Comonotonicity Applied in Finance

Michèle Vanmaele ${ }^{1}$

${ }^{1}$ Department of Applied Mathematics and Computer Science Ghent University, Belgium

7th Winter school on Mathematical Finance January 21-23, 2008

Outline

(1) Applications in finance

- European type exotic options
- Minimizing risk of a financial product using a put option
(2) Stochastic order and comonotonicity
(3) Application 1: Infinite market case
- Upper bound
- Optimality of super-replicating strategy
- Largest possible fair price
(4) Application 1: Finite market case
(5) Application 1: Comonotonic Monte Carlo simulation
(6) (Comonotonic) lower bound by conditioning
- Application 1
(7) Application 2: Minimizing risk by using put option

Applications in finance: References

(1) pricing problem of European type exotic options

國 Chen, Deelstra, Dhaene \& Vanmaele (2007). Static Super-replicating strategy for a class of exotic options. (submitted)
围 Vyncke \& Albrecher (2007). Comonotonic control variates for multi-asset option pricing. Third Brazilian Conference on Statistical Modelling in Insurance and Finance, 260-265

Applications in finance：References

（1）pricing problem of European type exotic options
風 Chen，Deelstra，Dhaene \＆Vanmaele（2007）．Static Super－replicating strategy for a class of exotic options．（submitted）
围 Vyncke \＆Albrecher（2007）．Comonotonic control variates for multi－asset option pricing．Third Brazilian Conference on Statistical Modelling in Insurance and Finance，260－265
（2）Minimizing risk of a financial product using a put option
Deelstra，Ezzine，Heyman \＆Vanmaele（2007）．Managing Value－at－Risk for a bond using put options．Computational Economics．29（2）， 139－149．
囲 Annaert，Deelstra，Heyman \＆Vanmaele（2007）．Risk management of a bond portfolio using options．Insurance：Mathematics and Economics． （in press）
围 Deelstra，Vanmaele \＆Vyncke（2008）．Minimizing the risk of a financial product using a put option．（in preparation）

European type exotic options

option with pay-off at maturity T

$$
(\mathbb{S}-K)_{+}(\text {call }) \text { or }(K-\mathbb{S})_{+}(\text {put })
$$

- discrete case: weighted sum of asset prices at $T_{i}, 0 \leq T_{i} \leq T$

$$
\mathbb{S}=\sum_{i=1}^{n} w_{i} X_{i}, \quad w_{i} \text { positive weights }
$$

European type exotic options

 option with pay-off at maturity $T$$$
(\mathbb{S}-K)_{+}(\text {call }) \quad \text { or } \quad(K-\mathbb{S})_{+}(\text {put })
$$

- discrete case: weighted sum of asset prices at $T_{i}, 0 \leq T_{i} \leq T$

$$
\mathbb{S}=\sum_{i=1}^{n} w_{i} X_{i}, \quad w_{i} \text { positive weights }
$$

examples: Asian, basket, pure unit-linked contract

$$
X_{i}=S(T-i+1) \quad S_{i}(T) \quad P \frac{S(T)}{S(T-i)}
$$

European type exotic options

 option with pay-off at maturity $T$$$
(\mathbb{S}-K)_{+}(\text {call }) \text { or }(K-\mathbb{S})_{+}(\text {put })
$$

- discrete case: weighted sum of asset prices at $T_{i}, 0 \leq T_{i} \leq T$

$$
\mathbb{S}=\sum_{i=1}^{n} w_{i} X_{i}, \quad w_{i} \text { positive weights }
$$

examples: Asian, basket, pure unit-linked contract

$$
X_{i}=S(T-i+1) \quad S_{i}(T) \quad P \frac{S(T)}{S(T-i)}
$$

- continuous case: continuous averaging of asset prices

$$
\mathbb{S}=\int_{0}^{T} w(s) X(s) d s \quad \text { (Asian) }
$$

European type exotic options: call option price

model-based approach

$$
C[K]=e^{-r T} E\left[(\mathbb{S}-K)_{+}\right]
$$

under probability measure Q (all discounted gain processes are martingales, with a gain process being the sum of processes of discounted prices and accumulated discounted dividends)

European type exotic options: call option price

model-based approach

$$
C[K]=e^{-r T} E\left[(\mathbb{S}-K)_{+}\right]=e^{-r T} \int_{K}^{+\infty}\left(1-F_{\mathbb{S}}(x)\right) d x
$$

under probability measure Q (all discounted gain processes are martingales, with a gain process being the sum of processes of discounted prices and accumulated discounted dividends)

- Cumulative distribution function $(c d f)$ of $\mathbb{S}: F_{\mathbb{S}}(x)=\operatorname{Pr}(\mathbb{S}>x)$ explicitly known?

European type exotic options: call option price

model-based approach

$$
C[K]=e^{-r T} E\left[(\mathbb{S}-K)_{+}\right]=e^{-r T} \int_{K}^{+\infty}\left(1-F_{\mathbb{S}}(x)\right) d x
$$

under probability measure Q (all discounted gain processes are martingales, with a gain process being the sum of processes of discounted prices and accumulated discounted dividends)

- Cumulative distribution function (cdf) of $\mathbb{S}: F_{\mathbb{S}}(x)=\operatorname{Pr}(\mathbb{S}>x)$ explicitly known?
- Black\&Scholes setting and discrete averaging: sum of non-independent lognormally distributed random variables

European type exotic options: call option price

model-based approach

$$
C[K]=e^{-r T} E\left[(\mathbb{S}-K)_{+}\right]=e^{-r T} \int_{K}^{+\infty}\left(1-F_{\mathbb{S}}(x)\right) d x
$$

under probability measure Q (all discounted gain processes are martingales, with a gain process being the sum of processes of discounted prices and accumulated discounted dividends)

- Cumulative distribution function (cdf) of $\mathbb{S}: F_{\mathbb{S}}(x)=\operatorname{Pr}(\mathbb{S}>x)$ explicitly known?
- Black\&Scholes setting and discrete averaging: sum of non-independent lognormally distributed random variables
- moment-matching methods, Fourier and Laplace transform methods, trees and lattices techniques, PDE and FD approaches, MC simulation

European type exotic options: call option price

 model-based approach$$
C[K]=e^{-r T} E\left[(\mathbb{S}-K)_{+}\right]=e^{-r T} \int_{K}^{+\infty}\left(1-F_{\mathbb{S}}(x)\right) d x
$$

under probability measure Q (all discounted gain processes are martingales, with a gain process being the sum of processes of discounted prices and accumulated discounted dividends)

- Cumulative distribution function (cdf) of $\mathbb{S}: F_{\mathbb{S}}(x)=\operatorname{Pr}(\mathbb{S}>x)$ explicitly known?
- Black\&Scholes setting and discrete averaging: sum of non-independent lognormally distributed random variables
- moment-matching methods, Fourier and Laplace transform methods, trees and lattices techniques, PDE and FD approaches, MC simulation
- via comonotonicity: comonotonic approximations for cdf, lower and upper bounds, comonotonic MC simulation

European type exotic options: call option price

model-free approach

- price $C[K]$ of option with pay-off $(\mathbb{S}-K)_{+}$at T not observable in the market
- market of plain vanilla option prices

$$
C_{i}[K]=e^{-r T_{i}} E\left[\left(X_{i}-K\right)_{+}\right], \quad i=1, \ldots, n
$$

for (finite or infinite) number of strikes K

European type exotic options: call option price

model-free approach

- price $C[K]$ of option with pay-off $(\mathbb{S}-K)_{+}$at T not observable in the market
- market of plain vanilla option prices

$$
C_{i}[K]=e^{-r T_{i}} E\left[\left(X_{i}-K\right)_{+}\right], \quad i=1, \ldots, n
$$

for (finite or infinite) number of strikes K

- $C[K]$: fair price a rational decision maker is willing to pay fair price: price does not exceed price of any investment strategy consisting of buying a portfolio of available plain vanilla options whose pay-off super-replicates the pay-off of the given option

European type exotic options: call option price

 model-free approach- price $C[K]$ of option with pay-off $(\mathbb{S}-K)_{+}$at T not observable in the market
- market of plain vanilla option prices

$$
C_{i}[K]=e^{-r T_{i}} E\left[\left(X_{i}-K\right)_{+}\right], \quad i=1, \ldots, n
$$

for (finite or infinite) number of strikes K

- $C[K]$: fair price a rational decision maker is willing to pay fair price: price does not exceed price of any investment strategy consisting of buying a portfolio of available plain vanilla options whose pay-off super-replicates the pay-off of the given option
- via comonotonicity:
- largest possible fair price for this option, given the available information from the market
- price of cheapest super-replicating strategy consisting of buying a linear combination of available plain vanilla options

Minimizing risk of a financial product using a put option

- Classical hedging example: hedging exposure to price risk of an asset
- minimize VaR of position in share by using put options
- Optimal strike price of put option, given a budget?

Minimizing risk of a financial product using a put option

- Classical hedging example: hedging exposure to price risk of an asset
- minimize VaR of position in share by using put options
- Optimal strike price of put option, given a budget?
- More general hedging problem:
- exposure to price risk of coupon-bearing bond or basket of assets
- minimize general risk measures in particular VaR, TVaR, CTE
- deal with measuring sum of risks
- deal with put option price written on multiple underlyings
- Optimal strike price of put option, given a budget?

Minimizing risk of a financial product using a put option

- Classical hedging example: hedging exposure to price risk of an asset
- minimize VaR of position in share by using put options
- Optimal strike price of put option, given a budget?
- More general hedging problem:
- exposure to price risk of coupon-bearing bond or basket of assets
- minimize general risk measures in particular VaR, TVaR, CTE
- deal with measuring sum of risks
- deal with put option price written on multiple underlyings
- Optimal strike price of put option, given a budget?
\Rightarrow comonotonic and non-comonotonic

Stochastic order and comonotonicity: References

Hoeffding (1940). Masstabinvariante Korrelationstheorie.Schriften des Math. Inst. und des Inst. für Angewandte Mathematik der Univ. Berlin, vol. 5, 179-223.

Fréchet (1951). Sur les tableaux de corrélation dont les marges sont donnés; Ann. Univ. Lyon Sect. A, Series 3, 14, 53-77.

Meilijson \& Nadas (1979). Convex majorization with an application to the length of critical paths. Journal of Applied Probability, 16, 671-676.

Rüschendorf (1983). Solution of statistical optimization problem by rearrangement methods. Metrika, 30, 55-61.

Goovaerts, Kaas, Van Heerwaarden \& Bauwelinckx (1990). Effective actuarial methods. Insurance series, vol. 3, North-Holland.

Shaked \& Shanthikumar (1994). Stochastic orders and their applications, Ac. Press.
Müller (1997). Stop-loss order for portfolios of dependent risks. IME, 21, 219-223.
Wang \& Dhaene (1998). Comonotonicity, correlation order and stop-loss premiums. IME 22(3), 235-243.
R Kaas, Dhaene \& Goovaerts (2000). Upper and lower bounds for sums of random variables. IME 27(2), 151-168.

Stochastic order

Definition

A random variable X is said to precede another random variable Y in the stop-loss order sense, notation $X \leq_{s l} Y$, in case

$$
E\left[(X-d)_{+}\right] \leq E\left[(Y-d)_{+}\right], \quad \text { for all } d
$$

Stochastic order

Definition

A random variable X is said to precede another random variable Y in the stop-loss order sense, notation $X \leq_{s l} Y$, in case

$$
E\left[(X-d)_{+}\right] \leq E\left[(Y-d)_{+}\right], \quad \text { for all } d .
$$

interpretation:

- X has uniformly smaller upper tails than Y
- any risk-averse decision maker would prefer to pay X instead of Y
- also called increasing convex order and denoted $\leq_{i c x}$

$$
X \leq_{i c x} Y \quad \Leftrightarrow \quad E[v(X)] \leq E[v(Y)]
$$

for all non-decreasing convex functions v

- if $X \leq_{s l} Y$ then $E[X] \leq E[Y]$

Definition

A random variable X is said to precede another random variable Y in the convex order sense, notation $X \leq_{c x} Y$, if and only if

$$
E[X]=E[Y] \quad \text { and } \quad E\left[(X-d)_{+}\right] \leq E\left[(Y-d)_{+}\right], \quad \text { for all } d .
$$

Definition

A random variable X is said to precede another random variable Y in the convex order sense, notation $X \leq_{c x} Y$, if and only if

$$
E[X]=E[Y] \quad \text { and } \quad E\left[(X-d)_{+}\right] \leq E\left[(Y-d)_{+}\right], \quad \text { for all } d
$$

interpretation:

- extreme values are more likely to occur for Y than for X
- equivalent formulation:

$$
X \leq_{c x} Y \quad \Leftrightarrow \quad E[v(X)] \leq E[v(Y)]
$$

for all convex functions v

- if $X \leq_{c x} Y$ then $\operatorname{var}[X] \leq \operatorname{var}[Y]$, inverse implication does not hold

$$
\frac{1}{2}(\operatorname{var}[Y]-\operatorname{var}[X])=\int_{-\infty}^{+\infty}\left|E\left[(Y-k)_{+}\right]-E\left[(X-k)_{+}\right]\right| d k
$$

Definition

A random variable X is said to precede another random variable Y in the convex order sense, notation $X \leq_{c x} Y$, if and only if

$$
E[X]=E[Y] \quad \text { and } \quad E\left[(X-d)_{+}\right] \leq E\left[(Y-d)_{+}\right], \quad \text { for all } d
$$

interpretation:

- extreme values are more likely to occur for Y than for X
- equivalent formulation:

$$
X \leq_{c x} Y \quad \Leftrightarrow \quad E[v(X)] \leq E[v(Y)]
$$

for all convex functions v

- if $X \leq_{c x} Y$ then $\operatorname{var}[X] \leq \operatorname{var}[Y]$, inverse implication does not hold

$$
\frac{1}{2}(\operatorname{var}[Y]-\operatorname{var}[X])=\int_{-\infty}^{+\infty}\left|E\left[(Y-k)_{+}\right]-E\left[(X-k)_{+}\right]\right| d k
$$

if in addition $\operatorname{var}[X]=\operatorname{var}[Y]$ then X and Y are equal in distribution

General inverse distribution function

Definition

The α-inverse of the cumulative distribution function F_{X} of a random variable X is defined as a convex combination of the inverses F_{X}^{-1} and F_{X}^{-1+} of F_{X} :

$$
\begin{aligned}
F_{X}^{-1(\alpha)}(p)=\alpha F_{X}^{-1}(p)+ & (1-\alpha) F_{X}^{-1+}(p) \\
& p \in(0,1), \alpha \in[0,1]
\end{aligned}
$$

with $\quad F_{X}^{-1}(p)=\inf \left\{x \in \mathbb{R} \mid F_{X}(x) \geq p\right\}, \quad p \in[0,1]$

$$
F_{X}^{-1+}(p)=\sup \left\{x \in \mathbb{R} \mid F_{X}(x) \leq p\right\}, \quad p \in[0,1]
$$

Comonotonicity

Definitions

- A set $A \subseteq \mathbb{R}^{n}$ is comonotonic if for any \underline{x} and \underline{y} in $A, x_{i}<y_{i}$ for some i implies that $x_{j} \leq y_{j}$ for all j
- A random vector $\left(X_{1}, \ldots, X_{n}\right)$ is called comonotonic if it has a comonotonic support

Comonotonicity

Definitions

- A set $A \subseteq \mathbb{R}^{n}$ is comonotonic if for any \underline{x} and \underline{y} in $A, x_{i}<y_{i}$ for some i implies that $x_{j} \leq y_{j}$ for all j
- A random vector $\left(X_{1}, \ldots, X_{n}\right)$ is called comonotonic if it has a comonotonic support

Equivalent Characterizations

A random vector $\left(X_{1}, \ldots, X_{n}\right)$ with marginal cdf's $F_{X_{i}}(x)=\operatorname{Pr}\left[X_{i} \leq x\right]$ is said to be comonotonic if

- for $U \sim \operatorname{Uniform}(0,1)$, we have

$$
\left(X_{1}, \ldots, X_{n}\right) \stackrel{d}{=}\left(F_{X_{1}}^{-1}(U), F_{X_{2}}^{-1}(U), \ldots, F_{X_{n}}^{-1}(U)\right) .
$$

- \exists a r.v. Z and non-decreasing functions $f_{i},(i=1, \ldots, n)$, s.t.

$$
\left(X_{1}, \ldots, X_{n}\right) \stackrel{d}{=}\left(f_{1}(Z), \ldots, f_{n}(Z)\right) .
$$

(1) Interpretation

- very strong positive dependence structure
- if \underline{x} and \underline{y} are possible outcomes of \underline{X}, then they must be ordered componentwise
- common monotonic
- the higher the value of one component X_{i}, the higher the value of any other component X_{j}
- all components driven by one and the same random variable \Rightarrow one-dimensional
(1) Interpretation
- very strong positive dependence structure
- if \underline{x} and \underline{y} are possible outcomes of \underline{X}, then they must be ordered componentwise
- common monotonic
- the higher the value of one component X_{i}, the higher the value of any other component X_{j}
- all components driven by one and the same random variable \Rightarrow one-dimensional
(2) Comonotonicity has some interesting properties that can be used to facilitate various complicated problems
- Several functions are additive for comonotonic variables
\Rightarrow multivariate problem is reduced to univariate ones for which quite often analytical expressions are available
- Comonotonicity leaves the marginals $F_{X_{i}}$ intact
\Rightarrow for MC simulation: simulated samples needed in univariate cases are readily available from the main simulation routine

Comonotonic counterpart

The comonotonic counterpart $\left(Y_{1}^{c}, \ldots, Y_{n}^{c}\right)$ of a random vector $\left(Y_{1}, \ldots, Y_{n}\right)$ with marginal distribution functions $F_{Y_{i}, i}=1, \ldots, n$ is given by $\left(F_{Y_{1}}^{-1}(U), F_{Y_{2}}^{-1}(U), \ldots, F_{Y_{n}}^{-1}(U)\right)$, for $U \sim U \operatorname{Uiform}(0,1)$.

Comonotonic counterpart

The comonotonic counterpart $\left(Y_{1}^{c}, \ldots, Y_{n}^{c}\right)$ of a random vector $\left(Y_{1}, \ldots, Y_{n}\right)$ with marginal distribution functions $F_{Y_{i}}, i=1, \ldots, n$ is given by $\left(F_{Y_{1}}^{-1}(U), F_{Y_{2}}^{-1}(U), \ldots, F_{Y_{n}}^{-1}(U)\right)$, for $U \sim \operatorname{Uniform}(0,1)$.

Comonotonic sum

$$
\begin{gathered}
S^{c}=Y_{1}^{c}+\cdots+Y_{n}^{c} \\
F_{S^{c}}(x)=\sup \left\{p \in[0,1] \mid \sum_{i=1}^{n} F_{Y_{i}}^{-1}(p) \leq x\right\} \text { and } \\
F_{S^{c}}^{-1+}(0)=\sum_{i=1}^{n} F_{Y_{i}}^{-1+}(0) \quad \text { and } \quad F_{S^{c}}^{-1}(1)=\sum_{i=1}^{n} F_{Y_{i}}^{-1}(1)
\end{gathered}
$$

with cdf:

Properties

- Additivity: general inverse cdf is additive for comonotonic variables

$$
F_{S^{c}}^{-1(\alpha)}(p)=\sum_{i=1}^{n} F_{Y_{i}}^{-1(\alpha)}(p), \quad p \in(0,1)
$$

Properties

- Additivity: general inverse cdf is additive for comonotonic variables

$$
F_{S^{c}}^{-1(\alpha)}(p)=\sum_{i=1}^{n} F_{Y_{i}}^{-1(\alpha)}(p), \quad p \in(0,1)
$$

- Convex order: For any random vector $\left(Y_{1}, \ldots, Y_{n}\right)$ with given marginals, the sum $S=\sum_{i=1}^{n} Y_{i}$ satisfies $S \leq_{c x} S^{c}$, i.e.

$$
E[S]=E\left[S^{c}\right] \quad \text { and } \quad E\left[(S-K)_{+}\right] \leq E\left[\left(S^{c}-K\right)_{+}\right]
$$

Properties

- Additivity: general inverse cdf is additive for comonotonic variables

$$
F_{S_{c}}^{-1(\alpha)}(p)=\sum_{i=1}^{n} F_{Y_{i}}^{-1(\alpha)}(p), \quad p \in(0,1)
$$

- Convex order: For any random vector $\left(Y_{1}, \ldots, Y_{n}\right)$ with given marginals, the sum $S=\sum_{i=1}^{n} Y_{i}$ satisfies $S \leq_{c x} S^{c}$, i.e.

$$
E[S]=E\left[S^{c}\right] \quad \text { and } \quad E\left[(S-K)_{+}\right] \leq E\left[\left(S^{c}-K\right)_{+}\right]
$$

- always: for $K=\sum_{i=1}^{n} K_{i}$

$$
(S-K)_{+}=\left(\sum_{i=1}^{n} Y_{i}-\sum_{i=1}^{n} K_{i}\right)_{+} \leq \sum_{i=1}^{n} \quad\left(Y_{i}-K_{i}\right)_{+}
$$

Properties

- Additivity: general inverse cdf is additive for comonotonic variables

$$
F_{S_{c}}^{-1(\alpha)}(p)=\sum_{i=1}^{n} F_{Y_{i}}^{-1(\alpha)}(p), \quad p \in(0,1)
$$

- Convex order: For any random vector $\left(Y_{1}, \ldots, Y_{n}\right)$ with given marginals, the sum $S=\sum_{i=1}^{n} Y_{i}$ satisfies $S \leq_{c x} S^{c}$, i.e.

$$
E[S]=E\left[S^{c}\right] \quad \text { and } \quad E\left[(S-K)_{+}\right] \leq E\left[\left(S^{c}-K\right)_{+}\right]
$$

- always: for $K=\sum_{i=1}^{n} K_{i}$

$$
E\left[(S-K)_{+}\right]=E\left[\left(\sum_{i=1}^{n} Y_{i}-\sum_{i=1}^{n} K_{i}\right)_{+}\right] \leq \sum_{i=1}^{n} E\left[\left(Y_{i}-K_{i}\right)_{+}\right]
$$

Properties

- Additivity: general inverse cdf is additive for comonotonic variables

$$
F_{S_{c}}^{-1(\alpha)}(p)=\sum_{i=1}^{n} F_{Y_{i}}^{-1(\alpha)}(p), \quad p \in(0,1)
$$

- Convex order: For any random vector $\left(Y_{1}, \ldots, Y_{n}\right)$ with given marginals, the sum $S=\sum_{i=1}^{n} Y_{i}$ satisfies $S \leq_{c x} S^{c}$, i.e.

$$
E[S]=E\left[S^{c}\right] \quad \text { and } \quad E\left[(S-K)_{+}\right] \leq E\left[\left(S^{c}-K\right)_{+}\right]
$$

- always: for $K=\sum_{i=1}^{n} K_{i}$

$$
E\left[(S-K)_{+}\right]=E\left[\left(\sum_{i=1}^{n} Y_{i}-\sum_{i=1}^{n} K_{i}\right)_{+}\right] \leq \sum_{i=1}^{n} E\left[\left(Y_{i}-K_{i}\right)_{+}\right]
$$

- equality for $S=S^{c}$ and $K_{i}=F_{Y_{i}}^{-1(\alpha)}\left(F_{S^{c}}(K)\right)$

Properties (continued)

- Decomposition: for $K \in\left(F_{S^{c}}^{-1+}(0), F_{S^{c}}^{-1}(1)\right)$

$$
E\left[\left(S^{c}-K\right)_{+}\right]=\sum_{i=1}^{n} E\left[\left(Y_{i}-F_{Y_{i}}^{-1(\alpha)}\left(F_{S c}(K)\right)\right)_{+}\right]
$$

with $\alpha \in[0,1]$ such that

$$
\begin{aligned}
& F_{S^{c}}^{-1(\alpha)}\left(F_{S^{c}}(K)\right)=\sum_{i=1}^{n} F_{Y_{i}}^{-1(\alpha)}\left(F_{S^{c}}(K)\right)=K \\
& \alpha=\frac{F_{S_{c}}^{-1+}\left(F_{S^{c}}(K)\right)-K}{F_{S^{c}}^{-1+}\left(F_{S_{c}}(K)\right)-F_{S^{c}}^{-1}\left(F_{S^{c}}(K)\right)}
\end{aligned}
$$

Properties (continued)

- Decomposition: for $K \in\left(F_{S^{c}}^{-1+}(0), F_{S_{c}}^{-1}(1)\right)$

$$
\begin{aligned}
E\left[\left(S^{c}-K\right)_{+}\right]= & \sum_{i=1}^{n} E\left[\left(Y_{i}-F_{Y_{i}}^{-1}\left(F_{S^{c}}(K)\right)\right)_{+}\right] \\
& -\left[K-F_{S^{c}}^{-1}\left(F_{S^{c}}(K)\right)\right]\left(1-F_{S^{c}}(K)\right)
\end{aligned}
$$

Properties (continued)

- Decomposition: for $K \in\left(F_{S^{c}}^{-1+}(0), F_{S^{c}}^{-1}(1)\right)$

$$
\begin{aligned}
E\left[\left(S^{c}-K\right)_{+}\right]= & \sum_{i=1}^{n} E\left[\left(Y_{i}-F_{Y_{i}}^{-1}\left(F_{S^{c}}(K)\right)\right)_{+}\right] \\
& -\left[K-F_{S^{c}}^{-1}\left(F_{S^{c}}(K)\right)\right]\left(1-F_{S^{c}}(K)\right)
\end{aligned}
$$

Note: second term is zero when all marginal cdf's $F_{X_{i}}$ are strictly increasing and at least one is continuous

Application 1

$$
\mathbb{S}=\sum_{i=1}^{n} w_{i} X_{i}
$$

Application 1

F Chen, Deelstra, Dhaene \& Vanmaele (2007). Static Super-replicating strategy for a class of exotic options. (submitted)

$$
\mathbb{S}=\sum_{i=1}^{n} w_{i} X_{i}
$$

Application 1

國 Chen, Deelstra, Dhaene \& Vanmaele (2007). Static Super-replicating strategy for a class of exotic options. (submitted)
Derivation of upper bound

$$
\mathbb{S}=\sum_{i=1}^{n} w_{i} X_{i}
$$

Application 1

目 Chen, Deelstra, Dhaene \& Vanmaele (2007). Static Super-replicating strategy for a class of exotic options. (submitted)
Derivation of upper bound

- comonotonic counterpart of $\mathbb{S}=\sum_{i=1}^{n} w_{i} X_{i}$ is

$$
\mathbb{S}^{c}=w_{1} F_{X_{1}}^{-1}(U)+w_{2} F_{X_{2}}^{-1}(U)+\cdots+w_{n} F_{X_{n}}^{-1}(U)
$$

Application 1: Infinite market case/full marginal information

國 Chen, Deelstra, Dhaene \& Vanmaele (2007). Static Super-replicating strategy for a class of exotic options. (submitted)
Derivation of upper bound

- comonotonic counterpart of $\mathbb{S}=\sum_{i=1}^{n} w_{i} X_{i}$ is

$$
\mathbb{S}^{c}=w_{1} F_{X_{1}}^{-1}(U)+w_{2} F_{X_{2}}^{-1}(U)+\cdots+w_{n} F_{X_{n}}^{-1}(U)
$$

- vanilla option prices

$$
C_{i}[K]=e^{-r T_{i}} E\left[\left(X_{i}-K\right)_{+}\right]
$$

known for all strikes K

Application 1: Infinite market case/full marginal information

國 Chen, Deelstra, Dhaene \& Vanmaele (2007). Static Super-replicating strategy for a class of exotic options. (submitted)
Derivation of upper bound

- comonotonic counterpart of $\mathbb{S}=\sum_{i=1}^{n} w_{i} X_{i}$ is

$$
\mathbb{S}^{c}=w_{1} F_{X_{1}}^{-1}(U)+w_{2} F_{X_{2}}^{-1}(U)+\cdots+w_{n} F_{X_{n}}^{-1}(U)
$$

- vanilla option prices

$$
C_{i}[K]=e^{-r T_{i}} E\left[\left(X_{i}-K\right)_{+}\right]
$$

known for all strikes $K \Longleftrightarrow \operatorname{cdf} F_{X_{i}}(x)$ known for all x

Application 1: Infinite market case/full marginal information

居 Chen, Deelstra, Dhaene \& Vanmaele (2007). Static Super-replicating strategy for a class of exotic options. (submitted)
Derivation of upper bound

- comonotonic counterpart of $\mathbb{S}=\sum_{i=1}^{n} w_{i} X_{i}$ is

$$
\mathbb{S}^{c}=w_{1} F_{X_{1}}^{-1}(U)+w_{2} F_{X_{2}}^{-1}(U)+\cdots+w_{n} F_{X_{n}}^{-1}(U)
$$

- vanilla option prices

$$
C_{i}[K]=e^{-r T_{i}} E\left[\left(X_{i}-K\right)_{+}\right]
$$

known for all strikes $K \Longleftrightarrow \operatorname{cdf} F_{X_{i}}(x)$ known for all x

- no information about dependency structure between X_{i} multivariate distribution $F_{X_{1} \ldots X_{n}}\left(x_{1}, \ldots, x_{n}\right)$ not specified

Application 1: Infinite market case/full marginal information

居 Chen, Deelstra, Dhaene \& Vanmaele (2007). Static Super-replicating strategy for a class of exotic options. (submitted)
Derivation of upper bound

- comonotonic counterpart of $\mathbb{S}=\sum_{i=1}^{n} w_{i} X_{i}$ is

$$
\mathbb{S}^{c}=w_{1} F_{X_{1}}^{-1}(U)+w_{2} F_{X_{2}}^{-1}(U)+\cdots+w_{n} F_{X_{n}}^{-1}(U)
$$

- vanilla option prices

$$
C_{i}[K]=e^{-r T_{i}} E\left[\left(X_{i}-K\right)_{+}\right]
$$

known for all strikes $K \Longleftrightarrow \operatorname{cdf} F_{X_{i}}(x)$ known for all x

- no information about dependency structure between X_{i} multivariate distribution $F_{X_{1} \ldots X_{n}}\left(x_{1}, \ldots, x_{n}\right)$ not specified
- $C[K]$: fair price rational decision maker is willing to pay for option with pay-off $(\mathbb{S}-K)_{+}$

Theorem

- For any $K \in\left(F_{\mathbb{S C}}^{-1+}(0), F_{\mathbb{S c}}^{-1}(1)\right)$, any fair price $C[K]$ of the option with pay-off $(\mathbb{S}-K)_{+}$at time T satisfies

$$
\begin{aligned}
C[K] & \leq e^{-r T} E\left[\left(\mathbb{S}^{c}-K\right)_{+}\right] \\
& =\sum_{i=1}^{n} w_{i} e^{-r\left(T-T_{i}\right)} C_{i}\left[F_{X_{i}}^{-1(\alpha)}\left(F_{\mathbb{S}^{c}}(K)\right)\right]
\end{aligned}
$$

with α given by

$$
\alpha=\frac{F_{\mathbb{S c}}^{-1+}\left(F_{\mathbb{S c}}(K)\right)-K}{F_{\mathbb{S c}}^{-1+}\left(F_{\mathbb{S}^{c}}(K)\right)-F_{\mathbb{S c}}^{-1}\left(F_{\mathbb{S}^{c}}(K)\right)}
$$

in case $F_{\mathbb{S c}}^{-1+}\left(F_{\mathbb{S c}}(K)\right) \neq F_{\mathbb{S c}}^{-1}\left(F_{\mathbb{S}^{c}}(K)\right)$ and $\alpha=1$ otherwise.

Theorem (continued)

- For $K \notin\left(F_{\mathbb{S c}}^{-1+}(0), F_{\mathbb{S} c}^{-1}(1)\right)$, the exact exotic option price $C[K]$ is given by

$$
C[K]= \begin{cases}\sum_{i=1}^{n} w_{i} e^{-r\left(T-T_{i}\right)} C_{i}[0]-e^{-r T} K & \text { if } K \leq F_{\mathbb{S c}}^{-1+}(0) \\ 0 & \text { if } K \geq F_{\mathbb{S c}}^{-1}(1)\end{cases}
$$

Sketch of Proof

- first step

$$
E\left[\left(\mathbb{S}^{c}-K\right)_{+}\right]=\quad \sum_{i=1}^{n} w_{i} E\left[\left(X_{i}-F_{X_{i}}^{-1(\alpha)}\left(F_{\mathbb{S}}(K)\right)\right)_{+}\right]
$$

Sketch of Proof

- first step

$$
e^{-r T} E\left[\left(\mathbb{S}^{c}-K\right)_{+}\right]=e^{-r T} \sum_{i=1}^{n} w_{i} E\left[\left(X_{i}-F_{X_{i}}^{-1(\alpha)}\left(F_{\mathbb{S}^{c}}(K)\right)\right)_{+}\right]
$$

Sketch of Proof

- first step

$$
\begin{aligned}
e^{-r T} E\left[\left(\mathbb{S}^{c}-K\right)_{+}\right] & =e^{-r T} \sum_{i=1}^{n} w_{i} E\left[\left(X_{i}-F_{X_{i}}^{-1(\alpha)}\left(F_{\mathbb{S}^{c}}(K)\right)\right)_{+}\right] \\
& =\sum_{i=1}^{n} w_{i} e^{-r\left(T-T_{i}\right)} C_{i}\left[F_{X_{i}}^{-1(\alpha)}\left(F_{\mathbb{S} c}(K)\right)\right]
\end{aligned}
$$

Sketch of Proof

- first step

$$
\begin{aligned}
e^{-r T} E\left[\left(\mathbb{S}^{c}-K\right)_{+}\right] & =e^{-r T} \sum_{i=1}^{n} w_{i} E\left[\left(X_{i}-F_{X_{i}}^{-1(\alpha)}\left(F_{\mathbb{S}^{c}}(K)\right)\right)_{+}\right] \\
& =\sum_{i=1}^{n} w_{i} e^{-r\left(T-T_{i}\right)} C_{i}\left[F_{X_{i}}^{-1(\alpha)}\left(F_{\mathbb{S} c}(K)\right)\right]
\end{aligned}
$$

- second step

$$
\left(\sum_{i=1}^{n} w_{i} X_{i}-K\right)_{+} \leq \sum_{i=1}^{n} w_{i}\left(X_{i}-F_{X_{i}}^{-1(\alpha)}\left(F_{\mathbb{S}^{c}}(K)\right)\right)_{+}
$$

Sketch of Proof

- first step

$$
\begin{aligned}
e^{-r T} E\left[\left(\mathbb{S}^{c}-K\right)_{+}\right] & =e^{-r T} \sum_{i=1}^{n} w_{i} E\left[\left(X_{i}-F_{X_{i}}^{-1(\alpha)}\left(F_{\mathbb{S} c}(K)\right)\right)_{+}\right] \\
& =\sum_{i=1}^{n} w_{i} e^{-r\left(T-T_{i}\right)} C_{i}\left[F_{X_{i}}^{-1(\alpha)}\left(F_{\mathbb{S}^{c}}(K)\right)\right]
\end{aligned}
$$

- second step: RHS: buy $w_{i} e^{-r\left(T-T_{i}\right)}$ vanilla calls

$$
\left(\sum_{i=1}^{n} w_{i} X_{i}-K\right)_{+} \leq \sum_{i=1}^{n} w_{i}\left(X_{i}-F_{X_{i}}^{-1(\alpha)}\left(F_{\mathbb{S c}}(K)\right)\right)_{+}
$$

Sketch of Proof

- first step

$$
\begin{aligned}
e^{-r T} E\left[\left(\mathbb{S}^{c}-K\right)_{+}\right] & =e^{-r T} \sum_{i=1}^{n} w_{i} E\left[\left(X_{i}-F_{X_{i}}^{-1(\alpha)}\left(F_{\mathbb{S}^{c}}(K)\right)\right)_{+}\right] \\
& =\sum_{i=1}^{n} w_{i} e^{-r\left(T-T_{i}\right)} C_{i}\left[F_{X_{i}}^{-1(\alpha)}\left(F_{\mathbb{S} c}(K)\right)\right]
\end{aligned}
$$

- second step : RHS: buy $w_{i} e^{-r\left(T-T_{i}\right)}$ vanilla calls

$$
\begin{aligned}
& \left(\sum_{i=1}^{n} w_{i} X_{i}-K\right)_{+} \leq \sum_{i=1}^{n} w_{i}\left(X_{i}-F_{X_{i}}^{-1(\alpha)}\left(F_{\mathbb{S c}}(K)\right)\right)_{+} \\
\Rightarrow & C[K] \leq \sum_{i=1}^{n} w_{i} e^{-r\left(T-T_{i}\right)} C_{i}\left[F_{X_{i}}^{-1(\alpha)}\left(F_{\mathbb{S c}}(K)\right)\right]
\end{aligned}
$$

Sketch of Proof

- first step

$$
\begin{aligned}
e^{-r T} E\left[\left(\mathbb{S}^{c}-K\right)_{+}\right] & =e^{-r T} \sum_{i=1}^{n} w_{i} E\left[\left(X_{i}-F_{X_{i}}^{-1(\alpha)}\left(F_{\mathbb{S}^{c}}(K)\right)\right)_{+}\right] \\
& =\sum_{i=1}^{n} w_{i} e^{-r\left(T-T_{i}\right)} C_{i}\left[F_{X_{i}}^{-1(\alpha)}\left(F_{\mathbb{S} c}(K)\right)\right]
\end{aligned}
$$

- second step : RHS: buy $w_{i} e^{-r\left(T-T_{i}\right)}$ vanilla calls

$$
\begin{aligned}
& \left(\sum_{i=1}^{n} w_{i} X_{i}-K\right)_{+} \leq \sum_{i=1}^{n} w_{i}\left(X_{i}-F_{X_{i}}^{-1(\alpha)}\left(F_{\mathbb{S c}}(K)\right)\right)_{+} \\
\Rightarrow & C[K] \leq \sum_{i=1}^{n} w_{i} e^{-r\left(T-T_{i}\right)} C_{i}\left[F_{X_{i}}^{-1(\alpha)}\left(F_{\mathbb{S c}}(K)\right)\right]
\end{aligned}
$$

Remarks:

Remarks:

- second step holds without assumption of form vanilla option prices, for first step form is needed

Remarks:

- second step holds without assumption of form vanilla option prices, for first step form is needed
- no model assumed for exotic option price

Remarks:

- second step holds without assumption of form vanilla option prices, for first step form is needed
- no model assumed for exotic option price
- assumption: $C[K]=e^{-r T} E\left[(\mathbb{S}-K)_{+}\right]$then from $\mathbb{S} \leq_{c x} \mathbb{S}^{c}$ immediately

$$
C[K] \leq e^{-r T} E\left[\left(\mathbb{S}^{c}-K\right)_{+}\right]
$$

Remarks：

－second step holds without assumption of form vanilla option prices， for first step form is needed
－no model assumed for exotic option price
－assumption：$C[K]=e^{-r T} E\left[(\mathbb{S}-K)_{+}\right]$then from $\mathbb{S} \leq_{c x} \mathbb{S}^{c}$ immediately

$$
C[K] \leq e^{-r T} E\left[\left(\mathbb{S}^{C}-K\right)_{+}\right]
$$

Asian option case in literature
旺

宔
\square

Remarks：

－second step holds without assumption of form vanilla option prices， for first step form is needed
－no model assumed for exotic option price
－assumption：$C[K]=e^{-r T} E\left[(\mathbb{S}-K)_{+}\right]$then from $\mathbb{S} \leq_{c x} \mathbb{S}^{c}$ immediately

$$
C[K] \leq e^{-r T} E\left[\left(\mathbb{S}^{C}-K\right)_{+}\right]
$$

Asian option case in literature
圊 Simon，Goovaerts \＆Dhaene（2000）．IME，26，175－184：stochastic order目

圊

里

Remarks：

－second step holds without assumption of form vanilla option prices， for first step form is needed
－no model assumed for exotic option price
－assumption：$C[K]=e^{-r T} E\left[(\mathbb{S}-K)_{+}\right]$then from $\mathbb{S} \leq_{c x} \mathbb{S}^{c}$ immediately

$$
C[K] \leq e^{-r T} E\left[\left(\mathbb{S}^{C}-K\right)_{+}\right]
$$

Asian option case in literature
國 Simon，Goovaerts \＆Dhaene（2000）．IME，26，175－184：stochastic order
1 Albrecher，Dhaene，Goovaerts \＆Schoutens（2005）．The Journal of Derivatives，12，63－72：idem＋Lévy models
\square

宣

Remarks：

－second step holds without assumption of form vanilla option prices， for first step form is needed
－no model assumed for exotic option price
－assumption：$C[K]=e^{-r T} E\left[(\mathbb{S}-K)_{+}\right]$then from $\mathbb{S} \leq_{c x} \mathbb{S}^{c}$ immediately

$$
C[K] \leq e^{-r T} E\left[\left(\mathbb{S}^{C}-K\right)_{+}\right]
$$

Asian option case in literature
國 Simon，Goovaerts \＆Dhaene（2000）．IME，26，175－184：stochastic order
Albrecher，Dhaene，Goovaerts \＆Schoutens（2005）．The Journal of Derivatives，12，63－72：idem＋Lévy models
囲 Deelstra，Diallo \＆Vanmaele（2006）．JCAM（accepted）：idem for Asian basket options
\square

Remarks：

－second step holds without assumption of form vanilla option prices， for first step form is needed
－no model assumed for exotic option price
－assumption：$C[K]=e^{-r T} E\left[(\mathbb{S}-K)_{+}\right]$then from $\mathbb{S} \leq_{c x} \mathbb{S}^{c}$ immediately

$$
C[K] \leq e^{-r T} E\left[\left(\mathbb{S}^{C}-K\right)_{+}\right]
$$

Asian option case in literature
國 Simon，Goovaerts \＆Dhaene（2000）．IME，26，175－184：stochastic order
围 Albrecher，Dhaene，Goovaerts \＆Schoutens（2005）．The Journal of Derivatives，12，63－72：idem＋Lévy models
囲 Deelstra，Diallo \＆Vanmaele（2006）．JCAM（accepted）：idem for Asian basket options

Nielsen \＆Sandmann（2003）．JFQA，38，449－473：Lagrange optimization＋B\＆S setting

Optimality of super-replicating strategy

Optimality of super-replicating strategy

- UB optimal static super-replicating strategy

$$
\begin{aligned}
e^{-r T} E\left[\left(\mathbb{S}^{c}-K\right)_{+}\right] & =\sum_{i=1}^{n} w_{i} e^{-r\left(T-T_{i}\right)} C_{i}\left[F_{X_{i}}^{-1(\alpha)}\left(F_{\mathbb{S}^{c}}(K)\right)\right] \\
& =\min _{K_{i} \geq 0, \sum w_{i} K_{i} \leq K} \sum_{i=1}^{n} w_{i} e^{-r\left(T-T_{i}\right)} C_{i}\left[K_{i}\right]
\end{aligned}
$$

Optimality of super-replicating strategy

- UB optimal static super-replicating strategy

$$
\begin{aligned}
e^{-r T} E\left[\left(\mathbb{S}^{c}-K\right)_{+}\right] & =\sum_{i=1}^{n} w_{i} e^{-r\left(T-T_{i}\right)} C_{i}\left[F_{X_{i}}^{-1(\alpha)}\left(F_{\mathbb{S}^{c}}(K)\right)\right] \\
& =\min _{K_{i} \geq 0, \sum w_{i} K_{i} \leq K} \sum_{i=1}^{n} w_{i} e^{-r\left(T-T_{i}\right)} C_{i}\left[K_{i}\right]
\end{aligned}
$$

- optimal in much broader class of admissible strategies that super-replicate pay-off $(\mathbb{S}-K)_{+}$:

$$
\mathcal{A}_{K}=\left\{\underline{\nu} \mid\left(\sum_{i=1}^{n} w_{i} X_{i}-K\right)_{+} \leq \sum_{i=1}^{n} \int_{0}^{+\infty} e^{r\left(T-T_{i}\right)}\left(X_{i}-k\right)_{+} \mathrm{d} \nu_{i}(k)\right\}
$$

Optimality of super-replicating strategy

- UB optimal static super-replicating strategy

$$
\begin{aligned}
e^{-r T} E\left[\left(\mathbb{S}^{c}-K\right)_{+}\right] & =\sum_{i=1}^{n} w_{i} e^{-r\left(T-T_{i}\right)} C_{i}\left[F_{X_{i}}^{-1(\alpha)}\left(F_{\mathbb{S}^{c}}(K)\right)\right] \\
& =\min _{K_{i} \geq 0, \sum w_{i} K_{i} \leq K} \sum_{i=1}^{n} w_{i} e^{-r\left(T-T_{i}\right)} C_{i}\left[K_{i}\right]
\end{aligned}
$$

- optimal in much broader class of admissible strategies that super-replicate pay-off $(\mathbb{S}-K)_{+}$:

$$
\mathcal{A}_{K}=\left\{\underline{\nu} \mid\left(\sum_{i=1}^{n} w_{i} X_{i}-K\right)_{+} \leq \sum_{i=1}^{n} \int_{0}^{+\infty} e^{r\left(T-T_{i}\right)}\left(X_{i}-k\right)_{+} \mathrm{d} \nu_{i}(k)\right\}
$$

subclass:

$$
\nu_{i}(k)=\left\{\begin{array}{cl}
w_{i} e^{-r\left(T-T_{i}\right)} & \text { if } k \geq F_{X_{i}}^{-1(\alpha)}\left(F_{\mathbb{S c}}(K)\right) \\
0 & \text { if } k<F_{X_{i}}^{-1(\alpha)}\left(F_{\mathbb{S}_{c}^{c}}(K)\right)
\end{array}\right.
$$

- cheapest super-replicating strategy
- cheapest super-replicating strategy

Theorem
For any $K \in\left(F_{\mathbb{S c}}^{-1+}(0), F_{\mathbb{S c}}^{-1}(1)\right)$ it holds that

$$
e^{-r T} E\left[\left(\mathbb{S}^{c}-K\right)_{+}\right]=\min _{\underline{\nu} \in \mathcal{A}_{K}} \sum_{i=1}^{n} \int_{0}^{+\infty} C_{i}[k] \mathrm{d} \nu_{i}(k) .
$$

- cheapest super-replicating strategy

Theorem
For any $K \in\left(F_{\mathbb{S c}}^{-1+}(0), F_{\mathbb{S c}}^{-1}(1)\right)$ it holds that

$$
e^{-r T} E\left[\left(\mathbb{S}^{c}-K\right)_{+}\right]=\min _{\underline{\nu} \in \mathcal{A}_{K}} \sum_{i=1}^{n} \int_{0}^{+\infty} C_{i}[k] \mathrm{d} \nu_{i}(k)
$$

- in setting of primal and dual problems

囯 Laurence \& Wang (2004). What's a basket worth? Risk Magazine, 17, 73-77.
國 Hobson, Laurence \& Wang (2005). Static-arbitrage upper bounds for the price of basket options. Quantitative Finance, 5, 329-342.

Sketch of Proof

- first step: pay-off inequality independent of distribution of \underline{X} \Rightarrow holds for comonotonic case

Sketch of Proof

- first step: pay-off inequality independent of distribution of \underline{X}
\Rightarrow holds for comonotonic case take discounted expectations

$$
e^{-r T} E\left[\left(\mathbb{S}^{c}-K\right)_{+}\right] \leq \sum_{i=1}^{n} \int_{0}^{+\infty} \underbrace{e^{-r T_{i}} E\left[\left(F_{X_{i}}^{-1}(U)-k\right)_{+}\right]}_{=C_{i}[k]} \mathrm{d} \nu_{i}(k)
$$

Sketch of Proof

- first step: pay-off inequality independent of distribution of \underline{X} \Rightarrow holds for comonotonic case take discounted expectations

$$
e^{-r T} E\left[\left(\mathbb{S}^{c}-K\right)_{+}\right] \leq \inf _{\underline{\nu} \in \mathcal{A}_{K}} \sum_{i=1}^{n} \int_{0}^{+\infty} \underbrace{e^{-r T_{i}} E\left[\left(F_{X_{i}}^{-1}(U)-k\right)_{+}\right]}_{=C_{i}[k]} \mathrm{d} \nu_{i}(k)
$$

Sketch of Proof

- first step: pay-off inequality independent of distribution of \underline{X}
\Rightarrow holds for comonotonic case take discounted expectations

$$
e^{-r T} E\left[\left(\mathbb{S}^{c}-K\right)_{+}\right] \leq \inf _{\underline{\nu} \in \mathcal{A}_{K}} \sum_{i=1}^{n} \int_{0}^{+\infty} \underbrace{e^{-r T_{i}} E\left[\left(F_{X_{i}}^{-1}(U)-k\right)_{+}\right]}_{=C_{i}[k]} \mathrm{d} \nu_{i}(k)
$$

- second step: infimum is reached for subclass $\nu_{i}(k)$ above

$$
e^{-r T} E\left[\left(\mathbb{S}^{c}-K\right)_{+}\right]=\sum_{i=1}^{n} w_{i} e^{-r\left(T-T_{i}\right)} C_{i}\left[F_{X_{i}}^{-1(\alpha)}\left(F_{\mathbb{S}^{c}}(K)\right)\right]
$$

Sketch of Proof

- first step: pay-off inequality independent of distribution of \underline{X}
\Rightarrow holds for comonotonic case take discounted expectations

$$
e^{-r T} E\left[\left(\mathbb{S}^{c}-K\right)_{+}\right] \leq \inf _{\underline{L} \in \mathcal{A}_{K}} \sum_{i=1}^{n} \int_{0}^{+\infty} \underbrace{e^{-r T_{i}} E\left[\left(F_{X_{i}}^{-1}(U)-k\right)_{+}\right]}_{=C_{i}[k]} d \nu_{i}(k)
$$

- second step: infimum is reached for subclass $\nu_{i}(k)$ above

$$
e^{-r T} E\left[\left(\mathbb{S}^{c}-K\right)_{+}\right]=\sum_{i=1}^{n} w_{i} e^{-r\left(T-T_{i}\right)} C_{i}\left[F_{X_{i}}^{-1(\alpha)}\left(F_{\mathbb{S}^{c}}(K)\right)\right]
$$

Largest possible fair price

- worst case expectation

Largest possible fair price

- worst case expectation

Theorem
For any $K \in\left(F_{\mathbb{S c}}^{-1+}(0), F_{\mathbb{S c}}^{-1}(1)\right)$ it holds that

$$
e^{-r T} E\left[\left(\mathbb{S}^{c}-K\right)_{+}\right]=\max _{\underline{Y} \in \mathcal{R}_{n}} e^{-r T} E\left[\left(\sum_{i=1}^{n} w_{i} Y_{i}-K\right)_{+}\right]
$$

with

$$
\mathcal{R}_{n}=\left\{\underline{Y} \mid e^{-r T_{i}} E\left[\left(Y_{i}-K\right)_{+}\right]=C_{i}[K] ; K \geq 0, i=1, \ldots, n\right\} .
$$

Largest possible fair price

- worst case expectation

Theorem
For any $K \in\left(F_{\mathbb{S c}}^{-1+}(0), F_{\mathbb{S c}}^{-1}(1)\right)$ it holds that

$$
e^{-r T} E\left[\left(\mathbb{S}^{c}-K\right)_{+}\right]=\max _{\underline{Y} \in \mathcal{R}_{n}} e^{-r T} E\left[\left(\sum_{i=1}^{n} w_{i} Y_{i}-K\right)_{+}\right]
$$

with

$$
\mathcal{R}_{n}=\left\{\underline{Y} \mid e^{-r T_{i}} E\left[\left(Y_{i}-K\right)_{+}\right]=C_{i}[K] ; K \geq 0, i=1, \ldots, n\right\} .
$$

- UB is largest possible expectation given the marginal pricing distributions of underlying asset prices
- worst possible case is comonotonic case

Application 1: Finite market case

Derivation of the upper bound

Application 1: Finite market case

Derivation of the upper bound

- finite dataset of option prices
- for each i : strikes $0=K_{i, 0}<K_{i, 1}<K_{i, 2}<\cdots<K_{i, m_{i}}<\infty$
- pay-offs $\left(X_{i}-K_{i, j}\right)_{+}$at $T_{i} \leq T$ and option price

$$
C_{i}\left[K_{i, j}\right]=e^{-r T_{i}} E\left[\left(X_{i}-K_{i, j}\right)_{+}\right], \quad i=1, \ldots, n, j=0,1, \ldots, m_{i}
$$

Application 1: Finite market case

Derivation of the upper bound

- finite dataset of option prices
- for each i : strikes $0=K_{i, 0}<K_{i, 1}<K_{i, 2}<\cdots<K_{i, m_{i}}<\infty$
- pay-offs $\left(X_{i}-K_{i, j}\right)_{+}$at $T_{i} \leq T$ and option price

$$
C_{i}\left[K_{i, j}\right]=e^{-r T_{i}} E\left[\left(X_{i}-K_{i, j}\right)_{+}\right], \quad i=1, \ldots, n, j=0,1, \ldots, m_{i}
$$

- $C_{i}[0]=e^{-r T_{i}} E\left[X_{i}\right]$: time zero price of asset i (no-dividends)
- define continuous, decreasing and convex function of K :

$$
C_{i}[K]=e^{-r T_{i}} \mathrm{E}\left[\left(X_{i}-K\right)_{+}\right]
$$

Application 1: Finite market case

Derivation of the upper bound

- finite dataset of option prices
- for each i : strikes $0=K_{i, 0}<K_{i, 1}<K_{i, 2}<\cdots<K_{i, m_{i}}<\infty$
- pay-offs $\left(X_{i}-K_{i, j}\right)_{+}$at $T_{i} \leq T$ and option price

$$
C_{i}\left[K_{i, j}\right]=e^{-r T_{i}} E\left[\left(X_{i}-K_{i, j}\right)_{+}\right], \quad i=1, \ldots, n, j=0,1, \ldots, m_{i}
$$

- $C_{i}[0]=e^{-r T_{i}} E\left[X_{i}\right]$: time zero price of asset i (no-dividends)
- define continuous, decreasing and convex function of K :

$$
C_{i}[K]=e^{-r T_{i}} \mathrm{E}\left[\left(X_{i}-K\right)_{+}\right]
$$

- define $K_{i, m_{i}+1}>K_{i, m_{i}}$ as $K_{i, m_{i}+1}=\sup \left\{K \geq 0 \mid C_{i}[K]>0\right\}$

Application 1: Finite market case

Derivation of the upper bound

- finite dataset of option prices
- for each i : strikes $0=K_{i, 0}<K_{i, 1}<K_{i, 2}<\cdots<K_{i, m_{i}}<\infty$
- pay-offs $\left(X_{i}-K_{i, j}\right)_{+}$at $T_{i} \leq T$ and option price

$$
C_{i}\left[K_{i, j}\right]=e^{-r T_{i}} E\left[\left(X_{i}-K_{i, j}\right)_{+}\right], \quad i=1, \ldots, n, j=0,1, \ldots, m_{i}
$$

- $C_{i}[0]=e^{-r T_{i}} E\left[X_{i}\right]$: time zero price of asset i (no-dividends)
- define continuous, decreasing and convex function of K :

$$
C_{i}[K]=e^{-r T_{i}} \mathrm{E}\left[\left(X_{i}-K\right)_{+}\right]
$$

- define $K_{i, m_{i}+1}>K_{i, m_{i}}$ as $K_{i, m_{i}+1}=\sup \left\{K \geq 0 \mid C_{i}[K]>0\right\}$ in general not known, here assume finite value but large enough

Application 1: Finite market case

Derivation of the upper bound

- finite dataset of option prices
- for each i : strikes $0=K_{i, 0}<K_{i, 1}<K_{i, 2}<\cdots<K_{i, m_{i}}<\infty$
- pay-offs $\left(X_{i}-K_{i, j}\right)_{+}$at $T_{i} \leq T$ and option price

$$
C_{i}\left[K_{i, j}\right]=e^{-r T_{i}} E\left[\left(X_{i}-K_{i, j}\right)_{+}\right], \quad i=1, \ldots, n, j=0,1, \ldots, m_{i}
$$

- $C_{i}[0]=e^{-r T_{i}} E\left[X_{i}\right]$: time zero price of asset i (no-dividends)
- define continuous, decreasing and convex function of K :

$$
C_{i}[K]=e^{-r T_{i}} \mathrm{E}\left[\left(X_{i}-K\right)_{+}\right]
$$

- define $K_{i, m_{i}+1}>K_{i, m_{i}}$ as $K_{i, m_{i}+1}=\sup \left\{K \geq 0 \mid C_{i}[K]>0\right\}$ in general not known, here assume finite value but large enough
- model-free UB for $C[K]$ in terms of observed $C_{i}\left[K_{i, j}\right]$ via comonotonicity
- method of Hobson, Laurence \& Wang (2005) for basket option:
- method of Hobson, Laurence \& Wang (2005) for basket option:
(1) construct convex approximation $\bar{C}_{i}[K]$ via linear interpolation at $C_{i}[K]$
(2) associate distribution function with $\bar{C}_{i}[K]$
(3) Lagrange optimization
- method of Hobson, Laurence \& Wang (2005) for basket option:
(1) construct convex approximation $\bar{C}_{i}[K]$ via linear interpolation at $C_{i}[K]$
(2) associate distribution function with $\bar{C}_{i}[K]$
(3) Lagrange optimization
- unifying approach of Chen, Deelstra, Dhaene \& Vanmaele (2007)
- method of Hobson, Laurence \& Wang (2005) for basket option:
(1) construct convex approximation $\bar{C}_{i}[K]$ via linear interpolation at $C_{i}[K]$
(2) associate distribution function with $\bar{C}_{i}[K]$
(3) Lagrange optimization
- unifying approach of Chen, Deelstra, Dhaene \& Vanmaele (2007)
(1) construct r.v. \bar{X}_{i} with discrete distribution $F_{\bar{X}_{1}}$:

$$
F_{\bar{X}_{i}}(x)=\left\{\begin{array}{cc}
0 & \text { if } x<0 \\
1+e^{r T_{i}} \frac{C_{i}\left[K_{i, j+1}\right]-C_{i}\left[K_{i, j}\right]}{K_{i, j+1}-K_{i, j}} & \text { if } K_{i, j} \leq x<K_{i, j+1}, j=0,1, \ldots, m_{i} \\
1 & \text { if } x \geq K_{i, m_{i}+1}
\end{array}\right.
$$

(2) show that $\bar{C}_{i}[K]=e^{-r T_{i}} E\left[\left(\bar{X}_{i}-K\right)_{+}\right]$is linear interpolation of $C_{i}[K]$ at $K_{i, j}$

(2) show that $\bar{C}_{i}[K]=e^{-r T_{i}} E\left[\left(\bar{X}_{i}-K\right)_{+}\right]$is linear interpolation of $C_{i}[K]$ at $K_{i, j}$
(3) construct UB based on comonotonic sum $\overline{\mathbb{S}}^{c}=\sum_{i=1}^{n} w_{i} F_{\bar{X}_{i}}^{-1}(U)$

Theorem

- For any $K \in\left(0, \sum_{i=1}^{n} w_{i} K_{i, m_{i}+1}\right)$, any fair price $C[K]$ of the option with pay-off $(\mathbb{S}-K)_{+}$at time T is constrained from above as follows:

$$
\begin{aligned}
C[K] \leq & e^{-r T} E\left[\left(\overline{\mathbb{S}}^{c}-K\right)_{+}\right] \\
= & \sum_{i \in \bar{N}_{K}} w_{i} e^{-r\left(T-T_{i}\right)}\left(\alpha C_{i}\left[K_{i, j_{i}}\right]+(1-\alpha) C_{i}\left[K_{i, j_{i}+1}\right]\right) \\
& +\sum_{i \in N_{K}} w_{i} e^{-r\left(T-T_{i}\right)} C_{i}\left[K_{i, j_{i}}\right]
\end{aligned}
$$

with α given by

$$
\alpha=\frac{\sum_{i \in N_{K}} w_{i} K_{i, j_{i}}+\sum_{i \in \bar{N}_{K}} w_{i} K_{i, j_{i}+1}-K}{\sum_{i \in \bar{N}_{K}} w_{i}\left(K_{i, j_{i}+1}-K_{i, j_{i}}\right)}
$$

in case $N_{K} \neq\{1,2, \ldots, n\}$ and $\alpha=1$ otherwise.

Theorem

- For any $K \in\left(0, \sum_{i=1}^{n} w_{i} K_{i, m_{i}+1}\right)$, any fair price $C[K]$ of the option with pay-off $(\mathbb{S}-K)_{+}$at time T is constrained from above as follows:

$$
\begin{aligned}
C[K] \leq & e^{-r T} E\left[\left(\overline{\mathbb{S}}^{c}-K\right)_{+}\right] \\
= & \sum_{i \in \bar{N}_{K}} w_{i} e^{-r\left(T-T_{i}\right)}\left(\alpha C_{i}\left[K_{i, j_{i}}\right]+(1-\alpha) C_{i}\left[K_{i, j_{i}+1}\right]\right) \\
& +\sum_{i \in N_{K}} w_{i} e^{-r\left(T-T_{i}\right)} C_{i}\left[K_{i, j_{i}}\right]
\end{aligned}
$$

with α given by and independent of i

$$
\alpha=\frac{\sum_{i \in N_{K}} w_{i} K_{i, j_{i}}+\sum_{i \in \bar{N}_{K}} w_{i} K_{i, j_{i}+1}-K}{\sum_{i \in \bar{N}_{K}} w_{i}\left(K_{i, j_{i}+1}-K_{i, j_{i}}\right)}
$$

in case $N_{K} \neq\{1,2, \ldots, n\}$ and $\alpha=1$ otherwise.

Theorem(continued)

- For any $K \notin\left(0, \sum_{i=1}^{n} w_{i} K_{i, m_{i}+1}\right)$, the option price $C[K]$ is given by:

$$
C[K]= \begin{cases}\sum_{i=1}^{n} w_{i} e^{-r\left(T-T_{i}\right)} C_{i}[0]-e^{-r T} K & \text { if } K \leq 0 \\ 0 & \text { if } K \geq \sum_{i=1}^{n} w_{i} K_{i, m_{i}+1}\end{cases}
$$

Sketch of Proof

Sketch of Proof

- first step: decomposition \& comonotonicity

$$
\mathrm{E}\left[\left(\overline{\mathbb{S}}^{c}-K\right)_{+}\right]=\quad \sum_{i=1}^{n} w_{i} \mathrm{E}\left[\left(\bar{X}_{i}-F_{\bar{x}_{i}}^{-1(\alpha)}\left(F_{\bar{S}_{c}}(K)\right)\right)_{+}\right]
$$

Sketch of Proof

- first step: decomposition \& comonotonicity

$$
e^{-r T} \mathrm{E}\left[\left(\overline{\mathbb{S}}^{c}-K\right)_{+}\right]=e^{-r T} \sum_{i=1}^{n} w_{i} \mathrm{E}\left[\left(\bar{X}_{i}-F_{\bar{X}_{i}}^{-1(\alpha)}\left(F_{\overline{\mathbb{S}}^{c}}(K)\right)\right)_{+}\right]
$$

Sketch of Proof

- first step: decomposition \& comonotonicity

$$
\begin{aligned}
e^{-r T} \mathrm{E}\left[\left(\overline{\mathbb{S}}^{c}-K\right)_{+}\right] & =e^{-r T} \sum_{i=1}^{n} w_{i} \mathrm{E}\left[\left(\bar{X}_{i}-F_{\bar{X}_{i}}^{-1(\alpha)}\left(F_{\overline{\mathbb{S}}^{c}}(K)\right)\right)\right. \\
& =\sum_{i=1}^{n} w_{i} e^{-r\left(T-T_{i}\right) \bar{C}_{i}\left[F_{\bar{X}_{i}}^{-1(\alpha)}\left(F_{\overline{\mathbb{S}}^{c}}(K)\right)\right]}
\end{aligned}
$$

Sketch of Proof

- first step: decomposition \& comonotonicity

$$
\begin{aligned}
& e^{-r T} \mathrm{E}\left[\left(\overline{\mathbb{S}}^{c}-K\right)_{+}\right]=e^{-r T} \sum_{i=1}^{n} w_{i} \mathrm{E}\left[\left(\bar{X}_{i}-F_{\bar{X}_{i}}^{-1(\alpha)}\left(F_{\mathbb{S}_{c}}(K)\right)\right)_{+}\right] \\
&=\sum_{i=1}^{n} w_{i} e^{-r\left(T-T_{i}\right)} \bar{C}_{i}\left[F_{\bar{X}_{i}}^{-1(\alpha)}\left(F_{\overline{\mathbb{S}}^{c}}(K)\right)\right] \\
& \bar{C}_{i}\left[F_{\bar{X}_{i}}^{-1(\alpha)}\left(F_{\overline{\mathbb{S}}^{c}}(K)\right)\right]= \begin{cases}\bar{C}_{i}\left[K_{i, j_{j}}\right] \\
\bar{C}_{i}\left[\alpha K_{i, j_{i}}+(1-\alpha) K_{i, j_{i}+1}\right] & \text { if } i \in N_{K}\end{cases}
\end{aligned}
$$

Sketch of Proof

- first step: decomposition \& comonotonicity

$$
\begin{aligned}
e^{-r T} \mathrm{E}\left[\left(\overline{\mathbb{S}}^{c}-K\right)_{+}\right] & =e^{-r T} \sum_{i=1}^{n} w_{i} \mathrm{E}\left[\left(\bar{X}_{i}-F_{\bar{X}_{i}}^{-1(\alpha)}\left(F_{\overline{\mathbb{S}}^{c}}(K)\right)\right)_{+}\right] \\
& =\sum_{i=1}^{n} w_{i} e^{-r\left(T-T_{i}\right) \bar{C}_{i}\left[F_{\bar{X}_{i}}^{-1(\alpha)}\left(F_{\mathbb{S}_{c}}(K)\right)\right]} \\
\bar{C}_{i}\left[F_{\bar{X}_{i}}^{-1(\alpha)}\left(F_{\overline{\mathbb{S}}^{c}}(K)\right)\right] & = \begin{cases}\bar{C}_{i}\left[K_{i, j_{j}}\right] & \text { if } i \in N_{K} \\
\bar{C}_{i}\left[\alpha K_{i, j_{i}}+(1-\alpha) K_{i, j_{i}+1}\right] & \text { if } i \in \bar{N}_{K}\end{cases} \\
& = \begin{cases}C_{i}\left[K_{i, j_{i}}\right] & \text { if } i \in A_{K} \\
\alpha C_{i}\left[K_{i, j_{i}}\right]+(1-\alpha) C_{i}\left[K_{i, j_{i}+1}\right] & \text { if } i \notin A_{K}\end{cases}
\end{aligned}
$$

Sketch of Proof (continued)

Sketch of Proof (continued)

- second step

$$
\left(\mathbb{S}-K \sum_{i=1}^{n} W_{i}\left(X_{i}-F_{\bar{X}_{i}}^{-1(\alpha)}\left(F_{\mathbb{S}_{c}}(K)\right)\right)_{+}\right.
$$

Sketch of Proof (continued)

- second step

$$
\begin{aligned}
(\mathbb{S}-K)_{+} \leq & \sum_{i=1}^{n} w_{i}\left(X_{i}-F_{\bar{X}_{i}}^{-1(\alpha)}\left(F_{\mathbb{S}_{c}^{c}}(K)\right)\right)_{+} \\
\leq & \sum_{i \in \bar{N}_{K}} w_{i}\left(\alpha\left(X_{i}-K_{i, j_{i}}\right)_{+}+(1-\alpha)\left(X_{i}-K_{i, j_{i}+1}\right)_{+}\right) \\
& +\sum_{i \in N_{K}} w_{i}\left(X_{i}-K_{i, j_{i}}\right)_{+}
\end{aligned}
$$

Sketch of Proof (continued)

- second step: RHS: pay-off of strategy

$$
\begin{aligned}
(\mathbb{S}-K)_{+} \leq & \sum_{i=1}^{n} w_{i}\left(X_{i}-F_{\bar{X}_{i}}^{-1(\alpha)}\left(F_{\overline{\mathbb{S}}^{c}}(K)\right)\right)_{+} \\
\leq & \sum_{i \in \bar{N}_{K}} w_{i}\left(\alpha\left(X_{i}-K_{i, j_{i}}\right)_{+}+(1-\alpha)\left(X_{i}-K_{i, j_{i}+1}\right)_{+}\right) \\
& +\sum_{i \in N_{K}} w_{i}\left(X_{i}-K_{i, j_{i}}\right)_{+}
\end{aligned}
$$

Sketch of Proof (continued)

- second step: RHS: pay-off of strategy

$$
\begin{aligned}
(\mathbb{S}-K)_{+} \leq & \sum_{i=1}^{n} w_{i}\left(X_{i}-F_{\bar{X}_{i}}^{-1(\alpha)}\left(F_{\overline{\mathbb{S}}^{c}}(K)\right)\right)_{+} \\
\leq & \sum_{i \in \bar{N}_{K}} w_{i}\left(\alpha\left(X_{i}-K_{i, j_{i}}\right)_{+}+(1-\alpha)\left(X_{i}-K_{i, j_{i}+1}\right)_{+}\right) \\
& +\sum_{i \in N_{K}} w_{i}\left(X_{i}-K_{i, j_{i}}\right)_{+} \\
\Rightarrow \quad C[K] \leq & \sum_{i \in \bar{N}_{K}} w_{i} e^{-r\left(T-T_{i}\right)}\left(\alpha C_{i}\left[K_{i, j_{j}}\right]+(1-\alpha) C_{i}\left[K_{i, j_{i}+1}\right]\right) \\
& +\sum_{i \in N_{K}} w_{i} e^{-r\left(T-T_{i}\right)} C_{i}\left[K_{i, j_{i}}\right]
\end{aligned}
$$

Sketch of Proof (continued)

- second step: RHS: pay-off of strategy

$$
\begin{aligned}
(\mathbb{S}-K)_{+} \leq & \sum_{i=1}^{n} w_{i}\left(X_{i}-F_{\bar{X}_{i}}^{-1(\alpha)}\left(F_{\mathbb{S}_{c}}(K)\right)\right)_{+} \\
\leq & \sum_{i \in \bar{N}_{K}} w_{i}\left(\alpha\left(X_{i}-K_{i, j_{i}}\right)_{+}+(1-\alpha)\left(X_{i}-K_{i, j_{i}+1}\right)_{+}\right) \\
& +\sum_{i \in N_{K}} w_{i}\left(X_{i}-K_{i, j_{i}}\right)_{+} \\
\Rightarrow \quad C[K] \leq & \sum_{i \in \bar{N}_{K}} w_{i} e^{-r\left(T-T_{i}\right)}\left(\alpha C_{i}\left[K_{i, j_{i}}\right]+(1-\alpha) C_{i}\left[K_{i, j_{i}+1}\right]\right) \\
& +\sum_{i \in N_{K}} w_{i} e^{-r\left(T-T_{i}\right)} C_{i}\left[K_{i, j i}\right]
\end{aligned}
$$

Remark 1

relation between UB infinite and finite market case

$$
\mathbb{S}^{c} \leq_{s l} \overline{\mathbb{S}}^{c} \Rightarrow e^{-r T} E\left[\left(\mathbb{S}^{c}-K\right)_{+}\right] \leq e^{-r T} E\left[\left(\overline{\mathbb{S}}^{c}-K\right)_{+}\right]
$$

moreover

$$
E\left[\mathbb{S}^{c}\right]=E\left[\overline{\mathbb{S}}^{c}\right] \quad \Rightarrow \quad \mathbb{S}^{c} \leq_{c x} \overline{\mathbb{S}}^{c}
$$

Remark 1

relation between UB infinite and finite market case

$$
\mathbb{S}^{c} \leq_{s l} \overline{\mathbb{S}}^{c} \Rightarrow e^{-r T} E\left[\left(\mathbb{S}^{c}-K\right)_{+}\right] \leq e^{-r T} E\left[\left(\overline{\mathbb{S}}^{c}-K\right)_{+}\right]
$$

moreover

$$
E\left[\mathbb{S}^{c}\right]=E\left[\overline{\mathbb{S}}^{c}\right] \quad \Rightarrow \quad \mathbb{S}^{c} \leq_{c x} \overline{\mathbb{S}}^{c}
$$

Remark 2
assumption: $C[K]=e^{-r T} E\left[(\mathbb{S}-K)_{+}\right]$then from $\mathbb{S} \leq_{c x} \mathbb{S}^{c} \leq_{s l} \bar{S}^{c}$ immediately

$$
C[K] \leq e^{-r T} E\left[\left(\overline{\mathbb{S}}^{c}-K\right)_{+}\right]
$$

Remark 1

relation between UB infinite and finite market case

$$
\mathbb{S}^{c} \leq_{s l} \overline{\mathbb{S}}^{c} \Rightarrow e^{-r T} E\left[\left(\mathbb{S}^{c}-K\right)_{+}\right] \leq e^{-r T} E\left[\left(\overline{\mathbb{S}}^{c}-K\right)_{+}\right]
$$

moreover

$$
E\left[\mathbb{S}^{c}\right]=E\left[\overline{\mathbb{S}}^{c}\right] \quad \Rightarrow \quad \mathbb{S}^{c} \leq_{c x} \overline{\mathbb{S}}^{c}
$$

Remark 2
assumption: $C[K]=e^{-r T} E\left[(\mathbb{S}-K)_{+}\right]$then from $\mathbb{S} \leq_{c x} \mathbb{S}^{c} \leq_{s l} \bar{S}^{c}$ immediately

$$
C[K] \leq e^{-r T} E\left[\left(\overline{\mathbb{S}}^{c}-K\right)_{+}\right]
$$

Theorem (convergence result)
The upper bound $e^{-r T} E\left[\left(\bar{S}^{c}-K\right)_{+}\right]$in the finite market case converges to the upper bound $e^{-r T} E\left[\left(\mathbb{S}^{c}-K\right)_{+}\right]$in the infinite market case when $m \rightarrow+\infty$ and $h \rightarrow 0$.

Optimality of super-replicating strategy

Optimality of super-replicating strategy

Definition

$$
\overline{\mathcal{A}}_{K}=\left\{\underline{\nu} \mid\left(\sum_{i=1}^{n} w_{i} X_{i}-K\right)_{+} \leq \sum_{i=1}^{n} \sum_{j=0}^{m_{i}} e^{r\left(T-T_{i}\right)} \nu_{i, j}\left(X_{i}-K_{i, j}\right)_{+}\right\}
$$

Optimality of super-replicating strategy

Definition

$$
\overline{\mathcal{A}}_{K}=\left\{\underline{\nu} \mid\left(\sum_{i=1}^{n} w_{i} X_{i}-K\right)_{+} \leq \sum_{i=1}^{n} \sum_{j=0}^{m_{i}} e^{r\left(T-T_{i}\right)} \nu_{i, j}\left(X_{i}-K_{i, j}\right)_{+}\right\}
$$

cheapest super-replicating strategy $\underline{\nu} \in \overline{\mathcal{A}}_{K}$

Optimality of super-replicating strategy

Definition

$$
\overline{\mathcal{A}}_{K}=\left\{\underline{\nu} \mid\left(\sum_{i=1}^{n} w_{i} X_{i}-K\right)_{+} \leq \sum_{i=1}^{n} \sum_{j=0}^{m_{i}} e^{r\left(T-T_{i}\right)} \nu_{i, j}\left(X_{i}-K_{i, j}\right)_{+}\right\}
$$

cheapest super-replicating strategy $\underline{\nu} \in \overline{\mathcal{A}}_{K}$
Theorem
Consider the finite market case. For any $K \in\left(0, \sum_{i=1}^{n} w_{i} K_{i, m_{i}+1}\right)$ we have that

$$
e^{-r T} E\left[\left(\overline{\mathbb{S}}^{c}-K\right)_{+}\right]=\min _{\underline{\nu} \in \overline{\mathcal{A}}_{K}} \sum_{i=1}^{n} \sum_{j=0}^{m_{i}} \nu_{i, j} C_{i}\left[K_{i, j}\right]
$$

Sketch of Proof

analogous to infinite market case by noting infimum is reached for subclass

$$
\nu_{i, j}= \begin{cases}w_{i} e^{-r\left(T-T_{i}\right)} & \text { if } i \in N_{K} \text { and } j=j_{i} \\ w_{i} e^{-r\left(T-T_{i}\right)} \alpha & \text { if } i \in \bar{N}_{K} \text { and } j=j_{i} \\ w_{i} e^{-r\left(T-T_{i}\right)}(1-\alpha) & \text { if } i \in \bar{N}_{K} \text { and } j=j_{i}+1\end{cases}
$$

and equals $U B e^{-r T} E\left[\left(\bar{S}^{c}-K\right)_{+}\right]$

Sketch of Proof

analogous to infinite market case by noting infimum is reached for subclass

$$
\nu_{i, j}= \begin{cases}w_{i} e^{-r\left(T-T_{i}\right)} & \text { if } i \in N_{K} \text { and } j=j_{i} \\ w_{i} e^{-r\left(T-T_{i}\right)} \alpha & \text { if } i \in \bar{N}_{K} \text { and } j=j_{i} \\ w_{i} e^{-r\left(T-T_{i}\right)}(1-\alpha) & \text { if } i \in \bar{N}_{K} \text { and } j=j_{i}+1\end{cases}
$$

and equals UB $e^{-r T} E\left[\left(\overline{\mathbb{S}}^{c}-K\right)_{+}\right]$

Largest possible fair price

- worst case expectation

Largest possible fair price

- worst case expectation

Theorem
In the finite market case it holds that for any $K \in\left(0, \sum_{i=1}^{n} w_{i} K_{i, m_{i}+1}\right)$

$$
e^{-r T} E\left[\left(\bar{S}^{c}-K\right)_{+}\right]=\max _{\underline{Y} \in \overline{\mathcal{R}}_{n}} e^{-r T} E\left[\left(\sum_{i=1}^{n} w_{i} Y_{i}-K\right)_{+}\right]
$$

with

$$
\overline{\mathcal{R}}_{n}=\left\{\underline{Y} \mid Y_{i} \geq 0 \wedge e^{-r T_{i}} E\left[\left(Y_{i}-K_{i, j}\right)_{+}\right]=C_{i}\left[K_{i, j}\right] j=0, \ldots, m_{i}+1, i=1, .\right.
$$

Largest possible fair price

- worst case expectation

Theorem

In the finite market case it holds that for any $K \in\left(0, \sum_{i=1}^{n} w_{i} K_{i, m_{i}+1}\right)$

$$
e^{-r T} E\left[\left(\overline{\mathbb{S}}^{c}-K\right)_{+}\right]=\max _{\underline{Y} \in \overline{\mathcal{R}}_{n}} e^{-r T} E\left[\left(\sum_{i=1}^{n} w_{i} Y_{i}-K\right)_{+}\right]
$$

with

$$
\overline{\mathcal{R}}_{n}=\left\{\underline{Y} \mid Y_{i} \geq 0 \wedge e^{-r T_{i}} E\left[\left(Y_{i}-K_{i, j}\right)_{+}\right]=C_{i}\left[K_{i, j}\right] j=0, \ldots, m_{i}+1, i=1, .\right.
$$

- UB is largest possible expectation given the finite number of observable plain vanilla call prices
- worst possible case is comonotonic case

Application 1: Comonotonic Monte Carlo simulation

Application 1: Comonotonic Monte Carlo simulation

- instead of deriving bounds one can look at approximations

Application 1: Comonotonic Monte Carlo simulation

- instead of deriving bounds one can look at approximations
- e.g. Monte Carlo (MC) simulation is a technique that provides approximate solutions to a broad range of mathematical problems

Application 1: Comonotonic Monte Carlo simulation

- instead of deriving bounds one can look at approximations
- e.g. Monte Carlo (MC) simulation is a technique that provides approximate solutions to a broad range of mathematical problems
- drawback of the method is its high computational cost, especially in a high-dimensional setting

Application 1: Comonotonic Monte Carlo simulation

- instead of deriving bounds one can look at approximations
- e.g. Monte Carlo (MC) simulation is a technique that provides approximate solutions to a broad range of mathematical problems
- drawback of the method is its high computational cost, especially in a high-dimensional setting
\Rightarrow variance reduction techniques were developed to increase the precision and reduce the computer time

Application 1: Comonotonic Monte Carlo simulation

- instead of deriving bounds one can look at approximations
- e.g. Monte Carlo (MC) simulation is a technique that provides approximate solutions to a broad range of mathematical problems
- drawback of the method is its high computational cost, especially in a high-dimensional setting
\Rightarrow variance reduction techniques were developed to increase the precision and reduce the computer time
- the so-called Comonotonic Monte Carlo simulation uses the comonotonic upper bound $e^{-r T} E\left[\left(\mathbb{S}^{c}-K\right)_{+}\right]$as a control variate to get more accurate estimates and hence a less time-consuming simulation

Application 1: Comonotonic Monte Carlo simulation

- instead of deriving bounds one can look at approximations
- e.g. Monte Carlo (MC) simulation is a technique that provides approximate solutions to a broad range of mathematical problems
- drawback of the method is its high computational cost, especially in a high-dimensional setting
\Rightarrow variance reduction techniques were developed to increase the precision and reduce the computer time
- the so-called Comonotonic Monte Carlo simulation uses the comonotonic upper bound $e^{-r T} E\left[\left(\mathbb{S}^{c}-K\right)_{+}\right]$as a control variate to get more accurate estimates and hence a less time-consuming simulation

For more details see Vyncke \& Albrecher (2007).

(Comonotonic) lower bound by conditioning

Theorem
For any random vector $\left(X_{1}, \ldots, X_{n}\right)$ and any random variable Λ, we have

$$
E[S \mid \Lambda]=\sum_{i=1}^{n} E\left[X_{i} \mid \Lambda\right] \leq_{c x} S=\sum_{i=1}^{n} X_{i}
$$

(Comonotonic) lower bound by conditioning

Theorem
For any random vector $\left(X_{1}, \ldots, X_{n}\right)$ and any random variable Λ, we have

$$
S^{\ell}:=E[S \mid \Lambda]=\sum_{i=1}^{n} E\left[X_{i} \mid \Lambda\right] \leq_{c x} S=\sum_{i=1}^{n} X_{i}
$$

(Comonotonic) lower bound by conditioning

Theorem

For any random vector $\left(X_{1}, \ldots, X_{n}\right)$ and any random variable Λ, we have

$$
S^{\ell}:=E[S \mid \Lambda]=\sum_{i=1}^{n} E\left[X_{i} \mid \Lambda\right] \leq_{c x} S=\sum_{i=1}^{n} X_{i}
$$

Remarks

- conditional expectation \Rightarrow eliminates randomness that cannot be explained by $\Lambda \Rightarrow S^{\ell}$ less risky than S
- Λ and S mutually independent \Rightarrow trivial result $E[S] \leq_{c x} S$
- Λ completely determines $S \Rightarrow S^{\ell}$ coincides with S
- $\left(E\left[X_{1} \mid \Lambda\right], \ldots, E\left[X_{n} \mid \Lambda\right]\right)$ in general not same marginals as $\left(X_{1}, \ldots, X_{n}\right)$
- S^{ℓ} is a comonotonic sum if all $E\left[X_{i} \mid \Lambda\right]$ are non-decreasing (or are all non-increasing) functions of Λ

(Comonotonic) lower bound by conditioning

Theorem

For any random vector $\left(X_{1}, \ldots, X_{n}\right)$ and any random variable Λ, we have

$$
S^{\ell}:=E[S \mid \Lambda]=\sum_{i=1}^{n} E\left[X_{i} \mid \Lambda\right] \leq_{c x} S=\sum_{i=1}^{n} X_{i}
$$

Remarks

- conditional expectation \Rightarrow eliminates randomness that cannot be explained by $\Lambda \Rightarrow S^{\ell}$ less risky than S
- Λ and S mutually independent \Rightarrow trivial result $E[S] \leq_{c x} S$
- Λ completely determines $S \Rightarrow S^{\ell}$ coincides with S
- $\left(E\left[X_{1} \mid \Lambda\right], \ldots, E\left[X_{n} \mid \Lambda\right]\right)$ in general not same marginals as $\left(X_{1}, \ldots, X_{n}\right)$
- S^{ℓ} is a comonotonic sum if all $E\left[X_{i} \mid \Lambda\right]$ are non-decreasing (or are all non-increasing) functions of Λ

(Comonotonic) lower bound by conditioning

Theorem

For any random vector $\left(X_{1}, \ldots, X_{n}\right)$ and any random variable Λ, we have

$$
S^{\ell}:=E[S \mid \Lambda]=\sum_{i=1}^{n} E\left[X_{i} \mid \Lambda\right] \leq_{c x} S=\sum_{i=1}^{n} X_{i}
$$

Remarks

- conditional expectation \Rightarrow eliminates randomness that cannot be explained by $\Lambda \Rightarrow S^{\ell}$ less risky than S
- Λ and S mutually independent \Rightarrow trivial result $E[S] \leq_{c x} S$
- Λ completely determines $S \Rightarrow S^{\ell}$ coincides with S
- $\left(E\left[X_{1} \mid \Lambda\right], \ldots, E\left[X_{n} \mid \Lambda\right]\right)$ in general not same marginals as $\left(X_{1}, \ldots, X_{n}\right)$
- S^{ℓ} is a comonotonic sum if all $E\left[X_{i} \mid \Lambda\right]$ are non-decreasing (or are all non-increasing) functions of Λ

(Comonotonic) lower bound by conditioning

Theorem

For any random vector $\left(X_{1}, \ldots, X_{n}\right)$ and any random variable Λ, we have

$$
S^{\ell}:=E[S \mid \Lambda]=\sum_{i=1}^{n} E\left[X_{i} \mid \Lambda\right] \leq_{c x} S=\sum_{i=1}^{n} X_{i}
$$

Remarks

- conditional expectation \Rightarrow eliminates randomness that cannot be explained by $\Lambda \Rightarrow S^{\ell}$ less risky than S
- Λ and S mutually independent \Rightarrow trivial result $E[S] \leq_{c x} S$
- Λ completely determines $S \Rightarrow S^{\ell}$ coincides with S
- $\left(E\left[X_{1} \mid \Lambda\right], \ldots, E\left[X_{n} \mid \Lambda\right]\right)$ in general not same marginals as $\left(X_{1}, \ldots, X_{n}\right)$
- S^{ℓ} is a comonotonic sum if all $E\left[X_{i} \mid \Lambda\right]$ are non-decreasing (or are all non-increasing) functions of Λ

(Comonotonic) lower bound by conditioning

Theorem

For any random vector $\left(X_{1}, \ldots, X_{n}\right)$ and any random variable Λ, we have

$$
S^{\ell}:=E[S \mid \Lambda]=\sum_{i=1}^{n} E\left[X_{i} \mid \Lambda\right] \leq_{c x} S=\sum_{i=1}^{n} X_{i}
$$

Remarks

- conditional expectation \Rightarrow eliminates randomness that cannot be explained by $\Lambda \Rightarrow S^{\ell}$ less risky than S
- Λ and S mutually independent \Rightarrow trivial result $E[S] \leq_{c x} S$
- Λ completely determines $S \Rightarrow S^{\ell}$ coincides with S
- $\left(E\left[X_{1} \mid \Lambda\right], \ldots, E\left[X_{n} \mid \Lambda\right]\right)$ in general not same marginals as $\left(X_{1}, \ldots, X_{n}\right)$
- S^{ℓ} is a comonotonic sum if all $E\left[X_{i} \mid \Lambda\right]$ are non-decreasing (or are all non-increasing) functions of Λ

Assumptions

The random variable Λ is such that
(1) S^{ℓ} is a comonotonic sum

Properties

Assumptions

The random variable Λ is such that
(1) S^{ℓ} is a comonotonic sum

Properties

- additivity of inverse cdf
$F_{S^{\ell}}^{-1}(p)=\sum_{i=1}^{n} F_{E\left[X_{i} \mid \Lambda\right]}^{-1}(p)$
- cdf of $S^{\ell}: F_{S^{\ell}}(x)=\sup \left\{p \in(0,1) \mid \sum_{i=1}^{n} F_{E\left[X_{i} \mid \Lambda\right]}^{-1}(p) \leq x\right\}$

Assumptions
The random variable Λ is such that
(1) S^{ℓ} is a comonotonic sum
(2) cdf of $E\left[X_{i} \mid \Lambda\right]$ strictly increasing and continuous

Properties

- additivity of inverse cdf

$$
F_{S^{\ell}}^{-1}(p)=\sum_{i=1}^{n} F_{E\left[X_{i} \mid \Lambda\right]}^{-1}(p)
$$

- cdf of $S^{\ell}: F_{S^{\ell}}(x)=\sup \left\{p \in(0,1) \mid \sum_{i=1}^{n} F_{E\left[X_{i} \mid \Lambda\right]}^{-1}(p) \leq x\right\}$

Assumptions

The random variable Λ is such that
(1) S^{ℓ} is a comonotonic sum
(2) cdf of $E\left[X_{i} \mid \Lambda\right]$ strictly increasing and continuous

Properties

- additivity of inverse cdf

$$
F_{S^{\ell}}^{-1}(p)=\sum_{i=1}^{n} F_{E\left[X_{i} \mid \Lambda\right]}^{-1}(p)
$$

- cdf of $S^{\ell}: F_{S^{\ell}}(x)=\sup \left\{p \in(0,1) \mid \sum_{i=1}^{n} F_{E\left[X_{i} \mid \Lambda\right]}^{-1}(p) \leq x\right\}$
- cdf of S^{ℓ} also strictly increasing and continuous and uniquely determined by

$$
\sum_{i=1}^{n} F_{E\left[X_{i} \mid \Lambda\right]}^{-1}\left(F_{S^{\ell}}(x)\right)=x
$$

Assumptions

The random variable Λ is such that
(1) S^{ℓ} is a comonotonic sum
(2) cdf of $E\left[X_{i} \mid \Lambda\right]$ strictly increasing and continuous
(3) all $E\left[X_{i} \mid \Lambda\right]$ non-increasing in Λ and continuous functions of Λ

Properties

- additivity of inverse cdf
$F_{S^{\ell}}^{-1}(p)=\sum_{i=1}^{n} F_{E\left[X_{i} \mid \Lambda\right]}^{-1}(p)$
- cdf of $S^{\ell}: F_{S^{\ell}}(x)=\sup \left\{p \in(0,1) \mid \sum_{i=1}^{n} F_{E\left[X_{i} \mid \Lambda\right]}^{-1}(p) \leq x\right\}$
- cdf of S^{ℓ} also strictly increasing and continuous and uniquely determined by

$$
\sum_{i=1}^{n} F_{E\left[X_{i} \mid \Lambda\right]}^{-1}\left(F_{S^{\ell}}(x)\right)=x
$$

Assumptions

The random variable Λ is such that
(1) S^{ℓ} is a comonotonic sum
(2) cdf of $E\left[X_{i} \mid \Lambda\right]$ strictly increasing and continuous
(3) all $E\left[X_{i} \mid \Lambda\right]$ non-increasing in Λ and continuous functions of Λ

Properties

- additivity of inverse cdf and some property

$$
F_{S^{\ell}}^{-1}(p)=\sum_{i=1}^{n} F_{E\left[X_{i} \mid \Lambda\right]}^{-1}(p)=\sum_{i=1}^{n} E\left[X_{i} \mid \Lambda=F_{\Lambda}^{-1+}(1-p)\right]
$$

- cdf of $S^{\ell}: F_{S^{\ell}}(x)=\sup \left\{p \in(0,1) \mid \sum_{i=1}^{n} F_{E\left[X_{i} \mid \Lambda\right]}^{-1}(p) \leq x\right\}$
- cdf of S^{ℓ} also strictly increasing and continuous and uniquely determined by

$$
\sum_{i=1}^{n} F_{E\left[X_{i} \mid \Lambda\right]}^{-1}\left(F_{S^{\ell}}(x)\right)=x
$$

Properties (continued)
Decomposition: for $K \in\left(F_{S^{\ell}}^{-1+}(0), F_{S^{\ell}}^{-1}(1)\right)$

$$
E\left[\left(S^{\ell}-K\right)_{+}\right]=\sum_{i=1}^{n} E\left[\left(E\left[X_{i} \mid \Lambda\right]-F_{E\left[X_{i} \mid \Lambda\right]}^{-1(\alpha)}\left(F_{S^{\ell}}(K)\right)\right)_{+}\right]
$$

with $\alpha \in[0,1]$ such that

$$
F_{S^{\ell}}^{-1(\alpha)}\left(F_{S^{\ell}}(K)\right)=\sum_{i=1}^{n} F_{E\left[X_{i} \mid \Lambda\right]}^{-1(\alpha)}\left(F_{S^{\ell}}(K)\right)=K
$$

Properties (continued)
Decomposition: for $K \in\left(F_{S^{\ell}}^{-1+}(0), F_{S^{\ell}}^{-1}(1)\right)$

$$
E\left[\left(S^{\ell}-K\right)_{+}\right]=\sum_{i=1}^{n} E\left[\left(E\left[X_{i} \mid \Lambda\right]-F_{E\left[X_{i} \mid \Lambda\right]}^{-1(\alpha)}\left(F_{S^{\ell}}(K)\right)\right)_{+}\right]
$$

with $\alpha \in[0,1]$ such that

$$
F_{S^{\ell}}^{-1(\alpha)}\left(F_{S^{\ell}}(K)\right)=\sum_{i=1}^{n} F_{E\left[X_{i} \mid \Lambda\right]}^{-1(\alpha)}\left(F_{S^{\ell}}(K)\right)=K
$$

or $\quad E\left[\left(S^{\ell}-K\right)_{+}\right]=\sum_{i=1}^{n} E\left[\left(E\left[X_{i} \mid \Lambda\right]-F_{E\left[X_{i} \mid \Lambda\right]}^{-1}\left(F_{S^{\ell}}(K)\right)\right)_{+}\right]$

$$
-\left[K-F_{S^{\ell}}^{-1}\left(F_{S^{\ell}}(K)\right)\right]\left(1-F_{S^{\ell}}(K)\right)
$$

Properties (continued)
Decomposition: for $K \in\left(F_{S^{\ell}}^{-1+}(0), F_{S^{\ell}}^{-1}(1)\right)$

$$
E\left[\left(S^{\ell}-K\right)_{+}\right]=\sum_{i=1}^{n} E\left[\left(E\left[X_{i} \mid \Lambda\right]-F_{E\left[X_{i} \mid \Lambda\right]}^{-1(\alpha)}\left(F_{S^{\ell}}(K)\right)\right)_{+}\right]
$$

with $\alpha \in[0,1]$ such that

$$
F_{S^{\ell}}^{-1(\alpha)}\left(F_{S^{\ell}}(K)\right)=\sum_{i=1}^{n} F_{E\left[X_{i} \mid \Lambda\right]}^{-1(\alpha)}\left(F_{S^{\ell}}(K)\right)=K
$$

or $\quad E\left[\left(S^{\ell}-K\right)_{+}\right]=\sum_{i=1}^{n} E\left[\left(E\left[X_{i} \mid \Lambda\right]-F_{E\left[X_{i} \mid \Lambda\right]}^{-1}\left(F_{S^{\ell}}(K)\right)\right)_{+}\right]$

$$
-\left[K-F_{S^{\ell}}^{-1}\left(F_{S^{\ell}}(K)\right)\right]\left(1-F_{S^{\ell}}(K)\right)
$$

Note that under assumptions 1 and 2 the second term is zero.

Non-comonotonic sum

Non-comonotonic sum

- $F_{S^{\ell}}(x)=\int_{-\infty}^{+\infty} \operatorname{Pr}\left[\sum_{i=1}^{n} E\left[X_{i} \mid \Lambda\right] \leq x \mid \Lambda=\lambda\right] d F_{\Lambda}(\lambda)$
- $E\left[\left(S^{\ell}-K\right)_{+}\right]=\int_{-\infty}^{+\infty}\left(\sum_{i=1}^{n} E\left[X_{i} \mid \Lambda\right]-K\right)_{+} d F_{\Lambda}(\lambda)$

Non-comonotonic sum

- $F_{S^{\ell}}(x)=\int_{-\infty}^{+\infty} \operatorname{Pr}\left[\sum_{i=1}^{n} E\left[X_{i} \mid \Lambda\right] \leq x \mid \Lambda=\lambda\right] d F_{\Lambda}(\lambda)$
- $E\left[\left(S^{\ell}-K\right)_{+}\right]=\int_{-\infty}^{+\infty}\left(\sum_{i=1}^{n} E\left[X_{i} \mid \Lambda\right]-K\right)_{+} d F_{\Lambda}(\lambda)$
- analytical closed-form expression when all X_{i} lognormal cdf and Λ normal r.v., see
Deelstra, Diallo \& Vanmaele (2007). Bounds for Asian basket options. JCAM, in press.

Choice of conditioning random variable

Choice of conditioning random variable

- From convex ordering: $\operatorname{var}\left[S^{\ell}\right] \leq \operatorname{var}[S]$ and

$$
\frac{1}{2}(\underbrace{\operatorname{var}[S]-\operatorname{var}\left[S^{\ell}\right]}_{E[\operatorname{var}[S \mid \Lambda]]})=\int_{-\infty}^{+\infty}\left(E\left[(S-k)_{+}\right]-E\left[\left(S^{\ell}-k\right)_{+}\right]\right) d k
$$

Choice of conditioning random variable

- From convex ordering: $\operatorname{var}\left[S^{\ell}\right] \leq \operatorname{var}[S]$ and

$$
\frac{1}{2}(\underbrace{\operatorname{var}[S]-\operatorname{var}\left[S^{\ell}\right]}_{E[\operatorname{var}[S \mid \Lambda]]})=\int_{-\infty}^{+\infty}\left(E\left[(S-k)_{+}\right]-E\left[\left(S^{\ell}-k\right)_{+}\right]\right) d k
$$

- aim: make $E[\operatorname{var}[S \mid \Lambda]]$ as small as possible, make Λ and S as alike as possible

Choice of conditioning random variable

- From convex ordering: $\operatorname{var}\left[S^{\ell}\right] \leq \operatorname{var}[S]$ and

$$
\frac{1}{2}(\underbrace{\operatorname{var}[S]-\operatorname{var}\left[S^{\ell}\right]}_{E[\operatorname{var}[S \mid \Lambda]]})=\int_{-\infty}^{+\infty}\left(E\left[(S-k)_{+}\right]-E\left[\left(S^{\ell}-k\right)_{+}\right]\right) d k
$$

- aim: make $E[\operatorname{var}[S \mid \Lambda]]$ as small as possible, make Λ and S as alike as possible
- lognormal case: $\mathbb{S}=\sum_{i=1}^{n} w_{i} e^{Z_{i}} \Rightarrow \mathbb{S}^{\ell}=\sum_{i=1}^{n} w_{i} E\left[e^{Z_{i}} \mid \Lambda\right]$

$$
\begin{aligned}
\operatorname{var}[\mathbb{S}] & =\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i} w_{j} E\left[e^{z_{i}}\right] E\left[e^{Z_{j}}\right]\left(e^{\operatorname{cov}\left(Z_{i}, Z_{j}\right)}-1\right) \\
\operatorname{var}\left[\mathbb{S}^{\ell}\right] & =\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i} w_{j} E\left[e^{Z_{i}}\right] E\left[e^{z_{j}}\right]\left(e^{r_{i} r_{j} \sigma_{z_{i}} \sigma_{z_{j}}}-1\right) \\
r_{i} & =\operatorname{corr}\left(Z_{i}, \Lambda\right)
\end{aligned}
$$

Choice of conditioning random variable

- From convex ordering: $\operatorname{var}\left[S^{\ell}\right] \leq \operatorname{var}[S]$ and

$$
\frac{1}{2}(\underbrace{\operatorname{var}[S]-\operatorname{var}\left[S^{\ell}\right]}_{E[\operatorname{var}[S \mid \Lambda]]})=\int_{-\infty}^{+\infty}\left(E\left[(S-k)_{+}\right]-E\left[\left(S^{\ell}-k\right)_{+}\right]\right) d k
$$

- aim: make $E[\operatorname{var}[S \mid \Lambda]]$ as small as possible, make Λ and S as alike as possible
- lognormal case: $\mathbb{S}=\sum_{i=1}^{n} w_{i} e^{Z_{i}} \quad \Rightarrow \quad \mathbb{S}^{\ell}=\sum_{i=1}^{n} w_{i} E\left[e^{Z_{i}} \mid \Lambda\right]$

$$
\begin{aligned}
\operatorname{var}[\mathbb{S}] & =\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i} w_{j} E\left[e^{z_{i}}\right] E\left[e^{z_{j}}\right]\left(e^{\operatorname{cov}\left(Z_{i}, z_{j}\right)}-1\right) \\
\operatorname{var}\left[\mathbb{S}^{\ell}\right] & =\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i} w_{j} E\left[e^{Z_{i}}\right] E\left[e^{z_{j}}\right]\left(e^{r_{i} r_{j} \sigma_{z_{i}} \sigma_{z_{j}}}-1\right) \\
r_{i} & =\operatorname{corr}\left(Z_{i}, \Lambda\right)
\end{aligned}
$$

r_{i} all same sign $\Rightarrow \mathbb{S}^{\ell}$ comonotonic sum
(1) globally optimal choice: 'global' in the sense that df of S^{ℓ} is good approximation for the whole df of S
(1) globally optimal choice: 'global' in the sense that df of S^{ℓ} is good approximation for the whole df of S
(2) locally optimal choice:

- focus on particular tail of distribution of S
- good fit between distributions of S^{ℓ} and S in a particular region e.g. upper tail or lower tail
(1) globally optimal choice: 'global' in the sense that df of S^{ℓ} is good approximation for the whole df of S
(2) locally optimal choice:
- focus on particular tail of distribution of S
- good fit between distributions of S^{ℓ} and S in a particular region e.g. upper tail or lower tail
- Conditional Tail Expectation at level p

$$
\operatorname{CTE}_{p}[X]=E\left[X \mid X>F_{X}^{-1}(p)\right], \quad p^{\epsilon}(0,1)
$$

- Conditional Left Tail Expectation at level p

$$
\operatorname{CLTE}_{p}[X]=E\left[X \mid X<F_{X}^{-1}(p)\right], \quad p^{\in}(0,1)
$$

(1) globally optimal choice: 'global' in the sense that df of S^{ℓ} is good approximation for the whole df of S
(2) locally optimal choice:

- focus on particular tail of distribution of S
- good fit between distributions of S^{ℓ} and S in a particular region e.g. upper tail or lower tail
- Conditional Tail Expectation at level p

$$
\operatorname{CTE}_{p}[X]=E\left[X \mid X>F_{X}^{-1}(p)\right], \quad p^{\epsilon}(0,1)
$$

- Conditional Left Tail Expectation at level p

$$
\operatorname{CLTE}_{p}[X]=E\left[X \mid X<F_{X}^{-1}(p)\right], \quad p^{\in}(0,1)
$$

- convex order relation $S^{\ell} \leq_{c x} S$ implies $C(L) \mathrm{TE}_{p}\left[S^{\ell}\right] \leq \mathrm{C}(\mathrm{L}) \mathrm{TE}_{p}[S]$
(1) globally optimal choice: 'global' in the sense that df of S^{ℓ} is good approximation for the whole df of S
(2) locally optimal choice:
- focus on particular tail of distribution of S
- good fit between distributions of S^{ℓ} and S in a particular region e.g. upper tail or lower tail
- Conditional Tail Expectation at level p

$$
\operatorname{CTE}_{p}[X]=E\left[X \mid X>F_{X}^{-1}(p)\right], \quad p^{\epsilon}(0,1)
$$

- Conditional Left Tail Expectation at level p

$$
\operatorname{CLTE}_{p}[X]=E\left[X \mid X<F_{X}^{-1}(p)\right], \quad p^{\in}(0,1)
$$

- convex order relation $S^{\ell} \leq_{c x} S$ implies $C(L) \mathrm{TE}_{p}\left[S^{\ell}\right] \leq \mathrm{C}(\mathrm{L}) \mathrm{TE}_{p}[S]$
- aim: choose Λ such that $\mathrm{C}(\mathrm{L}) \mathrm{TE}_{p}\left[S^{\ell}\right]$ is as 'large as possible'

Choice of conditioning rv: lognormal case

(1) globally optimal choice

Choice of conditioning rv: lognormal case

(1) globally optimal choice

- Taylor-based: linear trf of 1st order approx of \mathbb{S}, cfr. Kaas, Dhaene \& Goovaerts (2000)

$$
\Lambda^{T B}=\sum_{j=1}^{n} w_{j} e^{E\left[Z_{j}\right]} Z_{j}
$$

Choice of conditioning rv: lognormal case

(1) globally optimal choice

- Taylor-based: linear trf of 1 st order approx of \mathbb{S}, cfr. Kaas, Dhaene \& Goovaerts (2000)

$$
\Lambda^{T B}=\sum_{j=1}^{n} w_{j} e^{E\left[Z_{j}\right]} Z_{j}
$$

- maximal variance approach: maximize 1 st order approx of $\operatorname{var}\left[\mathbb{S}^{\ell}\right]$, cfr. Vanduffel, Dhaene \& Goovaerts (2005)

$$
\begin{gathered}
\operatorname{var}\left[\mathbb{S}^{\ell}\right] \approx\left(\operatorname{corr}\left(\sum_{j=1}^{n} w_{j} E\left[e^{Z_{j}}\right], \Lambda\right)\right)^{2} \operatorname{var}\left[\sum_{j=1}^{n} w_{j} E\left[e^{Z_{j}}\right] Z_{j}\right] \\
\Rightarrow \quad \Lambda^{M V}=\sum_{j=1}^{n} w_{j} E\left[e^{Z_{j}}\right] Z_{j}
\end{gathered}
$$

Choice of conditioning rv: lognormal case

(1) globally optimal choice

- Taylor-based: linear trf of 1st order approx of \mathbb{S}, cfr. Kaas, Dhaene \& Goovaerts (2000)

$$
\Lambda^{T B}=\sum_{j=1}^{n} w_{j} e^{E\left[Z_{j}\right]} Z_{j}
$$

- maximal variance approach: maximize 1 st order approx of $\operatorname{var}\left[\mathbb{S}^{\ell}\right]$, cfr. Vanduffel, Dhaene \& Goovaerts (2005)

$$
\begin{gathered}
\operatorname{var}\left[\mathbb{S}^{\ell}\right] \approx\left(\operatorname{corr}\left(\sum_{j=1}^{n} w_{j} E\left[e^{Z_{j}}\right], \Lambda\right)\right)^{2} \operatorname{var}\left[\sum_{j=1}^{n} w_{j} E\left[e^{Z_{j}}\right] Z_{j}\right] \\
\Rightarrow \quad \Lambda^{M V}=\sum_{j=1}^{n} w_{j} E\left[e^{Z_{j}}\right] Z_{j}
\end{gathered}
$$

(2) locally optimal choice
locally optimal choice cfr. Vanduffel et al. (2007)

$$
\mathrm{CTE}_{p}\left[\mathbb{S}^{\ell}\right]=\frac{1}{1-p} \sum_{i=1}^{n} w_{i} E\left[e^{Z_{i}}\right] \Phi\left(r_{i} \sigma_{Z_{i}}-\Phi^{-1}(p)\right)
$$

locally optimal choice cfr. Vanduffel et al. (2007) maximize 1st order approximation of $\operatorname{CTE}_{p}\left[\mathbb{S}^{\ell}\right]$

$$
\begin{aligned}
\mathrm{CTE}_{p}\left[\mathbb{S}^{\ell}\right]= & \frac{1}{1-p} \sum_{i=1}^{n} w_{i} E\left[e^{Z_{i}}\right] \Phi\left(r_{i} \sigma_{Z_{i}}-\Phi^{-1}(p)\right) \\
\approx & \frac{1}{1-p} \sum_{i=1}^{n} w_{i} E\left[e^{Z_{i}}\right] \Phi\left(r_{i}^{M V} \sigma_{Z_{i}}-\Phi^{-1}(p)\right) \\
& +\frac{1}{1-p} \operatorname{corr}\left(\sum_{i=1}^{n} w_{i} E\left[e^{Z_{i}}\right] \Phi^{\prime}\left[r_{i}^{M V} \sigma_{Z_{i}}-\Phi^{-1}(p)\right] Z_{i}, \Lambda\right) \\
& \quad \times\left(\operatorname{var}\left[\sum_{i=1}^{n} w_{i} E\left[e^{Z_{i}}\right] \Phi^{\prime}\left[r_{i}^{M V} \sigma_{Z_{i}}-\Phi^{-1}(p)\right] Z_{i}\right]\right)^{1 / 2} \\
r_{i}^{M V}= & \operatorname{corr}\left(Z_{i}, \Lambda^{M V}\right)
\end{aligned}
$$

locally optimal choice cfr. Vanduffel et al. (2007) maximize 1st order approximation of $\mathrm{CTE}_{p}\left[\mathbb{S}^{\ell}\right]$

$$
\begin{aligned}
& \mathrm{CTE}_{p}\left[\mathbb{S}^{\ell}\right]= \frac{1}{1-p} \sum_{i=1}^{n} w_{i} E\left[e^{Z_{i}}\right] \Phi\left(r_{i} \sigma Z_{Z_{i}}-\Phi^{-1}(p)\right) \\
& \approx \frac{1}{1-p} \sum_{i=1}^{n} w_{i} E\left[e^{Z_{i}}\right] \Phi\left(r_{i}^{M V} \sigma_{Z_{i}}-\Phi^{-1}(p)\right) \\
&+\frac{1}{1-p} \operatorname{corr}\left(\sum_{i=1}^{n} w_{i} E\left[e^{z_{i}}\right] \Phi^{\prime}\left[r_{i}^{M V} \sigma_{Z_{i}}-\Phi^{-1}(p)\right] Z_{i}, \Lambda\right) \\
& \times\left(\operatorname{var}\left[\sum_{i=1}^{n} w_{i} E\left[e^{z_{i}}\right] \Phi^{\prime}\left[r_{i}^{M V} \sigma_{Z_{i}}-\Phi^{-1}(p)\right] Z_{i}\right]\right)^{1 / 2} \\
& \Rightarrow \quad r_{i}^{M V}= \operatorname{corr}\left(Z_{i}, \Lambda^{M V}\right) \\
& \Rightarrow \Lambda^{(p)}=\sum_{i=1}^{n} w_{i} E\left[e^{\left.z_{i}\right] \Phi^{\prime}\left[r_{i}^{M V} \sigma_{Z_{i}}-\Phi^{-1}(p)\right] Z_{i}}\right.
\end{aligned}
$$

- Asian options

Dhaene, Denuit, Goovaerts, Kaas \& Vyncke (2002). The concept of comonotonicity in actuarial science and finance: Applications. IME, 31(2), 133-161.

Nielsen \& Sandmann (2003). Pricing bounds on Asian options. JFQA, 38, 449-473.
Reynaerts, Vanmaele, Dhaene \& Deelstra (2006). Bounds for the price of a European-Style Asian option in a binary tree model. EJOR, 168, 322-332.
T
Vanmaele, Deelstra, Liinev, Dhaene \& Goovaerts (2006). Bounds for the price of discretely sampled arithmetic Asian options. JCAM, 185, 51-90.

- Asian options

Dhaene, Denuit, Goovaerts, Kaas \& Vyncke (2002). The concept of comonotonicity in actuarial science and finance: Applications. IME, 31(2), 133-161.Nielsen \& Sandmann (2003). Pricing bounds on Asian options. JFQA, 38, 449-473.
家
Reynaerts, Vanmaele, Dhaene \& Deelstra (2006). Bounds for the price of a European-Style Asian option in a binary tree model. EJOR, 168, 322-332.
R
Vanmaele, Deelstra, Liinev, Dhaene \& Goovaerts (2006). Bounds for the price of discretely sampled arithmetic Asian options. JCAM, 185, 51-90.

- Basket options
\square Deelstra, Liinev \& Vanmaele (2004). Pricing of arithmetic basket options by conditioning. IME, 34, 35-77.
.
Vanmaele, Deelstra \& Liinev (2004). Approximation of stop-loss premiums involving sums of lognormals by conditioning on two variables. IME, 35, 343-367.

－Asian options

Dhaene，Denuit，Goovaerts，Kaas \＆Vyncke（2002）．The concept of comonotonicity in actuarial science and finance：Applications．IME，31（2），133－161．Nielsen \＆Sandmann（2003）．Pricing bounds on Asian options．JFQA，38，449－473．
会
Reynaerts，Vanmaele，Dhaene \＆Deelstra（2006）．Bounds for the price of a European－Style Asian option in a binary tree model．EJOR，168，322－332．
R
Vanmaele，Deelstra，Liinev，Dhaene \＆Goovaerts（2006）．Bounds for the price of discretely sampled arithmetic Asian options．JCAM，185，51－90．
－Basket options
\square Deelstra，Liinev \＆Vanmaele（2004）．Pricing of arithmetic basket options by conditioning．IME，34，35－77．
五
Vanmaele，Deelstra \＆Liinev（2004）．Approximation of stop－loss premiums involving sums of lognormals by conditioning on two variables．IME，35，343－367．
－Asian Basket options
\square Deelstra，Diallo \＆Vanmaele（2007）．Bounds for Asian basket options．JCAM，（in press）．

Application 2: Minimizing risk by using put option Risk measures

- consider a set of risks Γ and probability space (Ω, \mathcal{F}, P)
- elements $Y \in \Gamma$ are random variables, representing losses
- $Y(\omega)>0$ for $\omega \in \Omega$ means a loss, while negative outcomes are gains

Application 2: Minimizing risk by using put option Risk measures

- consider a set of risks Γ and probability space (Ω, \mathcal{F}, P)
- elements $Y \in \Gamma$ are random variables, representing losses
- $Y(\omega)>0$ for $\omega \in \Omega$ means a loss, while negative outcomes are gains

Application 2: Minimizing risk by using put option Risk measures

- consider a set of risks Γ and probability space (Ω, \mathcal{F}, P)
- elements $Y \in \Gamma$ are random variables, representing losses
- $Y(\omega)>0$ for $\omega \in \Omega$ means a loss, while negative outcomes are gains

Application 2: Minimizing risk by using put option Risk measures

- consider a set of risks Γ and probability space (Ω, \mathcal{F}, P)
- elements $Y \in \Gamma$ are random variables, representing losses
- $Y(\omega)>0$ for $\omega \in \Omega$ means a loss, while negative outcomes are gains

Definition
A risk measure ρ is a functional

$$
\rho: \Gamma \mapsto \mathbb{R}
$$

Properties risk measures

Properties

- Monotonicity: $Y_{1} \leq Y_{2}$ implies $\rho\left[Y_{1}\right] \leq \rho\left[Y_{2}\right]$, for any $Y_{1}, Y_{2} \in \Gamma$
- Positive homogeneity: $\rho[a Y]=a \rho[Y]$, for any $Y \in \Gamma$ and $a>0$
- Translation invariance: $\rho[Y+b]=\rho[Y]+b$, for any $Y \in \Gamma$ and $b \in \mathbb{R}$
- Subadditivity: $\rho\left[Y_{1}+Y_{2}\right] \leq \rho\left[Y_{1}\right]+\rho\left[Y_{2}\right]$, for any $Y_{1}, Y_{2} \in \Gamma$
- Additivity of comonotonic risks: for any $Y_{1}, Y_{2} \in \Gamma$ which are comonotonic: $\rho\left[Y_{1}+Y_{2}\right]=\rho\left[Y_{1}\right]+\rho\left[Y_{2}\right]$

Artzner, Delbaen, Eber \& Heath (1999). Coherent measures of risk. Mathematical Finance, 9, 203-229.
coherent risk measure: monotonic, positive homogeneous, translation invariant and subadditive

Some well-known risk measures

- Value-at-Risk at level p : p-quantile risk measure

$$
\operatorname{VaR}_{p}[Y]=F_{Y}^{-1}(p)=\inf \left\{x \in \mathbb{R} \mid F_{Y}(x) \geq p\right\}
$$

related risk measure:
$\operatorname{VaR}_{p}^{+}[Y]=F_{Y}^{-1+}(p)=\sup \left\{x \in \mathbb{R} \mid F_{Y}(x) \leq p\right\}$
monotonic, positive homogeneous, translation invariant, additive for comonotonic risks but not subadditive \Rightarrow not coherent

- Tail Value-at-Risk at level p or Conditional VaR

$$
\mathrm{TVaR}_{p}[Y]=\frac{1}{1-p} \int_{p}^{1} \operatorname{VaR}_{q}[Y] d q
$$

coherent risk measure and additive for comonotonic risks

- Conditional Tail Expectation at level p:

$$
\operatorname{CTE}_{p}[Y]=\mathrm{E}\left[Y \mid Y>F_{Y}^{-1}(p)\right]
$$

The hedging problem: Loss function

- risky financial asset X

The hedging problem: Loss function

- risky financial asset X
- hedge position by using percentage h of a put option $P(0, T, K)$

The hedging problem: Loss function

- risky financial asset X
- hedge position by using percentage h of a put option $P(0, T, K)$
- future value of portfolio (asset, option) and loss function:

$$
\begin{aligned}
& H(T)=\max (h K+(1-h) X(T), X(T)) \\
& L=X(0)+C-\max (h K+(1-h) X(T), X(T)) \text { with } C=h P(0, T, K)
\end{aligned}
$$

The hedging problem: Loss function

- risky financial asset X
- hedge position by using percentage h of a put option $P(0, T, K)$
- future value of portfolio (asset, option) and loss function:

$$
\begin{aligned}
& H(T)=\max (h K+(1-h) X(T), X(T)) \\
& L=X(0)+C-\max (h K+(1-h) X(T), X(T)) \text { with } C=h P(0, T, K)
\end{aligned}
$$

- worst case: put option finishes in-the-money

$$
\begin{aligned}
& H_{\text {ITM }}(T)=(1-h) X(T)+h K \\
& L_{\text {ITM }}=X(0)+C-((1-h) X(T)+h K) \geq L \Rightarrow \rho\left[L_{\text {ITM }}\right] \geq \rho[L]
\end{aligned}
$$

The hedging problem: Loss function

- risky financial asset X
- hedge position by using percentage h of a put option $P(0, T, K)$
- future value of portfolio (asset, option) and loss function:

$$
\begin{aligned}
& H(T)=\max (h K+(1-h) X(T), X(T)) \\
& L=X(0)+C-\max (h K+(1-h) X(T), X(T)) \text { with } C=h P(0, T, K)
\end{aligned}
$$

- worst case: put option finishes in-the-money

$$
\begin{aligned}
& H_{\text {ITM }}(T)=(1-h) X(T)+h K \\
& L_{\text {ITM }}=X(0)+C-((1-h) X(T)+h K) \geq L \Rightarrow \rho\left[L_{\text {ITM }}\right] \geq \rho[L]
\end{aligned}
$$

- for translation invariant and positive homogeneous risk measure

$$
\rho\left[L_{\text {ITM }}\right]=X(0)+C-h K+(1-h) \rho[-X(T)]
$$

The hedging problem: Risk minimization

- constrained optimization problem:

$$
\min _{K, h} X(0)+C-h K+(1-h) \rho[-X(T)]
$$

subject to restrictions $C=h P(0, T, K)$ and $h \in(0,1)$

The hedging problem: Risk minimization

- constrained optimization problem:

$$
\min _{K, h} X(0)+C-h K+(1-h) \rho[-X(T)]
$$

subject to restrictions $C=h P(0, T, K)$ and $h \in(0,1)$

- by Kuhn-Tucker conditions optimal strike K^{*} should satisfy

$$
P(0, T, K)-(K+\rho[-X(T)]) \frac{\partial P}{\partial K}(0, T, K)=0
$$

The hedging problem: Risk minimization

- constrained optimization problem:

$$
\min _{K, h} X(0)+C-h K+(1-h) \rho[-X(T)]
$$

subject to restrictions $C=h P(0, T, K)$ and $h \in(0,1)$

- by Kuhn-Tucker conditions optimal strike K^{*} should satisfy

$$
P(0, T, K)-(K+\rho[-X(T)]) \frac{\partial P}{\partial K}(0, T, K)=0
$$

- Remark optimal strike price is independent of the hedging cost C

The hedging problem: Risk minimization

- constrained optimization problem:

$$
\min _{K, h} X(0)+C-h K+(1-h) \rho[-X(T)]
$$

subject to restrictions $C=h P(0, T, K)$ and $h \in(0,1)$

- by Kuhn-Tucker conditions optimal strike K^{*} should satisfy

$$
P(0, T, K)-(K+\rho[-X(T)]) \frac{\partial P}{\partial K}(0, T, K)=0
$$

- Remark
optimal strike price is independent of the hedging cost C \Rightarrow linear trade-off between hedging expenditure and risk measure level

The hedging problem: Risk minimization

- constrained optimization problem:

$$
\min _{K, h} X(0)+C-h K+(1-h) \rho[-X(T)]
$$

subject to restrictions $C=h P(0, T, K)$ and $h \in(0,1)$

- by Kuhn-Tucker conditions optimal strike K^{*} should satisfy

$$
P(0, T, K)-(K+\rho[-X(T)]) \frac{\partial P}{\partial K}(0, T, K)=0
$$

- Remark
optimal strike price is independent of the hedging cost C \Rightarrow linear trade-off between hedging expenditure and risk measure level
- put option price: $P(0, T, K)=$ disc $\cdot \mathrm{E}\left[(K-X(T))_{+}\right]$and $F_{X(T)}$ continuous

$$
P(0, T, K)-\operatorname{disc} \cdot(K+\rho[-X(T)]) F_{X(T)}(K)=0
$$

Multiple risks

- not one risky asset but sum of risky assets

Multiple risks

- not one risky asset but sum of risky assets
e.g. basket of asset prices or coupon-bearing bond
- for some real constants $a_{i}, i=1, \ldots, n$:

$$
X=\sum_{i=1}^{n} a_{i} X_{i}
$$

Multiple risks

- not one risky asset but sum of risky assets
e.g. basket of asset prices or coupon-bearing bond
- for some real constants $a_{i}, i=1, \ldots, n$:

$$
X=\sum_{i=1}^{n} a_{i} X_{i}
$$

- optimal strike for constrained risk minimization problem again obtained from

$$
P(0, T, K)-(K+\rho[-X(T)]) \frac{\partial P}{\partial K}(0, T, K)=0
$$

Multiple risks

- not one risky asset but sum of risky assets
e.g. basket of asset prices or coupon-bearing bond
- for some real constants $a_{i}, i=1, \ldots, n$:

$$
X=\sum_{i=1}^{n} a_{i} X_{i}
$$

- optimal strike for constrained risk minimization problem again obtained from

$$
P(0, T, K)-(K+\rho[-X(T)]) \frac{\partial P}{\partial K}(0, T, K)=0
$$

- formula further elaborated under additional assumptions

Multiple risks

- not one risky asset but sum of risky assets
e.g. basket of asset prices or coupon-bearing bond
- for some real constants $a_{i}, i=1, \ldots, n$:

$$
X=\sum_{i=1}^{n} a_{i} X_{i}
$$

- optimal strike for constrained risk minimization problem again obtained from

$$
P(0, T, K)-(K+\rho[-X(T)]) \frac{\partial P}{\partial K}(0, T, K)=0
$$

- formula further elaborated under additional assumptions
- distinguish two cases:

Multiple risks

- not one risky asset but sum of risky assets
e.g. basket of asset prices or coupon-bearing bond
- for some real constants $a_{i}, i=1, \ldots, n$:

$$
X=\sum_{i=1}^{n} a_{i} X_{i}
$$

- optimal strike for constrained risk minimization problem again obtained from

$$
P(0, T, K)-(K+\rho[-X(T)]) \frac{\partial P}{\partial K}(0, T, K)=0
$$

- formula further elaborated under additional assumptions
- distinguish two cases: comonotonic and non-comonotonic sum

Comonotonic sum

- additional assumptions:

Comonotonic sum

- additional assumptions:
(1) sum $X(T)$ is comonotonic

Comonotonic sum

- additional assumptions:
(1) sum $X(T)$ is comonotonic
(2) risk measure ρ is additive for comonotonic risks

Comonotonic sum

- additional assumptions:
(1) sum $X(T)$ is comonotonic
(2) risk measure ρ is additive for comonotonic risks
(3) put option price at time zero

$$
P(0, T, K)=\operatorname{disc} \cdot \mathrm{E}\left[(K-X(T))_{+}\right]
$$

Comonotonic sum

- additional assumptions:
(1) sum $X(T)$ is comonotonic
(2) risk measure ρ is additive for comonotonic risks
(3) put option price at time zero

$$
P(0, T, K)=\operatorname{disc} \cdot \mathrm{E}\left[(K-X(T))_{+}\right]
$$

- decomposition of risk:

$$
\rho[-X(T)]=\rho\left[-\sum_{i=1}^{n} a_{i} X_{i}(T)\right]=\sum_{i=1}^{n} a_{i} \rho\left[-X_{i}(T)\right]
$$

Comonotonic sum

- additional assumptions:
(1) sum $X(T)$ is comonotonic
(2) risk measure ρ is additive for comonotonic risks
(3) put option price at time zero

$$
P(0, T, K)=\operatorname{disc} \cdot \mathrm{E}\left[(K-X(T))_{+}\right]
$$

- decomposition of risk:

$$
\rho[-X(T)]=\rho\left[-\sum_{i=1}^{n} a_{i} X_{i}(T)\right]=\sum_{i=1}^{n} a_{i} \rho\left[-X_{i}(T)\right]
$$

- decomposition of put option price:

$$
P(0, T, K)=\sum_{i=1}^{n} a_{i} P_{i}\left(0, T, K_{i}\right) \quad \text { with } \quad \sum_{i=1}^{n} a_{i} K_{i}=K
$$

put option $P_{i}\left(0, T, K_{i}\right)$ with X_{i} as underlying, maturity T, strike K_{i}

- decomposition of put option price: characterisation of the components K_{i} :

$$
K_{i}=F_{X_{i}(T)}^{-1(\alpha)}\left(F_{X(T)}(K)\right) \text { with } \sum_{i=1}^{n} a_{i} F_{X_{i}(T)}^{-1(\alpha)}\left(F_{X(T)}(K)\right)=K
$$

- decomposition of put option price: characterisation of the components K_{i} :

$$
K_{i}=F_{X_{i}(T)}^{-1(\alpha)}\left(F_{X(T)}(K)\right) \text { with } \sum_{i=1}^{n} a_{i} F_{X_{i}(T)}^{-1(\alpha)}\left(F_{X(T)}(K)\right)=K
$$

from where

$$
\alpha=\frac{K-\sum_{i=1}^{n} a_{i} F_{X_{i}(T)}^{-1+}\left(F_{X(T)}(K)\right)}{\sum_{i=1}^{n} a_{i}\left(F_{X_{i}(T)}^{-1}\left(F_{X(T)}(K)\right)-F_{X_{i}(T)}^{-1+}\left(F_{X(T)}(K)\right)\right.}
$$

when $F_{X_{i}(T)}^{-1}\left(F_{X(T)}(K)\right) \neq F_{X_{i}(T)}^{-1+}\left(F_{X(T)}(K)\right)$ and without loss of generality $\alpha=1$ otherwise

- decomposition of derivative of put option price

$$
\frac{\partial P}{\partial K}(0, T, K)=\sum_{i=1}^{n} a_{i} \frac{\partial P_{i}\left(0, T, K_{i}\right)}{\partial K_{i}} \frac{\partial K_{i}}{\partial K}
$$

- decomposition of derivative of put option price

$$
\frac{\partial P}{\partial K}(0, T, K)=\sum_{i=1}^{n} a_{i} \frac{\partial P_{i}\left(0, T, K_{i}\right)}{\partial K_{i}} \frac{\partial K_{i}}{\partial K}
$$

assume marginals $F_{X_{i}}$ are continuous
by Breeden and Litzenberger (1978) and characterisation of K_{i}

$$
\frac{\partial P_{i}\left(0, T, K_{i}\right)}{\partial K_{i}}=\operatorname{disc} \cdot F_{X_{i}(T)}\left(K_{i}\right)=\operatorname{disc} \cdot F_{X(T)}(K)
$$

thus independent of i

- decomposition of derivative of put option price

$$
\frac{\partial P}{\partial K}(0, T, K)=\sum_{i=1}^{n} a_{i} \frac{\partial P_{i}\left(0, T, K_{i}\right)}{\partial K_{i}} \frac{\partial K_{i}}{\partial K}=\operatorname{disc} \cdot F_{X(T)}(K)
$$

assume marginals $F_{X_{i}}$ are continuous
by Breeden and Litzenberger (1978) and characterisation of K_{i}

$$
\frac{\partial P_{i}\left(0, T, K_{i}\right)}{\partial K_{i}}=\operatorname{disc} \cdot F_{X_{i}(T)}\left(K_{i}\right)=\operatorname{disc} \cdot F_{X(T)}(K)
$$

thus independent of i

Algorithm

Step 1 Denote $A_{K}:=F_{X(T)}(K)$ and solve following equation for A_{K} :
$\sum_{i=1}^{n} a_{i} P_{i}\left(0, T, F_{X_{i}(T)}^{-1(\alpha)}\left(A_{K}\right)\right)-\operatorname{disc} \cdot A_{K} \sum_{i=1}^{n} a_{i}\left(F_{X_{i}(T)}^{-1(\alpha)}\left(A_{K}\right)+\rho\left[-X_{i}(T)\right]\right)=0$

Algorithm

Step 1 Denote $A_{K}:=F_{X(T)}(K)$ and solve following equation for A_{K} :
$\sum_{i=1}^{n} a_{i} P_{i}\left(0, T, F_{X_{i}(T)}^{-1(\alpha)}\left(A_{K}\right)\right)-\operatorname{disc} \cdot A_{K} \sum_{i=1}^{n} a_{i}\left(F_{X_{i}(T)}^{-1(\alpha)}\left(A_{K}\right)+\rho\left[-X_{i}(T)\right]\right)=0$
Step 2 Plug found value for A_{K} in characterisation of K_{i} and substitute result in $\sum_{i=1}^{n} a_{i} K_{i}=K$:

$$
K^{*}=\sum_{i=1}^{n} a_{i} F_{X_{i}(T)}^{-1(\alpha)}\left(A_{K}\right)
$$

Algorithm

Step 1 Denote $A_{K}:=F_{X(T)}(K)$ and solve following equation for A_{K} :
$\sum_{i=1}^{n} a_{i} P_{i}\left(0, T, F_{X_{i}(T)}^{-1(\alpha)}\left(A_{K}\right)\right)-\operatorname{disc} \cdot A_{K} \sum_{i=1}^{n} a_{i}\left(F_{X_{i}(T)}^{-1(\alpha)}\left(A_{K}\right)+\rho\left[-X_{i}(T)\right]\right)=0$
Step 2 Plug found value for A_{K} in characterisation of K_{i} and substitute result in $\sum_{i=1}^{n} a_{i} K_{i}=K$:

$$
K^{*}=\sum_{i=1}^{n} a_{i} F_{X_{i}(T)}^{-1(\alpha)}\left(A_{K}\right)
$$

Step 3 Percentage h^{*} for given C solves

$$
C=h P\left(0, T, K^{*}\right)
$$

Algorithm

Step 1 Denote $A_{K}:=F_{X(T)}(K)$ and solve following equation for A_{K} :

$$
\sum_{i=1}^{n} a_{i} P_{i}\left(0, T, F_{X_{i}(T)}^{-1(\alpha)}\left(A_{K}\right)\right)-\operatorname{disc} \cdot A_{K} \sum_{i=1}^{n} a_{i}\left(F_{X_{i}(T)}^{-1(\alpha)}\left(A_{K}\right)+\rho\left[-X_{i}(T)\right]\right)=0
$$

Step 2 Plug found value for A_{K} in characterisation of K_{i} and substitute result in $\sum_{i=1}^{n} a_{i} K_{i}=K$:

$$
K^{*}=\sum_{i=1}^{n} a_{i} F_{X_{i}(T)}^{-1(\alpha)}\left(A_{K}\right)
$$

Step 3 Percentage h^{*} for given C solves

$$
C=h P\left(0, T, K^{*}\right)
$$

Step 4 Minimized risk equals

$$
\rho\left[L_{\text {ITM }}\right]=X(0)+C-h^{*} K^{*}+\left(1-h^{*}\right) \sum^{n} a_{i} \rho\left[-X_{i}(\underline{\underline{\underline{\underline{T}}}})\right]
$$

practical application in

Annaert, Deelstra, Heyman \& Vanmaele (2007). Risk management of a bond portfolio using options. Insurance: Mathematics and Economics. (in press)

practical application in

Annaert, Deelstra, Heyman \& Vanmaele (2007). Risk management of a bond portfolio using options. Insurance: Mathematics and Economics. (in press)

- investement in a coupon-bearing bond
practical application in
Annaert, Deelstra, Heyman \& Vanmaele (2007). Risk management of a bond portfolio using options. Insurance: Mathematics and Economics. (in press)
- investement in a coupon-bearing bond
- instanteneous short rate model: one-factor Hull-White
practical application in
Annaert, Deelstra, Heyman \& Vanmaele (2007). Risk management of a bond portfolio using options. Insurance: Mathematics and Economics. (in press)
- investement in a coupon-bearing bond
- instanteneous short rate model: one-factor Hull-White
- comonotonic sum, Jamshidian decomposition

Non-comonotonic sum

- additional assumptions:

Non-comonotonic sum

- additional assumptions:
(1) $X_{i}(T)$ non-independent but sum $X(T)$ is non-comonotonic

Non-comonotonic sum

- additional assumptions:
(1) $X_{i}(T)$ non-independent but sum $X(T)$ is non-comonotonic
(2) risk measure ρ is additive for comonotonic risks

Non-comonotonic sum

- additional assumptions:
(1) $X_{i}(T)$ non-independent but sum $X(T)$ is non-comonotonic
(2) risk measure ρ is additive for comonotonic risks
(3) put option price at time zero

$$
P(0, T, K)=\operatorname{disc} \cdot \mathrm{E}\left[(K-X(T))_{+}\right]
$$

Non-comonotonic sum

- additional assumptions:
(1) $X_{i}(T)$ non-independent but sum $X(T)$ is non-comonotonic
(2) risk measure ρ is additive for comonotonic risks
(3) put option price at time zero

$$
P(0, T, K)=\operatorname{disc} \cdot \mathrm{E}\left[(K-X(T))_{+}\right]
$$

- approaches

Non-comonotonic sum

- additional assumptions:
(1) $X_{i}(T)$ non-independent but sum $X(T)$ is non-comonotonic
(2) risk measure ρ is additive for comonotonic risks
(3) put option price at time zero

$$
P(0, T, K)=\operatorname{disc} \cdot \mathrm{E}\left[(K-X(T))_{+}\right]
$$

- approaches
(1) numerical/simulation

$$
P(0, T, K)-(K+\rho[-X(T)]) \frac{\partial P}{\partial K}(0, T, K)=0
$$

Non-comonotonic sum

- additional assumptions:
(1) $X_{i}(T)$ non-independent but sum $X(T)$ is non-comonotonic
(2) risk measure ρ is additive for comonotonic risks
(3) put option price at time zero

$$
P(0, T, K)=\operatorname{disc} \cdot \mathrm{E}\left[(K-X(T))_{+}\right]
$$

- approaches
(1) numerical/simulation

$$
P(0, T, K)-(K+\rho[-X(T)]) \frac{\partial P}{\partial K}(0, T, K)=0
$$

(2) approximations

- appromixations of $X(T)$

$$
X^{\nu}(T):=\sum_{i=1}^{n} a_{i} X_{i}^{\nu}(T), \quad \nu=\ell, c
$$

with

$$
X_{i}^{\ell}(T):=\mathrm{E}\left[X_{i}(T) \mid \Lambda\right] \quad \text { and } \quad X_{i}^{c}(T):=F_{X_{i}(T)}^{-1}(U)
$$

- appromixations of $X(T)$

$$
X^{\nu}(T):=\sum_{i=1}^{n} a_{i} X_{i}^{\nu}(T), \quad \nu=\ell, c
$$

with

$$
X_{i}^{\ell}(T):=\mathrm{E}\left[X_{i}(T) \mid \Lambda\right] \quad \text { and } \quad X_{i}^{c}(T):=F_{X_{i}(T)}^{-1}(U)
$$

and

$$
X^{\ell}(T) \leq_{c x} X(T) \leq_{c x} X^{c}(T)
$$

- appromixations of $X(T)$

$$
X^{\nu}(T):=\sum_{i=1}^{n} a_{i} X_{i}^{\nu}(T), \quad \nu=\ell, c
$$

with

$$
X_{i}^{\ell}(T):=\mathrm{E}\left[X_{i}(T) \mid \Lambda\right] \quad \text { and } \quad X_{i}^{c}(T):=F_{X_{i}(T)}^{-1}(U)
$$

and

$$
X^{\ell}(T) \leq_{c x} X(T) \leq_{c x} X^{c}(T)
$$

with $X^{c}(T)$ comonotonic and $X^{\ell}(T)$ also when Λ carefully chosen

- approximations of $P(0, T, K)$

$$
P^{\nu}(0, T, K)=\operatorname{disc} \cdot \mathrm{E}\left[\left(K-X^{\nu}(T)\right)_{+}\right], \quad \nu=\ell, c
$$

with

$$
P^{\ell}(0, T, K) \leq P(0, T, K) \leq P^{c}(0, T, K)
$$

- approximations of $P(0, T, K)$

$$
P^{\nu}(0, T, K)=\operatorname{disc} \cdot \mathrm{E}\left[\left(K-X^{\nu}(T)\right)_{+}\right], \quad \nu=\ell, c
$$

with

$$
P^{\ell}(0, T, K) \leq P(0, T, K) \leq P^{c}(0, T, K)
$$

- decomposition of $P^{\nu}(0, T, K)$

$$
P^{\nu}(0, T, K)=\operatorname{disc} \cdot \sum_{i=1}^{n} a_{i} \mathrm{E}\left[\left(K_{i}^{\nu}-X_{i}^{\nu}(T)\right)_{+}\right]:=\sum_{i=1}^{n} a_{i} P_{i}^{\nu}\left(0, T, K_{i}^{\nu}\right)
$$

with

$$
K_{i}^{\nu}=F_{X_{i}^{\nu}(T)}^{-1(\alpha)}\left(F_{X^{\nu}(T)}(K)\right) \quad \text { and } \quad \sum_{i=1}^{n} a_{i} K_{i}^{\nu}=K
$$

- approximations of $P(0, T, K)$

$$
P^{\nu}(0, T, K)=\operatorname{disc} \cdot E\left[\left(K-X^{\nu}(T)\right)_{+}\right], \quad \nu=\ell, c
$$

with

$$
P^{\ell}(0, T, K) \leq P(0, T, K) \leq P^{c}(0, T, K)
$$

- decomposition of $P^{\nu}(0, T, K)$

$$
P^{\nu}(0, T, K)=\operatorname{disc} \cdot \sum_{i=1}^{n} a_{i} \mathrm{E}\left[\left(K_{i}^{\nu}-X_{i}^{\nu}(T)\right)_{+}\right]:=\sum_{i=1}^{n} a_{i} P_{i}^{\nu}\left(0, T, K_{i}^{\nu}\right)
$$

with

$$
K_{i}^{\nu}=F_{X_{i}^{\nu}(T)}^{-1(\alpha)}\left(F_{X^{\nu}(T)}(K)\right) \quad \text { and } \quad \sum_{i=1}^{n} a_{i} K_{i}^{\nu}=K
$$

- decomposition of risk $\rho\left[-X^{\nu}(T)\right]$ for $\nu=\ell, c$:

$$
\rho\left[-X^{\nu}(T)\right]=\sum_{i=1}^{n} a_{i} \rho\left[-X_{i}^{\nu}(T)\right]
$$

original constrained minimization problem:

$$
\begin{aligned}
& \min _{K, h} X(0)+C-h K+(1-h) \rho[-X(T)] \\
& \text { s.t. } C=h P(0, T, K) \text { and } h \in(0,1)
\end{aligned}
$$

approximate constrained minimization problem:

$$
\begin{aligned}
& \min _{K, h} X(0)+C-h K+(1-h) \rho\left[-X^{\nu}(T)\right] \\
& \text { s.t. } C=h P^{\nu}(0, T, K) \text { and } h \in(0,1)
\end{aligned}
$$

Algorithm

Step 1 Denote $A_{K}^{\nu}:=F_{X^{\nu}(T)}(K)$ and solve following equation for A_{K}^{ν} :

$$
\sum_{i=1}^{n} a_{i} P_{i}^{\nu}\left(0, T, F_{X_{i}^{\nu}(T)}^{-1(\alpha)}\left(A_{K}^{\nu}\right)\right)-\operatorname{disc} \cdot A_{K} \sum_{i=1}^{n} a_{i}\left(F_{X_{i}^{\nu}(T)}^{-1(\alpha)}\left(A_{K}^{\nu}\right)+\rho\left[-X_{i}^{\nu}(T)\right]\right)=0
$$

Algorithm

Step 1 Denote $A_{K}^{\nu}:=F_{X^{\nu}(T)}(K)$ and solve following equation for A_{K}^{ν} :

$$
\sum_{i=1}^{n} a_{i} P_{i}^{\nu}\left(0, T, F_{X_{i}^{\nu}(T)}^{-1(\alpha)}\left(A_{K}^{\nu}\right)\right)-\operatorname{disc} \cdot A_{K} \sum_{i=1}^{n} a_{i}\left(F_{X_{i}^{\nu}(T)}^{-1(\alpha)}\left(A_{K}^{\nu}\right)+\rho\left[-X_{i}^{\nu}(T)\right]\right)=0
$$

Step 2 Plug found value for A_{K}^{ν} in decomposition of K :

$$
K_{\nu}^{*}=\sum_{i=1}^{n} a_{i} F_{X_{i}^{\nu}(T)}^{-1(\alpha)}\left(A_{K}^{\nu}\right)
$$

Algorithm

Step 1 Denote $A_{K}^{\nu}:=F_{X^{\nu}(T)}(K)$ and solve following equation for A_{K}^{ν} :

$$
\sum_{i=1}^{n} a_{i} P_{i}^{\nu}\left(0, T, F_{X_{i}^{\nu}(T)}^{-1(\alpha)}\left(A_{K}^{\nu}\right)\right)-\operatorname{disc} \cdot A_{K} \sum_{i=1}^{n} a_{i}\left(F_{X_{i}^{\nu}(T)}^{-1(\alpha)}\left(A_{K}^{\nu}\right)+\rho\left[-X_{i}^{\nu}(T)\right]\right)=0
$$

Step 2 Plug found value for A_{K}^{ν} in decomposition of K :

$$
K_{\nu}^{*}=\sum_{i=1}^{n} a_{i} F_{X_{i}^{\nu}(T)}^{-1(\alpha)}\left(A_{K}^{\nu}\right)
$$

Step 3 Percentage h_{ν}^{*} for given C solves

$$
C=h_{\nu} P^{\nu}\left(0, T, K_{\nu}^{*}\right)
$$

Algorithm

Step 1 Denote $A_{K}^{\nu}:=F_{X^{\nu}(T)}(K)$ and solve following equation for A_{K}^{ν} :

$$
\sum_{i=1}^{n} a_{i} P_{i}^{\nu}\left(0, T, F_{X_{i}^{\nu}(T)}^{-1(\alpha)}\left(A_{K}^{\nu}\right)\right)-\operatorname{disc} \cdot A_{K} \sum_{i=1}^{n} a_{i}\left(F_{X_{i}^{\nu}(T)}^{-1(\alpha)}\left(A_{K}^{\nu}\right)+\rho\left[-X_{i}^{\nu}(T)\right]\right)=0
$$

Step 2 Plug found value for A_{K}^{ν} in decomposition of K :

$$
K_{\nu}^{*}=\sum_{i=1}^{n} a_{i} F_{X_{i}^{\nu}(T)}^{-1(\alpha)}\left(A_{K}^{\nu}\right)
$$

Step 3 Percentage h_{ν}^{*} for given C solves

$$
C=h_{\nu} P^{\nu}\left(0, T, K_{\nu}^{*}\right)
$$

Step 4 Minimized approximate risk equals

$$
X(0)+C-h_{\nu}^{*} K_{\nu}^{*}+\left(1-h_{\nu}^{*}\right) \sum_{i=1}^{n} a_{i} \rho\left[-X_{i}^{\nu}(T)\right]
$$

Quality of approximations?

- ordering of risk measures based on stochastic dominance, stop-loss order, convex order

Quality of approximations?

- ordering of risk measures based on stochastic dominance, stop-loss order, convex order
- ordering of put option prices (see above)

Quality of approximations?

- ordering of risk measures based on stochastic dominance, stop-loss order, convex order
- ordering of put option prices (see above)
- combined in non-linear constrained optimization problem

Quality of approximations?

- ordering of risk measures based on stochastic dominance, stop-loss order, convex order
- ordering of put option prices (see above)
- combined in non-linear constrained optimization problem
- for $\nu=\ell$ parameter Λ to play with

Quality of approximations?

- ordering of risk measures based on stochastic dominance, stop-loss order, convex order
- ordering of put option prices (see above)
- combined in non-linear constrained optimization problem
- for $\nu=\ell$ parameter Λ to play with
- study applications
(1) coupon-bearing bond and two-additive-factor Gaussian model
(2) basket of shares
see
圊 Deelstra, Vanmaele \& Vyncke (2008). Minimizing the risk of a financial product using a put option. (in preparation)

Thanks for your attention!

