Comonotonicity Applied in Finance

Michèle Vanmaele¹

¹Department of Applied Mathematics and Computer Science Ghent University, Belgium

7th Winter school on Mathematical Finance January 21-23, 2008

Michèle Vanmaele (UGent)

Comonotonicity Applied in Finance

January 22, 2008 1 / 67

Outline

- Applications in finance
 - European type exotic options
 - Minimizing risk of a financial product using a put option
- Stochastic order and comonotonicity
- 3 Application 1: Infinite market case
 - Upper bound
 - Optimality of super-replicating strategy
 - Largest possible fair price
 - Application 1: Finite market case
 - 5 Application 1: Comonotonic Monte Carlo simulation
- 6 (Comonotonic) lower bound by conditioning
 - Application 1
 - Application 2: Minimizing risk by using put option

イロト 不得下 イヨト イヨト

Applications in finance: References

- pricing problem of European type exotic options
 - Chen, Deelstra, Dhaene & Vanmaele (2007). Static Super-replicating strategy for a class of exotic options. (submitted)
 - Vyncke & Albrecher (2007). Comonotonic control variates for multi-asset option pricing. *Third Brazilian Conference on Statistical Modelling in Insurance and Finance*, 260-265

Applications in finance: References

- pricing problem of European type exotic options
 - Chen, Deelstra, Dhaene & Vanmaele (2007). Static Super-replicating strategy for a class of exotic options. (submitted)
 - Vyncke & Albrecher (2007). Comonotonic control variates for multi-asset option pricing. *Third Brazilian Conference on Statistical Modelling in Insurance and Finance*, 260-265
- Ø Minimizing risk of a financial product using a put option
 - Deelstra, Ezzine, Heyman & Vanmaele (2007). Managing Value-at-Risk for a bond using put options. *Computational Economics*. 29(2), 139-149.
 - Annaert, Deelstra, Heyman & Vanmaele (2007). Risk management of a bond portfolio using options. *Insurance: Mathematics and Economics*. (in press)
 - Deelstra, Vanmaele & Vyncke (2008). Minimizing the risk of a financial product using a put option. (in preparation)

Michèle Vanmaele (UGent)

Comonotonicity Applied in Finance

January 22, 2008 3 / 67

European type exotic options

option with pay-off at maturity T

$$(\mathbb{S}-K)_+$$
 (call) or $(K-\mathbb{S})_+$ (put)

• discrete case: weighted sum of asset prices at T_i , $0 \le T_i \le T$

$$\mathbb{S} = \sum_{i=1}^{n} w_i X_i, \quad w_i \text{ positive weights}$$

- 3

(日) (周) (三) (三)

European type exotic options

option with pay-off at maturity T

$$(\mathbb{S}-\mathcal{K})_+$$
 (call) or $(\mathcal{K}-\mathbb{S})_+$ (put)

• discrete case: weighted sum of asset prices at T_i , $0 \le T_i \le T$

$$\mathbb{S} = \sum_{i=1}^{n} w_i X_i, \quad w_i ext{ positive weights}$$

examples: Asian, basket, pure unit-linked contract

$$X_i = S(T - i + 1) \qquad S_i(T) \qquad P \frac{S(T)}{S(T - i)}$$

European type exotic options

option with pay-off at maturity T

$$(\mathbb{S}-\mathcal{K})_+$$
 (call) or $(\mathcal{K}-\mathbb{S})_+$ (put)

• discrete case: weighted sum of asset prices at T_i , $0 \le T_i \le T$

$$\mathbb{S} = \sum_{i=1}^n w_i X_i, \quad w_i ext{ positive weights}$$

examples: Asian, basket, pure unit-linked contract

$$X_i = S(T - i + 1) \qquad S_i(T) \qquad P \frac{S(T)}{S(T - i)}$$

• continuous case: continuous averaging of asset prices

$$\mathbb{S} = \int_0^T w(s) X(s) ds \quad (Asian)$$

くほと くほと くほと

model-based approach

$$C[K] = e^{-rT}E[(\mathbb{S} - K)_+]$$

under probability measure Q (all discounted gain processes are martingales, with a gain process being the sum of processes of discounted prices and accumulated discounted dividends)

- 4 周 ト - 4 日 ト - 1 日

model-based approach

$$C[K] = e^{-rT} E[(\mathbb{S} - K)_+] = e^{-rT} \int_K^{+\infty} (1 - F_{\mathbb{S}}(x)) dx$$

under probability measure Q (all discounted gain processes are martingales, with a gain process being the sum of processes of discounted prices and accumulated discounted dividends)

Cumulative distribution function (cdf) of S: F_S(x) = Pr(S > x) explicitly known?

イロッ イボッ イヨッ イヨッ 三日

model-based approach

$$C[K] = e^{-rT} E[(\mathbb{S} - K)_+] = e^{-rT} \int_K^{+\infty} (1 - F_{\mathbb{S}}(x)) dx$$

under probability measure Q (all discounted gain processes are martingales, with a gain process being the sum of processes of discounted prices and accumulated discounted dividends)

- Cumulative distribution function (cdf) of S: F_S(x) = Pr(S > x) explicitly known?
- Black&Scholes setting and discrete averaging: sum of non-independent lognormally distributed random variables

イロト 不得下 イヨト イヨト 三日

model-based approach

$$C[K] = e^{-rT} E[(\mathbb{S} - K)_+] = e^{-rT} \int_K^{+\infty} (1 - F_{\mathbb{S}}(x)) dx$$

under probability measure Q (all discounted gain processes are martingales, with a gain process being the sum of processes of discounted prices and accumulated discounted dividends)

- Cumulative distribution function (cdf) of S: F_S(x) = Pr(S > x) explicitly known?
- Black&Scholes setting and discrete averaging: sum of non-independent lognormally distributed random variables
- moment-matching methods, Fourier and Laplace transform methods, trees and lattices techniques, PDE and FD approaches, MC simulation

model-based approach

$$C[K] = e^{-rT} E[(\mathbb{S} - K)_+] = e^{-rT} \int_K^{+\infty} (1 - F_{\mathbb{S}}(x)) dx$$

under probability measure Q (all discounted gain processes are martingales, with a gain process being the sum of processes of discounted prices and accumulated discounted dividends)

- Cumulative distribution function (cdf) of S: F_S(x) = Pr(S > x) explicitly known?
- Black&Scholes setting and discrete averaging: sum of non-independent lognormally distributed random variables
- moment-matching methods, Fourier and Laplace transform methods, trees and lattices techniques, PDE and FD approaches, MC simulation
- via comonotonicity: comonotonic approximations for cdf, lower and upper bounds, comonotonic MC simulation

Michèle Vanmaele (UGent)

Comonotonicity Applied in Finance

model-free approach

- price C[K] of option with pay-off $(\mathbb{S} K)_+$ at T not observable in the market
- market of plain vanilla option prices

$$C_i[K] = e^{-rT_i}E[(X_i - K)_+], \quad i = 1, ..., n$$

for (finite or infinite) number of strikes K

イロン イボン イヨン イヨン 一日

model-free approach

- price C[K] of option with pay-off $(\mathbb{S} K)_+$ at T not observable in the market
- market of plain vanilla option prices

$$C_i[K] = e^{-rT_i}E[(X_i - K)_+], \quad i = 1, ..., n$$

for (finite or infinite) number of strikes K

• *C*[*K*]: fair price a rational decision maker is willing to pay fair price: price does not exceed price of any investment strategy consisting of buying a portfolio of available plain vanilla options whose pay-off super-replicates the pay-off of the given option

model-free approach

- price C[K] of option with pay-off $(\mathbb{S} K)_+$ at T not observable in the market
- market of plain vanilla option prices

$$C_i[K] = e^{-rT_i}E[(X_i - K)_+], \quad i = 1, \dots, n$$

for (finite or infinite) number of strikes K

- *C*[*K*]: fair price a rational decision maker is willing to pay fair price: price does not exceed price of any investment strategy consisting of buying a portfolio of available plain vanilla options whose pay-off super-replicates the pay-off of the given option
- via comonotonicity:
 - largest possible fair price for this option, given the available information from the market
 - price of cheapest super-replicating strategy consisting of buying a linear combination of available plain vanilla options

Michèle Vanmaele (UGent)

Comonotonicity Applied in Finance

Minimizing risk of a financial product using a put option

- Classical hedging example: hedging exposure to price risk of an asset
 - minimize VaR of position in share by using put options
 - Optimal strike price of put option, given a budget?

Minimizing risk of a financial product using a put option

- Classical hedging example: hedging exposure to price risk of an asset
 - minimize VaR of position in share by using put options
 - Optimal strike price of put option, given a budget?
- More general hedging problem:
 - exposure to price risk of coupon-bearing bond or basket of assets
 - minimize general risk measures in particular VaR, TVaR, CTE
 - deal with measuring sum of risks
 - deal with put option price written on multiple underlyings
 - Optimal strike price of put option, given a budget?

- 4 周 ト 4 日 ト 4 日 ト

Minimizing risk of a financial product using a put option

- Classical hedging example: hedging exposure to price risk of an asset
 - minimize VaR of position in share by using put options
 - Optimal strike price of put option, given a budget?
- More general hedging problem:
 - exposure to price risk of coupon-bearing bond or basket of assets
 - minimize general risk measures in particular VaR, TVaR, CTE
 - deal with measuring sum of risks
 - deal with put option price written on multiple underlyings
 - Optimal strike price of put option, given a budget?
 - \Rightarrow comonotonic and non-comonotonic

くほと くほと くほと

Stochastic order and comonotonicity: References

Hoeffding (1940). Masstabinvariante Korrelationstheorie. *Schriften des Math. Inst. und des Inst. für Angewandte Mathematik der Univ. Berlin*, vol. 5, 179-223.

Fréchet (1951). Sur les tableaux de corrélation dont les marges sont donnés; *Ann. Univ. Lyon Sect. A*, Series 3, **14**, 53-77.

Meilijson & Nadas (1979). Convex majorization with an application to the length of critical paths. *Journal of Applied Probability*, **16**, 671-676.

Rüschendorf (1983). Solution of statistical optimization problem by rearrangement methods. *Metrika*, 30, 55-61.

- Goovaerts, Kaas, Van Heerwaarden & Bauwelinckx (1990). Effective actuarial methods. Insurance series, vol. 3, North-Holland.
- Shaked & Shanthikumar (1994). Stochastic orders and their applications, Ac. Press.

Müller (1997). Stop-loss order for portfolios of dependent risks. IME, 21, 219-223.

- Wang & Dhaene (1998). Comonotonicity, correlation order and stop-loss premiums. IME 22(3), 235-243.
- Kaas, Dhaene & Goovaerts (2000). Upper and lower bounds for sums of random variables. IME **27**(2), 151-168.
- Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2002). The concept of comonotonicity in actuarial science and finance: Theory/Applications. *IME* **31**(1), 3-33/**31**(2), 133-161.

Stochastic order

Definition

A random variable X is said to precede another random variable Y in the stop-loss order sense, notation $X \leq_{sl} Y$, in case

$$E\left[\left(X-d
ight)_{+}
ight]\leq E\left[\left(Y-d
ight)_{+}
ight]$$
, for all d .

Stochastic order

Definition

A random variable X is said to precede another random variable Y in the stop-loss order sense, notation $X \leq_{sl} Y$, in case

$$E\left[\left(X-d
ight)_{+}
ight]\leq E\left[\left(Y-d
ight)_{+}
ight]$$
, for all d .

interpretation:

- X has uniformly smaller upper tails than Y
- any risk-averse decision maker would prefer to pay X instead of Y
- also called increasing convex order and denoted \leq_{icx}

$$X \leq_{icx} Y \quad \Leftrightarrow \quad E[v(X)] \leq E[v(Y)]$$

for all non-decreasing convex functions v

• if $X \leq_{sl} Y$ then $E[X] \leq E[Y]$

Definition

A random variable X is said to precede another random variable Y in the convex order sense, notation $X \leq_{cx} Y$, if and only if

$$E[X] = E[Y]$$
 and $E[(X-d)_+] \le E[(Y-d)_+]$, for all d .

Definition

A random variable X is said to precede another random variable Y in the convex order sense, notation $X \leq_{cx} Y$, if and only if

$$E[X] = E[Y]$$
 and $E[(X - d)_+] \le E[(Y - d)_+]$, for all d .

interpretation:

- extreme values are more likely to occur for Y than for X
- equivalent formulation:

$$X \leq_{cx} Y \quad \Leftrightarrow \quad E[v(X)] \leq E[v(Y)]$$

for all convex functions v

• if $X \leq_{cx} Y$ then $var[X] \leq var[Y]$, inverse implication does not hold

$$\frac{1}{2}(var[Y] - var[X]) = \int_{-\infty}^{+\infty} |E[(Y - k)_+] - E[(X - k)_+]|dk$$

Definition

A random variable X is said to precede another random variable Y in the convex order sense, notation $X \leq_{cx} Y$, if and only if

$$E[X] = E[Y]$$
 and $E[(X - d)_+] \le E[(Y - d)_+]$, for all d .

interpretation:

- extreme values are more likely to occur for Y than for X
- equivalent formulation:

$$X \leq_{cx} Y \quad \Leftrightarrow \quad E[v(X)] \leq E[v(Y)]$$

for all convex functions v

• if $X \leq_{cx} Y$ then $var[X] \leq var[Y]$, inverse implication does not hold

$$\frac{1}{2}(var[Y] - var[X]) = \int_{-\infty}^{+\infty} |E[(Y - k)_+] - E[(X - k)_+]|dk$$

if in addition var[X] = var[Y] then X and Y are equal in distribution

General inverse distribution function

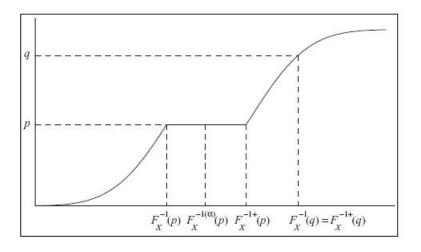
Definition

The α -inverse of the cumulative distribution function F_X of a random variable X is defined as a convex combination of the inverses F_X^{-1} and F_X^{-1+} of F_X :

$$F_X^{-1(\alpha)}(p) = \alpha F_X^{-1}(p) + (1 - \alpha) F_X^{-1+}(p)$$
$$p \in (0, 1), \ \alpha \in [0, 1],$$

with
$$F_X^{-1}(p) = \inf \{ x \in \mathbb{R} \mid F_X(x) \ge p \}, \quad p \in [0, 1]$$

 $F_X^{-1+}(p) = \sup \{ x \in \mathbb{R} \mid F_X(x) \le p \}, \quad p \in [0, 1]$



Michèle Vanmaele (UGent)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○ January 22, 2008 12 / 67

Comonotonicity

Definitions

- A set $A \subseteq \mathbb{R}^n$ is comonotonic if for any \underline{x} and \underline{y} in A, $x_i < y_i$ for some *i* implies that $x_j \leq y_j$ for all *j*
- A random vector (X_1, \ldots, X_n) is called comonotonic if it has a comonotonic support

Comonotonicity

Definitions

- A set $A \subseteq \mathbb{R}^n$ is comonotonic if for any \underline{x} and \underline{y} in A, $x_i < y_i$ for some *i* implies that $x_j \leq y_j$ for all *j*
- A random vector (X_1, \ldots, X_n) is called comonotonic if it has a comonotonic support

Equivalent Characterizations

A random vector (X_1, \ldots, X_n) with marginal cdf's $F_{X_i}(x) = \Pr[X_i \le x]$ is said to be comonotonic if

• for
$$U \sim Uniform(0, 1)$$
, we have
 $(X_1, \dots, X_n) \stackrel{d}{=} \left(F_{X_1}^{-1}(U), F_{X_2}^{-1}(U), \dots, F_{X_n}^{-1}(U) \right).$

• \exists a r.v. Z and non-decreasing functions f_i , (i = 1, ..., n), s.t. $(X_1, ..., X_n) \stackrel{d}{=} (f_1(Z), ..., f_n(Z))$.

- Interpretation
 - very strong positive dependence structure
 - if \underline{x} and \underline{y} are possible outcomes of \underline{X} , then they must be ordered componentwise
 - common monotonic
 - the higher the value of one component X_i , the higher the value of any other component X_i
 - all components driven by one and the same random variable \Rightarrow one-dimensional

周下 イモト イモト

- Interpretation
 - very strong positive dependence structure
 - if \underline{x} and \underline{y} are possible outcomes of \underline{X} , then they must be ordered componentwise
 - common monotonic
 - the higher the value of one component X_i, the higher the value of any other component X_j
 - all components driven by one and the same random variable \Rightarrow one-dimensional
- Comonotonicity has some interesting properties that can be used to facilitate various complicated problems
 - Several functions are additive for comonotonic variables
 - ⇒ multivariate problem is reduced to univariate ones for which quite often analytical expressions are available
 - Comonotonicity leaves the marginals F_{X_i} intact
 - \Rightarrow for MC simulation: simulated samples needed in univariate cases are readily available from the main simulation routine

イロン イボン イヨン イヨン 三日

Comonotonic counterpart

The comonotonic counterpart (Y_1^c, \ldots, Y_n^c) of a random vector (Y_1, \ldots, Y_n) with marginal distribution functions F_{Y_i} , $i = 1, \ldots, n$ is given by $\left(F_{Y_1}^{-1}(U), F_{Y_2}^{-1}(U), \ldots, F_{Y_n}^{-1}(U)\right)$, for $U \sim Uniform(0, 1)$.

Comonotonic counterpart

The comonotonic counterpart (Y_1^c, \ldots, Y_n^c) of a random vector (Y_1, \ldots, Y_n) with marginal distribution functions F_{Y_i} , $i = 1, \ldots, n$ is given by $\left(F_{Y_1}^{-1}(U), F_{Y_2}^{-1}(U), \ldots, F_{Y_n}^{-1}(U)\right)$, for $U \sim Uniform(0, 1)$.

Comonotonic sum

$$S^{c} = Y_{1}^{c} + \dots + Y_{n}^{c}$$

with cdf: $F_{S^{c}}(x) = \sup \left\{ p \in [0,1] \mid \sum_{i=1}^{n} F_{Y_{i}}^{-1}(p) \le x \right\}$ and
 $F_{S^{c}}^{-1+}(0) = \sum_{i=1}^{n} F_{Y_{i}}^{-1+}(0)$ and $F_{S^{c}}^{-1}(1) = \sum_{i=1}^{n} F_{Y_{i}}^{-1}(1)$

• Additivity: general inverse cdf is additive for comonotonic variables

$$F_{S^c}^{-1(lpha)}(p) = \sum_{i=1}^n F_{Y_i}^{-1(lpha)}(p), \quad p \in (0,1)$$

• Additivity: general inverse cdf is additive for comonotonic variables

$$F_{S^c}^{-1(\alpha)}(p) = \sum_{i=1}^n F_{Y_i}^{-1(\alpha)}(p), \quad p \in (0,1)$$

• Convex order: For any random vector (Y_1, \ldots, Y_n) with given marginals, the sum $S = \sum_{i=1}^n Y_i$ satisfies $S \leq_{cx} S^c$, i.e.

$$E[S] = E[S^c]$$
 and $E\left[(S - K)_+\right] \le E\left[(S^c - K)_+\right]$

• Additivity: general inverse cdf is additive for comonotonic variables

$$F_{S^c}^{-1(\alpha)}(p) = \sum_{i=1}^n F_{Y_i}^{-1(\alpha)}(p), \quad p \in (0,1)$$

• Convex order: For any random vector (Y_1, \ldots, Y_n) with given marginals, the sum $S = \sum_{i=1}^n Y_i$ satisfies $S \leq_{cx} S^c$, i.e.

$$E[S] = E[S^c]$$
 and $E\left[(S - K)_+\right] \le E\left[(S^c - K)_+\right]$

• always: for $K = \sum_{i=1}^{n} K_i$

$$(S - K)_+ = (\sum_{i=1}^n Y_i - \sum_{i=1}^n K_i)_+ \le \sum_{i=1}^n (Y_i - K_i)_+$$

• Additivity: general inverse cdf is additive for comonotonic variables

$$F_{S^c}^{-1(\alpha)}(p) = \sum_{i=1}^n F_{Y_i}^{-1(\alpha)}(p), \quad p \in (0,1)$$

• Convex order: For any random vector (Y_1, \ldots, Y_n) with given marginals, the sum $S = \sum_{i=1}^n Y_i$ satisfies $S \leq_{cx} S^c$, i.e.

$$E[S] = E[S^c]$$
 and $E\left[(S - K)_+\right] \le E\left[(S^c - K)_+\right]$

• always: for $K = \sum_{i=1}^{n} K_i$

$$E[(S - K)_{+}] = E[(\sum_{i=1}^{n} Y_{i} - \sum_{i=1}^{n} K_{i})_{+}] \leq \sum_{i=1}^{n} E[(Y_{i} - K_{i})_{+}]$$

Properties

• Additivity: general inverse cdf is additive for comonotonic variables

$$F_{S^c}^{-1(\alpha)}(p) = \sum_{i=1}^n F_{Y_i}^{-1(\alpha)}(p), \quad p \in (0,1)$$

• Convex order: For any random vector (Y_1, \ldots, Y_n) with given marginals, the sum $S = \sum_{i=1}^n Y_i$ satisfies $S \leq_{cx} S^c$, i.e.

$$E[S] = E[S^c]$$
 and $E\left[(S - K)_+\right] \le E\left[(S^c - K)_+\right]$

• always: for $K = \sum_{i=1}^{n} K_i$

$$E[(S-K)_{+}] = E[(\sum_{i=1}^{n} Y_{i} - \sum_{i=1}^{n} K_{i})_{+}] \leq \sum_{i=1}^{n} E[(Y_{i} - K_{i})_{+}]$$

• equality for $S = S^c$ and $K_i = F_{Y_i}^{-1(\alpha)}(F_{S^c}(K))$

Properties (continued)

• Decomposition: for $K \in (F_{S^c}^{-1+}(0), F_{S^c}^{-1}(1))$

$$\left[E\left[\left(S^{c}-K\right)_{+}\right]=\sum_{i=1}^{n}E\left[\left(Y_{i}-F_{Y_{i}}^{-1(\alpha)}\left(F_{S^{c}}(K)\right)\right)_{+}\right]\right]$$

with $\alpha \in [0,1]$ such that

 \leftarrow

$$F_{S^{c}}^{-1(\alpha)}(F_{S^{c}}(K)) = \sum_{i=1}^{n} F_{Y_{i}}^{-1(\alpha)}(F_{S^{c}}(K)) = K$$

$$\approx \alpha = \frac{F_{S^{c}}^{-1+}(F_{S^{c}}(K)) - K}{F_{S^{c}}^{-1+}(F_{S^{c}}(K)) - F_{S^{c}}^{-1}(F_{S^{c}}(K))}$$

3

通 ト イヨ ト イヨト

Properties (continued)

• Decomposition: for $K \in \left(F_{S^c}^{-1+}(0), F_{S^c}^{-1}(1)\right)$

$$E\left[(S^{c}-K)_{+}\right] = \sum_{i=1}^{n} E\left[\left(Y_{i}-F_{Y_{i}}^{-1}(F_{S^{c}}(K))\right)_{+}\right] - \left[K-F_{S^{c}}^{-1}(F_{S^{c}}(K))\right](1-F_{S^{c}}(K))$$

3

< 🗇 🕨 🔸

∃ → (∃ →

January 22, 2008

Properties (continued)

• Decomposition: for $K \in \left(F_{\mathcal{S}^c}^{-1+}(0), F_{\mathcal{S}^c}^{-1}(1)\right)$

$$E\left[(S^{c}-K)_{+}\right] = \sum_{i=1}^{n} E\left[\left(Y_{i}-F_{Y_{i}}^{-1}(F_{S^{c}}(K))\right)_{+}\right] \\ -\left[K-F_{S^{c}}^{-1}(F_{S^{c}}(K))\right](1-F_{S^{c}}(K))$$

Note: second term is zero when all marginal cdf's F_{X_i} are strictly increasing and at least one is continuous

Upper bound

Application 1

$$\mathbb{S} = \sum_{i=1}^{n} w_i X_i$$

Michèle Vanmaele (UGent)

Comonotonicity Applied in Finance

January 22, 2008 19 / 67

(日) (四) (三) (三) (三)

Upper bound

Application 1

Chen, Deelstra, Dhaene & Vanmaele (2007). Static Super-replicating strategy for a class of exotic options. (submitted)

$$\mathbb{S} = \sum_{i=1}^{n} w_i X_i$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Application 1

Chen, Deelstra, Dhaene & Vanmaele (2007). Static Super-replicating strategy for a class of exotic options. (submitted)
 Derivation of upper bound

$$\mathbb{S} = \sum_{i=1}^{n} w_i X_i$$

3

- 4 同 6 4 日 6 4 日 6

Application 1

- Chen, Deelstra, Dhaene & Vanmaele (2007). Static Super-replicating strategy for a class of exotic options. (submitted)
- Derivation of upper bound
 - comonotonic counterpart of $\mathbb{S} = \sum_{i=1}^{n} w_i X_i$ is

$$\mathbb{S}^{c} = w_{1}F_{X_{1}}^{-1}(U) + w_{2}F_{X_{2}}^{-1}(U) + \dots + w_{n}F_{X_{n}}^{-1}(U)$$

イロト イポト イヨト イヨト 二日

- Chen, Deelstra, Dhaene & Vanmaele (2007). Static Super-replicating strategy for a class of exotic options. (submitted)
- Derivation of upper bound
 - comonotonic counterpart of $\mathbb{S} = \sum_{i=1}^{n} w_i X_i$ is

$$\mathbb{S}^{c} = w_{1}F_{X_{1}}^{-1}(U) + w_{2}F_{X_{2}}^{-1}(U) + \dots + w_{n}F_{X_{n}}^{-1}(U)$$

vanilla option prices

$$C_i[K] = e^{-rT_i}E[(X_i - K)_+]$$

known for all strikes K

(本語) (本語) (本語) (語)

- Chen, Deelstra, Dhaene & Vanmaele (2007). Static Super-replicating strategy for a class of exotic options. (submitted)
- Derivation of upper bound
 - comonotonic counterpart of $\mathbb{S} = \sum_{i=1}^{n} w_i X_i$ is

$$\mathbb{S}^{c} = w_{1}F_{X_{1}}^{-1}(U) + w_{2}F_{X_{2}}^{-1}(U) + \dots + w_{n}F_{X_{n}}^{-1}(U)$$

vanilla option prices

$$C_i[K] = e^{-rT_i}E[(X_i - K)_+]$$

known for all strikes $K \iff \operatorname{cdf} F_{X_i}(x)$ known for all x

- Chen, Deelstra, Dhaene & Vanmaele (2007). Static Super-replicating strategy for a class of exotic options. (submitted)
- Derivation of upper bound
 - comonotonic counterpart of $\mathbb{S} = \sum_{i=1}^{n} w_i X_i$ is

$$\mathbb{S}^{c} = w_{1}F_{X_{1}}^{-1}(U) + w_{2}F_{X_{2}}^{-1}(U) + \dots + w_{n}F_{X_{n}}^{-1}(U)$$

vanilla option prices

$$C_i[K] = e^{-rT_i}E[(X_i - K)_+]$$

known for all strikes $K \iff \operatorname{cdf} F_{X_i}(x)$ known for all x

 no information about dependency structure between X_i multivariate distribution F_{X1...Xn}(x1,...,xn) not specified

19 / 67

- Chen, Deelstra, Dhaene & Vanmaele (2007). Static Super-replicating strategy for a class of exotic options. (submitted)
- Derivation of upper bound
 - comonotonic counterpart of $\mathbb{S} = \sum_{i=1}^{n} w_i X_i$ is

$$\mathbb{S}^{c} = w_{1}F_{X_{1}}^{-1}(U) + w_{2}F_{X_{2}}^{-1}(U) + \dots + w_{n}F_{X_{n}}^{-1}(U)$$

vanilla option prices

$$C_i[K] = e^{-rT_i}E[(X_i - K)_+]$$

known for all strikes $K \iff \operatorname{cdf} F_{X_i}(x)$ known for all x

- no information about dependency structure between X_i multivariate distribution F_{X1...Xn}(x1,...,xn) not specified
- C[K]: fair price rational decision maker is willing to pay for option with pay-off $(S K)_+$

January 22, 2008

Theorem

• For any $K \in (F_{\mathbb{S}^c}^{-1+}(0), F_{\mathbb{S}^c}^{-1}(1))$, any fair price C[K] of the option with pay-off $(\mathbb{S} - K)_+$ at time T satisfies

$$C[K] \leq e^{-rT} E\left[\left(\mathbb{S}^{c} - K\right)_{+}\right]$$
$$= \sum_{i=1}^{n} w_{i} e^{-r(T-T_{i})} C_{i} \left[F_{X_{i}}^{-1(\alpha)}\left(F_{\mathbb{S}^{c}}(K)\right)\right]$$

with α given by

$$\alpha = \frac{F_{\mathbb{S}^c}^{-1+}(F_{\mathbb{S}^c}(K)) - K}{F_{\mathbb{S}^c}^{-1+}(F_{\mathbb{S}^c}(K)) - F_{\mathbb{S}^c}^{-1}(F_{\mathbb{S}^c}(K))}$$

in case $F_{\mathbb{S}^c}^{-1+}(F_{\mathbb{S}^c}(K)) \neq F_{\mathbb{S}^c}^{-1}(F_{\mathbb{S}^c}(K))$ and $\alpha = 1$ otherwise.

Theorem (continued)

• For $K \notin (F_{\mathbb{S}^c}^{-1+}(0), F_{\mathbb{S}^c}^{-1}(1))$, the exact exotic option price C[K] is given by

$$C[K] = \begin{cases} \sum_{i=1}^{n} w_i e^{-r(T-T_i)} C_i [0] - e^{-rT} K & \text{if } K \le F_{\mathbb{S}^c}^{-1+}(0) \\ 0 & \text{if } K \ge F_{\mathbb{S}^c}^{-1}(1). \end{cases}$$

47 ▶

• first step

$$E\left[(\mathbb{S}^{c}-K)_{+}\right] = \sum_{i=1}^{n} w_{i}E\left[\left(X_{i}-F_{X_{i}}^{-1(\alpha)}\left(F_{\mathbb{S}^{c}}(K)\right)\right)_{+}\right]$$

Michèle Vanmaele (UGent)

Comonotonicity Applied in Finance

January 22, 2008 22 / 67

Upper bound

Sketch of Proof

• first step

$$e^{-rT}E[(\mathbb{S}^{c}-K)_{+}]=e^{-rT}\sum_{i=1}^{n}w_{i}E\left[\left(X_{i}-F_{X_{i}}^{-1(\alpha)}(F_{\mathbb{S}^{c}}(K))\right)_{+}
ight]$$

Michèle Vanmaele (UGent)

Comonotonicity Applied in Finance

January 22, 2008 22 / 67

Upper bound

Sketch of Proof

• first step

$$e^{-rT}E[(\mathbb{S}^{c}-K)_{+}] = e^{-rT}\sum_{i=1}^{n} w_{i}E\left[\left(X_{i}-F_{X_{i}}^{-1(\alpha)}(F_{\mathbb{S}^{c}}(K))\right)_{+}\right]$$
$$=\sum_{i=1}^{n} w_{i}e^{-r(T-T_{i})}C_{i}\left[F_{X_{i}}^{-1(\alpha)}(F_{\mathbb{S}^{c}}(K))\right]$$

Michèle Vanmaele (UGent)

• first step

$$e^{-rT}E[(\mathbb{S}^{c}-K)_{+}] = e^{-rT}\sum_{i=1}^{n}w_{i}E\left[\left(X_{i}-F_{X_{i}}^{-1(\alpha)}(F_{\mathbb{S}^{c}}(K))\right)_{+}\right]$$
$$=\sum_{i=1}^{n}w_{i}e^{-r(T-T_{i})}C_{i}\left[F_{X_{i}}^{-1(\alpha)}(F_{\mathbb{S}^{c}}(K))\right]$$

second step

$$\left(\sum_{i=1}^n w_i X_i - K\right)_+ \leq \sum_{i=1}^n w_i \left(X_i - F_{X_i}^{-1(\alpha)}(F_{\mathbb{S}^c}(K))\right)_+$$

Michèle Vanmaele (UGent)

Comonotonicity Applied in Finance

January 22, 2008 22 / 67

∃ ► < ∃ ►</p>

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• first step

$$e^{-rT}E[(\mathbb{S}^{c}-K)_{+}] = e^{-rT}\sum_{i=1}^{n}w_{i}E\left[\left(X_{i}-F_{X_{i}}^{-1(\alpha)}(F_{\mathbb{S}^{c}}(K))\right)_{+}\right]$$
$$=\sum_{i=1}^{n}w_{i}e^{-r(T-T_{i})}C_{i}\left[F_{X_{i}}^{-1(\alpha)}(F_{\mathbb{S}^{c}}(K))\right]$$

• second step : RHS: buy $w_i e^{-r(T-T_i)}$ vanilla calls

$$\left(\sum_{i=1}^n w_i X_i - K\right)_+ \leq \sum_{i=1}^n w_i \left(X_i - F_{X_i}^{-1(\alpha)}(F_{\mathbb{S}^c}(K))\right)_+$$

Michèle Vanmaele (UGent)

Comonotonicity Applied in Finance

January 22, 2008 22 / 67

• first step

$$e^{-rT}E[(\mathbb{S}^{c}-K)_{+}] = e^{-rT}\sum_{i=1}^{n}w_{i}E\left[\left(X_{i}-F_{X_{i}}^{-1(\alpha)}(F_{\mathbb{S}^{c}}(K))\right)_{+}\right]$$
$$=\sum_{i=1}^{n}w_{i}e^{-r(T-T_{i})}C_{i}\left[F_{X_{i}}^{-1(\alpha)}(F_{\mathbb{S}^{c}}(K))\right]$$

• second step : RHS: buy $w_i e^{-r(T-T_i)}$ vanilla calls

$$\left(\sum_{i=1}^{n} w_i X_i - K\right)_+ \leq \sum_{i=1}^{n} w_i \left(X_i - F_{X_i}^{-1(\alpha)}(F_{\mathbb{S}^c}(K))\right)_+$$
$$\Rightarrow \quad C[K] \leq \sum_{i=1}^{n} w_i e^{-r(T-T_i)} C_i \left[F_{X_i}^{-1(\alpha)}(F_{\mathbb{S}^c}(K))\right]$$

Michèle Vanmaele (UGent)

Comonotonicity Applied in Finance

January 22, 2008 22 / 67

• first step

$$e^{-rT}E[(\mathbb{S}^{c}-K)_{+}] = e^{-rT}\sum_{i=1}^{n}w_{i}E\left[\left(X_{i}-F_{X_{i}}^{-1(\alpha)}(F_{\mathbb{S}^{c}}(K))\right)_{+}\right]$$
$$=\sum_{i=1}^{n}w_{i}e^{-r(T-T_{i})}C_{i}\left[F_{X_{i}}^{-1(\alpha)}(F_{\mathbb{S}^{c}}(K))\right]$$

• second step : RHS: buy $w_i e^{-r(T-T_i)}$ vanilla calls

$$\left(\sum_{i=1}^{n} w_i X_i - K\right)_+ \leq \sum_{i=1}^{n} w_i \left(X_i - F_{X_i}^{-1(\alpha)}(F_{\mathbb{S}^c}(K))\right)_+$$
$$\Rightarrow \quad C[K] \leq \sum_{i=1}^{n} w_i e^{-r(T-T_i)} C_i \left[F_{X_i}^{-1(\alpha)}(F_{\mathbb{S}^c}(K))\right]$$

Michèle Vanmaele (UGent)

Comonotonicity Applied in Finance

◆ 注 ▶ ◆ 注 ▶ 注 少 Q (? January 22, 2008 22 / 67

(4 回) ト イヨト イ

Upper bound

Remarks:

• second step holds without assumption of form vanilla option prices, for first step form is needed

- second step holds without assumption of form vanilla option prices, for first step form is needed
- no model assumed for exotic option price

- second step holds without assumption of form vanilla option prices, for first step form is needed
- no model assumed for exotic option price
- assumption: $C[K] = e^{-rT}E[(\mathbb{S} K)_+]$ then from $\mathbb{S} \leq_{cx} \mathbb{S}^c$ immediately

 $C[K] \le e^{-rT} E[(\mathbb{S}^c - K)_+]$

- second step holds without assumption of form vanilla option prices, for first step form is needed
- no model assumed for exotic option price
- assumption: C[K] = e^{-rT}E[(S − K)₊] then from S ≤_{cx} S^c immediately

$$C[K] \leq e^{-rT}E[(\mathbb{S}^c - K)_+]$$

Asian option case in literature

Michèle Vanmaele (UGent)

- second step holds without assumption of form vanilla option prices, for first step form is needed
- no model assumed for exotic option price
- assumption: C[K] = e^{-rT}E[(S − K)₊] then from S ≤_{cx} S^c immediately

$$C[K] \le e^{-rT} E[(\mathbb{S}^c - K)_+]$$

Asian option case in literature

Simon, Goovaerts & Dhaene (2000). IME, 26, 175-184: stochastic order

Comonotonicity Applied in Finance

January 22, 2008

23 / 67

- second step holds without assumption of form vanilla option prices, for first step form is needed
- no model assumed for exotic option price
- assumption: C[K] = e^{-rT}E[(S − K)₊] then from S ≤_{cx} S^c immediately

$$C[K] \le e^{-rT} E[(\mathbb{S}^c - K)_+]$$

Asian option case in literature

- Simon, Goovaerts & Dhaene (2000). *IME*, **26**, 175-184: stochastic order
- Albrecher, Dhaene, Goovaerts & Schoutens (2005). *The Journal of Derivatives*, **12**, 63-72: idem + Lévy models

- second step holds without assumption of form vanilla option prices, for first step form is needed
- no model assumed for exotic option price
- assumption: $C[K] = e^{-rT}E[(\mathbb{S} K)_+]$ then from $\mathbb{S} \leq_{cx} \mathbb{S}^c$ immediately

$$C[K] \le e^{-rT} E[(\mathbb{S}^c - K)_+]$$

Asian option case in literature

- Simon, Goovaerts & Dhaene (2000). *IME*, **26**, 175-184: stochastic order
- Albrecher, Dhaene, Goovaerts & Schoutens (2005). *The Journal of Derivatives*, **12**, 63-72: idem + Lévy models
- Deelstra, Diallo & Vanmaele (2006). *JCAM* (accepted): idem for Asian basket options

- second step holds without assumption of form vanilla option prices, for first step form is needed
- no model assumed for exotic option price
- assumption: C[K] = e^{-rT}E[(S − K)₊] then from S ≤_{cx} S^c immediately

$$C[K] \le e^{-rT} E[(\mathbb{S}^c - K)_+]$$

Asian option case in literature

- Simon, Goovaerts & Dhaene (2000). *IME*, **26**, 175-184: stochastic order
- Albrecher, Dhaene, Goovaerts & Schoutens (2005). *The Journal of Derivatives*, **12**, 63-72: idem + Lévy models
- Deelstra, Diallo & Vanmaele (2006). *JCAM* (accepted): idem for Asian basket options
- Nielsen & Sandmann (2003). JFQA, 38, 449-473: Lagrange optimization + B&S setting

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• UB optimal static super-replicating strategy

$$e^{-rT}E\left[(\mathbb{S}^{c}-K)_{+}\right] = \sum_{i=1}^{n} w_{i}e^{-r(T-T_{i})}C_{i}\left[F_{X_{i}}^{-1(\alpha)}\left(F_{\mathbb{S}^{c}}(K)\right)\right]$$
$$= \min_{K_{i} \ge 0, \sum w_{i}K_{i} \le K}\sum_{i=1}^{n} w_{i}e^{-r(T-T_{i})}C_{i}[K_{i}]$$

3

24 / 67

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• UB optimal static super-replicating strategy

$$e^{-rT}E\left[(\mathbb{S}^{c}-K)_{+}\right] = \sum_{i=1}^{n} w_{i}e^{-r(T-T_{i})}C_{i}\left[F_{X_{i}}^{-1(\alpha)}\left(F_{\mathbb{S}^{c}}(K)\right)\right]$$
$$= \min_{K_{i} \ge 0, \sum w_{i}K_{i} \le K}\sum_{i=1}^{n} w_{i}e^{-r(T-T_{i})}C_{i}[K_{i}]$$

 optimal in much broader class of admissible strategies that super-replicate pay-off (S − K)₊:

$$\mathcal{A}_{\mathcal{K}} = \left\{ \underline{\nu} \mid \left(\sum_{i=1}^{n} w_i X_i - \mathcal{K} \right)_+ \leq \sum_{i=1}^{n} \int_0^{+\infty} e^{r(T-T_i)} (X_i - k)_+ \, \mathrm{d}\nu_i(k) \right\}$$

24 / 67

• UB optimal static super-replicating strategy

$$e^{-rT}E\left[\left(\mathbb{S}^{c}-K\right)_{+}\right] = \sum_{i=1}^{n} w_{i}e^{-r(T-T_{i})}C_{i}\left[F_{X_{i}}^{-1(\alpha)}\left(F_{\mathbb{S}^{c}}(K)\right)\right]$$
$$= \min_{K_{i}\geq0,\sum w_{i}K_{i}\leq K}\sum_{i=1}^{n}w_{i}e^{-r(T-T_{i})}C_{i}[K_{i}]$$

 optimal in much broader class of admissible strategies that super-replicate pay-off (S − K)₊:

$$\mathcal{A}_{\mathcal{K}} = \left\{ \underline{\nu} \mid \left(\sum_{i=1}^{n} w_i X_i - \mathcal{K} \right)_+ \leq \sum_{i=1}^{n} \int_0^{+\infty} e^{r(T-T_i)} (X_i - k)_+ \, \mathrm{d}\nu_i(k) \right\}$$

subclass:

$$\nu_i(k) = \begin{cases} w_i e^{-r(T-T_i)} & \text{if } k \ge F_{X_i}^{-1(\alpha)}(F_{\mathbb{S}^c}(K)) \\ 0 & \text{if } k < F_{X_i}^{-1(\alpha)}(F_{\mathbb{S}^c}(K)) \end{cases}$$

January 22, 2008

24 / 67

Michèle Vanmaele (UGent)

Comonotonicity Applied in Finance

• cheapest super-replicating strategy

3

(日) (同) (三) (三)

cheapest super-replicating strategy

Theorem

For any $K \in \left(F^{-1+}_{\mathbb{S}^c}(0), F^{-1}_{\mathbb{S}^c}(1)
ight)$ it holds that

$$e^{-rT}E\left[\left(\mathbb{S}^{c}-K\right)_{+}\right]=\min_{\underline{\nu}\in\mathcal{A}_{K}}\sum_{i=1}^{n}\int_{0}^{+\infty}C_{i}\left[k\right]\mathrm{d}\nu_{i}(k).$$

cheapest super-replicating strategy

Theorem

For any $K \in \left(F^{-1+}_{\mathbb{S}^c}(0), F^{-1}_{\mathbb{S}^c}(1)
ight)$ it holds that

$$e^{-rT}E\left[\left(\mathbb{S}^{c}-K\right)_{+}\right]=\min_{\underline{\nu}\in\mathcal{A}_{K}}\sum_{i=1}^{n}\int_{0}^{+\infty}C_{i}\left[k\right]\mathrm{d}\nu_{i}(k).$$

- in setting of primal and dual problems
 - Laurence & Wang (2004). What's a basket worth? *Risk Magazine*, **17**, 73-77.
 - Hobson, Laurence & Wang (2005). Static-arbitrage upper bounds for the price of basket options. *Quantitative Finance*, **5**, 329-342.

• first step: pay-off inequality independent of distribution of \underline{X} \Rightarrow holds for comonotonic case

first step: pay-off inequality independent of distribution of X
 ⇒ holds for comonotonic case
 take discounted expectations

$$e^{-rT}E[(\mathbb{S}^{c}-K)_{+}] \leq \sum_{i=1}^{n} \int_{0}^{+\infty} \underbrace{e^{-rT_{i}}E[(F_{X_{i}}^{-1}(U)-k)_{+}]}_{=C_{i}[k]} \mathrm{d}\nu_{i}(k)$$

first step: pay-off inequality independent of distribution of <u>X</u> ⇒ holds for comonotonic case take discounted expectations

$$e^{-rT}E\left[(\mathbb{S}^{c}-K)_{+}\right] \leq \inf_{\underline{\nu}\in\mathcal{A}_{K}}\sum_{i=1}^{n}\int_{0}^{+\infty}\underbrace{e^{-rT_{i}}E\left[(F_{X_{i}}^{-1}(U)-k)_{+}\right]}_{=C_{i}[k]}d\nu_{i}(k)$$

first step: pay-off inequality independent of distribution of <u>X</u> ⇒ holds for comonotonic case take discounted expectations

$$e^{-rT}E\left[(\mathbb{S}^{c}-\mathcal{K})_{+}\right] \leq \inf_{\underline{\nu}\in\mathcal{A}_{\mathcal{K}}}\sum_{i=1}^{n}\int_{0}^{+\infty}\underbrace{e^{-rT_{i}}E\left[(F_{X_{i}}^{-1}(U)-k)_{+}\right]}_{=C_{i}[k]}d\nu_{i}(k)$$

• second step: infimum is reached for subclass $\nu_i(k)$ above

$$e^{-rT}E\left[(\mathbb{S}^{c}-K)_{+}\right]=\sum_{i=1}^{n}w_{i}e^{-r(T-T_{i})}C_{i}\left[F_{X_{i}}^{-1(\alpha)}\left(F_{\mathbb{S}^{c}}(K)\right)\right]$$

first step: pay-off inequality independent of distribution of <u>X</u> ⇒ holds for comonotonic case take discounted expectations

$$e^{-rT}E\left[(\mathbb{S}^{c}-\mathcal{K})_{+}\right] \leq \inf_{\underline{\nu}\in\mathcal{A}_{\mathcal{K}}}\sum_{i=1}^{n}\int_{0}^{+\infty}\underbrace{e^{-rT_{i}}E\left[(F_{X_{i}}^{-1}(U)-k)_{+}\right]}_{=C_{i}[k]}d\nu_{i}(k)$$

• second step: infimum is reached for subclass $\nu_i(k)$ above

$$e^{-rT}E[(\mathbb{S}^{c}-K)_{+}] = \sum_{i=1}^{n} w_{i}e^{-r(T-T_{i})}C_{i}\left[F_{X_{i}}^{-1(\alpha)}(F_{\mathbb{S}^{c}}(K))\right]$$

Largest possible fair price

• worst case expectation

- 3

(日) (同) (日) (日) (日)

Largest possible fair price

worst case expectation

Theorem

For any $K\in \left(\mathit{F}^{-1+}_{\mathbb{S}^c}(0), \mathit{F}^{-1}_{\mathbb{S}^c}(1)
ight)$ it holds that

$$e^{-rT}E\left[(\mathbb{S}^{c}-K)_{+}\right] = \max_{\underline{Y}\in\mathcal{R}_{n}}e^{-rT}E\left[\left(\sum_{i=1}^{n}w_{i}Y_{i}-K\right)_{+}\right]$$

with

$$\mathcal{R}_n = \{\underline{Y} \mid e^{-rT_i} E[(Y_i - K)_+] = C_i[K]; K \ge 0, i = 1, \ldots, n\}.$$

- 3

- 4 週 ト - 4 三 ト - 4 三 ト

Largest possible fair price

worst case expectation

Theorem

For any $K\in \left(\mathit{F}^{-1+}_{\mathbb{S}^c}(0), \mathit{F}^{-1}_{\mathbb{S}^c}(1)
ight)$ it holds that

$$e^{-rT}E\left[(\mathbb{S}^{c}-K)_{+}
ight]=\max_{\underline{Y}\in\mathcal{R}_{n}}e^{-rT}E\left[(\sum_{i=1}^{n}w_{i}Y_{i}-K)_{+}
ight]$$

with

$$\mathcal{R}_n = \{\underline{Y} \mid e^{-rT_i} E[(Y_i - K)_+] = C_i[K]; K \ge 0, i = 1, \dots, n\}.$$

- UB is largest possible expectation given the marginal pricing distributions of underlying asset prices
- worst possible case is comonotonic case

Michèle Vanmaele (UGent)

January 22, 2008 27 / 67

▲欄 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Derivation of the upper bound

3

イロト イポト イヨト イヨト

Derivation of the upper bound

- finite dataset of option prices
- for each i: strikes $0 = K_{i,0} < K_{i,1} < K_{i,2} < \cdots < K_{i,m_i} < \infty$
- pay-offs $(X_i K_{i,j})_+$ at $T_i \leq T$ and option price

$$C_i[K_{i,j}] = e^{-rT_i} E[(X_i - K_{i,j})_+], \quad i = 1, ..., n, \ j = 0, 1, ..., m_i$$

Derivation of the upper bound

- finite dataset of option prices
- for each i: strikes $0 = K_{i,0} < K_{i,1} < K_{i,2} < \cdots < K_{i,m_i} < \infty$
- pay-offs $(X_i K_{i,j})_+$ at $T_i \leq T$ and option price

$$C_i[K_{i,j}] = e^{-rT_i}E[(X_i - K_{i,j})_+], \quad i = 1, ..., n, \ j = 0, 1, ..., m_i$$

- $C_i[0] = e^{-rT_i}E[X_i]$: time zero price of asset *i* (no-dividends)
- define continuous, decreasing and convex function of K:

$$C_{i}[K] = e^{-rT_{i}} \mathsf{E}\left[\left(X_{i} - K\right)_{+}\right]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Derivation of the upper bound

- finite dataset of option prices
- for each *i*: strikes $0 = K_{i,0} < K_{i,1} < K_{i,2} < \cdots < K_{i,m_i} < \infty$
- pay-offs $(X_i K_{i,i})_+$ at $T_i \leq T$ and option price

$$C_i[K_{i,j}] = e^{-rT_i}E[(X_i - K_{i,j})_+], \quad i = 1, ..., n, j = 0, 1, ..., m_i$$

- $C_i[0] = e^{-rT_i}E[X_i]$: time zero price of asset *i* (no-dividends)
- define continuous, decreasing and convex function of K:

$$C_{i}[K] = e^{-rT_{i}} \mathsf{E}\left[\left(X_{i} - K\right)_{+}\right]$$

• define $K_{i,m_i+1} > K_{i,m_i}$ as $K_{i,m_i+1} = \sup \{K \ge 0 \mid C_i[K] > 0\}$

28 / 67

Derivation of the upper bound

- finite dataset of option prices
- for each *i*: strikes $0 = K_{i,0} < K_{i,1} < K_{i,2} < \cdots < K_{i,m_i} < \infty$
- pay-offs $(X_i K_{i,i})_+$ at $T_i \leq T$ and option price

$$C_i[K_{i,j}] = e^{-rT_i}E[(X_i - K_{i,j})_+], \quad i = 1, ..., n, j = 0, 1, ..., m_i$$

- $C_i[0] = e^{-rT_i}E[X_i]$: time zero price of asset *i* (no-dividends)
- define continuous, decreasing and convex function of K:

$$C_{i}[K] = e^{-rT_{i}} \mathsf{E}\left[\left(X_{i} - K\right)_{+}\right]$$

• define $K_{i,m_i+1} > K_{i,m_i}$ as $K_{i,m_i+1} = \sup \{K \ge 0 \mid C_i[K] > 0\}$ in general not known, here assume finite value but large enough

Derivation of the upper bound

- finite dataset of option prices
- for each i: strikes $0 = K_{i,0} < K_{i,1} < K_{i,2} < \cdots < K_{i,m_i} < \infty$
- pay-offs $(X_i K_{i,j})_+$ at $T_i \leq T$ and option price

$$C_i[K_{i,j}] = e^{-rT_i}E[(X_i - K_{i,j})_+], \quad i = 1, ..., n, j = 0, 1, ..., m_i$$

- $C_i[0] = e^{-rT_i}E[X_i]$: time zero price of asset *i* (no-dividends)
- define continuous, decreasing and convex function of K:

$$C_{i}[K] = e^{-rT_{i}} \mathsf{E}\left[\left(X_{i} - K\right)_{+}\right]$$

- define $K_{i,m_i+1} > K_{i,m_i}$ as $K_{i,m_i+1} = \sup \{K \ge 0 \mid C_i[K] > 0\}$ in general not known, here assume finite value but large enough
- model-free UB for C[K] in terms of observed C_i[K_{i,j}] via comonotonicity

Michèle Vanmaele (UGent)

• method of Hobson, Laurence & Wang (2005) for basket option:

э

• • • • • • • • • • • •

- method of Hobson, Laurence & Wang (2005) for basket option:
 - (1) construct convex approximation $\overline{C}_i[K]$ via linear interpolation at $C_i[K]$
 - (2) associate distribution function with $\overline{C}_i[K]$
 - (3) Lagrange optimization

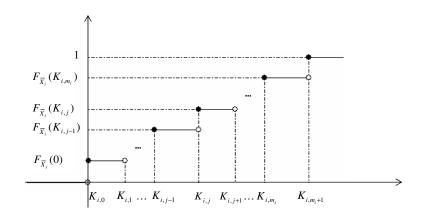
- method of Hobson, Laurence & Wang (2005) for basket option:
 - 1) construct convex approximation $\overline{C}_i[K]$ via linear interpolation at $C_i[K]$
 - (2) associate distribution function with $\overline{C}_i[K]$
 - 3) Lagrange optimization
- unifying approach of Chen, Deelstra, Dhaene & Vanmaele (2007)

- method of Hobson, Laurence & Wang (2005) for basket option:
 - 1) construct convex approximation $\overline{C}_i[\underline{K}]$ via linear interpolation at $C_i[K]$
 - 2) associate distribution function with $C_i[K]$
 - Lagrange optimization
- unifying approach of Chen, Deelstra, Dhaene & Vanmaele (2007)

(1) construct r.v. \overline{X}_i with discrete distribution $F_{\overline{X}_i}$:

$$F_{\overline{X}_{i}}(x) = \begin{cases} 0 & \text{if } x < 0\\ 1 + e^{rT_{i}} \frac{C_{i} [K_{i,j+1}] - C_{i} [K_{i,j}]}{K_{i,j+1} - K_{i,j}} & \text{if } K_{i,j} \le x < K_{i,j+1}, \ j = 0, 1, \dots, m_{i}\\ 1 & \text{if } x \ge K_{i,m_{i}+1} \end{cases}$$

< 回 ト < 三 ト < 三 ト



Michèle Vanmaele (UGent)

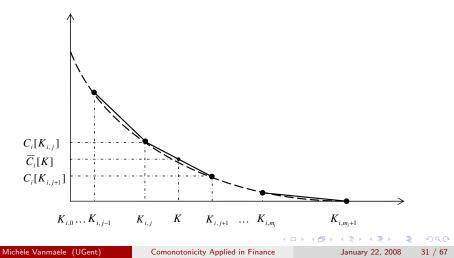
January 22, 2008

- 2

<ロ> (日) (日) (日) (日) (日)

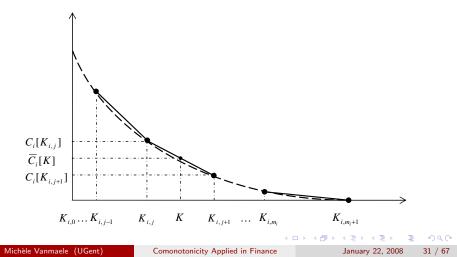
30 / 67

(2) show that $\overline{C}_i[K] = e^{-rT_i}E[(\overline{X}_i - K)_+]$ is linear interpolation of $C_i[K]$ at $K_{i,j}$



(2) show that $\overline{C}_i[K] = e^{-rT_i}E[(\overline{X}_i - K)_+]$ is linear interpolation of $C_i[K]$ at $K_{i,j}$

(3) construct UB based on comonotonic sum $\bar{\mathbb{S}}^c = \sum_{i=1}^n w_i F_{\overline{X}_i}^{-1}(U)$



Theorem

For any K ∈ (0, ∑_{i=1}ⁿ w_iK_{i,m_i+1}), any fair price C [K] of the option with pay-off (S − K)₊ at time T is constrained from above as follows:

$$C[K] \leq e^{-rT} E\left[\left(\overline{\mathbb{S}}^{c} - K\right)_{+}\right]$$

= $\sum_{i \in \overline{N}_{K}} w_{i} e^{-r(T-T_{i})} \left(\alpha C_{i} \left[K_{i,j_{i}}\right] + (1-\alpha) C_{i} \left[K_{i,j_{i}+1}\right]\right)$
+ $\sum_{i \in N_{K}} w_{i} e^{-r(T-T_{i})} C_{i} \left[K_{i,j_{i}}\right]$

with α given by

$$\alpha = \frac{\sum_{i \in N_{K}} w_{i} K_{i,j_{i}} + \sum_{i \in \overline{N}_{K}} w_{i} K_{i,j_{i}+1} - K_{i,j_{i}+1}}{\sum_{i \in \overline{N}_{K}} w_{i} (K_{i,j_{i}+1} - K_{i,j_{i}})}$$

in case $N_K \neq \{1, 2, \dots, n\}$ and $\alpha = 1$ otherwise.

Theorem

For any K ∈ (0, ∑_{i=1}ⁿ w_iK_{i,m_i+1}), any fair price C [K] of the option with pay-off (S − K)₊ at time T is constrained from above as follows:

$$C[K] \leq e^{-rT} E\left[\left(\bar{\mathbb{S}}^{c} - K\right)_{+}\right]$$

= $\sum_{i \in \overline{N}_{K}} w_{i} e^{-r(T-T_{i})} \left(\alpha C_{i} \left[K_{i,j_{i}}\right] + (1-\alpha) C_{i} \left[K_{i,j_{i}+1}\right]\right)$
+ $\sum_{i \in N_{K}} w_{i} e^{-r(T-T_{i})} C_{i} \left[K_{i,j_{i}}\right]$

with α given by and independent of *i*

$$\alpha = \frac{\sum_{i \in N_{K}} w_{i} K_{i,j_{i}} + \sum_{i \in \overline{N}_{K}} w_{i} K_{i,j_{i}+1} - K}{\sum_{i \in \overline{N}_{K}} w_{i} (K_{i,j_{i}+1} - K_{i,j_{i}})}$$

in case $N_K \neq \{1, 2, \dots, n\}$ and $\alpha = 1$ otherwise.

Theorem(continued)

• For any $K \notin (0, \sum_{i=1}^{n} w_i K_{i,m_i+1})$, the option price C[K] is given by:

$$C[K] = \begin{cases} \sum_{i=1}^{n} w_i e^{-r(T-T_i)} C_i[0] - e^{-rT} K & \text{if } K \leq 0\\ 0 & \text{if } K \geq \sum_{i=1}^{n} w_i K_{i,m_i+1}. \end{cases}$$

Comonotonicity Applied in Finance

3

・ロト ・四ト ・ヨト ・ヨト

• first step: decomposition & comonotonicity

$$\mathsf{E}\left[\left(\bar{\mathbb{S}}^{c}-\mathcal{K}\right)_{+}\right] = \sum_{i=1}^{n} w_{i} \mathsf{E}\left[\left(\overline{X}_{i}-\mathcal{F}_{\overline{X}_{i}}^{-1(\alpha)}\left(\mathcal{F}_{\overline{\mathbb{S}}^{c}}(\mathcal{K})\right)\right)_{+}\right]$$

3

• first step: decomposition & comonotonicity

$$e^{-rT} \mathsf{E}\left[\left(\bar{\mathbb{S}}^{c} - K\right)_{+}\right] = e^{-rT} \sum_{i=1}^{n} w_{i} \mathsf{E}\left[\left(\overline{X}_{i} - F_{\overline{X}_{i}}^{-1(\alpha)}\left(F_{\overline{\mathbb{S}}^{c}}(K)\right)\right)_{+}\right]$$

(日) (同) (三) (三)

• first step: decomposition & comonotonicity

$$e^{-rT} \mathsf{E}\left[\left(\bar{\mathbb{S}}^{c}-\mathcal{K}\right)_{+}\right] = e^{-rT} \sum_{i=1}^{n} w_{i} \mathsf{E}\left[\left(\overline{X}_{i}-\mathcal{F}_{\overline{X}_{i}}^{-1(\alpha)}\left(\mathcal{F}_{\overline{\mathbb{S}}^{c}}(\mathcal{K})\right)\right)_{+}\right]$$
$$= \sum_{i=1}^{n} w_{i} e^{-r(T-T_{i})} \overline{C}_{i}\left[\mathcal{F}_{\overline{X}_{i}}^{-1(\alpha)}\left(\mathcal{F}_{\overline{\mathbb{S}}^{c}}(\mathcal{K})\right)\right]$$

3

• first step: decomposition & comonotonicity

$$e^{-rT} \mathsf{E}\left[\left(\bar{\mathbb{S}}^{c} - K\right)_{+}\right] = e^{-rT} \sum_{i=1}^{n} w_{i} \mathsf{E}\left[\left(\overline{X}_{i} - F_{\overline{X}_{i}}^{-1(\alpha)}\left(F_{\overline{\mathbb{S}}^{c}}(K)\right)\right)_{+}\right]$$
$$= \sum_{i=1}^{n} w_{i} e^{-r(T-T_{i})} \overline{C}_{i}\left[F_{\overline{X}_{i}}^{-1(\alpha)}\left(F_{\overline{\mathbb{S}}^{c}}(K)\right)\right]$$

$$\overline{C}_{i}\left[F_{\overline{X}_{i}}^{-1(\alpha)}\left(F_{\overline{\mathbb{S}}^{c}}(K)\right)\right] = \begin{cases} \overline{C}_{i}\left[K_{i,j_{i}}\right] & \text{if } i \in N_{K} \\ \overline{C}_{i}\left[\alpha K_{i,j_{i}}+(1-\alpha)K_{i,j_{i}+1}\right] & \text{if } i \in \overline{N}_{K} \end{cases}$$

3

• first step: decomposition & comonotonicity

$$e^{-rT} \mathsf{E}\left[\left(\bar{\mathbb{S}}^{c} - K\right)_{+}\right] = e^{-rT} \sum_{i=1}^{n} w_{i} \mathsf{E}\left[\left(\overline{X}_{i} - F_{\overline{X}_{i}}^{-1(\alpha)}\left(F_{\overline{\mathbb{S}}^{c}}(K)\right)\right)_{+}\right]$$
$$= \sum_{i=1}^{n} w_{i} e^{-r(T-T_{i})} \overline{C}_{i}\left[F_{\overline{X}_{i}}^{-1(\alpha)}\left(F_{\overline{\mathbb{S}}^{c}}(K)\right)\right]$$

$$\begin{aligned} \overline{C}_{i}\left[F_{\overline{X}_{i}}^{-1(\alpha)}\left(F_{\overline{\mathbb{S}}^{c}}(K)\right)\right] &= \begin{cases} \overline{C}_{i}\left[K_{i,j_{i}}\right] & \text{if } i \in N_{K} \\ \overline{C}_{i}\left[\alpha K_{i,j_{i}}+(1-\alpha)K_{i,j_{i}+1}\right] & \text{if } i \in \overline{N}_{K} \end{cases} \\ &= \begin{cases} C_{i}\left[K_{i,j_{i}}\right] & \text{if } i \in A_{K} \\ \alpha C_{i}\left[K_{i,j_{i}}\right]+(1-\alpha)C_{i}\left[K_{i,j_{i}+1}\right] & \text{if } i \notin A_{K} \end{cases} \end{aligned}$$

3

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

second step

$$(\mathbb{S}-K)_+\leq \sum_{i=1}^n w_i\left(X_i-F_{\overline{X}_i}^{-1(lpha)}\left(F_{\overline{\mathbb{S}}^c}(K)
ight)
ight)_+$$

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

second step

$$\begin{split} (\mathbb{S} - \mathcal{K})_{+} &\leq \sum_{i=1}^{n} w_{i} \left(X_{i} - \mathcal{F}_{\overline{X}_{i}}^{-1(\alpha)} \left(\mathcal{F}_{\overline{\mathbb{S}}^{c}}(\mathcal{K}) \right) \right)_{+} \\ &\leq \sum_{i \in \overline{N}_{\mathcal{K}}} w_{i} \left(\alpha \left(X_{i} - \mathcal{K}_{i,j_{i}} \right)_{+} + (1 - \alpha) \left(X_{i} - \mathcal{K}_{i,j_{i}+1} \right)_{+} \right) \\ &+ \sum_{i \in N_{\mathcal{K}}} w_{i} \left(X_{i} - \mathcal{K}_{i,j_{i}} \right)_{+} \end{split}$$

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

• second step: RHS: pay-off of strategy

$$\begin{split} (\mathbb{S} - \mathcal{K})_{+} &\leq \sum_{i=1}^{n} w_{i} \left(X_{i} - \mathcal{F}_{\overline{X}_{i}}^{-1(\alpha)} \left(\mathcal{F}_{\overline{\mathbb{S}}^{c}}(\mathcal{K}) \right) \right)_{+} \\ &\leq \sum_{i \in \overline{N}_{K}} w_{i} \left(\alpha \left(X_{i} - \mathcal{K}_{i,j_{i}} \right)_{+} + (1 - \alpha) \left(X_{i} - \mathcal{K}_{i,j_{i}+1} \right)_{+} \right) \\ &+ \sum_{i \in N_{K}} w_{i} \left(X_{i} - \mathcal{K}_{i,j_{i}} \right)_{+} \end{split}$$

э

Upper bound

Sketch of Proof (continued)

• second step: RHS: pay-off of strategy

$$\begin{split} (\mathbb{S} - \mathcal{K})_{+} &\leq \sum_{i=1}^{n} w_{i} \left(X_{i} - \mathcal{F}_{\overline{X}_{i}}^{-1(\alpha)} \left(\mathcal{F}_{\overline{\mathbb{S}}^{c}}(\mathcal{K}) \right) \right)_{+} \\ &\leq \sum_{i \in \overline{N}_{K}} w_{i} \left(\alpha \left(X_{i} - \mathcal{K}_{i,j_{i}} \right)_{+} + (1 - \alpha) \left(X_{i} - \mathcal{K}_{i,j_{i}+1} \right)_{+} \right) \\ &+ \sum_{i \in N_{K}} w_{i} \left(X_{i} - \mathcal{K}_{i,j_{i}} \right)_{+} \\ \Rightarrow \quad C[\mathcal{K}] &\leq \sum_{i \in \overline{N}_{K}} w_{i} e^{-r(T - T_{i})} \left(\alpha C_{i} \left[\mathcal{K}_{i,j_{i}} \right] + (1 - \alpha) C_{i} \left[\mathcal{K}_{i,j_{i}+1} \right] \right) \\ &+ \sum_{i \in N_{K}} w_{i} e^{-r(T - T_{i})} C_{i} \left[\mathcal{K}_{i,j_{i}} \right] \end{split}$$

э

Sketch of Proof (continued)

• second step: RHS: pay-off of strategy

$$\begin{split} (\mathbb{S} - \mathcal{K})_{+} &\leq \sum_{i=1}^{n} w_{i} \left(X_{i} - \mathcal{F}_{\overline{X}_{i}}^{-1(\alpha)} \left(\mathcal{F}_{\overline{\mathbb{S}}^{c}}(\mathcal{K}) \right) \right)_{+} \\ &\leq \sum_{i \in \overline{N}_{K}} w_{i} \left(\alpha \left(X_{i} - \mathcal{K}_{i,j_{i}} \right)_{+} + (1 - \alpha) \left(X_{i} - \mathcal{K}_{i,j_{i}+1} \right)_{+} \right) \\ &+ \sum_{i \in N_{K}} w_{i} \left(X_{i} - \mathcal{K}_{i,j_{i}} \right)_{+} \\ \Rightarrow \quad C[\mathcal{K}] &\leq \sum_{i \in \overline{N}_{K}} w_{i} e^{-r(T - T_{i})} \left(\alpha C_{i} \left[\mathcal{K}_{i,j_{i}} \right] + (1 - \alpha) C_{i} \left[\mathcal{K}_{i,j_{i}+1} \right] \right) \\ &+ \sum_{i \in N_{K}} w_{i} e^{-r(T - T_{i})} C_{i} \left[\mathcal{K}_{i,j_{i}} \right] \end{split}$$

э

Remark 1

relation between UB infinite and finite market case

$$\mathbb{S}^{c} \leq_{sl} \bar{\mathbb{S}}^{c} \Rightarrow e^{-rT} E\left[(\mathbb{S}^{c} - K)_{+}\right] \leq e^{-rT} E\left[\left(\bar{\mathbb{S}}^{c} - K\right)_{+}\right]$$

moreover

$$E\left[\mathbb{S}^{c}\right] = E\left[\bar{\mathbb{S}}^{c}\right] \quad \Rightarrow \quad \mathbb{S}^{c} \leq_{cx} \bar{\mathbb{S}}^{c}$$

3

(日) (同) (三) (三)

Remark 1

relation between UB infinite and finite market case

$$\mathbb{S}^{c} \leq_{sl} \bar{\mathbb{S}}^{c} \Rightarrow e^{-rT} E\left[(\mathbb{S}^{c} - K)_{+}\right] \leq e^{-rT} E\left[(\bar{\mathbb{S}}^{c} - K)_{+}\right]$$

moreover

$$E\left[\mathbb{S}^{c}\right] = E\left[\bar{\mathbb{S}}^{c}\right] \quad \Rightarrow \quad \mathbb{S}^{c} \leq_{cx} \bar{\mathbb{S}}^{c}$$

Remark 2

assumption: $C[K] = e^{-rT} E[(\mathbb{S} - K)_+]$ then from $\mathbb{S} \leq_{cx} \mathbb{S}^c \leq_{sl} \overline{\mathbb{S}}^c$ immediately

$$C[K] \le e^{-rT} E[(\bar{\mathbb{S}}^c - K)_+]$$

Michèle Vanmaele (UGent)

- 31

(日) (周) (三) (三)

Remark 1

relation between UB infinite and finite market case

$$\mathbb{S}^{c} \leq_{sl} \bar{\mathbb{S}}^{c} \Rightarrow e^{-rT} E\left[(\mathbb{S}^{c} - K)_{+}\right] \leq e^{-rT} E\left[\left(\bar{\mathbb{S}}^{c} - K\right)_{+}\right]$$

moreover

$$E\left[\mathbb{S}^{c}\right] = E\left[\bar{\mathbb{S}}^{c}\right] \quad \Rightarrow \quad \mathbb{S}^{c} \leq_{cx} \bar{\mathbb{S}}^{c}$$

Remark 2

assumption: $C[K] = e^{-rT} E[(\mathbb{S} - K)_+]$ then from $\mathbb{S} <_{cx} \mathbb{S}^c <_{sl} \overline{\mathbb{S}}^c$ immediatelv

$$C[K] \le e^{-rT} E[(\bar{\mathbb{S}}^c - K)_+]$$

Theorem (convergence result)

The upper bound $e^{-rT}E[(\bar{\mathbb{S}}^c - K)_+]$ in the finite market case converges to the upper bound $e^{-rT}E[(\mathbb{S}^c - K)_+]$ in the infinite market case when $m \to +\infty$ and $h \to 0$.

(日) (周) (三) (三)

3

Definition

$$\bar{\mathcal{A}}_{\mathcal{K}} = \left\{ \underline{\nu} \mid \left(\sum_{i=1}^{n} w_i X_i - \mathcal{K} \right)_+ \leq \sum_{i=1}^{n} \sum_{j=0}^{m_i} e^{r(T-T_i)} \nu_{i,j} (X_i - \mathcal{K}_{i,j})_+ \right\}$$

3

A (10) F (10)

Definition

$$\bar{\mathcal{A}}_{\mathcal{K}} = \left\{ \underline{\nu} \mid \left(\sum_{i=1}^{n} w_i X_i - \mathcal{K} \right)_+ \leq \sum_{i=1}^{n} \sum_{j=0}^{m_i} e^{r(T-T_i)} \nu_{i,j} (X_i - \mathcal{K}_{i,j})_+ \right\}$$

cheapest super-replicating strategy $\underline{\nu} \in \bar{\mathcal{A}}_{\mathcal{K}}$

3

∃ ► < ∃ ►</p>

< 47 ▶ <

Definition

$$\bar{\mathcal{A}}_{\mathcal{K}} = \left\{ \underline{\nu} \mid \left(\sum_{i=1}^{n} w_i X_i - \mathcal{K} \right)_+ \leq \sum_{i=1}^{n} \sum_{j=0}^{m_i} e^{r(T-T_i)} \nu_{i,j} (X_i - \mathcal{K}_{i,j})_+ \right\}$$

cheapest super-replicating strategy $\underline{\nu} \in \bar{\mathcal{A}}_{\mathcal{K}}$

Theorem

Consider the finite market case. For any $K \in (0, \sum_{i=1}^{n} w_i K_{i,m_i+1})$ we have that

$$e^{-rT}E\left[\left(\bar{\mathbb{S}}^{c}-K\right)_{+}\right]=\min_{\underline{\nu}\in\bar{\mathcal{A}}_{K}}\sum_{i=1}^{n}\sum_{j=0}^{m_{i}}\nu_{i,j}C_{i}\left[K_{i,j}\right].$$

Sketch of Proof

analogous to infinite market case by noting infimum is reached for subclass

$$\nu_{i,j} = \begin{cases} w_i e^{-r(T-T_i)} & \text{if } i \in N_K \text{ and } j = j_i \\ w_i e^{-r(T-T_i)} \alpha & \text{if } i \in \overline{N}_K \text{ and } j = j_i \\ w_i e^{-r(T-T_i)} (1-\alpha) & \text{if } i \in \overline{N}_K \text{ and } j = j_i + 1 \end{cases}$$

and equals UB $e^{-rT} E\left[\left(\bar{\mathbb{S}}^c - K \right)_+ \right]$

Michèle Vanmaele (UGent)

Sketch of Proof

analogous to infinite market case by noting infimum is reached for subclass

$$\nu_{i,j} = \begin{cases} w_i e^{-r(T-T_i)} & \text{if } i \in N_K \text{ and } j = j_i \\ w_i e^{-r(T-T_i)} \alpha & \text{if } i \in \overline{N}_K \text{ and } j = j_i \\ w_i e^{-r(T-T_i)} (1-\alpha) & \text{if } i \in \overline{N}_K \text{ and } j = j_i + 1 \end{cases}$$

and equals UB $e^{-rT} E\left[\left(\bar{\mathbb{S}}^c - K \right)_+ \right]$

Michèle Vanmaele (UGent)

38 / 67

Largest possible fair price

• worst case expectation

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Largest possible fair price

worst case expectation

Theorem

In the finite market case it holds that for any $K \in (0, \sum_{i=1}^{n} w_i K_{i,m_i+1})$

$$e^{-rT}E\left[(\bar{\mathbb{S}}^{c}-K)_{+}\right] = \max_{\underline{Y}\in\overline{\mathcal{R}}_{n}}e^{-rT}E\left[(\sum_{i=1}^{n}w_{i}Y_{i}-K)_{+}\right]$$

with

$$\overline{\mathcal{R}}_n = \{\underline{Y} \mid Y_i \ge 0 \land e^{-rT_i} E[(Y_i - K_{i,j})_+] = C_i[K_{i,j}] \ j = 0, \ldots, m_i + 1, \ i = 1, \ldots$$

Largest possible fair price

worst case expectation

Theorem

In the finite market case it holds that for any $K \in (0, \sum_{i=1}^{n} w_i K_{i,m_i+1})$

$$e^{-rT}E\left[(\bar{\mathbb{S}}^{c}-\mathcal{K})_{+}
ight]=\max_{\underline{Y}\in\overline{\mathcal{R}}_{n}}e^{-rT}E\left[(\sum_{i=1}^{n}w_{i}Y_{i}-\mathcal{K})_{+}
ight]$$

with

$$\overline{\mathcal{R}}_n = \{\underline{Y} \mid Y_i \ge 0 \land e^{-rT_i} E[(Y_i - K_{i,j})_+] = C_i[K_{i,j}] \ j = 0, \ldots, m_i + 1, \ i = 1, \ldots$$

- UB is largest possible expectation given the finite number of observable plain vanilla call prices
- worst possible case is comonotonic case

Michèle Vanmaele (UGent)

January 22, 2008 39 / 67

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• instead of deriving bounds one can look at approximations

40 / 67

- instead of deriving bounds one can look at approximations
- e.g. Monte Carlo (MC) simulation is a technique that provides approximate solutions to a broad range of mathematical problems

- instead of deriving bounds one can look at approximations
- e.g. Monte Carlo (MC) simulation is a technique that provides approximate solutions to a broad range of mathematical problems
- drawback of the method is its high computational cost, especially in a high-dimensional setting

- instead of deriving bounds one can look at approximations
- e.g. Monte Carlo (MC) simulation is a technique that provides approximate solutions to a broad range of mathematical problems
- drawback of the method is its high computational cost, especially in a high-dimensional setting
- $\Rightarrow\,$ variance reduction techniques were developed to increase the precision and reduce the computer time

・ 伺 ト ・ ヨ ト ・ ヨ ト …

- instead of deriving bounds one can look at approximations
- e.g. Monte Carlo (MC) simulation is a technique that provides approximate solutions to a broad range of mathematical problems
- drawback of the method is its high computational cost, especially in a high-dimensional setting
- $\Rightarrow\,$ variance reduction techniques were developed to increase the precision and reduce the computer time
 - the so-called Comonotonic Monte Carlo simulation uses the comonotonic upper bound e^{-rT} E[(S^c − K)₊] as a control variate to get more accurate estimates and hence a less time-consuming simulation

40 / 67

イロト 不得 トイヨト イヨト 二日

- instead of deriving bounds one can look at approximations
- e.g. Monte Carlo (MC) simulation is a technique that provides approximate solutions to a broad range of mathematical problems
- drawback of the method is its high computational cost, especially in a high-dimensional setting
- $\Rightarrow\,$ variance reduction techniques were developed to increase the precision and reduce the computer time
 - the so-called Comonotonic Monte Carlo simulation uses the comonotonic upper bound e^{-rT}E[(S^c − K)₊] as a control variate to get more accurate estimates and hence a less time-consuming simulation

For more details see Vyncke & Albrecher (2007).

(Comonotonic) lower bound by conditioning

Theorem

For any random vector (X_1, \ldots, X_n) and any random variable Λ , we have

$$E[S \mid \Lambda] = \sum_{i=1}^{n} E[X_i \mid \Lambda] \leq_{cx} S = \sum_{i=1}^{n} X_i$$

< 同 ト く ヨ ト く ヨ ト

(Comonotonic) lower bound by conditioning

Theorem

For any random vector (X_1, \ldots, X_n) and any random variable Λ , we have

$$S^{\ell} := E[S \mid \Lambda] = \sum_{i=1}^{n} E[X_i \mid \Lambda] \leq_{cx} S = \sum_{i=1}^{n} X_i$$

・ 同 ト ・ ヨ ト ・ ヨ ト

(Comonotonic) lower bound by conditioning

Theorem

For any random vector (X_1, \ldots, X_n) and any random variable Λ , we have

$$S^{\ell} := E[S \mid \Lambda] = \sum_{i=1}^{n} E[X_i \mid \Lambda] \leq_{cx} S = \sum_{i=1}^{n} X_i$$

- conditional expectation \Rightarrow eliminates randomness that cannot be explained by $\Lambda \Rightarrow S^{\ell}$ less risky than S
- A and S mutually independent \Rightarrow trivial result $E[S] \leq_{cx} S$
- Λ completely determines $S \Rightarrow S^\ell$ coincides with S
- (E[X₁ | Λ],..., E[X_n | Λ]) in general not same marginals as (X₁,..., X_n)
- S^ℓ is a comonotonic sum if all E[X_i | Λ] are non-decreasing (or are all non-increasing) functions of Λ

(Comonotonic) lower bound by conditioning

Theorem

For any random vector (X_1, \ldots, X_n) and any random variable Λ , we have

$$S^{\ell} := E[S \mid \Lambda] = \sum_{i=1}^{n} E[X_i \mid \Lambda] \leq_{cx} S = \sum_{i=1}^{n} X_i$$

- conditional expectation \Rightarrow eliminates randomness that cannot be explained by $\Lambda \Rightarrow S^{\ell}$ less risky than S
- A and S mutually independent \Rightarrow trivial result $E[S] \leq_{cx} S$
- Λ completely determines $S \Rightarrow S^\ell$ coincides with S
- (E[X₁ | Λ],..., E[X_n | Λ]) in general not same marginals as (X₁,..., X_n)
- S^ℓ is a comonotonic sum if all E[X_i | Λ] are non-decreasing (or are all non-increasing) functions of Λ

(Comonotonic) lower bound by conditioning

Theorem

For any random vector (X_1, \ldots, X_n) and any random variable Λ , we have

$$S^{\ell} := E[S \mid \Lambda] = \sum_{i=1}^{n} E[X_i \mid \Lambda] \leq_{cx} S = \sum_{i=1}^{n} X_i$$

- conditional expectation \Rightarrow eliminates randomness that cannot be explained by $\Lambda \Rightarrow S^{\ell}$ less risky than S
- A and S mutually independent \Rightarrow trivial result $E[S] \leq_{cx} S$
- Λ completely determines $S \Rightarrow S^\ell$ coincides with S
- (E[X₁ | Λ],..., E[X_n | Λ]) in general not same marginals as (X₁,..., X_n)
- S^ℓ is a comonotonic sum if all E[X_i | Λ] are non-decreasing (or are all non-increasing) functions of Λ

(Comonotonic) lower bound by conditioning

Theorem

For any random vector (X_1, \ldots, X_n) and any random variable Λ , we have

$$S^{\ell} := E[S \mid \Lambda] = \sum_{i=1}^{n} E[X_i \mid \Lambda] \leq_{cx} S = \sum_{i=1}^{n} X_i$$

- conditional expectation \Rightarrow eliminates randomness that cannot be explained by $\Lambda \Rightarrow S^{\ell}$ less risky than S
- A and S mutually independent \Rightarrow trivial result $E[S] \leq_{cx} S$
- Λ completely determines $S \Rightarrow S^\ell$ coincides with S
- (E[X₁ | Λ],..., E[X_n | Λ]) in general not same marginals as (X₁,..., X_n)
- S^ℓ is a comonotonic sum if all E[X_i | Λ] are non-decreasing (or are all non-increasing) functions of Λ

(Comonotonic) lower bound by conditioning

Theorem

For any random vector (X_1, \ldots, X_n) and any random variable Λ , we have

$$S^{\ell} := E[S \mid \Lambda] = \sum_{i=1}^{n} E[X_i \mid \Lambda] \leq_{cx} S = \sum_{i=1}^{n} X_i$$

- conditional expectation \Rightarrow eliminates randomness that cannot be explained by $\Lambda \Rightarrow S^{\ell}$ less risky than S
- A and S mutually independent \Rightarrow trivial result $E[S] \leq_{cx} S$
- A completely determines $S \Rightarrow S^{\ell}$ coincides with S
- (E[X₁ | Λ],..., E[X_n | Λ]) in general not same marginals as (X₁,..., X_n)
- S^ℓ is a comonotonic sum if all E[X_i | Λ] are non-decreasing (or are all non-increasing) functions of Λ

The random variable Λ is such that

• S^{ℓ} is a comonotonic sum

Properties

The random variable Λ is such that

• S^{ℓ} is a comonotonic sum

Properties

• additivity of inverse cdf

$$\begin{aligned} F_{S^{\ell}}^{-1}(p) &= \sum_{i=1}^{n} F_{E[X_i|\Lambda]}^{-1}(p) \\ \bullet \text{ cdf of } S^{\ell} \colon F_{S^{\ell}}(x) &= \sup\{p \in (0,1) \mid \sum_{i=1}^{n} F_{E[X_i|\Lambda]}^{-1}(p) \leq x\} \end{aligned}$$

The random variable Λ is such that

- S^{ℓ} is a comonotonic sum
- **2** cdf of $E[X_i | \Lambda]$ strictly increasing and continuous

Properties

additivity of inverse cdf

$$F_{S^{\ell}}^{-1}(p) = \sum_{i=1}^{n} F_{E[X_i|\Lambda]}^{-1}(p)$$

• cdf of S^{ℓ} : $F_{S^{\ell}}(x) = \sup\{p \in (0,1) \mid \sum_{i=1}^{n} F_{E[X_i|\Lambda]}^{-1}(p) \le x\}$

The random variable Λ is such that

- S^{ℓ} is a comonotonic sum
- **2** cdf of $E[X_i | \Lambda]$ strictly increasing and continuous

Properties

additivity of inverse cdf

$$F_{S^{\ell}}^{-1}(p) = \sum_{i=1}^{n} F_{E[X_i|\Lambda]}^{-1}(p)$$

- cdf of S^{ℓ} : $F_{S^{\ell}}(x) = \sup\{p \in (0,1) \mid \sum_{i=1}^{n} F_{E[X_i|\Lambda]}^{-1}(p) \le x\}$
- cdf of S^{ℓ} also strictly increasing and continuous and uniquely determined by

$$\sum_{i=1}^n F_{E[X_i|\Lambda]}^{-1}(F_{S^\ell}(x)) = x$$

The random variable Λ is such that

- S^{ℓ} is a comonotonic sum
- **2** cdf of $E[X_i | \Lambda]$ strictly increasing and continuous
- **③** all $E[X_i | \Lambda]$ non-increasing in Λ and continuous functions of Λ

Properties

additivity of inverse cdf

$$F_{S^{\ell}}^{-1}(p) = \sum_{i=1}^{n} F_{E[X_i|\Lambda]}^{-1}(p)$$

- cdf of S^{ℓ} : $F_{S^{\ell}}(x) = \sup\{p \in (0,1) \mid \sum_{i=1}^{n} F_{E[X_i|\Lambda]}^{-1}(p) \le x\}$
- cdf of S^{ℓ} also strictly increasing and continuous and uniquely determined by

$$\sum_{i=1}^n F_{E[X_i|\Lambda]}^{-1}(F_{S^\ell}(x)) = x$$

The random variable Λ is such that

- S^{ℓ} is a comonotonic sum
- **2** cdf of $E[X_i | \Lambda]$ strictly increasing and continuous
- **③** all $E[X_i | \Lambda]$ non-increasing in Λ and continuous functions of Λ

Properties

• additivity of inverse cdf and some property

$$F_{S^{\ell}}^{-1}(p) = \sum_{i=1}^{n} F_{E[X_i|\Lambda]}^{-1}(p) = \sum_{i=1}^{n} E[X_i \mid \Lambda = F_{\Lambda}^{-1+}(1-p)]$$

- cdf of S^{ℓ} : $F_{S^{\ell}}(x) = \sup\{p \in (0,1) \mid \sum_{i=1}^{n} F_{E[X_i|\Lambda]}^{-1}(p) \le x\}$
- cdf of S^{ℓ} also strictly increasing and continuous and uniquely determined by

$$\sum_{i=1}^n F_{E[X_i|\Lambda]}^{-1}(F_{S^\ell}(x)) = x$$

Properties (continued)

Decomposition: for $K \in (F_{S^{\ell}}^{-1+}(0), F_{S^{\ell}}^{-1}(1))$

$$E[(S^{\ell} - K)_{+}] = \sum_{i=1}^{n} E\left[\left(E[X_{i} \mid \Lambda] - F_{E[X_{i} \mid \Lambda]}^{-1(\alpha)}(F_{S^{\ell}}(K))\right)_{+}\right]$$

with $\alpha \in [0,1]$ such that

$$F_{S^{\ell}}^{-1(\alpha)}(F_{S^{\ell}}(K)) = \sum_{i=1}^{n} F_{E[X_i|\Lambda]}^{-1(\alpha)}(F_{S^{\ell}}(K)) = K$$

3

12 N 4 12 N

A 🖓 h

Properties (continued)

Decomposition: for $K \in (F_{S^{\ell}}^{-1+}(0), F_{S^{\ell}}^{-1}(1))$

$$E[(S^{\ell} - K)_{+}] = \sum_{i=1}^{n} E\left[\left(E[X_{i} \mid \Lambda] - F_{E[X_{i} \mid \Lambda]}^{-1(\alpha)}(F_{S^{\ell}}(K))\right)_{+}\right]$$

with $\alpha \in [0, 1]$ such that

$$F_{S^{\ell}}^{-1(\alpha)}(F_{S^{\ell}}(K)) = \sum_{i=1}^{n} F_{E[X_{i}|\Lambda]}^{-1(\alpha)}(F_{S^{\ell}}(K)) = K$$

or $E[(S^{\ell} - K)_{+}] = \sum_{i=1}^{n} E\left[\left(E[X_{i} \mid \Lambda] - F_{E[X_{i}|\Lambda]}^{-1}(F_{S^{\ell}}(K))\right)_{+}\right] - [K - F_{S^{\ell}}^{-1}(F_{S^{\ell}}(K))](1 - F_{S^{\ell}}(K))$

43 / 67

3

Properties (continued)

Decomposition: for $K \in (F_{S^{\ell}}^{-1+}(0), F_{S^{\ell}}^{-1}(1))$

$$E[(S^{\ell} - K)_{+}] = \sum_{i=1}^{n} E\left[\left(E[X_{i} \mid \Lambda] - F_{E[X_{i} \mid \Lambda]}^{-1(\alpha)}(F_{S^{\ell}}(K))\right)_{+}\right]$$

with $\alpha \in [0,1]$ such that

$$F_{S^{\ell}}^{-1(\alpha)}(F_{S^{\ell}}(K)) = \sum_{i=1}^{n} F_{E[X_{i}|\Lambda]}^{-1(\alpha)}(F_{S^{\ell}}(K)) = K$$

or
$$E[(S^{\ell} - K)_{+}] = \sum_{i=1}^{n} E\left[\left(E[X_{i} \mid \Lambda] - F_{E[X_{i}|\Lambda]}^{-1}(F_{S^{\ell}}(K))\right)_{+}\right] - [K - F_{S^{\ell}}^{-1}(F_{S^{\ell}}(K))](1 - F_{S^{\ell}}(K))$$

Note that under assumptions 1 and 2 the second term is zero.

Michèle Vanmaele (UGent)

43 / 67

Non-comonotonic sum

- 2

*ロト *檀ト *注ト *注ト

Non-comonotonic sum

•
$$F_{S^{\ell}}(x) = \int_{-\infty}^{+\infty} \Pr[\sum_{i=1}^{n} E[X_i \mid \Lambda] \le x \mid \Lambda = \lambda] dF_{\Lambda}(\lambda)$$

•
$$E[(S^{\ell}-K)_+] = \int_{-\infty}^{+\infty} (\sum_{i=1}^n E[X_i \mid \Lambda] - K)_+ dF_{\Lambda}(\lambda)$$

Michèle Vanmaele (UGent)

- 2

・ロト ・四ト ・ヨト ・ヨト

Non-comonotonic sum

•
$$F_{S^{\ell}}(x) = \int_{-\infty}^{+\infty} \Pr[\sum_{i=1}^{n} E[X_i \mid \Lambda] \le x \mid \Lambda = \lambda] dF_{\Lambda}(\lambda)$$

•
$$E[(S^{\ell}-K)_+] = \int_{-\infty}^{+\infty} (\sum_{i=1}^n E[X_i \mid \Lambda] - K)_+ dF_{\Lambda}(\lambda)$$

- analytical closed-form expression when all X_i lognormal cdf and Λ normal r.v., see
 - Deelstra, Diallo & Vanmaele (2007). Bounds for Asian basket options. *JCAM*, in press.

3

イロト イポト イヨト イヨト

• From convex ordering: $\operatorname{var}[S^{\ell}] \leq \operatorname{var}[S]$ and $\frac{1}{2}(\underbrace{\operatorname{var}[S] - \operatorname{var}[S^{\ell}]}_{E[\operatorname{var}[S|\Lambda]]}) = \int_{-\infty}^{+\infty} (E[(S-k)_{+}] - E[(S^{\ell}-k)_{+}])dk$

• From convex ordering: $\operatorname{var}[S^\ell] \leq \operatorname{var}[S]$ and

$$\frac{1}{2}(\underbrace{\operatorname{var}[S] - \operatorname{var}[S^{\ell}]}_{E[\operatorname{var}[S|\Lambda]]}) = \int_{-\infty}^{+\infty} (E[(S-k)_{+}] - E[(S^{\ell}-k)_{+}])dk$$

 aim: make E[var[S | Λ]] as small as possible, make Λ and S as alike as possible

• From convex ordering: $var[S^{\ell}] \leq var[S]$ and

$$\frac{1}{2}(\underbrace{\operatorname{var}[S] - \operatorname{var}[S^{\ell}]}_{E[\operatorname{var}[S|\Lambda]]}) = \int_{-\infty}^{+\infty} (E[(S-k)_{+}] - E[(S^{\ell}-k)_{+}])dk$$

- aim: make $E[var[S \mid \Lambda]]$ as small as possible, make Λ and S as alike as possible
- lognormal case: $\mathbb{S} = \sum_{i=1}^{n} w_i e^{Z_i} \Rightarrow \mathbb{S}^{\ell} = \sum_{i=1}^{n} w_i E[e^{Z_i} | \Lambda]$

$$\begin{aligned} & \text{var}[\mathbb{S}] = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i} w_{j} E[e^{Z_{i}}] E[e^{Z_{j}}] (e^{\text{cov}(Z_{i}, Z_{j})} - 1) \\ & \text{var}[\mathbb{S}^{\ell}] = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i} w_{j} E[e^{Z_{i}}] E[e^{Z_{j}}] (e^{r_{i} r_{j} \sigma_{Z_{i}} \sigma_{Z_{j}}} - 1) \\ & r_{i} = \text{corr}(Z_{i}, \Lambda) \end{aligned}$$

45 / 67

• From convex ordering: $var[S^{\ell}] \leq var[S]$ and

$$\frac{1}{2}(\underbrace{\operatorname{var}[S] - \operatorname{var}[S^{\ell}]}_{E[\operatorname{var}[S|\Lambda]]}) = \int_{-\infty}^{+\infty} (E[(S-k)_{+}] - E[(S^{\ell}-k)_{+}])dk$$

- aim: make E[var[S | Λ]] as small as possible, make Λ and S as alike as possible
- lognormal case: $\mathbb{S} = \sum_{i=1}^{n} w_i e^{Z_i} \quad \Rightarrow \quad \mathbb{S}^{\ell} = \sum_{i=1}^{n} w_i E[e^{Z_i} \mid \Lambda]$

$$\begin{aligned} &\operatorname{var}[\mathbb{S}] = \sum_{i=1}^{n} \sum_{j=1}^{n} w_i w_j E[e^{Z_i}] E[e^{Z_j}] (e^{\operatorname{cov}(Z_i, Z_j)} - 1) \\ &\operatorname{var}[\mathbb{S}^{\ell}] = \sum_{i=1}^{n} \sum_{j=1}^{n} w_i w_j E[e^{Z_i}] E[e^{Z_j}] (e^{r_i r_j \sigma_{Z_i} \sigma_{Z_j}} - 1) \\ &r_i = \operatorname{corr}(Z_i, \Lambda) \end{aligned}$$

 r_i all same sign $\Rightarrow \mathbb{S}^{\ell}$ comonotonic sum

Michèle Vanmaele (UGent)

Comonotonicity Applied in Finance

January 22, 2008 45 / 67

9 globally optimal choice: 'global' in the sense that df of S^{ℓ} is good approximation for the whole df of S

3

(日) (同) (三) (三)

- 0 globally optimal choice: 'global' in the sense that df of S^ℓ is good approximation for the whole df of S
- 2 locally optimal choice:
 - focus on particular tail of distribution of S
 - good fit between distributions of S^ℓ and S in a particular region e.g. upper tail or lower tail

- 0 globally optimal choice: 'global' in the sense that df of S^ℓ is good approximation for the whole df of S
- 2 locally optimal choice:
 - focus on particular tail of distribution of S
 - good fit between distributions of S^ℓ and S in a particular region e.g. upper tail or lower tail
 - Conditional Tail Expectation at level p

$$CTE_{p}[X] = E[X | X > F_{X}^{-1}(p)], \quad p^{\in}(0,1)$$

• Conditional Left Tail Expectation at level p

$$CLTE_p[X] = E[X \mid X < F_X^{-1}(p)], \quad p^{\in}(0,1)$$

- 0 globally optimal choice: 'global' in the sense that df of S^ℓ is good approximation for the whole df of S
- 2 locally optimal choice:
 - focus on particular tail of distribution of S
 - good fit between distributions of S^{ℓ} and S in a particular region e.g. upper tail or lower tail
 - Conditional Tail Expectation at level p

$$CTE_p[X] = E[X \mid X > F_X^{-1}(p)], \quad p^{\in}(0,1)$$

• Conditional Left Tail Expectation at level p

$$CLTE_p[X] = E[X \mid X < F_X^{-1}(p)], \quad p^{\in}(0,1)$$

• convex order relation $S^{\ell} \leq_{cx} S$ implies $C(L)TE_{\rho}[S^{\ell}] \leq C(L)TE_{\rho}[S]$

(本語) (本語) (本語) (語)

- 0 globally optimal choice: 'global' in the sense that df of S^ℓ is good approximation for the whole df of S
- 2 locally optimal choice:
 - focus on particular tail of distribution of S
 - good fit between distributions of S^{ℓ} and S in a particular region e.g. upper tail or lower tail
 - Conditional Tail Expectation at level p

$$CTE_p[X] = E[X \mid X > F_X^{-1}(p)], \quad p^{\in}(0,1)$$

• Conditional Left Tail Expectation at level p

$$CLTE_p[X] = E[X \mid X < F_X^{-1}(p)], \quad p^{\in}(0,1)$$

- convex order relation $S^{\ell} \leq_{cx} S$ implies $C(L)TE_{p}[S^{\ell}] \leq C(L)TE_{p}[S]$
- aim: choose Λ such that $C(L)TE_p[S^{\ell}]$ is as 'large as possible'

Choice of conditioning rv: lognormal case

globally optimal choice

イロト 不得 トイヨト イヨト 二日

Choice of conditioning rv: lognormal case

- globally optimal choice
 - Taylor-based: linear trf of 1st order approx of $\mathbb{S},$ cfr. Kaas, Dhaene & Goovaerts (2000)

$$\Lambda^{TB} = \sum_{j=1}^{n} w_j e^{E[Z_j]} Z_j$$

Choice of conditioning rv: lognormal case

- globally optimal choice
 - Taylor-based: linear trf of 1st order approx of $\mathbb{S},$ cfr. Kaas, Dhaene & Goovaerts (2000)

$$\Lambda^{TB} = \sum_{j=1}^{''} w_j e^{E[Z_j]} Z_j$$

• maximal variance approach: maximize 1st order approx of var[\mathbb{S}^ℓ], cfr. Vanduffel, Dhaene & Goovaerts (2005)

$$\operatorname{var}[\mathbb{S}^{\ell}] \approx \left(\operatorname{corr}(\sum_{j=1}^{n} w_{j} E[e^{Z_{j}}], \Lambda)\right)^{2} \operatorname{var}[\sum_{j=1}^{n} w_{j} E[e^{Z_{j}}] Z_{j}]$$

$$\Rightarrow \qquad \Lambda^{MV} = \sum_{j=1}^{n} w_j E[e^{Z_j}] Z_j$$

47 / 67

・ 同 ト ・ ヨ ト ・ ヨ ト

Choice of conditioning rv: lognormal case

- globally optimal choice
 - Taylor-based: linear trf of 1st order approx of $\mathbb S,$ cfr. Kaas, Dhaene & Goovaerts (2000)

$$\Lambda^{TB} = \sum_{j=1}^{''} w_j e^{E[Z_j]} Z_j$$

• maximal variance approach: maximize 1st order approx of var[\mathbb{S}^ℓ], cfr. Vanduffel, Dhaene & Goovaerts (2005)

$$\operatorname{var}[\mathbb{S}^{\ell}] \approx \left(\operatorname{corr}(\sum_{j=1}^{n} w_{j} E[e^{Z_{j}}], \Lambda)\right)^{2} \operatorname{var}[\sum_{j=1}^{n} w_{j} E[e^{Z_{j}}] Z_{j}]$$

$$\Rightarrow \qquad \Lambda^{MV} = \sum_{j=1}^{n} w_j E[e^{Z_j}] Z_j$$

Iocally optimal choice

47 / 67

< 回 ト < 三 ト < 三 ト

locally optimal choice cfr. Vanduffel et al. (2007)

$$\mathsf{CTE}_p[\mathbb{S}^\ell] = \frac{1}{1-p} \sum_{i=1}^n w_i E[e^{Z_i}] \Phi(r_i \sigma_{Z_i} - \Phi^{-1}(p))$$

3

48 / 67

イロト イポト イヨト イヨト

locally optimal choice cfr. Vanduffel et al. (2007) maximize 1st order approximation of $CTE_{p}[\mathbb{S}^{\ell}]$

$$\begin{aligned} \mathsf{CTE}_{p}[\mathbb{S}^{\ell}] &= \frac{1}{1-p} \sum_{i=1}^{n} w_{i} E[e^{Z_{i}}] \Phi(r_{i} \sigma_{Z_{i}} - \Phi^{-1}(p)) \\ &\approx \frac{1}{1-p} \sum_{i=1}^{n} w_{i} E[e^{Z_{i}}] \Phi(r_{i}^{MV} \sigma_{Z_{i}} - \Phi^{-1}(p)) \\ &+ \frac{1}{1-p} \operatorname{corr}(\sum_{i=1}^{n} w_{i} E[e^{Z_{i}}] \Phi'[r_{i}^{MV} \sigma_{Z_{i}} - \Phi^{-1}(p)] Z_{i}, \Lambda) \\ &\times (\operatorname{var}[\sum_{i=1}^{n} w_{i} E[e^{Z_{i}}] \Phi'[r_{i}^{MV} \sigma_{Z_{i}} - \Phi^{-1}(p)] Z_{i}])^{1/2} \\ r_{i}^{MV} &= \operatorname{corr}(Z_{i}, \Lambda^{MV}) \end{aligned}$$

3

(人間) トイヨト イヨト

locally optimal choice cfr. Vanduffel et al. (2007) maximize 1st order approximation of $CTE_{p}[\mathbb{S}^{\ell}]$

$$\begin{aligned} \mathsf{CTE}_{p}[\mathbb{S}^{\ell}] &= \frac{1}{1-p} \sum_{i=1}^{n} w_{i} E[e^{Z_{i}}] \Phi(r_{i} \sigma_{Z_{i}} - \Phi^{-1}(p)) \\ &\approx \frac{1}{1-p} \sum_{i=1}^{n} w_{i} E[e^{Z_{i}}] \Phi(r_{i}^{MV} \sigma_{Z_{i}} - \Phi^{-1}(p)) \\ &+ \frac{1}{1-p} \operatorname{corr}(\sum_{i=1}^{n} w_{i} E[e^{Z_{i}}] \Phi'[r_{i}^{MV} \sigma_{Z_{i}} - \Phi^{-1}(p)] Z_{i}, \Lambda) \\ &\times (\operatorname{var}[\sum_{i=1}^{n} w_{i} E[e^{Z_{i}}] \Phi'[r_{i}^{MV} \sigma_{Z_{i}} - \Phi^{-1}(p)] Z_{i}])^{1/2} \\ r_{i}^{MV} &= \operatorname{corr}(Z_{i}, \Lambda^{MV}) \end{aligned}$$

$$\Rightarrow \Lambda^{(p)} = \sum_{i=1}^{n} w_i E[e^{Z_i}] \Phi'[r_i^{MV} \sigma_{Z_i} - \Phi^{-1}(p)] Z_i$$

(日) (同) (三) (三)

Asian options

- Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2002). The concept of comonotonicity in actuarial science and finance: Applications. *IME*, **31**(2), 133-161.
- Nielsen & Sandmann (2003). Pricing bounds on Asian options. JFQA, 38, 449-473.
- Reynaerts, Vanmaele, Dhaene & Deelstra (2006). Bounds for the price of a European-Style Asian option in a binary tree model. *EJOR*, **168**, 322-332.
- Vanmaele, Deelstra, Liinev, Dhaene & Goovaerts (2006). Bounds for the price of discretely sampled arithmetic Asian options. *JCAM*, **185**, 51-90.

(日) (同) (三) (三)

Asian options

- Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2002). The concept of comonotonicity in actuarial science and finance: Applications. *IME*, **31**(2), 133-161.
- Nielsen & Sandmann (2003). Pricing bounds on Asian options. JFQA, 38, 449-473.
- Reynaerts, Vanmaele, Dhaene & Deelstra (2006). Bounds for the price of a European-Style Asian option in a binary tree model. *EJOR*, **168**, 322-332.
- Vanmaele, Deelstra, Liinev, Dhaene & Goovaerts (2006). Bounds for the price of discretely sampled arithmetic Asian options. *JCAM*, **185**, 51-90.

Basket options

- Deelstra, Liinev & Vanmaele (2004). Pricing of arithmetic basket options by conditioning. *IME*, **34**, 35-77.
- Vanmaele, Deelstra & Liinev (2004). Approximation of stop-loss premiums involving sums of lognormals by conditioning on two variables. *IME*, **35**, 343-367.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Asian options

- Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2002). The concept of comonotonicity in actuarial science and finance: Applications. *IME*, **31**(2), 133-161.
- Nielsen & Sandmann (2003). Pricing bounds on Asian options. JFQA, 38, 449-473.
- Reynaerts, Vanmaele, Dhaene & Deelstra (2006). Bounds for the price of a European-Style Asian option in a binary tree model. *EJOR*, **168**, 322-332.
- Vanmaele, Deelstra, Liinev, Dhaene & Goovaerts (2006). Bounds for the price of discretely sampled arithmetic Asian options. *JCAM*, **185**, 51-90.

Basket options

- Deelstra, Liinev & Vanmaele (2004). Pricing of arithmetic basket options by conditioning. IME, 34, 35-77.
- Vanmaele, Deelstra & Liinev (2004). Approximation of stop-loss premiums involving sums of lognormals by conditioning on two variables. *IME*, 35, 343-367.

Asian Basket options

Deelstra, Diallo & Vanmaele (2007). Bounds for Asian basket options. *JCAM*, (in press).

3

イロト 人間ト イヨト イヨト

Application 2: Minimizing risk by using put option Risk measures

- consider a set of risks Γ and probability space (Ω, \mathcal{F}, P)
- elements $Y \in \Gamma$ are random variables, representing losses
- $Y(\omega) > 0$ for $\omega \in \Omega$ means a loss, while negative outcomes are gains

Application 2: Minimizing risk by using put option Risk measures

- consider a set of risks Γ and probability space (Ω, \mathcal{F}, P)
- elements $Y \in \Gamma$ are random variables, representing losses
- $Y(\omega) > 0$ for $\omega \in \Omega$ means a loss, while negative outcomes are gains

Application 2: Minimizing risk by using put option Risk measures

- consider a set of risks Γ and probability space (Ω, \mathcal{F}, P)
- elements $Y \in \Gamma$ are random variables, representing losses
- $Y(\omega) > 0$ for $\omega \in \Omega$ means a loss, while negative outcomes are gains

Application 2: Minimizing risk by using put option Risk measures

- consider a set of risks Γ and probability space (Ω, \mathcal{F}, P)
- elements $Y \in \Gamma$ are random variables, representing losses
- $Y(\omega)>0$ for $\omega\in\Omega$ means a loss, while negative outcomes are gains

Definition

A risk measure ρ is a functional

$$\rho: \Gamma \mapsto \mathbb{R}.$$

Michèle Vanmaele (UGent)

Properties risk measures

Properties

- Monotonicity: $Y_1 \leq Y_2$ implies $\rho[Y_1] \leq \rho[Y_2]$, for any $Y_1, Y_2 \in \Gamma$
- Positive homogeneity: $\rho[aY] = a\rho[Y]$, for any $Y \in \Gamma$ and a > 0
- Translation invariance: ho[Y+b]=
 ho[Y]+b, for any $Y\in \Gamma$ and $b\in \mathbb{R}$
- Subadditivity: $ho[Y_1+Y_2] \leq
 ho[Y_1] +
 ho[Y_2]$, for any $Y_1, Y_2 \in \Gamma$
- Additivity of comonotonic risks: for any $Y_1, Y_2 \in \Gamma$ which are comonotonic: $\rho[Y_1 + Y_2] = \rho[Y_1] + \rho[Y_2]$

Artzner, Delbaen, Eber & Heath (1999). Coherent measures of risk. *Mathematical Finance*, **9**, 203-229.

coherent risk measure: monotonic, positive homogeneous, translation invariant and subadditive

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Some well-known risk measures

• Value-at-Risk at level p: p-quantile risk measure

$$\mathsf{VaR}_p[Y] = F_Y^{-1}(p) = \inf \left\{ x \in \mathbb{R} \mid F_Y(x) \geq p
ight\}$$

related risk measure: $\operatorname{VaR}_{p}^{+}[Y] = F_{Y}^{-1+}(p) = \sup \{x \in \mathbb{R} \mid F_{Y}(x) \leq p\}$ monotonic, positive homogeneous, translation invariant, additive for comonotonic risks but **not subadditive** \Rightarrow **not coherent**

• Tail Value-at-Risk at level p or Conditional VaR

$$\mathsf{TVaR}_p[Y] = rac{1}{1-p} \int_p^1 \mathsf{VaR}_q[Y] dq$$

coherent risk measure and additive for comonotonic risks

• Conditional Tail Expectation at level p:

$$\mathsf{CTE}_p[Y] = \mathsf{E}[Y \mid Y > \mathcal{F}_Y^{-1}(p)]$$

Michèle Vanmaele (UGent)

• risky financial asset X

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- risky financial asset X
- hedge position by using percentage h of a put option P(0, T, K)

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- risky financial asset X
- hedge position by using percentage h of a put option P(0, T, K)
- future value of portfolio (asset, option) and loss function:

$$egin{aligned} & \mathcal{H}(T) = \max(hK + (1-h)X(T), X(T)) \ & \mathcal{L} = X(0) + C - \max(hK + (1-h)X(T), X(T)) \ & ext{with} \ C = hP(0, T, K) \end{aligned}$$

イロト 不得下 イヨト イヨト 二日

- risky financial asset X
- hedge position by using percentage h of a put option P(0, T, K)
- future value of portfolio (asset, option) and loss function:

$$H(T) = \max(hK + (1 - h)X(T), X(T))$$

$$L = X(0) + C - \max(hK + (1 - h)X(T), X(T)) \text{ with } C = hP(0, T, K)$$

worst case: put option finishes in-the-money

$$\begin{aligned} H_{ITM}(T) &= (1-h)X(T) + hK \\ L_{ITM} &= X(0) + C - ((1-h)X(T) + hK) \geq L \implies \rho[L_{ITM}] \geq \rho[L] \end{aligned}$$

- risky financial asset X
- hedge position by using percentage h of a put option P(0, T, K)
- future value of portfolio (asset, option) and loss function:

$$H(T) = \max(hK + (1 - h)X(T), X(T))$$

 $L = X(0) + C - \max(hK + (1 - h)X(T), X(T))$ with $C = hP(0, T, K)$

worst case: put option finishes in-the-money

$$H_{ITM}(T) = (1-h)X(T) + hK$$

$$L_{ITM} = X(0) + C - ((1-h)X(T) + hK) \ge L \implies \rho[L_{ITM}] \ge \rho[L]$$

• for translation invariant and positive homogeneous risk measure

$$\rho[L_{ITM}] = X(0) + C - hK + (1 - h)\rho[-X(T)]$$

The hedging problem: Risk minimization

constrained optimization problem:

$$\min_{K,h} X(0) + C - hK + (1-h)\rho[-X(T)]$$

subject to restrictions C = hP(0, T, K) and $h \in (0, 1)$

イロト 不得下 イヨト イヨト 二日

The hedging problem: Risk minimization

• constrained optimization problem:

$$\min_{K,h} X(0) + C - hK + (1-h)\rho[-X(T)]$$

subject to restrictions C = hP(0, T, K) and $h \in (0, 1)$

• by Kuhn-Tucker conditions optimal strike K^* should satisfy

$$P(0, T, K) - (K + \rho[-X(T)])\frac{\partial P}{\partial K}(0, T, K) = 0$$

54 / 67

The hedging problem: Risk minimization

• constrained optimization problem:

$$\min_{K,h} X(0) + C - hK + (1-h)\rho[-X(T)]$$

subject to restrictions C = hP(0, T, K) and $h \in (0, 1)$

• by Kuhn-Tucker conditions optimal strike K^* should satisfy

$$P(0, T, K) - (K + \rho[-X(T)]) \frac{\partial P}{\partial K}(0, T, K) = 0$$

Remark

optimal strike price is independent of the hedging cost $\ensuremath{\mathcal{C}}$

くほと くほと くほと

The hedging problem: Risk minimization

• constrained optimization problem:

r

$$\min_{K,h} X(0) + C - hK + (1-h)\rho[-X(T)]$$

subject to restrictions C = hP(0, T, K) and $h \in (0, 1)$

• by Kuhn-Tucker conditions optimal strike K^* should satisfy

$$P(0, T, K) - (K + \rho[-X(T)]) \frac{\partial P}{\partial K}(0, T, K) = 0$$

Remark

optimal strike price is independent of the hedging cost C \Rightarrow linear trade-off between hedging expenditure and risk measure level

The hedging problem: Risk minimization

• constrained optimization problem:

r

$$\min_{K,h} X(0) + C - hK + (1-h)\rho[-X(T)]$$

subject to restrictions C = hP(0, T, K) and $h \in (0, 1)$

• by Kuhn-Tucker conditions optimal strike K^* should satisfy

$$P(0, T, K) - (K +
ho[-X(T)]) rac{\partial P}{\partial K}(0, T, K) = 0$$

Remark

optimal strike price is independent of the hedging cost C \Rightarrow linear trade-off between hedging expenditure and risk measure level

• put option price: $P(0, T, K) = \text{disc} \cdot E[(K - X(T))_+]$ and $F_{X(T)}$ continuous

$$P(0, T, K) - \operatorname{disc} \cdot (K + \rho[-X(T)])F_{X(T)}(K) = 0$$

イロト 不得 トイヨト イヨト 二日

• not one risky asset but sum of risky assets

3

イロト イポト イヨト イヨト

• not one risky asset but sum of risky assets

e.g. basket of asset prices or coupon-bearing bond

• for some real constants a_i , $i = 1, \ldots, n$:

$$X = \sum_{i=1}^{n} a_i X_i$$

- 3

(日) (周) (三) (三)

• not one risky asset but sum of risky assets

e.g. basket of asset prices or coupon-bearing bond

• for some real constants a_i , $i = 1, \ldots, n$:

$$X = \sum_{i=1}^{n} a_i X_i$$

 optimal strike for constrained risk minimization problem again obtained from

$$P(0, T, K) - (K + \rho[-X(T)])\frac{\partial P}{\partial K}(0, T, K) = 0$$

イロト 不得下 イヨト イヨト 二日

not one risky asset but sum of risky assets

e.g. basket of asset prices or coupon-bearing bond

• for some real constants a_i , $i = 1, \ldots, n$:

$$X = \sum_{i=1}^{n} a_i X_i$$

 optimal strike for constrained risk minimization problem again obtained from

$$P(0, T, K) - (K + \rho[-X(T)]) \frac{\partial P}{\partial K}(0, T, K) = 0$$

• formula further elaborated under additional assumptions

イロト 不得下 イヨト イヨト

• not one risky asset but sum of risky assets

e.g. basket of asset prices or coupon-bearing bond

• for some real constants a_i , $i = 1, \ldots, n$:

$$X = \sum_{i=1}^{n} a_i X_i$$

• optimal strike for constrained risk minimization problem again obtained from

$$P(0, T, K) - (K + \rho[-X(T)]) \frac{\partial P}{\partial K}(0, T, K) = 0$$

- formula further elaborated under additional assumptions
- distinguish two cases:

イロト 人間ト イヨト イヨト

• not one risky asset but sum of risky assets

e.g. basket of asset prices or coupon-bearing bond

• for some real constants a_i , $i = 1, \ldots, n$:

$$X = \sum_{i=1}^{n} a_i X_i$$

• optimal strike for constrained risk minimization problem again obtained from

$$P(0, T, K) - (K + \rho[-X(T)]) \frac{\partial P}{\partial K}(0, T, K) = 0$$

- formula further elaborated under additional assumptions
- distinguish two cases: comonotonic and non-comonotonic sum

• additional assumptions:

3

イロト イポト イヨト イヨト

- additional assumptions:
 - **1** sum X(T) is comonotonic

3

(日) (同) (三) (三)

- additional assumptions:
 - **1** sum X(T) is comonotonic
 - 2 risk measure ρ is additive for comonotonic risks

- additional assumptions:
 - **1** sum X(T) is comonotonic
 - 2 risk measure ρ is additive for comonotonic risks
 - 9 put option price at time zero

$$P(0, T, K) = \operatorname{disc} \cdot \operatorname{E}[(K - X(T))_+]$$

- additional assumptions:
 - **1** sum X(T) is comonotonic
 - 2 risk measure ρ is additive for comonotonic risks
 - 9 put option price at time zero

$$P(0, T, K) = \operatorname{disc} \cdot \operatorname{E}[(K - X(T))_+]$$

• decomposition of risk:

$$\rho[-X(T)] = \rho[-\sum_{i=1}^{n} a_i X_i(T)] = \sum_{i=1}^{n} a_i \rho[-X_i(T)]$$

THE 1 1

- additional assumptions:
 - **1** sum X(T) is comonotonic
 - 2 risk measure ρ is additive for comonotonic risks
 - 9 put option price at time zero

$$P(0, T, K) = \operatorname{disc} \cdot \operatorname{E}[(K - X(T))_+]$$

• decomposition of risk:

$$\rho[-X(T)] = \rho[-\sum_{i=1}^{n} a_i X_i(T)] = \sum_{i=1}^{n} a_i \rho[-X_i(T)]$$

• decomposition of put option price:

$$P(0,T,K) = \sum_{i=1}^{n} a_i P_i(0,T,K_i) \quad \text{with} \quad \sum_{i=1}^{n} a_i K_i = K,$$

put option $P_i(0, T, K_i)$ with X_i as underlying, maturity T, strike K_i

• decomposition of put option price:

characterisation of the components K_i :

$$K_i = F_{X_i(T)}^{-1(\alpha)}(F_{X(T)}(K))$$
 with $\sum_{i=1}^n a_i F_{X_i(T)}^{-1(\alpha)}(F_{X(T)}(K)) = K$

3

A (10) < A (10) </p>

decomposition of put option price:

characterisation of the components K_i :

$$K_i = F_{X_i(T)}^{-1(\alpha)}(F_{X(T)}(K))$$
 with $\sum_{i=1}^n a_i F_{X_i(T)}^{-1(\alpha)}(F_{X(T)}(K)) = K$

from where

$$\alpha = \frac{K - \sum_{i=1}^{n} a_i F_{X_i(T)}^{-1}(F_{X(T)}(K))}{\sum_{i=1}^{n} a_i (F_{X_i(T)}^{-1}(F_{X(T)}(K)) - F_{X_i(T)}^{-1+}(F_{X(T)}(K)))}$$

when $F_{X_i(T)}^{-1}(F_{X(T)}(K)) \neq F_{X_i(T)}^{-1+}(F_{X(T)}(K))$ and without loss of generality $\alpha = 1$ otherwise

Michèle Vanmaele (UGent)

- 本部 とくき とくき とうき

• decomposition of derivative of put option price

$$\frac{\partial P}{\partial K}(0, T, K) = \sum_{i=1}^{n} a_i \frac{\partial P_i(0, T, K_i)}{\partial K_i} \frac{\partial K_i}{\partial K}$$

3

< ロ > < 同 > < 三 > < 三

decomposition of derivative of put option price

$$\frac{\partial P}{\partial K}(0, T, K) = \sum_{i=1}^{n} a_i \frac{\partial P_i(0, T, K_i)}{\partial K_i} \frac{\partial K_i}{\partial K}$$

assume marginals F_{X_i} are continuous by Breeden and Litzenberger (1978) and characterisation of K_i

$$\frac{\partial P_i(0, T, K_i)}{\partial K_i} = \operatorname{disc} \cdot F_{X_i(T)}(K_i) = \operatorname{disc} \cdot F_{X(T)}(K)$$

thus independent of i

decomposition of derivative of put option price

$$\frac{\partial P}{\partial K}(0, T, K) = \sum_{i=1}^{n} a_i \frac{\partial P_i(0, T, K_i)}{\partial K_i} \frac{\partial K_i}{\partial K} = \operatorname{disc} \cdot F_{X(T)}(K)$$

assume marginals F_{X_i} are continuous by Breeden and Litzenberger (1978) and characterisation of K_i

$$\frac{\partial P_i(0, T, K_i)}{\partial K_i} = \operatorname{disc} \cdot F_{X_i(T)}(K_i) = \operatorname{disc} \cdot F_{X(T)}(K)$$

thus independent of i

Step 1 Denote $A_{\mathcal{K}} := F_{X(\mathcal{T})}(\mathcal{K})$ and solve following equation for $A_{\mathcal{K}}$:

$$\sum_{i=1}^{n} a_{i} P_{i}(0, T, F_{X_{i}(T)}^{-1(\alpha)}(A_{K})) - \operatorname{disc} A_{K} \sum_{i=1}^{n} a_{i} (F_{X_{i}(T)}^{-1(\alpha)}(A_{K}) + \rho[-X_{i}(T)]) = 0$$

(日) (四) (王) (王) (王)

Step 1 Denote $A_{\mathcal{K}} := F_{X(\mathcal{T})}(\mathcal{K})$ and solve following equation for $A_{\mathcal{K}}$:

$$\sum_{i=1}^{n} a_{i} P_{i}(0, T, F_{X_{i}(T)}^{-1(\alpha)}(A_{K})) - \operatorname{disc} A_{K} \sum_{i=1}^{n} a_{i} (F_{X_{i}(T)}^{-1(\alpha)}(A_{K}) + \rho[-X_{i}(T)]) = 0$$

Step 2 Plug found value for A_K in characterisation of K_i and substitute result in $\sum_{i=1}^{n} a_i K_i = K$:

$$\mathbf{K}^* = \sum_{i=1}^n a_i F_{X_i(T)}^{-1(\alpha)}(A_K)$$

Michèle Vanmaele (UGent)

59 / 67

Step 1 Denote $A_{\mathcal{K}} := F_{X(\mathcal{T})}(\mathcal{K})$ and solve following equation for $A_{\mathcal{K}}$:

$$\sum_{i=1}^{n} a_{i} P_{i}(0, T, F_{X_{i}(T)}^{-1(\alpha)}(A_{K})) - \operatorname{disc} A_{K} \sum_{i=1}^{n} a_{i} (F_{X_{i}(T)}^{-1(\alpha)}(A_{K}) + \rho[-X_{i}(T)]) = 0$$

Step 2 Plug found value for A_K in characterisation of K_i and substitute result in $\sum_{i=1}^{n} a_i K_i = K$:

$$\mathbf{K}^* = \sum_{i=1}^n a_i F_{X_i(\mathcal{T})}^{-1(\alpha)}(A_{\mathcal{K}})$$

Step 3 Percentage h^* for given C solves

$$C = hP(0, T, K^*)$$

イロト イポト イヨト イヨト 二日

Step 1 Denote $A_{\mathcal{K}} := F_{X(\mathcal{T})}(\mathcal{K})$ and solve following equation for $A_{\mathcal{K}}$:

$$\sum_{i=1}^{n} a_{i} P_{i}(0, T, F_{X_{i}(T)}^{-1(\alpha)}(A_{K})) - \operatorname{disc} A_{K} \sum_{i=1}^{n} a_{i} (F_{X_{i}(T)}^{-1(\alpha)}(A_{K}) + \rho[-X_{i}(T)]) = 0$$

Step 2 Plug found value for A_K in characterisation of K_i and substitute result in $\sum_{i=1}^{n} a_i K_i = K$:

$$\mathbf{K}^* = \sum_{i=1}^n a_i F_{X_i(\mathcal{T})}^{-1(\alpha)}(A_{\mathcal{K}})$$

Step 3 Percentage h^* for given C solves

$$C = hP(0, T, K^*)$$

Step 4 Minimized risk equals

$$\rho[L_{ITM}] = X(0) + C - h^* K^* + (1 - h^*) \sum_{a} a_i \rho[-X_i(T)]_{aa}$$

Michèle Vanmaele (UGent)

Comonotonicity Applied in Finance

January 22, 2008 59 / 67

п

Annaert, Deelstra, Heyman & Vanmaele (2007). Risk management of a bond portfolio using options. *Insurance: Mathematics and Economics*. (in press)

- 4 同 6 4 日 6 4 日 6

- Annaert, Deelstra, Heyman & Vanmaele (2007). Risk management of a bond portfolio using options. *Insurance: Mathematics and Economics*. (in press)
 - investement in a coupon-bearing bond

(4 回) (4 回) (4 回)

- Annaert, Deelstra, Heyman & Vanmaele (2007). Risk management of a bond portfolio using options. *Insurance: Mathematics and Economics*. (in press)
 - investement in a coupon-bearing bond
 - instanteneous short rate model: one-factor Hull-White

周 ト イ ヨ ト イ ヨ ト

- Annaert, Deelstra, Heyman & Vanmaele (2007). Risk management of a bond portfolio using options. *Insurance: Mathematics and Economics*. (in press)
 - investement in a coupon-bearing bond
 - instanteneous short rate model: one-factor Hull-White
 - comonotonic sum, Jamshidian decomposition

周下 イモト イモト

• additional assumptions:

3

(日) (同) (三) (三)

- additional assumptions:
 - **(**) $X_i(T)$ non-independent but sum X(T) is non-comonotonic

3

イロト イポト イヨト イヨト

• additional assumptions:

- **1** $X_i(T)$ non-independent but sum X(T) is non-comonotonic
- 2 risk measure ρ is additive for comonotonic risks

< 回 > < 三 > < 三 >

• additional assumptions:

- **(**) $X_i(T)$ non-independent but sum X(T) is non-comonotonic
- 2 risk measure ρ is additive for comonotonic risks
- 9 put option price at time zero

$$P(0, T, K) = \operatorname{disc} \cdot \mathsf{E}[(K - X(T))_+]$$

くほと くほと くほと

• additional assumptions:

- **(**) $X_i(T)$ non-independent but sum X(T) is non-comonotonic
- 2 risk measure ρ is additive for comonotonic risks
- 9 put option price at time zero

$$P(0, T, K) = \operatorname{disc} \cdot \mathsf{E}[(K - X(T))_+]$$

approaches

伺下 イヨト イヨト

additional assumptions:

- **(**) $X_i(T)$ non-independent but sum X(T) is non-comonotonic
- 2 risk measure ρ is additive for comonotonic risks
- 9 put option price at time zero

$$P(0, T, K) = \operatorname{disc} \cdot \mathsf{E}[(K - X(T))_+]$$

approaches

numerical/simulation

$$P(0, T, K) - (K + \rho[-X(T)])\frac{\partial P}{\partial K}(0, T, K) = 0$$

61 / 67

A D A D A D A

• additional assumptions:

- **(**) $X_i(T)$ non-independent but sum X(T) is non-comonotonic
- 2 risk measure ρ is additive for comonotonic risks
- 9 put option price at time zero

$$P(0, T, K) = \operatorname{disc} \cdot \mathsf{E}[(K - X(T))_+]$$

approaches

1 numerical/simulation

$$P(0, T, K) - (K + \rho[-X(T)])\frac{\partial P}{\partial K}(0, T, K) = 0$$

2 approximations

• appromixations of X(T)

$$X^{\nu}(T) := \sum_{i=1}^{n} a_i X_i^{\nu}(T), \qquad \nu = \ell, c$$

with

$$X_i^\ell(\mathcal{T}) := \mathsf{E}[X_i(\mathcal{T})|\Lambda]$$
 and $X_i^c(\mathcal{T}) := F_{X_i(\mathcal{T})}^{-1}(U)$

3

62 / 67

(日) (周) (日) (日)

• appromixations of X(T)

$$X^{\nu}(T) := \sum_{i=1}^{n} a_i X_i^{\nu}(T), \qquad \nu = \ell, c$$

with

$$X_i^\ell(T) := \mathsf{E}[X_i(T)|\Lambda] \quad \text{and} \quad X_i^c(T) := F_{X_i(T)}^{-1}(U)$$

 and

$$X^{\ell}(T) \leq_{cx} X(T) \leq_{cx} X^{c}(T)$$

Michèle Vanmaele (UGent)

Comonotonicity Applied in Finance

э

62 / 67

(日) (周) (日) (日)

• appromixations of X(T)

$$X^{\nu}(T) := \sum_{i=1}^{n} a_i X_i^{\nu}(T), \qquad \nu = \ell, c$$

with

$$X_i^\ell(\mathcal{T}) := \mathsf{E}[X_i(\mathcal{T})|\Lambda]$$
 and $X_i^c(\mathcal{T}) := F_{X_i(\mathcal{T})}^{-1}(U)$

and

$$X^{\ell}(T) \leq_{cx} X(T) \leq_{cx} X^{c}(T)$$

with $X^{c}(T)$ comonotonic and $X^{\ell}(T)$ also when Λ carefully chosen

- B

イロト イポト イヨト イヨト

• approximations of P(0, T, K)

$$\mathcal{P}^{
u}(0,T,K) = \operatorname{disc} \cdot \mathsf{E}[(K - X^{
u}(T))_+], \qquad
u = \ell, c$$

with

$$P^{\ell}(0, T, K) \leq P(0, T, K) \leq P^{c}(0, T, K)$$

э

イロト イヨト イヨト イヨト

-

• approximations of P(0, T, K)

$$\mathcal{P}^{
u}(0,\,T,\,K)= ext{disc}\cdot\mathsf{E}[(K-X^{
u}(\,T\,))_+],\qquad
u=\ell,c$$

with

$$P^{\ell}(0,T,K) \leq P(0,T,K) \leq P^{c}(0,T,K)$$

• decomposition of $P^{\nu}(0, T, K)$

$$P^{\nu}(0, T, K) = \operatorname{disc} \cdot \sum_{i=1}^{n} a_{i} \mathbb{E}[(K_{i}^{\nu} - X_{i}^{\nu}(T))_{+}] := \sum_{i=1}^{n} a_{i} P_{i}^{\nu}(0, T, K_{i}^{\nu})$$

with

$$K_i^{\nu} = F_{X_i^{\nu}(T)}^{-1(\alpha)}(F_{X^{\nu}(T)}(K))$$
 and $\sum_{i=1}^n a_i K_i^{\nu} = K$

3

63 / 67

イロト イポト イヨト イヨト

-

• approximations of P(0, T, K)

$$\mathcal{P}^{
u}(0,\,T,\,K)= ext{disc}\cdot\mathsf{E}[(K-X^{
u}(\,T\,))_+],\qquad
u=\ell,c$$

with

$$P^{\ell}(0,T,K) \leq P(0,T,K) \leq P^{c}(0,T,K)$$

• decomposition of $P^{\nu}(0, T, K)$

$$P^{\nu}(0, T, K) = \operatorname{disc} \cdot \sum_{i=1}^{n} a_{i} \mathbb{E}[(K_{i}^{\nu} - X_{i}^{\nu}(T))_{+}] := \sum_{i=1}^{n} a_{i} P_{i}^{\nu}(0, T, K_{i}^{\nu})$$

with

$$K_i^{\nu} = F_{X_i^{\nu}(T)}^{-1(\alpha)}(F_{X^{\nu}(T)}(K)) \text{ and } \sum_{i=1}^n a_i K_i^{\nu} = K$$

• decomposition of risk $\rho[-X^{\nu}(T)]$ for $\nu = \ell, c$:

$$\rho[-X^{\nu}(T)] = \sum_{i=1}^{n} a_i \rho[-X_i^{\nu}(T)]$$

イロト 不得 トイヨト イヨト 二日

original constrained minimization problem:

$$\min_{K,h} X(0) + C - hK + (1 - h)\rho[-X(T)]$$

s.t. $C = hP(0, T, K)$ and $h \in (0, 1)$

3

64 / 67

approximate constrained minimization problem:

$$\min_{K,h} X(0) + C - hK + (1 - h)\rho[-X^{\nu}(T)]$$

s.t. $C = hP^{\nu}(0, T, K)$ and $h \in (0, 1)$

3

64 / 67

(日) (周) (日) (日)

Step 1 Denote $A_K^{\nu} := F_{X^{\nu}(T)}(K)$ and solve following equation for A_K^{ν} :

$$\sum_{i=1}^{n} a_{i} P_{i}^{\nu}(0, T, F_{X_{i}^{\nu}(T)}^{-1(\alpha)}(A_{K}^{\nu})) - \operatorname{disc} A_{K} \sum_{i=1}^{n} a_{i} (F_{X_{i}^{\nu}(T)}^{-1(\alpha)}(A_{K}^{\nu}) + \rho[-X_{i}^{\nu}(T)]) = 0$$

Step 1 Denote $A_K^{\nu} := F_{X^{\nu}(T)}(K)$ and solve following equation for A_K^{ν} :

$$\sum_{i=1}^{n} a_{i} P_{i}^{\nu}(0, T, F_{X_{i}^{\nu}(T)}^{-1(\alpha)}(A_{K}^{\nu})) - \text{disc} \cdot A_{K} \sum_{i=1}^{n} a_{i} (F_{X_{i}^{\nu}(T)}^{-1(\alpha)}(A_{K}^{\nu}) + \rho[-X_{i}^{\nu}(T)]) = 0$$

Step 2 Plug found value for A_K^{ν} in decomposition of K:

$$K_{\nu}^{*} = \sum_{i=1}^{n} a_{i} F_{X_{i}^{\nu}(T)}^{-1(\alpha)}(A_{K}^{\nu})$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Step 1 Denote $A_K^{\nu} := F_{X^{\nu}(T)}(K)$ and solve following equation for A_K^{ν} :

$$\sum_{i=1}^{n} a_{i} P_{i}^{\nu}(0, T, F_{X_{i}^{\nu}(T)}^{-1(\alpha)}(A_{K}^{\nu})) - \operatorname{disc} A_{K} \sum_{i=1}^{n} a_{i} (F_{X_{i}^{\nu}(T)}^{-1(\alpha)}(A_{K}^{\nu}) + \rho[-X_{i}^{\nu}(T)]) = 0$$

Step 2 Plug found value for A_K^{ν} in decomposition of K:

$$K_{\nu}^{*} = \sum_{i=1}^{n} a_{i} F_{X_{i}^{\nu}(T)}^{-1(\alpha)}(A_{K}^{\nu})$$

Step 3 Percentage h_{ν}^* for given C solves

$$C = \mathbf{h}_{\nu} P^{\nu}(0, T, \mathbf{K}_{\nu}^{*})$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Step 1 Denote $A_K^{\nu} := F_{X^{\nu}(T)}(K)$ and solve following equation for A_K^{ν} :

$$\sum_{i=1}^{n} a_{i} P_{i}^{\nu}(0, T, F_{X_{i}^{\nu}(T)}^{-1(\alpha)}(A_{K}^{\nu})) - \operatorname{disc} A_{K} \sum_{i=1}^{n} a_{i} (F_{X_{i}^{\nu}(T)}^{-1(\alpha)}(A_{K}^{\nu}) + \rho[-X_{i}^{\nu}(T)]) = 0$$

Step 2 Plug found value for A_K^{ν} in decomposition of K:

$$K_{\nu}^{*} = \sum_{i=1}^{n} a_{i} F_{X_{i}^{\nu}(T)}^{-1(\alpha)}(A_{K}^{\nu})$$

Step 3 Percentage h_{ν}^* for given C solves

$$C = \frac{h_{\nu}P^{\nu}(0, T, \mathbf{K}_{\nu}^{*})}{\mathbf{K}_{\nu}^{*}}$$

Step 4 Minimized approximate risk equals

$$X(0) + C - h_{\nu}^{*} K_{\nu}^{*} + (1 - h_{\nu}^{*}) \sum_{i=1}^{n} a_{i} \rho[-X_{i}^{\nu}(T)]$$

Michèle Vanmaele (UGent)

Comonotonicity Applied in Finance

January 22, 2008 65 / 67

• ordering of risk measures based on stochastic dominance, stop-loss order, convex order

(人間) トイヨト イヨト

- ordering of risk measures based on stochastic dominance, stop-loss order, convex order
- ordering of put option prices (see above)

過 ト イヨト イヨト

- ordering of risk measures based on stochastic dominance, stop-loss order, convex order
- ordering of put option prices (see above)
- combined in non-linear constrained optimization problem

- ordering of risk measures based on stochastic dominance, stop-loss order, convex order
- ordering of put option prices (see above)
- combined in non-linear constrained optimization problem
- for $\nu = \ell$ parameter Λ to play with

・ 同 ト ・ ヨ ト ・ ヨ ト

- ordering of risk measures based on stochastic dominance, stop-loss order, convex order
- ordering of put option prices (see above)
- combined in non-linear constrained optimization problem
- for $\nu = \ell$ parameter Λ to play with
- study applications
 - coupon-bearing bond and two-additive-factor Gaussian model
 - 2 basket of shares
 - see

Deelstra, Vanmaele & Vyncke (2008). Minimizing the risk of a financial product using a put option. (in preparation)

Thanks for your attention!

3

(日) (同) (三) (三)