposit of ct at time t purchases ut units of the asset
given by ct = ut St:

ut = ct/St

Balance of account at time t = 1, 2, ...,m is total units
purchased times current value of the asset:

Vt = St (u1 + · · ·+ ut) = St

(
c1

S1
+ · · ·+ ct

St

)
Likewise, at time t = m + 1, ..., T withdrawal of bt is
financed by selling ut units of assets given by bt = ut St

and balance of account is

Vt = St

(
c1

S1
+ · · ·+ cm

Sm
− bm+1

Sm+1
− · · · bt

St

)
At term T all savings have been withdrawn and account
is settled at value VT = 0, giving Balance equation:

c1

S1
+ · · ·+ cm

Sm
=

bm+1

Sm+1
+ · · ·+ bT

ST

The role of capital gains is displayed by this relationship.
In year t the asset earns interest at rate

rt =
St − St−1

St−1
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Table 1: The Danish G82 mortality table

Age x No. of survivors `x No of deaths dx mortality rate qx

0 100000 58 0.000579
25 98083 119 0.001206
50 91119 617 0.006774
60 82339 1275 0.015484
70 65024 2345 0.036069
80 37167 3111 0.083711
90 9783 1845 0.188617

100 401 158 0.394000

Pension scheme. Balance equation:

c1 `x+1

S1
+ · · ·+ cm `x+m

Sm
=

bm+1 `x+m+1

Sm+1
+ · · ·+ bt `x+T

ST

Numerical illustrations:
Level payments ct = c, bt = 1, m = 35, T = 70.

No interest, no mortality: c = 1
r = 0.04, no mortality: c = 0.2538
r = 0.08, no mortality: c = 0.0677

r = 0.04, G82 mortality (mean life length 73): c = 0.1149
r = 0.04, Half of G82 mortality (mean life length 81):

c = 0.1592
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Managing interest and mortality risk:
1. With profit scheme. Set premium on the safe side.
Repay surplus in arrears as bonus.

2. Unit-linked scheme:
ct = ct St/`x+t, t = 1, 2, ...,m
bt = bt St/`x+t, t = m + 1, 2, ..., T
ct and bt baseline payments chosen at time 0.
Balance equation:

c1 + . . . + cm = cm+1 + . . . + bT
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2 The discounted value of a payment stream

St asset price at time t

Bt total investments (deposits less withdrawals) in (0, t]
Ut balance (investments compounded with interest) at t

Discrete time bank statement with Bj−Bj−1 invested in
S at time j = 1, 2, . . .:

Uj − Uj−1 = Uj−1
Sj − Sj−1

Sj−1
+ Bj −Bj−1

Uj = Sj

j∑
i=1

S−1
i (Bi −Bi−1)

= Sj

(
j∑

i=1

S−1
i−1(Bi −Bi−1) +

j∑
i=1

(S−1
i − S−1

i−1)(Bi −Bi−1)

)

= Sj

(
j∑

i=1

S−1
i−1(Bi −Bi−1)−

j∑
i=1

Si − Si−1

Si−1 Si
(Bi −Bi−1)

)
This motivates continuous time analogues:

dUt = Ut−
dSt

St−
+ dBt

Ut = St

(∫ t

0
S−1

τ− dBτ −
∫ t

0
S−1

τ−S−1
τ d[S, B]τ

)
Arbitrage free market with locally risk-free asset S0

t =

e
∫ t

0
r and EMM P̃:

Ẽ
[
(S0

t )
−1 Ut

]
= Ẽ

[∫ t

0
(S0

τ )
−1 dBτ

]
Reference: Norberg and Steffensen (2005)
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3 Life is a process

Policy issued at time 0, terminates at time T .
State of policy at time t ∈ [0, T ] is

Z(t) ∈ Z = {0, . . . , J} , Z(0) = 0

Indicator processes:

Ig(t) = 1[Z(t) = g]

Counting processes:

Ngh(t) = ]{τ ; Z(τ−) = g, Z(τ) = h, τ ∈ (0, t]}

dIg(t) =
∑
h;h 6=g

dNhg(t)−
∑
h;h 6=g

dNgh(t) , Ig(0) = δ0g .

Common assumption: Z is Markov process with transi-
tion probabilities

pjk(t, u) = P[Z(u) = k |Z(t) = j]

and intensities

µjk(t) = lim
h↓0

pjk(t, t + h)

h

Compensated counting processes are square integrable
orthogonal martingales:

dMgh(t) = dNgh(t)− Ig(t) µgh(t) dt

E[dMgh(t) | Ft−] = 0

E [ dMgh(t) dMjk(t)| Ft−] = δgh,jk Ig(t) µgh(t) dt
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Dead

Alive

?

0

1

µ

Survival probability: p00(t, u) = e−
∫ u

t
µ

Dead: cause 1 Dead: cause j Dead: cause J

Alive

�������)
?

PPPPPPPq

0

1 j J

µ1 µj µJ

· · · · · ·

µ(t) =
J∑

j=1

µj(t)

Probability of death from cause j:

p0j(t, u) =

∫ u

t

e−
∫ τ

t
µ µj(τ) dτ
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ρ(t)

Kolmogorov forward differential equations:

∂

∂t
pij(s, t) =

∑
g;g 6=j

pig(s, t) µgj(t) − pij(s, t)
∑
g;g 6=j

µjg(t)

pij(s, s) = δij

∂

∂t
P(s, t) = P(s, t)M(t) , t ∈ (s,∞), P(s, s) = I .

Kolmogorov backward differential equations:

∂

∂t
pjk(t, u) = −

∑
g;g 6=j

µjg(t) pgk(t, u) +
∑
g;g 6=j

µjg(t) pjk(t, u)

pjk(u, u) = δjk

∂

∂t
P(t, u) = −M(t)P(t, u) , t ∈ (0, u), P(u, u) = I .
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4 Insurance in Life

Individual multi-state policy issued at time 0 and ex-
piring at time n. B(t) total payments of benefits less
premiums in [0, t]

dB(t) =
∑

j

Ij(t) dBj(t) +
∑
j 6=k

bjk(t) dNjk(t)

dBj(t) = bj(t) dt + ∆Bj(t)

Life history:

H = {Ht}t≥0; Ht = σ{Z(τ); 0 ≤ τ ≤ t)}

Reserve at time t:

VH(t) = E
[∫ T

t

e−
∫ τ

t
rdB(τ)

∣∣∣∣ Ht

]
In the Markov case this reduces to

VZ(t)(t) = E
[∫ T

t

e−
∫ τ

t
rdB(τ)

∣∣∣∣ Z(t)

]
Thus, we need only the state-wise prospective reserves

Vj(t) = E
[∫ T

t

e−
∫ τ

t
rdB(τ)

∣∣∣∣ Z(t) = j

]

=

∫ T

t

e−
∫ τ

t
r
∑

g

pjg(t, τ)

dBg(τ) +
∑
h;h 6=g

bgh(τ) µgh(τ) dτ


deterministic functions of t. Backward ODE:

d

dt
Vj(t) = r(t) Vj(t)− bj(t)−

∑
k;k 6=j

µjk(t) Rjk(t)

Rjk(t) = bjk(t) + Vk(t)− Vj(t) “sum at risk”
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Pasting conditions ∆Vj(t) = −∆Bj(t),
starting from Vj(T−) = ∆Bj(T ).

5 Semi-Markov model and path-dependent pay-
ments

State Z(t), Policy duration t, State duration S(t)

µjk(s, S(t)), intensity of transition
bj(s, S(t)), rate of annuity payment
bjk(s, S(t−)) sum assured
∆Bj(S(T )) terminal endowment

Vj(s, t) reserve in state j at policy duration t and state
duration S(t) = s.

Vj(s, t) = (1− µj · (s, t) dt)
(
bj(s, t) dt + e−r(t) dtVj(s + dt, t + dt)

)
+
∑

k; k 6=j

µjk(s, t) dt (bjk(s, t) + Vk(0, t)) + o(dt)

First order PDE-s

∂

∂t
Vj(s, t) = r(t)Vj(s, t)−

∂

∂s
Vj(s, t)− bj(s, t)

−
∑
k;k 6=j

µjk(s, t) (bjk(s, t) + Vk(0, t)− Vj(s, t))

Terminal conditions:

Vj(s, n−) = ∆Bj(s)
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6 Principle of equivalence

E
[∫ T

0−
e−

∫ τ

0
rdB(τ)

]
= 0

∫ T

0−
e−

∫ τ

0
r
∑

g

p0g(0, τ)

dBg(τ) +
∑
h;h 6=g

bgh(τ) µgh(τ) dτ

 = 0

∆B0(0) + V0(0) = 0
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7 Martingale techniques

Probability space: (Ω,F ,P)

EX =
∫

Ω X(ω) dP(ω)

E [X Y ] = E[E [ X | G] Y ] ∀ Y ∈ G

Doob & Co:

Filtration: F = (Ft)t≥0;
Ft ∈ F , Fs ⊂ Ft for s < t, Ft = ∩u>tFu

Stopping time: r.v. T ≥ 0, [T ≤ t] ∈ Ft ∀ t

F
T

= {A ∈ F ; A ∩ [T ≤ t] ∈ Ft ∀ t}
(Xt)t≥0 adapted to F if Xt ∈ Ft ∀ t

F-adapted (Mt)t≥0 is martingale (m.g.) (F,P) if it has
RCLL paths, E |Mt| < ∞, and

E [Mt|Fs] = Ms ∀s ≤ t

F0 = {∅, Ω}: E[Mt] = M0

M.g. associated with X, E |X| < ∞: Mt = E[X | Ft]

Optional sampling: For stopping times S ≤ T ,

E[M
T
|F

S
] = M

S

Itô & Co:

df(Xt) = f ′(Xt−) dXt +
1

2
f ′ ′(Xt−) d[X, X]ct
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+ {f(Xt) − f(Xt−) − f ′(Xt−) ∆Xt}

Optional variance process:
[X, X]t = lim

∑n
i=1(Xti −Xti−1

)2, 0 = t0 < · · · < tn = t

topscript c denotes continuous part
∆Xt = Xt −Xt− (jump)

X finite variation: sup
∑n

i=1 |Xti −Xti−1
| < ∞, 0 = t0 <

· · · < tn = t

W Brownian motion: [W, W ]t = t. Infinite variation.

M m.g. with paths that are continuous and of bounded
variation is constant:

M 2
t = M 2

0 +

∫ t

0
2 Ms dMs

E [M 2
t ] = M 2

0 = E2[Mt] ⇒ Var[Mt] = 0 ⇒ Mt = M0.

Programme:
To find E [X], analyze the associated m.g. Mt to obtain
M0 = E [X].
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8 Martingales in Life

Start from martingale

M(t) = E[X |Ht]

M(t) = E
[∫ T

0−
e−

∫ τ

0
rdB(τ)

∣∣∣∣ Ht

]
=

∫ t

0−
e−

∫ τ

0
rdB(τ) + e−

∫ t

0
r E
[∫ T

t

e−
∫ τ

t
rdB(τ)

∣∣∣∣ Ht

]
=

∫ t

0−
e−

∫ τ

0
rdB(τ) + e−

∫ t

0
rVZ(t)(t)

dM(t)

= e−
∫ t

0
rdB(t) + e−

∫ t

0
r(−r(t) dt)

∑
j

Ij(t) Vj(t)

+ e−
∫ t

0
r
∑

j

Ij(t) dVj(t) + e−
∫ t

0
r
∑
j 6=k

dNjk(t) (Vk(t)− Vj(t−))

= e−
∫ t

0
r
∑

j

Ij(t)

dBj(t)− r(t)Vj(t) dt + dVj(t) +
∑

k; k 6=j

µjk dtRjk(t)


+ e−

∫ t

0
r
∑
j 6=k

Rjk(t) dMjk(t)

Drift term must be 0, and we obtain the constructive
ODE.
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9 Relationships in Life

General relationship between present values of annuities,
endowments and life assurances:

e−
∫ T

t
rIg(T ) Bg(T ) = Ig(t) Bg(t)

−
∫ T

t

e−
∫ τ

t
rIg(τ) Bg(τ) r(τ) dτ

+
∑

h;h 6=g

∫ T

t

e−
∫ τ

t
rBg(τ−) dNhg(τ)

−
∑

h;h 6=g

∫ T

t

e−
∫ τ

t
rBg(τ−) dNgh(τ)

+

∫ T

t

e−
∫ τ

t
rIg(τ) dBg(τ)

10 Those moments in Life

V
(q)
j (t) = E [V q(t) | Z(t) = j] , q = 0, 1, 2, . . .

d

dt
V

(q)
j (t) = (q r(t) + µj·(t))V

(q)
j (t) − q bj(t) V

(q−1)
j (t)

−
∑

k; k 6=j

µjk(t)

q∑
p=0

(
q

p

)
bp
jk(t)V

(q−p)
k (t)

V
(q)
j (t−) =

q∑
p=0

(
q

p

)
∆Bj(t)

p V
(q−p)
j (t)

V
(q)
j (n−) = ∆Bq

j (t)

Central moments m
(q)
j (t):

m
(1)
j (t) = V

(1)
j (t)
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m
(q)
j (t) =

q∑
p=0

(−1)q−p

(
q

p

)
V

(p)
j (t)

(
V

(1)
j (t)

)q−p

Numerical examples in disability model:

r = ln(1.045) = 0.044017

µx = νx = 0.0005 + 0.000075858 · 100.038x

σx = 0.0004 + 0.0000034674 · 100.06x

ρx = 0.005

Male insured at age 30 for 30 years:
µ02(t) = µ12(t) = µ30+t

µ01(t) = σ30+t

µ10(t) = ρ30+t

Table 2: Moments for a life assurance with sum 1

Time t 0 6 12 18 24 30

m
(1)
0 (t) = m

(1)
1 (t) : 0.0683 0.0771 0.0828 0.0801 0.0592 0

m
(2)
0 (t) = m

(2)
1 (t) : 0.0300 0.0389 0.0484 0.0549 0.0484 0

m
(3)
0 (t) = m

(3)
1 (t) : 0.0139 0.0191 0.0262 0.0343 0.0369 0

Table 3: Moments for an annuity of 1 per year while active:

Time t 0 6 12 18 24 30

m
(1)
0 (t) : 15.763 13.921 11.606 8.698 4.995 0

m
(1)
1 (t) : 0.863 0.648 0.431 0.230 0.070 0

m
(2)
0 (t) : 5.885 5.665 4.740 2.950 0.833 0

m
(2)
1 (t) : 7.795 5.372 3.104 1.290 0.234 0

m
(3)
0 (t) : −51.550 −44.570 −32.020 −15.650 −2.737 0

m
(3)
1 (t) : 78.888 49.950 25.099 8.143 0.876 0
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Table 4: Moments for combined policy with life assurance of 1 plus disability
annuity of 0.5 per year against net premium of 0.013108 per year while active:

Time t 0 6 12 18 24 30

m
(1)
0 (t) : 0.0000 0.0410 0.0751 0.0858 0.0533 0

m
(1)
1 (t) : 7.6451 6.8519 5.8091 4.4312 2.5803 0

m
(2)
0 (t) : 0.4869 0.5046 0.4746 0.3514 0.1430 0

m
(2)
1 (t) : 2.7010 2.0164 1.2764 0.5704 0.0974 0

m
(3)
0 (t) : 2.1047 1.9440 1.5563 0.8686 0.1956 0

m
(3)
1 (t) : −12.1200 −8.1340 −4.3960 −1.5100 −0.1430 0

11 Stochastic interest

r1 = 0.02 r2 = 0.05 r3 = 0.08
-λ12 = 0.5λ

�
λ21 = 0.25λ

-λ23 = 0.25λ

�
λ32 = 0.5λ

Figure 1: A simple Markov chain interest model.

Economy governed by Markov chain Y on state space
Y = {1, . . . , JY } with intensities of transition λef , e, f ∈
Y , e 6= f . Force of interest

r(t) =
∑

e

IY
e (t) re

Payment process: Life history is Markov chain Z and
payment stream standard type.

The full Markov model:
Y and Z are independent. Then X = (Y, Z) is Markov
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chain on X = Y × Z with intensities

κej,fk(t) =


λef , e 6= f, j = k ,

µjk(t) , e = f, j 6= k ,

0 , e 6= f, j 6= k .

Moments in the combined model:

V
(q)
ej (t) = E

[(∫ n

t

e−
∫ τ

t
r dB(τ)

)q ∣∣∣∣ Y (t) = e, Z(t) = j

]
.

d

dt
V

(q)
ej (t) = (qre + µj·(t) + λe·)V

(q)
ej (t)− qbj(t)V

(q−1)
ej (t)

−
∑
k;k 6=j

µjk(t)

q∑
p=0

(
q

p

)
bp
jk(t)V

(q−p)
ek (t)−

∑
f ;f 6=e

λefV
(q)
fj (t)

V
(q)
ej (t−) =

q∑
p=0

(
q

p

)
(∆Bj(t))

pV
(q−p)
ej (t)
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Table 5: Central moments m
(q)
ej (0), q = 1, 2, 3 of present value benefits less

premiums for combined policy in interest state e and policy state j at time 0,
for different values of the rate of interest changes, λ. Second column gives net
premium π of a policy starting from interest state 2 (medium) and policy state
1 (active).

e, j : 1, a 1, i 2, a 2, i 3, a 3, i

λ π q

1 0.15 13.39 0.00 7.65 −0.39 5.03
0 .0131 2 2.55 12.50 0.49 2.70 0.13 0.80

3 20.45 −99.02 2.11 −12.12 0.37 −2.38

1 0.06 11.31 0.00 7.90 −0.03 5.78
.05 .0137 2 1.61 12.26 0.62 5.41 0.25 2.43

3 11.94 −42.87 3.20 −4.33 0.94 −0.08

1 0.02 8.43 0.00 7.81 −0.02 7.24
.5 .0134 2 0.65 4.90 0.55 4.15 0.46 3.52

3 3.34 −13.35 2.59 −10.13 2.02 −7.74

1 0.00 7.77 0.00 7.70 0.00 7.64
5 .0132 2 0.51 2.86 0.50 2.91 0.49 2.86

3 2.26 −12.51 2.20 −12.19 2.14 −11.88

1 0.00 7.69 0.00 7.69 0.00 7.69
∞ .0132 2 0.50 2.74 0.50 2.74 0.50 2.74

3 2.15 −12.37 2.15 −12.37 2.15 −12.37

12 Life in a stochastic Environment

Individual multi-state policy issued at time 0 and expir-
ing at time T . Uncertainty represented by (Ω,F ,P) with
filtration F = {Ft}t∈[0,T ].

Policy history is sub-filtration H = {Ht}t∈[0,T ] = FZ .

History of economic-demographic environment: G = {Gt}t∈[0,T ].
Environmental indices: {Y (t)}t∈[0,T ], G-adapted process
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comprising r(t) and mortality factors etc.

(Y, Z) is Markov: Y is Markov, and intensity matrix of
Z is M(t, Y (t)) = (µjk(t, Y (t))).
Conditional transition probabilities of Z, given Y ,

pij(s, t) = P[Z(t) = j |Z(s) = i, GT ] = P[Z(t) = j |Z(s) = i, Gt]

dP(s, t) = P(s, t)M(t, Y (t))

Problem: Future interest and mortality etc are unknown
at time 0.
Equivalence must now mean

E
[∫ T

0−
e−

∫ τ

0
rdB(τ)

∣∣∣∣GT

]
= 0

∫ T

0−
e−

∫ τ

0
r
∑

g

p0g(0, τ)

dBg(τ) +
∑
h;h 6=g

bgh(τ) µgh(τ, Y (τ)) dτ

 = 0

with probability one.
Thus, B must be adapted to G ∨H.
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13 Unit linked

Clear-cut unit linked policy:

Bg(t) = e
∫ t

0
r
p∗0g(0, t)

p0g(0, t)
dB∗

g(t)

bgh(t) = e
∫ t

0
r

p∗0g(0, t) µ∗gh(t)

p0g(0, t) µgh(t, Y (t))
b∗gh(t)

Equivalence requirement reduces to∫
[0,T ]

∑
g

p∗0g(0, τ) dB∗
g(τ) +

∑
g 6=h

p∗0g(0, τ) µ∗gh(τ) b∗gh(τ) dτ

 = 0

Arranged by choice of baseline payments B∗
g and b∗gh at

time 0. Environment risk managed perfectly from a sol-
vency point of view.

Predict level of the payments at future time u, e.g.

W =
e
∫ u

0
r

p0g(0, u) µgh(u, Y (u))

Start from martingale

Mt = E [W | Gt]

= E

[
e
∫ u

0
r

p0g(0, u) µgh(u, Y (u))

∣∣∣∣∣ Gt

]

= e
∫ t

0
r E

[
e
∫ u

t
r∑

i∈Z p0i(0, t) pig(t, u) µgh(u, Y (u))

∣∣∣∣∣ Gt

]
= e

∫ t

0
r V (t, p00(0, t), . . . , p0JZ(0, t), Y (t)) ,

where

V (t, p0, . . . , pJZ , y) = E

[
e
∫ u

t
r∑

i∈Z pi pig(t, u) µgh(u, Y (u))

∣∣∣∣∣ Y (t) = y

]
.
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Side condition that applies in all cases is

V (u, p0, . . . , pJZ , y) =
1

pg µgh(u, y)
.

Unit linked with guarantee:

dBg(t) = e
∫ t

0
r

(
p∗0g(0, t)

p0g(0, t)
∨mg

)
dB∗

g(t)

bgh(t) = e
∫ t

0
r

(
p∗0g(0, t) µ∗gh(t)

p0g(0, t) µgh(t, Y (t))
∨mgh

)
b∗gh(t)

Take mg and mgh deterministic.
Guarantees reintroduce environmental risk.

Equivalence would mean that

W =

∫
[0,T ]

(∑
g

(
p∗0g(0, τ) ∨ p0g(0, τ) mg

)
dB∗

g(τ)

+
∑
g 6=h

(
p∗0g(0, τ) µ∗gh(τ) ∨ p0g(0, τ) µgh(τ, Y (τ)) mg

)
b∗gh(τ) dτ


should be 0 with probability 1. Not possible in general.
Now an issue is to measure the risk associated with the
guarantees.

One could determine the distribution of W . Easier to
make an approximation based on the three first moments
and approximate the ε-fractile of W with

E[W ] + cε

√
m

(2)
W +

c2
ε − 1

6

m
(3)
W

m
(2)
W
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cε is ε-fractile of the standard normal distribution, m
(q)
W

is q-th central moment of W .
To obtain differential equation from which to deter-

mine E[W ], consider

Mt = E [W | Gt]

=

∫
[0,t]

(∑
g

(
p∗0g(0, τ) ∨ p0g(0, τ) mg

)
dB∗

g(τ)

+
∑
g 6=h

(
p∗0g(0, τ) µ∗gh(τ) ∨ p0g(0, τ) µgh(t, Y (τ)) mg

)
b∗gh(τ) dτ


+ V (t, p00(0, t), . . . , p1JZ(0, t), Y (t))

where

V (t, p0, . . . , pJZ , y)

= E

[∫
(t,T ]

(∑
g

(
p∗0g(0, τ) ∨

∑
i

pi pig(t, τ) mg

)
dB∗

g(τ)

+
∑
g 6=h

(
p∗0g(0, τ) µ∗gh(τ) ∨

∑
i

pi pig(t, τ) µgh(t, Y (τ)) mg

)
b∗gh(τ) dτ

∣∣∣∣∣∣Y (t) = y


Itô:

dMt =
∑

g

(
p∗0g(0, t) ∨ p0g(0, t) mg

)
dB∗

g(t)

+
∑
g 6=h

(
p∗0g(0, t) µ∗gh(t) ∨ p0g(0, t) µgh(t, Y (t)) mg

)
b∗gh(t) dt

+
∂

∂t
V (t, p00(0, t), . . . , p0JZ(0, t), Y (t)) dt

+
∑

i

∂

∂pi
V (t, p00(0, t), . . . , p0JZ(0, t), Y (t))

∑
h

p0h(0, t) µhi(t, Y (t))dt
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+
∑

k

∂

∂yk
V (t, p00(0, t), . . . , p0JZ(0, t), Y (t)) dY c

k (t)

+
1

2

∑
k,`

∂2

∂yk∂y`
V (t, p00(0, t), . . . , p0JZ(0, t), Y (t)) d[Yk, Y`]

c(t)

+V (t, p00(0, t), . . . , p0JZ(0, t), Y (t))− V (t, p00(0, t), . . . , p0JZ(0, t), Y (t−))

Identify drift part, which must be 0, and obtain a differ-
ential equation for the function V (t, p0, . . . , pJZ , y). One
side condition that applies in any case is

V (T−, p0, p2, . . . , pJZ , y) =
∑

g

(
p∗0g(0, T ) ∨ pgmg

)
∆B∗

g(T ) .

Other side conditions obtained by auxiliary probabilistic
reasoning depending on the situation.

Solving the equation numerically, we finally obtain the
value we were after, E[W ] = V (0, 1, 0, . . . , 0, Y0).

The complexity of the differential equation depends
on the nature of the driving process Y . Diffusion pro-
cesses lead to second order PDE. Jump processes lead to
first order PIDE. If Y has finite number of states (e.g. a
Markov chain), then much hassle will go away: the func-
tion V can be seen as a finite-dimensional vector with
elements V (t, p0, . . . , pJZ , y), virtually a reduction of di-
mension; no second order derivatives; the integral over
the jump sizes reduces to just a summation over the fi-
nite number of possible directions of transition out of the
current state.
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14 With Profit

Payments B∗
g and b∗gh are guaranteed at time 0. They are

designed in accordance with the equivalence principle us-
ing a prudently chosen technical basis with elements r∗

and µ∗gh. Surpluses that emerge are paid back as bonuses
that may be cash dividends or premiums for purchase of
additional benefits:
D(t) is the total of dividends paid out cash by time t

Q(t) is the total additional units of additional benefits
B∗+ guaranteed by time t. (At time t the company
promises to pay Q(t) (B∗+(τ)−B∗+(t)) for τ ∈ (t, T ]).
D and Q must be non-decreasing, hence of bounded vari-
ation, and D(0) = Q(0) = 0.
Payments from the company to the insured are

dB(t) = dB∗(t) + Q(t−)dB∗+(t) + dD(t) .

B∗, B∗+ are of the standard form with B∗
g , b∗gh, B∗+, b∗+gh

deterministic.
Q and D are adapted to H∨G. They are not stipulated
in the contract, but controlled by the company in view of
the past experience and with a view to customer needs
and solvency.

Company’s assessed liability in respect of future pay-
ments at time t is

V ∗
Z(t)

(t) + Q(t) V ∗+
Z(t)

(t)

Discounted surplus at time t is

W̃ (t) = −
∫ t

0−
e−

∫ τ

0
r
(
dB∗(τ) + Q(τ−) dB∗+(τ) + dD(τ)

)
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− e−
∫ t

0
r
(
V ∗

Z(t)
(t) + Q(t) V ∗+

Z(t)
(t)
)

W̃ (0) = −∆B∗(0)− V ∗
1 (0) = 0

W̃ (T ) = −
∫ T

0−
e−

∫ τ

0
r
(
dB∗(τ) + Q(τ−) dB∗+(τ) + dD(τ)

)
If first order basis can be chosen on the entirely safe

side and bonuses are allotted with sufficient prudence,
then one can arrange that W̃ (t) ≥ 0 for all t, and there is
no solvency problem. This is possible if the interest rate
process is bounded from below and also the transition
intensities are suitably bounded as is the case if Y is
a Markov chain with finite state space. Otherwise, the
guarantees built into this product create environmental
risk, and it becomes an issue to calculate (aspects of) the
distribution of E[W̃ (T ) | GT ].

Solvency requirement:

E
[
W̃ (t)

∣∣∣ Gt

]
≥ 0 , t ∈ [0, T ] , (1)

Equivalence:

E
[
W̃ (T )

∣∣∣ GT

]
= 0 . (2)

Applying Itô to W̃ (t):

dW̃ (t) = e−
∫ τ

0
r(dC(t)− dD(t)− dQ(t)V ∗+

Z(t)(t) + dM ∗(t))

C(t) is drift term representing “technical surplus”:

dC(t) = (r(t)− r∗)
(
V ∗

Z(t)
(t) + Q(t) V ∗+

Z(t)
(t)
)

dt

+
∑

h;h 6=Z(t)

(
µ∗Z(t) h(t)− µZ(t)h(t, Y (t))

) (
R∗

Z(t) h(t) + Q(t)R∗+
Z(t) h(t)

)
dt
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R∗
gh(t) = b∗gh(t)+V ∗

h (t)−V ∗
g (t) , R∗+

gh (t) = b∗+gh (t)+V ∗+
h (t)−V ∗+

g (t) .

M ∗(t) is martingale (conditional on GT ) representing pure
life history randomness:

dM ∗(t) =
∑
g 6=h

(
R∗

gh(t) + Q(t−)R∗+
gh (t)

) (
dNZ

gh(t)− Ig(t)µ
∗
gh(t, Y (t)) dt

)
,

Writing W̃ (T ) =
∫

[0,T ] dW̃ (τ), and forming conditional
expectation, equivalence can be recast as

E

[∫ T

0
e−

∫ τ

0
r (dC(τ)− dD(τ)− dQ(t)V ∗+

Z(t)(t))

∣∣∣∣ GT

]
= 0
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15 In the market we trust

Equivalence:

EQ
[∫ T

0−
e−

∫ τ

0
rdB(τ)

]
= 0

Q is EMM.

Problems:
1. Long term contracts.
2. Gross incompleteness.

Remedy: Financial innovation, e.g. Securitization of
mortality risk?

Problems prevail to exist.
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16 Modeling stochastic mortality

Vasiček interest model. (rt)t≥0 is Ornstein-Uhlenbeck
process

drt = −α rt dt + dXt

X is Levy process with LT

`Xt
(η) = E eη Xt = eφ(η) t

ru = e−α (u−t)rt +

∫ u

t

e−α(u−s)dXs

Transition probs. of OU process are given by

ru |rt

L
= e−α(u−t)rt + R

where R =
∫ u−t

0 e−αs dXs has LT

`R(η) = e
∫ u−t

0
φ(η e−αs)ds

First two moments are distribution-free:

ru |rt
∼
(

ρ + e−α (u−t)(rt − ρ) , σ21− e−2α (u−t)

2α

)
∫ T

t

quru du =

∫ T

t

que
−α (u−t) du rt +

∫ T

t

que
−αu du

∫ u

t

eαs dXs .∫ T

t

quru du

∣∣∣∣
rt

L
= QT

t rt + R

where R =
∫ T

t QT
u dXu has LT

`R(η) = e
∫ T

t
φ(η QT

u)du
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The first two moments are distribution-free and are given
by∫ T

t

quru du

∣∣∣∣
rt

∼
(

QT
t rt + µ

∫ T

t

QT
u du , σ2

∫ T

t

(QT
u )2 du

)
If the random part of X is a subordinator, then r is
bounded from below and can be made positive.

If X is compound Poisson process with drift, then rt

and
∫ T

t quru du are compound Poisson variates (plus con-
stants).

Stochastic mortality: Mortility rate at age x at calendar
time t is

µt(x) = µo(x; Y (t))

where µo(x; θ) is some parametric mortality intensity func-
tion, e.g.

µo(x; θ) = θ1 + θ2 eθ3 x

and (Y1(t), Y2(t), Y3(t)) is positive Ornstein-Uhlenbeck
process.

Conditional survival probability

e−
∫ y−x

0
µt+s(x+s)

Reference: Norberg (2004)
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17 The Markov chain market

The continuous time Markov chain.
{Y (t)}t≥0 Markov chain on Y = {1, . . . , n}. Homoge-
neous transition probabilities

pef(t) = P[Y (τ + t) = f | Y (τ) = e]

transition intensities

λef = lim
t↘0

pef(t)

t
, e 6= f

λee = −λe· = −
∑

f ;f∈Ye

λef

States directly accessible from state e:

Ye = {f ; λef > 0}, ne = |Ye|

P(t) = (pef(t)) and Λ = (λef) are related by

Λ = lim
t↘0

1

t
(P(t)− I)

and by forward and backward Kolmogorov differential
equations,

d

dt
P(t) = P(t)Λ = ΛP(t)

Under side condition P(0) = I they integrate to

P(t) = exp(Λt)

Representation:

P(t) = ΦDe=1,...,n(e
ρet)Φ−1 =

n∑
e=1

eρetφeψe
′
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The first eigenvalue is ρ1 = 0, and corresponding eigen-
vectors are φ1 = 1 andψ1

′ = (p1, . . . , pn) = limt↗∞(pe1(t), . . . , pen(t)),
the stationary distribution of Y . Remaining eigenval-
ues, ρ2, . . . , ρn, have strictly negative real parts so that
the transition probabilities converge exponentially to the
stationary distribution as t increases.

Indicator functions

Ie(t) = 1[Y (t) = e]

Counting processes

Nef(t) = |{τ ; 0 < τ ≤ t, Y (τ−) = e , Y (τ) = f}| ,

Information at time t: FY
t = σ{Y (τ); 0 ≤ τ ≤ t}.

Filtration FY = {FY
t }t≥0.

Compensated counting processes

dMef(t) = dNef(t)− Ie(t)λef dt (3)

are zero mean, square integrable, mutually orthogonal
martingales w.r.t. (FY , P).
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The continuous time Markov chain market.
Y (t) is state of the economy at time t.
In the market there are m+1 basic assets, which can be
traded freely and frictionlessly.
Asset No. 0 is “locally risk-free” bank account with state-
dependent interest rate

r(t) = rY (t) =
∑

e

Ie(t)re

state-wise interest rates re, e = 1, . . . , n, are constants.
Price process

S0(t) = exp

(∫ t

0
r(u) du

)
= exp

(∑
e

re

∫ t

0
Ie(u) du

)
∫ t

0 Ie(u) du is total time spent in state e during [0, t].

dS0(t) = S0(t) r(t) dt = S0(t)
∑

e

reIe(t) dt

Remaining m assets are risky stocks with price processes

Si(t) = exp

∑
e

αie

∫ t

0
Ie(u) du +

∑
e

∑
f∈Ye

βiefNef(t)


i = 1, . . . ,m: αie, βief are constants. Itô:

dSi(t) = Si(t−)

∑
e

αieIe(t) dt +
∑

e

∑
f∈Ye

γiefdNef(t)

 .

γief = exp (βief)− 1

relative price change upon jump e → f .
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Take bank account as numeraire. Discounted asset prices
are S̃i(t) = Si(t)/S0(t), i = 0, . . . ,m and S̃0(t) ≡ 1, (mar-
tingale under any measure). Discounted stock prices

S̃i(t) = exp

∑
e

(αie − re)

∫ t

0
Ie(u) du +

∑
e

∑
f∈Ye

βiefNef(t)



dS̃i(t) = S̃i(t−)

∑
e

(αie − re)Ie(t) dt +
∑

e

∑
f∈Ye

γiefdNef(t)


i = 1, . . . ,m.

Portfolios.
A dynamic portfolio or investment strategy is m + 1-
dimensional stochastic process

θ(t) = (θ0(t), . . . , θm(t)) :

θi(t) is number of units of asset No i held at time t. θ is
adapted to FY and the shares of stocks, (θ1(t), . . . , θm(t)),
must also be FY -predictable.

Value of the portfolio θ at time t is

V θ(t) = θ(t)′S(t) =
m∑

i=0

θi(t)Si(t) .

Work with discounted prices and values and equip their
symbols with a tilde. Discounted value of the portfolio
at time t is

Ṽ θ(t) = θ(t)′ S̃(t)
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The portfolio θ is self-financing (SF) if dV θ(t) = θ(t)′ dS(t)
or

dṼ θ(t) = θ(t)′ dS̃(t) =
m∑

i=1

θi(t) dS̃i(t) . (4)

Absence of arbitrage.
Let

Λ̃ = (λ̃ef)

be infinitesimal matrix equivalent to Λ ( λ̃ef = 0 if and
only if λef = 0).
Girsanov: there exists measure P̃ equivalent to P, under
which Y is a Markov chain with infinitesimal matrix Λ̃.
The processes M̃ef ,

dM̃ef(t) = dNef(t)− Ie(t)λ̃ef dt ,

are zero mean, orthogonal martingales w.r.t. (FY , P̃).
Rewrite dynamics as

dS̃i(t) = S̃i(t−)

∑
e

αie − re +
∑
f∈Ye

γief λ̃ef

 Ie(t) dt +
∑

e

∑
f∈Ye

γiefdM̃ef(t)


i = 1, . . . ,m. The discounted stock prices are martin-
gales with respect to (FY , P̃) if and only if the drift terms
on the right vanish:

αie − re +
∑
f∈Ye

γief λ̃ef = 0

e = 1, . . . , n, i = 1, . . . ,m. In matrix form

re1−αe = Γeλ̃e
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e = 1, . . . , n, where 1 is m× 1 and

αe = (αie)i=1,...,m , Γe = (γief)
f∈Ye

i=1,...,m , λ̃e =
(
λ̃ef

)
f∈Ye

Then

dS̃i(t) = S̃i(t−)
∑

e

∑
f∈Ye

γiefdM̃ef(t)

Assume martingale measure P̃ exists. This implies ab-
sence of arbitrage:
Cannot have Ṽ θ(0) = 0 and at the same time Ṽ θ(T ) ≥ 0
almost surely and Ṽ θ(T ) > 0 with positive probability.

Insert S̃-dynamics in Ṽ dynamics:

dṼ θ(t) =
∑

e

∑
f∈Ye

m∑
i=1

θi(t)S̃i(t−)γiefdM̃ef(t)

a martingale w.r.t. (FY , P̃) and, in particular,

Ṽ θ(t) = Ẽ[Ṽ θ(T ) | Ft]

for 0 ≤ t ≤ T . Ẽ is expectation under P̃.

Explain the assumptions made about the components
of the portfolio θ(t), adaptedness of portfolio and pre-
dictability of shares of stocks.
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Attainable claims.
A T -claim is a contractual payment due at time T : an
FY

T -measurable random variable H with finite expected
value. The claim is attainable if it can be perfectly du-
plicated by some SF portfolio θ:

Ṽ θ(T ) = H̃ .

If an attainable claim should be traded in the market, its
price must equal the value of the duplicating portfolio
in order to avoid arbitrage. Thus, denoting the price
process by π(t),

π̃(t) = Ṽ θ(t) = Ẽ[H̃ | Ft]

or

π(t) = Ẽ
[
e−

∫ T

t
rH
∣∣∣ Ft

]
Dynamics

dπ̃(t) =
∑

e

∑
f∈Ye

m∑
i=1

θi(t)S̃i(t−)γiefdM̃ef(t)

Completeness.
An attainable T -claim H can be represented as

H̃ = Ẽ[H̃] +

∫ T

0

∑
e

∑
f∈Ye

ηef(t)dM̃ef(t)

where the ηef(t) are FY -predictable processes. Conversely,
any random variable of this form is a T -claim. Attain-
ability of H means

H̃ = Ṽ θ(0) +

∫ T

0
dṼ θ(t)
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= Ṽ θ(0) +

∫ T

0

∑
e

∑
f∈Ye

∑
i

θi(t)S̃i(t−)γiefdM̃ef(t)

Thus H is attainable iff there exist predictable processes
θ1(t), . . . , θm(t) such that

m∑
i=1

θi(t)S̃i(t−)γief = ηef(t)

for all e and f ∈ Ye. This means that the ne-vector

ηe(t) = (ηef(t))f∈Ye

is in R(Γe
′).

The market is complete if every T -claim is attainable,
that is, if every ne-vector is in R(Γe

′). This is the case if
and only if rank(Γe) = ne, which can be fulfilled for each
e only if m ≥ maxe ne, i.e. the number of risky assets is
no less than the number of sources of randomness.

Differential equations for the arbitrage-free price.
Assume the market is arbitrage-free and complete so that
the price of any T -claim is uniquely given as conditional
expected value its discounted value under the EMM.

Consider T -claim that depends only on the state of
the economy and the price of a given stock at time T .
dropping top-script indicating this stock:

S(t) = exp

∑
e

αe

∫ t

0
Ie(u) du +

∑
e

∑
f∈Ye

βefNef(t)


Thus

H = hY (T )(S(T )) =
∑

e

Ie(T )he(S(T )) (5)
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Examples: European call option H = (S(T )−K)+;
Caplet H = (r(T )− g)+ = (rY (T ) − g)+;
Zero coupon T -bond H = 1.

For any claim of the form (5) the relevant state variables
involved in the conditional expectation are (S(t), t, Y (t)):

S(T ) = S(t) exp

∑
e

αe

∫ T

t

Ie(u) du +
∑

e

∑
f∈Ye

βef (Nef(T )−Nef(t))

 (6)

due to Markov property. It follows that the price π(t) is
of the form

π(t) =
n∑

e=1

Ie(t)ve(S(t), t)

ve(s, t) = Ẽ
[
e−

∫ T

t
rH
∣∣∣ Y (t) = e, S(t) = s

]
are the state-wise prices. By (6) and homogeneity of Y ,
we obtain

ve(s, t) = E[hY (T−t)(s S(T − t))|Y (0) = e] (7)

The discounted price (5) is martingale with respect to
(FY , P̃). Assume that the functions ve(s, t) are continu-
ously differentiable. Applying Itô to

π̃(t) = e−
∫ t

0
r

n∑
e=1

Ie(t)ve(S(t), t)

we find

dπ̃(t) = e−
∫ t

0
r
∑

e

Ie(t)

(
−re ve(S(t), t) +

∂

∂t
ve(S(t), t) +

∂

∂s
ve(S(t), t)S(t)αe

)
dt
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+e−
∫ t

0
r
∑

e

∑
f∈Ye

(vf(S(t−)(1 + γef), t)− ve(S(t−), t)) dNef(t)

= e−
∫ t

0
r
∑

e

Ie(t){−re ve(S(t), t) +
∂

∂t
ve(S(t), t) +

∂

∂s
ve(S(t), t)S(t)αe

+
∑
f∈Ye

(vf(S(t−)(1 + γef), t)− ve(S(t−), t)) λ̃ef}dt

+e−
∫ t

0
r
∑

e

∑
f∈Ye

(vf(S(t−)(1 + γef), t)− ve(S(t−), t)) dM̃ef(t) .

We arrive at the non-stochastic PDE

−re ve(s, t) +
∂

∂t
ve(s, t) +

∂

∂s
ve(s, t)sαe

+
∑
f∈Ye

(vf(s(1 + γef), t)− ve(s, t)) λ̃ef = 0

ve(s, T ) = he(s) ,

e = 1, . . . , n.
In matrix form, with

R = De=1,...,n(re) , A = De=1,...,n(αe) ,

−Rv(s, t) +
∂

∂t
v(s, t) + sA

∂

∂s
v(s, t) + Λ̃v(s(1 + γ), t) = 0

Side conditions

v(s, T ) = h(s)

Once we have determined ve(s, t), e = 1, . . . , n, the price
process is known.

The duplicating SF strategy is obtained as follows.
Setting the drift term to 0 we find dynamics of the dis-
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counted price;

dπ̃(t) = e−
∫ t

0
r
∑

e

∑
f∈Ye

(vf(S(t−)(1 + γef), t)− ve(S(t−), t)) dM̃ef(t) .

Identifying coefficients with those in (5), we obtain

m∑
i=1

θi(t)Si(t−)γief = vf(S(t−)(1 + γef), t)− ve(S(t−), t) , (8)

f ∈ Ye. The solution (θi,e(t))i=1,...,m exists since rank(Γe) ≤
m, and it is unique iff rank(Γe) = m. It is a function of
t and S(t−) and is thus predictable.

Finally, θ0 is determined upon combining (4), (5), and
(8):

θ(t)0 = e−
∫ t

0
r

(
n∑

e=1

Ie(t)ve(S(t), t)−
m∑

i=1

θi(t)Si(t)

)
.

This function is not predictable.

Asian option.
An example of a path-dependent claim is Asian option,

H =
(

1
T

∫ T

0 S(τ) dτ −K
)+

, where K ≥ 0. Price process

π(t) = Ẽ

[
e−

∫ T

t
r

(
1

T

∫ T

0
S(τ) dτ −K

)+
∣∣∣∣∣FY

t

]

=
n∑

e=1

Ie(t)ve

(
S(t), t,

∫ t

0
S(τ) dτ

)
,

where

ve(s, t, u) = Ẽ

[
e−

∫ T

t
r

(
1

T

∫ T

t

S(τ) dτ +
u

T
−K

)+
∣∣∣∣∣Y (t) = e, S(t) = s

]
.
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The discounted price process is

π̃(t) = e−
∫ t

0
r

n∑
e=1

Ie(t) ve

(
t, S(t),

∫ t

0
S(τ) dτ

)
.

We are lead to partial differential equations in three vari-
ables.

Interest rate derivatives.
A simple class of claims are those of the form H = hY (T ).
Interest rate derivatives of the form H = h(r(T )) are
included since r(t) = rY (t).
For such claims the only relevant state variables are t

and Y (t), so that the function in (7) depends only on t

and e. The PDE (8) reduce to the ODE

d

dt
ve(t) = reve(t)−

∑
f∈Ye

(vf(t)− ve(t))λ̃ef

ve(T ) = he

In matrix form:

d

dt
v(t) = (R̃− Λ̃)v(t) ,

v(T ) = h .

Explicit solution

v(t) = exp{(Λ̃−R) (T − t)}h . (9)

Depends on t and T only through T − t.
In particular, the zero coupon bond with maturity T

corresponds to h = 1:

p(t, T ) = exp{(Λ̃−R) (T − t)}1
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Incompleteness.
The notion of incompleteness pertains to situations where
there exist contingent claims that cannot be duplicated
by an SF portfolio and, consequently, do not receive
unique prices from the no arbitrage postulate alone. In-
completeness arises from scarcity of traded assets, that
is, the discounted basic price processes are incapable of
spanning the space of all martingales with respect to
(FY , P̃) and, in particular, reproducing the value (5) of
every financial derivative.

Risk minimization.
Throughout this section we will mainly be working with
discounted prices and values without any other mention
than the tilde notation. The reason is that the theory
of risk minimization rests on certain martingale repre-
sentation results that apply to discounted prices under
a martingale measure. We will be content to give just a
sketchy review of some main concepts and results from
the seminal paper of Föllmer and Sondermann (1986) on
risk minimization.

Let H̃ be a T -claim that is not attainable. This means
that an admissible portfolio θ satisfying

Ṽ θ(T ) = H̃

cannot be SF. The cost by time t of an admissible portfo-
lio θ is denoted by C̃θ(t) and is defined as that part of the
portfolio value that has not been gained from trading:

C̃θ(t) = Ṽ θ(t)−
∫ t

0
θ(τ)′dS̃(τ) .
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The risk at time t is defined as the mean squared out-
standing cost,

R̃(t)θ = Ẽ
[(

C̃θ(T )− C̃θ(t)
)2
∣∣∣∣Ft

]
. (10)

By definition, the risk of an admissible portfolio θ is

R̃θ(t) = Ẽ

[(
H̃ − Ṽ θ(t)−

∫ T

t

θ(τ)′dS̃(τ)

)2
∣∣∣∣∣Ft

]
,

which is a measure of how well the current value of
the portfolio plus future trading gains approximates the
claim. The theory of risk minimization takes this entity
as its objective function and proves the existence of an
optimal admissible portfolio that minimizes the risk (10)
for all t ∈ [0, T ].

The proof is constructive and provides a recipe for
determining the optimal portfolio. One commences from
the intrinsic value of H̃ at time t defined as

Ṽ H(t) = Ẽ
[
H̃ | Ft

]
. (11)

This is the martingale that at any time gives the optimal
forecast of the claim with respect to mean squared pre-
diction error under the chosen martingale measure. By
the Galchouk-Kunita-Watanabe representation, it decom-
poses uniquely as

Ṽ H(t) = Ẽ[H̃] +

∫ t

0
θH(t)

′
dS̃(t) + LH(t) , (12)

where LH is a martingale with respect to (F, P̃) which is
orthogonal to the martingale S̃. The portfolio θH defined
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by this decomposition minimizes the risk process among
all admissible strategies. The minimum risk is

R̃H(t) = Ẽ
[∫ T

t

d〈LH〉(τ)

∣∣∣∣ Ft

]
. (13)

Unit-linked insurance.
As the name suggests, a life insurance product is said
to be unit-linked if the benefit is a certain share of an
asset (or portfolio of assets). If the contract stipulates a
prefixed minimum value of the benefit, then one speaks
of unit-linked insurance with guarantee.

Let Tx be the remaining life time of an x years old who
purchases an insurance at time 0, say. The conditional
probability of survival to age x+u, given survival to age
x + t (0 ≤ t < u), is

P[Tx > u |Tx > t] = e−
∫ u

t
µx+s ds , (14)

where µy is the mortality intensity at age y. Introduce
the indicator of survival to age x + t, I(t) = 1[Tx > t],
and the indicator of death before time t, N(t) = 1[Tx ≤
t] = 1 − I(t). The latter is a (very simple) counting
process with intensity I(t) µx+t, and the associated (F, P)
martingale M is given by

dM(t) = dN(t)− I(t) µx+t dt . (15)

Assume that the life time Tx is independent of the econ-
omy Y . We will be working with the martingale measure
P̃ obtained by replacing the intensity matrix Λ of Y with
the martingalizing Λ̃ and leaving the rest of the model
unaltered.
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Consider a unit-linked pure endowment benefit payable
at a fixed time T , contingent on survival of the insured,
with sum insured equal to the price ST of the (generic)
stock, but guaranteed no less than a fixed amount g.
This benefit is a contingent T -claim,

H = (S(T ) ∨ g) I(T ) .

The single premium payable as a lump sum at time 0 is to
be determined. Let us assume that the financial market
is complete so that every purely financial derivative has
a unique price process. Then the intrinsic value of H at
time t is

Ṽ H(t) = π̃(t) I(t) e−
∫ T

t
µ ,

where π̃(t) is the discounted price process of the deriva-
tive S(T ) ∨ g, and we have used the somewhat sloppy

abbreviation
∫ T

t µx+u du =
∫ T

t µ.
Using Itô together with (14) and (15) and the fact that

M(t) and π̃(t) almost surely have no common jumps, we
find

dṼ H(t) = dπ̃(t) I(t−) e−
∫ T

t
µ + π̃(t−) I(t−) e−

∫ T

t
µ µx+t dt + (0− π̃(t−) e−

∫ T

t
µ) dN(t)

= dπ̃(t) I(t) e−
∫ T

t
µ − π̃(t) e−

∫ T

t
µ dM(t) .

It is seen that the optimal trading strategy is that of
the price process of the sum insured multiplied with the
conditional probability that the sum will be paid out,
and that

dLH(t) = −e−
∫ T

t
µ π̃(t) dM(t) .

Using d〈M〉(t) = I(t) µx+t dt, the minimum risk (13) now
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assumes the form

R̃H(t) = Ẽ
[∫ T

t

e−2
∫ T

τ
µ π̃(τ)2 I(τ) µx+τ dτ

∣∣∣∣Ft

]
= I(t) e−2

∫ t

0
r
∑

e

Ie(t) Re(St, t) ,

where

Re(s, t) = Ẽ
[∫ T

t

e−2
∫ T

τ
µ e−2

∫ τ

t
r π(τ)2 I(τ) µx+τ dτ

∣∣∣∣S(t) = s, Y (t) = e, I(t) = 1

]
.

Working along the lines of the proof of (8), starting from
the martingale

M(t)R = Ẽ
[∫ T

0
e−2

∫ T

τ
µ π̃(τ)2 I(τ) µx+τ dτ

∣∣∣∣Ft

]
=

∫ t

0
e−2

∫ T

τ
µ e−2

∫ τ

0
r π(τ)2 I(τ) µx+τ dτ + I(t) e−2

∫ t

0
r
∑

e

Ie(t)Re(St, t) ,

we obtain the differential equations(
π(t)2 −Re(s, t)

)
µx+t − 2reRe(s, t) +

∂

∂t
Re(s, t) +

∂

∂s
Re(s, t) s αe

+
∑
f∈Ye

(
Rf(s(1 + γef), t)−Re(s, t)

)
λ̃ef .

These are to be solved in parallel with the differential
equations (8) and are subject to the conditions

Re(s, T ) = 0 .
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18 Quadratic hedging in a Markov chain envi-
ronment

The Markov chain model for a life insurance pol-
icy in a stochastic environment. Markov chain (Y (t))t∈[0,T ]

with finite state space Y = {0, 1, . . . , JY }, starting from
Y (0) = 0. Natural filtration G = (Gt)t∈[0,T ] represents
the development of the (economic-demographic) envi-
ronment. Assume Y is a Markov chain with intensities
Λ(t) = (λef(t))

f∈Y
e∈Y

Assume there exists a market for environmental risk, dic-
tating an EMM P̃ under which Y is a Markov chain with
intensities λ̃ef(t).
Consider life insurance policy issued at time 0 and termi-
nating at time T . State of the policy is a stochastic pro-
cess (Z(t))t∈[0,T ] with finite state space Z = {0, 1, . . . , JZ},
starting from Z(0) = 0. The filtration generated by Z is
denoted by H = (Ht)t∈[0,T ].
Conditional on GT , Z is a Markov process with intensi-
ties µ

Y (t),jk
(t), j, k ∈ Z.

Under P̃, the process X = (Y, Z) is a Markov chain with
state space X = Y × Z and intensities

κej,fk(t) =


λ̃ef(t) , e 6= f, j = k ,

µe,jk(t) , e = f, j 6= k ,

0 , e 6= f, j 6= k .

We assume that there is a money market account with
interest rate r(t) = r

Y (t)
=
∑

e IY
e (t) re, that is, re is the

market interest rate in environment state e.
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Martingale analysis of a standard life insurance
policy.
Insurance policy is of standard type, with determinis-
tic state-wise annuity payment functions Bj and sums
assured bjk.

The analysis goes as in the standard model with de-
terministic transition intensities and interest rate depen-
dent on the state of the policy. Formally, we have just
extended the state space of the individual life history
process.
State-wise reserve

Vej(t)

the conditional expected present value at time t of ben-
efits less premiums in (t, T ], given that (Y (t), Z(t)) =
(e, j).

dVej(t) = Vej(t) re dt − dBj(t)

−
∑

k; k 6=j

Rej,ek(t) µe,jk(t) dt

−
∑

f ; f 6=e

Rej,fj(t) λ̃ef(t) dt , (1)

subject to terminal conditions

Vej(T−) = ∆Bj(T ) .

Rej,ek(t) = bjk(t) + Vek(t)− Vej(t) (2)

Rej,fj(t) = Vfj(t)− Vej(t) (3)

Martingale

M̃(t) = Ẽ

[∫ T

0−
e−

∫ τ

0
r(s) ds dB(τ)

∣∣∣∣ Gt ∨Ht

]
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has dynamics

dM̃(t) =
∑
e6=f

dM̃Y
ef(t)

∑
j

IZ
j (t)R̃ej,fj(t)

+
∑
j 6=k

dMZ
jk(t)

∑
e

IY
e (t)R̃ej,ek(t) , (4)

M̃Y
ef the compensated counting processes of the environ-

ment,

dM̃Y
ef(t) = dNY

ef(t) − IY
e (t) λ̃ef(t) dt ,

MZ
jk the compensated counting processes of the policy,

dMZ
jk(t) = dNZ

jk(t) − IZ
j (t)

∑
e

IY
e (t) µe,jk(t) dt ,

and the R̃ej,fk are the discounted sums at risk,

R̃ej,fk(t) = e−
∫ t

0
r(s) ds Rej,fk(t) . (5)

Mortality derivatives; Hedging systematic mor-
tality risk.
Suppose the market has m mortality-related derivatives
with discounted price processes (S̃i(t))t∈[0,T ], i = 1, . . . ,m.
In an arbitrage-free market these are martingales adapted
to G under P̃ and, therefore (since G is the natural fil-
tration of Y ), have dynamics of the form

dS̃i(t) =
∑
e6=f

ξi,ef(t) dM̃Y
ef(t) . (6)

Consider an SF portfolio consisting of θi(t) units of asset
No. i = 0, . . . ,m at time t, asset No. 0 being the money
market account.
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Discounted value process Ṽ θ(t) is martingale with dy-
namics

dṼ θ(t) =
m∑

i=1

θi(t) dS̃i(t) =
∑
e6=f

m∑
i=1

θi(t) ξi,ef(t) dM̃Y
ef(t) . (7)

Our objective is to minimize the hedging error or risk, de-
fined as the expected squared difference between the to-
tal discounted contractual payments and the discounted
terminal value of the portfolio,

ρθ = Ẽ
(
M̃(T )− Ṽ θ(T )

)2
.

The risk is nothing but the squared distance between the
random variable M̃(T ) and the linear space of T -values
of SF portfolios in the Hilbert space of random variables
that are square integrable w.r.t. P̃, the inner product
being 〈X, Y 〉 = Ẽ[XY ]. Inserting

M̃(T ) = ẼM̃T +

∫ T

0
dM̃t

and

Ṽ θ(T ) = Ṽ θ(0) +

∫ T

0
dṼ θ(t) ,

and using the dynamics (4) and (7), we get

ρθ = Ẽ

ẼM̃(T )− Ṽ θ(0) +

∫ T

0

∑
e6=f

dM̃Y
ef(t)

∑
j

IZ
j (t)R̃ej,fj(t)

+
∑
j 6=k

dMZ
jk(t)

∑
e

IY
e (t)R̃ej,ek(t)

−
∑
e6=f

m∑
i=1

ξi,ef(t) θi(t) dM̃Y
ef(t)

2

. (8)
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Recalling some martingale results.
The martingales M̃Y

ef and MZ
jk are square integrable and

mutually orthogonal, i.e the predictable covariance pro-
cess of any two distinct martingales is zero. Heuristic
proof of the orthogonality property:

Ẽ
[
NY

ef(t)
∣∣Gt−

]
= IY

e (t) λ̃ef(t) dt + o(dt) ,

Ẽ
[
dNY

ef(t) dNY
gh(t)

∣∣Gt−
]

= o(dt) , if (e, f) 6= (g, h) ,

and

Ẽ
[(

dNY
ef(t)

)2∣∣∣Gt−

]
= Ẽ

[
NY

ef(t)
∣∣Gt−

]
+ o(dt) = IY

e (t) λ̃ef(t) dt + o(dt) .

(The Markov nature of the intensities was not essential
to this argument.)

Using these calculations, we can now derive the or-
thogonality property and also obtain the form of the
predictable variance processes. For instance, consider-
ing M̃Y

ef and M̃Y
gh, we find

d〈M̃Y
ef , M̃Y

gh〉(t)

= Ẽ
[
dM̃Y

ef(t) dM̃Y
gh(t)

∣∣∣Gt−

]
+ o(dt)

= Ẽ
[(

dNY
ef(t) − IY

e (t) λ̃ef(t) dt
) (

dNY
gh(t) − IY

g (t) λ̃gh(t) dt
)∣∣∣Gt−

]
+ o(dt)

= Ẽ
[
dNY

ef(t) dNY
gh(t)

∣∣Gt−
]
+ o(dt)

= δef,gh Ẽ
[
dNY

ef(t)
∣∣Gt−

]
+ o(dt)

= δef,gh IY
e (t−) λ̃ef(t) dt + o(dt) . (9)

Here δef,gh is 1 if (e, f) = (g, h) and 0 otherwise (the
Kroenecker delta).

We also need to observe that martingale increments
over disjoint time intervals are uncorrelated (condition-
ally and unconditionally). More precisely, for any two
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distinct times t < u,

Ẽ
[
dM̃Y

ef(t) dM̃Y
gh(u)

∣∣∣Gt−

]
= Ẽ

[
dM̃Y

ef(t) Ẽ
[
dM̃Y

gh(u)
∣∣∣Gu−

]∣∣∣Gt−

]
= 0 . (10)

From all these intermediate results we gather the fol-
lowing expression for the covariance of any two stochastic
integrals with respect to the martingales. For instance,
for
∫ T

0 G(t) dM̃Y
ef(t) and

∫ T

0 H(t) dM̃Y
gh(t), with G and H

predictable processes such that the expected values be-
low exist, we have

Ẽ

[∫ T

0
G(t) dM̃Y

ef(t)

∫ T

0
H(u) dM̃Y

gh(u)

]
= Ẽ

[∫ T

0

∫ T

0
G(t) H(u) dM̃Y

ef(t) dM̃Y
gh(u)

]
= Ẽ

[∫ T

0
G(t) H(t) Ẽ

[
dM̃Y

ef(t) dM̃Y
gh(t)

∣∣∣Gt−

]]
= δef,gh Ẽ

[∫ T

0
G(t) H(t) IY

e (t−) λ̃ef(t) dt

]
. (11)

The off-diagonal terms in the double integral vanished
due to (10).

53



Constructing the optimal hedge.
Now, back to the risk in (8). Since the stochastic inte-
grals have mean 0, they are orthogonal to the constant
ẼM̃(T ) − Ṽ θ(0). Due to this and to (11), the risk de-
composes into

ρθ = ρθ
0
+ ρθ

I
+ ρθ

E
,

where

ρθ
0

=
(
ẼM̃(T )− Ṽ θ(0)

)2

is the basis risk,

ρθ
I

= Ẽ

∫ T

0

∑
j 6=k

(∑
e

IY
e (t)R̃ej,ek(t)

)
dMZ

jk(t)

2

= Ẽ

∫ T

0

∑
e

IY
e (t)

∑
j 6=k

IZ
j (t)µZ

e;jk(t)R̃
2
ej,ek(t) dt


is the non-systematic individual risk, and

ρθ
E

= Ẽ

∫ T

0

∑
e6=f

(∑
j

IZ
j (t)R̃ej,fj(t)−

m∑
i=1

ξi,ef(t) θi(t)

)
dM̃Y

ef(t)

2

= Ẽ

∫ T

0

∑
e

IY
e (t)

∑
f 6=e

λ̃ef(t)

(∑
j

IZ
j (t)R̃ej,fj(t)−

m∑
i=1

ξi,ef(t) θi(t)

)2

dt


(12)

is the systematic environment risk or hedging error.
The basis risk ρθ

0
is minimized by setting

Ṽ θ(0) = ẼM̃(T ) .
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(Typically, the contract is designed such that ẼM̃(T ) =
0.) The individual risk ρθ

I
does not depend on the port-

folio strategy. Thus, we are left with the problem of
minimizing the environment risk (12). To this end we
write the portfolio vector as the sum of its state-wise
values,

θ(t) =
∑

e

IY
e (t)θe(t) , θe(t) = (θe1(t), . . . , θem(t))′ ,

and introduce, for each time t and each state e, the set
of states that are directly accessible,

Ye(t) = {f ; λ̃ef(t) > 0} ,

its dimension

ne(t) the number of elements in Ye(t) ,

the ne(t)-vector

ηe(t) = (ηef(t))f∈Ye(t)

with elements

ηef(t) =
∑

j

IZ
j (t)R̃ej,fj(t) , (13)

the ne(t)× ne(t) diagonal matrix

Λ̃e(t) = Diagf∈Ye(t)(λ̃ef(t)) ,

and the ne(t)×m matrix of price coefficients,

Ξe(t) = (ξi,ef(t))
i=1,...,m
f∈Ye(t)

.

Rewrite (12) as

ρθ
E
(t) = Ẽ

[∫ T

0

∑
e

IY
e (t) (ηe(t)−Ξe(t)θe(t))

′ Λ̃e(t) (ηe(t)−Ξe(t)θe(t)) dt

]
.

(14)
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The best (unrestricted) hedging portfolio,

θ̃(t) =
∑

e

IY
e (t) θ̃e(t) ,

is obtained by, for each time t and each environment
state e, minimizing the quadratic form

Qe,t(θ) = (ηe(t)−Ξe(t)θ)
′ Λ̃e(t) (ηe(t)−Ξe(t)θ) ,(15)

the distance from ηe(t) to a point in the linear space
spanned by the columns of Ξe(t), under the Euclidean
weighted inner product 〈x,y〉 = x′ Λ̃e(t)y. The mini-
mizer is the projection of ηe(t) onto the column space of
Ξe(t), which must be of the form Ξe(t) θ̃e(t) and satisfies
the normal equations

θ′Ξ′
e(t) Λ̃e(t)

(
ηe(t) − Ξe(t) θ̃e(t)

)
= 0 , ∀θ ,

stating that the difference between ηe(t) and its projec-
tion is orthogonal to all vectors Ξe(t)θ in the column
space of Ξe(t). This is equivalent to

Ξ′
e(t) Λ̃e(t)

(
ηe(t) − Ξe(t) θ̃e(t)

)
= 0 ,

(the m × 1 vector with all entries null). Thus, θ̃e(t) is
any solution to the equation

Ξ′
e(t) Λ̃e(t)Ξe(t) θ̃e(t) = Ξ′

e(t) Λ̃e(t)ηe(t) . (16)

Consider first the case where m ≤ ne(t), which means
that there are fewer assets than there are martingales
at work (“sources of randomness”). Then the dynamics
of the assets will typically not span all possible liabil-
ity dynamics, so that there will be contractual payment
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streams that cannot be perfectly hedged in state e at
time t. We will assume that Ξe(t) has full rank m, which
is easy to check. (If the rank should be less than m, then
some assets would be redundant in state e at time t in
the sense that their dynamics are linear combinations of
those of a smaller set of assets or maybe null.) Then (16)
has the unique solution

θ̃e(t) =
(
Ξ′

e(t) Λ̃e(t)Ξe(t)
)−1

Ξ′
e(t) Λ̃e(t)ηe(t) , (17)

and the projection has the explicit form

η̃e(t) = Pe(t)ηe(t) , (18)

where Pe(t) is the projection matrix or just projector,

Pe(t) = Ξe(t)
(
Ξ′

e(t) Λ̃e(t)Ξe(t)
)−1

Ξ′
e(t) Λ̃e(t) . (19)

By Pythagoras, the minimum of Qe,t(θ) in (15) is

min Qe,t = η′e(t) Λ̃e(t)ηe(t) − η̃′e(t) Λ̃e(t) η̃e(t) (20)

= η′e(t)
(
Λ̃e(t) − P′

e(t) Λ̃e(t)Pe(t)
)
ηe(t)

= η′e(t) Λ̃e(t) (I−Pe(t)) ηe(t) . (21)

The case m > ne(t) is of little interest since it typically
means that the all liability dynamics are spanned by the
dynamics of the available assets, and there is no hedging
error (locally in state e at time t). In this case, with
more assets than random sources, there must be linear
dependence between the asset dynamics. Thus (at least)
one asset is redundant and can be discarded. (In compu-
tations it will typically have to be discarded in order to
avoid singularity of matrices that need to be inverted.)
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Analysis of the hedging error. Inserting (21) into
(14) and using (13) and (5), we find that the minimized

systematic hedging error ρ̃ := ρθ̃
E

is

ρ̃ = Ẽ [

∫ T

0
e−2

∫ τ

0
r(s) ds

∑
e

IY
e (τ)

∑
j

IZ
j (τ)

R′
ej(τ) Λ̃e(τ) (I−Pe(τ))Rej(τ) dτ ] , (22)

where Rej(t) is the ne(t)×1 vector with elements Rej,fj(t),
f ∈ Ye(t).

For the standard insurance policy we are considering,
the state-wise sums at risk Rej,fj(t) are deterministic.
Therefore, the issue of computing (22) depends entirely
on the properties of the projector Pe(t).

The simplest situation is when the Pe(t) are determin-
istic functions for all e and t. Then, due to the Markov
property, we need only consider the state-wise risks at
time t,

ρ̃ej(t) := Ẽ [

∫ T

t

e−2
∫ τ

t
r(s) ds

∑
e′

IY
e′ (τ)

∑
j′

IZ
j′ (τ)

R′
e′j′(τ) Λ̃e′(τ) (I−Pe′(τ))Re′j′(τ) dτ

∣∣∣Y (t) = e, Z(t) = j ] .

(23)

These are of the same form as state-wise reserves for
continuously paid annuity benefits and so are solutions
to the Thiele type of backward equations,

d

dt
ρ̃ej(t) = 2 re ρ̃ej(t) − R′

ej(t) Λ̃e(t) (I−Pe(t))Rej(t)

−
∑
f∈Ye

λ̃ef(t) (ρ̃fj(t)− ρ̃ej(t))−
∑
k;k 6=j

µe;jk(t) (ρ̃ek(t)− ρ̃ej(t))
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(24)

subject to terminal conditions ρ̃ej(T ) = 0. The minimal
systematic hedging error at time 0, given Y (0) = 0 and
Z(0) = 0, is ρ̃00(0).

Question arising: When are the Pe(t) deterministic?
They are if the derivatives are zero-coupon bonds with
principals dependent only on the state of the environ-
ment upon maturity. More precisely, if derivative No.
i pays (only) an amount hi(Y (Ui)) at time Ui, then its
price at time t < Ui is

Si(t) = Ẽ
[
e−

∫ Ui
t

r(s) dshi(Y (Ui))
∣∣∣Gt

]
,

a function only of t and Y (t);

Si(t) = Fi,Y (t)(t) =
∑

e

IY
e (t) Fi,e(t) ,

where the functions Fi,e are deterministic. Then, plainly,

dS̃i(t) = e−
∫ t

0
r(s) ds

∑
e6=f

dM̃Y
ef(Fi,f(t)− Fi,e(t)) ,

hence

ξi,ef(t) = e−
∫ t

0
r(s) ds(Fi,f(t)− Fi,e(t)) .

The factor e−
∫ t

0
r(s) ds will cancel out in the expression

(19) for the projector.

An example with digital mortality rates. Consider
a life endowment of b with term T against level premium
purchased by an x-year old at time 0. The policy has
two states, 0 = ’alive’ and 1 = ’dead’, and the payment
function is

dB(t) = IZ
0 (t)

(
− c 1(0,T )(t) dt + d1[T,∞)(t) b

)
.
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Interest rate is fixed r. Demographic environment is gov-
erned by Markov chain Y with state space Y = {0, 1, 2, 3}
and with intensity matrix Λ̃ = (λ̃ef) of the form

Λ̃ =


−(λ̃1 + λ̃2) λ̃1 λ̃2 0

0 −λ̃2 0 λ̃2

0 0 −λ̃1 λ̃1

0 0 0 0

 ,

and that the stochastic mortality rate at age y and cal-
endar time t is of the form

µ
Y (t)

(y) = µ(0)(y) + (IY
0 (t) + IY

2 (t)) µ(1)(y) + (IY
0 (t) + IY

1 (t)) µ(2)(y) .

(25)

Interpretation: Thee causes of death, e.g. No.1 cardio-
vascular diseases, No. 2 is cancer, and No. 3 all other
causes of death. At time 0 the intensity of dying from
cause 1 is µ(1)(y) at age y, and it remains so until it
becomes 0 at all ages at a random time which is ex-
ponentially distributed with parameter λ̃1 (medical sci-
ence eliminates the cardiovascular diseases). Similarly,
at time 0 the intensity of dying from cause 2 is µ(2)(y) at
age y, and it remains so until it becomes 0 at all ages at a
random time which is exponentially distributed with pa-
rameter λ̃2. Mortality by cause No. 0 remains unchanged
throughout.

The Thiele differential equations (1) become

V ′
00(t) = V00(t) r + c +

(
µ(0)(x + t) + µ(1)(x + t) + µ(2)(x + t)

)
V00(t)

− λ̃1 (V10(t)− V00(t)) − λ̃2 (V20(t)− V00(t)) ,

V ′
10(t) = V10(t) r + c +

(
µ(0)(x + t) + µ(2)(x + t)

)
V10(t)
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− λ̃2 (V30(t)− V10(t)) ,

V ′
20(t) = V20(t) r + c +

(
µ(0)(x + t) + µ(1)(x + t)

)
V20(t) ,

− λ̃1 (V30(t)− V20(t))

V ′
30(t) = V30(t) r + c + µ(0)(x + t) V30(t) . (26)

Terminal conditions:

V ′
e0(T−) = b .

The martingale (4) associated with the discounted pay-
ments is now

dM̃(t) = IZ
0 (t)

[
dM̃Y

01(t) R̃00,10(t) + dM̃Y
02(t) R̃00,20(t)

+ dM̃Y
13(t) R̃10,30(t) + dM̃Y

23(t) R̃20,30(t)
]

+ dMZ
01(t)

∑
e

IY
e (t)R̃e0,e1(t) . (27)

The discounted sums at risk (5) are

R̃e0,f0(t) = e−rt (Vf0(t)− Ve0(t)) (28)

and R̃e0,e1(t) = − e−rt Ve0(t).
Suppose the mortality market consists of only one

bond that matures at time U > T , with no coupons and
with principal at time U given by the survival probabil-
ity of an y-year old at time 0 (usually called a survivor
bond):

S(U) = e−
∫ U

0
µY (s)(y+s) ds . (29)

The discounted price function is

S̃(t) = Ẽ
[
e−rUe

∫ U

0
µY (s)(y+s) ds

∣∣∣Gt

]
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= e−
∫ t

0(r+µY (s)(y+s)) ds Ẽ
[
e−

∫ U

t (r+µY (s)(y+s)) ds
∣∣∣Gt

]
= e−

∫ t

0(r+µY (s)(y+s)) ds
∑

e

IY
e (t) Fe(t) ,

where

Fe(t) = Ẽ
[
e−

∫ T

t
(r+µY (s)(y+s)) ds

∣∣∣Y (t) = e
]

.

(The only relevant state variable in this case is Y (t) due
to the nice structure of the principal (29). If the pay-offs
on the bond would depend on the history of Y in a more
complicated manner, then one might have to work with
more state variables and would inevitably have to solve
partial differential equations in what follows.)

The dynamics of the discounted price function is (re-
call that λ̃01 = λ̃1, λ̃02 = λ̃2 etc.)

dS̃(t) = e−
∫ t

0(r+µY (s)(y+s)) ds
(
−(r + µY (t)(y + t)

)
dt)
∑

e

IY
e (t) Fe(t)

+ e−
∫ t

0(r+µY (s)(y+s)) ds
∑

e

IY
e (t) F ′

e(t) dt

+ e−
∫ t

0(r+µY (s)(y+s)) ds
∑
e6=f

dNY
ef(t) (Ff(t)− Fe(t))

= e−
∫ t

0(r+µY (s)(y+s)) ds
∑

e

IY
e (t)

×

− (r + µe(y + t)) Fe(t) + F ′
e(t) +

∑
f ; f 6=e

λ̃ef(Ff(t)− Fe(t))

 dt

+ e−
∫ t

0(r+µY (s)(y+s)) ds
∑
e6=f

dM̃Y
ef(t) (Ff(t)− Fe(t)) .

Here µ0(y) = µ(0)(y)+µ(1)(y)+µ(2)(y), µ1(y) = µ(0)(y)+
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µ(2)(y), µ2(y) = µ(0)(y) + µ(1)(y), and µ3(y) = µ(0)(y).
Setting the drift term to 0 gives the differential equations

F ′
e(t) = (r + µe(y + t))Fe(t)−

∑
f ; f 6=e

λ̃ef(Ff(t)− Fe(t)) ,

with side conditions

Fe(U) = 1 ,

e = 0, . . . , 3. From these we solve the state-wise price
functions Fe(t) by the standard numerical technique for
ODE. In terms of the basic parameters the differential
equations are

F ′
0(t) = (r + µ(0)(y + t) + µ(1)(y + t) + µ(2)(y + t))F0(t)

−λ̃1(F1(t)− F0(t))− λ̃2(F2(t)− F0(t)) ,

F ′
1(t) = (r + µ(0)(y + t) + µ(2)(y + t))F1(t)− λ̃2(F3(t)− F1(t)) ,

F ′
2(t) = (r + µ(0)(y + t) + µ(1)(y + t))F2(t)− λ̃1(F3(t)− F2(t)) ,

F ′
3(t) = (r + µ(0)(y + t))F3(t) .

The price dynamics reduces to

dS̃(t) = e−
∫ t

0(r+µY (s)(y+s)) ds ×[
dM̃Y

01(t)(F1(t)− F0(t)) + dM̃Y
02(t)(F2(t)− F0(t))

+ dM̃Y
13(t)(F3(t)− F1(t)) + dM̃Y

23(t)(F3(t)− F2(t))
]

.

The coefficients ξef(t) are (subscript i is not needed as
there is only one derivative)

ξ01(t) = e−
∫ t

0(r+µY (s)(y+s)) ds(F1(t)− F0(t)) ,

ξ02(t) = e−
∫ t

0(r+µY (s)(y+s)) ds(F2(t)− F0(t)) ,

ξ13(t) = e−
∫ t

0(r+µY (s)(y+s)) ds(F3(t)− F1(t)) ,

ξ23(t) = e−
∫ t

0(r+µY (s)(y+s)) ds(F3(t)− F2(t)) . (30)
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The coefficients ηef(t) in (13) are

ηef(t) = IZ
0 (t) R̃e0,f0(t) . (31)

We obtain the optimal trading strategy by minimizing
the quadratic form (15) for each t and e.

First consider e = 0. The quadratic form is

λ̃1 (η01(t)− θ ξ01(t))
2 + λ̃2 (η02(t)− θ ξ02(t))

2 .

One easily calculates the minimizing θ,

θ̃(t) =
λ̃1 η01(t) ξ01(t) + λ̃2 η02(t) ξ02(t)

λ̃1 ξ2
01(t) + λ̃2 ξ2

02(t)
,

and the minimum

λ̃1 η2
01(t) + λ̃2 η2

02(t) −

(
λ̃1 η01(t) ξ01(t) + λ̃2 η02(t) ξ02(t)

)2

λ̃1 ξ2
01(t) + λ̃2 ξ2

02(t)

= IZ
0 (t) e−2rt

[
λ̃1 (V10(t)− V00(t))

2 + λ̃2 (V20(t)− V00(t))
2

−

(
λ̃1 (V10(t)− V00(t)) (F1(t)− F0(t)) + λ̃2 (V20(t)− V00(t)) (F2(t)− F0(t))

)2

λ̃1 (V10(t)− V00(t))2 + λ̃2 (V20(t)− V00(t))2

 .

Terms dependent on the past have factored out, which
is very convenient.

Next, consider e = 1. The quadratic form is now just

λ̃2 (η13(t)− θ ξ13(t))
2 .

The minimizing θ is θ̃(t) = η13(t)/ξ13(t) and the mini-
mum is 0; there is only one martingale (source of ran-
domness) in state 1, and the single asset spans its dy-
namics. The analysis for state e = 2 is similar. In state
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e = 3 there is no environment risk left. Calculation of
the state-wise environment risk is easy in this case. One
can now discuss how the hedging efficiency depends on
y and U .

One can invent other derivatives, e.g. a bond with prin-
cipal

S(U) = e−
∫ U

0 (IY
0 (s)+IY

2 (s))µ(1)(y+s) ds ,

which is related to cause 1 only. The discounted price
function of this bond is

S̃(t) = Ẽ
[
e−rUe−

∫ U

0 (IY
0 (s)+IY

2 (s))µ(1)(y+s) ds
∣∣∣Gt

]
= e−

∫ t

0(r+(IY
0 (s)+IY

2 (s))µ(1)(y+s)) ds
∑

e

IY
e (t) Fe(t) ,

where

Fe(t) = Ẽ
[
e−

∫ U

t (r+(IY
0 (s)+IY

2 (s))µ(1)(y+s)) ds
∣∣∣Y (t) = e

]
.

The dynamics of the discounted price function is

dS̃(t) = e−
∫ t

0(r+(IY
0 (s)+IY

2 (s))µ(1)(y+s)) ds
(
−r −

(
IY
0 (t) + IY

2 (t)
)
µ(1)(y + t)

)
dt
∑

e

IY
e (t) Fe(t)

+ e−
∫ t

0(r+(IY
0 (s)+IY

2 (s))µ(1)(y+s)) ds
∑

e

IY
e (t) F ′

e(t) dt

+ e−
∫ t

0(r+(IY
0 (s)+IY

2 (s))µ(1)(y+s)) ds
∑
e6=f

dNY
ef(t) (Ff(t)− Fe(t))

= e−
∫ t

0(r+(IY
0 (s)+IY

2 (s))µ(1)(y+s)) ds
∑

e

IY
e (t)

×

−(r +
(
IY
0 (t) + IY

2 (t)
)
µ(1)(y + t)

)
Fe(t) + F ′

e(t) +
∑

f ; f 6=e

λ̃ef(Ff(t)− Fe(t))

 dt
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+ e−
∫ t

0(r+(IY
0 (s)+IY

2 (s))µ(1)(y+s)) ds
∑
e6=f

dM̃Y
ef(t) (Ff(t)− Fe(t)) .

Setting the drift term to 0, and using the obvious re-
lationship IY

e (t) IY
f (t) = δef , gives the differential equa-

tions

F ′
e(t) =

(
r + (δe0 + δe2)µ

(1)(y + t)
)

Fe(t)−
∑

f ; f 6=e

λ̃ef(Ff(t)−Fe(t)) ,

with side conditions

Fe(U) = 1 ,

e = 0, . . . , 3. In states 1 and 3 this bond (essentially)
reduces to the bank account and becomes redundant.
This we can realize by direct reasoning, but let us derive
it by brute force using the differential equations and their
side conditions. Firstly, the simplest one is

F ′
3(t) = r F3(t) ,

subject to F3(U) = 1, which trivially has the solution
F3(t) = e−r (U−t). Secondly,

F ′
1(t) = r F1(t)− λ̃13(F3(t)−F1(t)) = (r+λ̃13) F1(t)−λ̃13 e−r (U−t) ,

subject to F1(U) = 1, has the solution (can be taken di-
rect from Theorem 3.1 in the life insurance lecture notes)

F1(t) =

∫ U

t

e−(r+λ̃13) (τ−t) λ̃13 e−r (U−τ) dτ + e−(r+λ̃13) (U−t)

=

∫ U

t

e−λ̃13 (τ−t) λ̃13 dτ e−r (U−t) + e−(r+λ̃13) (U−t)

=
(
1− e−λ̃13 (U−t)

)
e−r (U−t) + e−(r+λ̃13) (U−t)

= e−r (U−t) .
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This bond can be compared with a similar bond re-
lated to cause 2.

One could consider different designs of the derivatives,
e.g. S(U) = IY

1 (U)+ IY
3 (U) which has value 1 at term U

if cause No. 1 has been eliminated by that time and else
has value 0. Also this derivative has nice coefficients in
the martingale representation, and the optimal hedging
risk can be easily calculated. You should invent some
reasonable and mathematically tractable derivatives and
carry through the calculations along the lines above. You
may consider models with more causes of deaths or more
general state spaces, but your choice should be clearly
motivated.
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µ(0)

Figure 2: A Markov model for three causes of death, two of which are digital.

Figure 2 shows a flow-chart for the Markov model.

The best buy and hold strategy. There are reasons
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why one could be interested in restricted trading strate-
gies, in particular constant portfolios also known as buy-
and-hold strategies. With θ constant (14) reduces to

ρθ
E
(t) = Ẽ

[∫ T

0

∑
e

IY
e (t)η′e(t) Λ̃e(t)ηe(t) dt

]

− 2θ′ Ẽ

[∫ T

0

∑
e

IY
e (t)Ξ′

e(t) Λ̃e(t)ηe(t) dt

]

+θ′ Ẽ

[∫ T

0

∑
e

IY
e (t)Ξ′

e(t) Λ̃e(t)Ξe(t) dt

]
θ.

The problem boils down to minimizing a quadratic form.
One easily derives a system of ODE for the determi-

nation of the optimal solution.

Some further remarks on essential part of the
price processes. Suppose that, for each e and t, the
coefficient matrix Ξe(t) is of the form

Ξe(t) = Ξ0,e(t) Ψe(t) , (32)

where Ξ0,e(t) is an ne(t)×m matrix that is deterministic
and Ψe(t) is some predictable m×m matrix that has full
rank. Then the projector (19) reduces to

Pe(t) = Ξ0,e(t) Ψe(t)
(
Ψ′

e(t)Ξ
′
0,e(t) Λ̃e(t)Ξ0,e(t) Ψe(t)

)−1
Ψ′

e(t)Ξ
′
0,e(t) Λ̃e(t)

= Ξ0,e(t)
(
Ξ′

0,e(t) Λ̃e(t)Ξ0,e(t)
)−1

Ξ′
0,e(t) Λ̃e(t) , (33)

which is deterministic. Points in case are survivor bonds
of the form (29) and bonds with principal dependent only
on the environment state at maturity (discussed in Para-
graph I). For such bonds the discounted price processes
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are of the form S̃i(t) = ci(t) Fi,Y (t)(t), where the ci in-
volves a discount factor (could well be stochastic) and
maybe a stochastic survival probability, and the Fi,e are
functions of t only. The coefficients in the martingale dy-
namics are ξi,ef(t) = ci(t) (Fi,f(t) − Fi,e(t)), and so Ξe(t)
is of the form (32) with Ψe(t) = Diag(c1(t), . . . , cm(t)).

The transform (32) means that the derivatives are ob-
tained by forming m linearly independent SF portfolios
in m basic risky derivatives. The two sets of derivatives
will span the same space of martingale dynamics and are
therefore equivalent for the purpose of hedging.

Another worked example. Two digital causes of death:
cause 0 with intensity µ0 which becomes inactive with
intensity λ1, and cause 1 with intensity µ1 which be-
comes inactive with intensity λ2. Other causes of death
are switching from high mortality µ2 to low mortality µ3

with intensity λ3 and from low mortality to high mortal-
ity with intensity λ4. There are thus 8 Y -states:
0 = (cause 0 active, cause 1 active, other causes high),
1 = (cause 0 active, cause 1 active, other causes low),
2 = (cause 0 inactive, cause 1 active, other causes high),
3 = (cause 0 inactive, cause 1 active, other causes low),
4 = (cause 0 active, cause 1 inactive, other causes high),
5 = (cause 0 active, cause 1 inactive, other causes low),
6 = (cause 0 inactive, cause 1 inactive, other causes
high),
7 = (cause 0 inactive, cause 1 inactive, other causes
high),

Two derivatives: Derivative No 1 is a survivor bond with
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principal exp(−
∫ U

0 muY (s)(s)ds) at maturity U = T +
10, the other derivative is a digital bond with principal
IY
2 (T ) + IY

3 (T ) + IY
6 (T ) + IY

7 (T ) (1 if cause 0 is inactive)
at maturity T. Derivative No 1 is effective in all states
(its dynamics involves all martingales generated by the
Y-process). Derivative No 2 reduces to the bank account
in states 2,3,6,7 where Cause 0 has become inactive, and
can thus be disregarded in these states. Calculation of
the state-wise goes as follows: In states 0 and 1 there are
three sources of randomness (directly accessible states)
and two derivatives, and we use proj2. In states 2 and 3
there are two sources of randomness and effectively just 1
derivative, and we use proj1. In states 3 and 4 there are
two sources of randomness and two effective derivatives
which means that there is no hedging error. In states 6
and 7 there is one source of randomness and one effective
derivative, which means there is no hedging error.
Results:

Table 6: Portfolio at time 0 for derivative i in state j θ[j, i]

θ[0, 0] = 0.0604500 θ[0, 1] = 1.2539787 θ[0, 2] = −0.0016435
θ[1, 0] = 0.0607967 θ[1, 1] = 1.2540398 θ[1, 2] = −0.0016512
θ[2, 0] = 0.0601127 θ[2, 1] = 1.2521867 θ[2, 2] = 0.0000000
θ[3, 0] = 0.0604579 θ[3, 1] = 1.2522477 θ[3, 2] = 0.0000000
θ[4, 0] = −0.0173425 θ[4, 1] = 1.4088099 θ[4, 2] = −0.0023568
θ[5, 0] = −0.0173393 θ[5, 1] = 1.4088099 θ[5, 2] = −0.0023677
θ[6, 0] = −0.0180721 θ[6, 1] = 1.4067967 θ[6, 2] = 0.0000000
θ[7, 0] = −0.0180721 θ[7, 1] = 1.4067967 θ[7, 2] = 0.0000000
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e V [e] F [1, e] F [2, e] ρ

0 0.6735644 0.4893173 0.2914893 3.6182138986E − 07
1 0.6769010 0.4916795 0.2914893 3.6163455095E − 07
2 0.6751562 0.4911755 0.7408182 3.6239222220E − 07
3 0.6785006 0.4935467 0.7408182 3.6220491125E − 07
4 0.6905159 0.5029390 0.2914893 4.1700518684E − 11
5 0.6939364 0.5053669 0.2914893 4.1700536355E − 11
6 0.6921477 0.5048489 0.7408182 −8.3572715992E − 19
7 0.6955763 0.5072861 0.7408182 −8.3572715992E − 19
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