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Abstract This paper states that for financial markets with continuous filtrations, the
minimax local martingale measure defined by Frittelli is equivalent to the objective
measure for nondecreasing but not strictly increasing utility functions if it exists, pro-
vided the dual utility function satisfies some boundedness assumptions for the relative
risk aversion, and there exists an equivalent local martingale measure which has enough
integrability property. The result in this paper essentially extends an earlier result of
Delbaen/Schachermayer, who proved this for the case where the dual utility function
is quadratic. Examples for this situation are specifically q-optimal measures for q > 1.
The generalization is done using Young functions on Orlicz spaces, and proving a con-
ditional version of the Hölder inequality in this general setup.
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1 Introduction

In an incomplete market model, option prices cannot be determined from arbitrage
considerations alone. A well known technique to deal with this situation is the utility
indifference argument stated for instance in [10] and [4], namely that the option price
should be such that an investor investing optimally with respect to his utility function
u should be indifferent of first order between whether or not to invest a small amount
in the option. Following [4], this means

sup
X∈C(x)

E[u(X)] = sup
X∈L∞:p(X)≤x

E[u(X)]
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where C(x) is the set of superreplicable claims at initial portfolio value x, whereas on
the right-hand side, the optimization is done over all claims with price less than or
equal to x.

The minimax martingale measure [4] for a given initial wealth x is the probability
measure Q̂x which minimizes the maximal attainable utility at U(Q,x) at a price x,

U(Q̂x, x) ≤ U(Q, x) ∀Q ∈ M1

where M1 is the set of absolutely continuous separating measures, where a separating
measure is, as in [4], an absolutely continuous probability measure under which all
claims that are replicable at initial portfolio value 0 have a nonpositive expectation,
and

U(Q, x) := sup{E[u(X)] : X ∈ L∞, EQ[X] ≤ x}

Existence of such a minimax measure has been proved in a very general setup in [4].
As already mentioned there, this minimax measure is exactly the pricing rule required
in order to guarantee that the supremum attainable expected utility with respect to all
(not necessarily replicable) claims with price smaller than or equal to the initial wealth
is not larger than the maximal expected utility when considering only replicable claims.

But this minimax measure has another interesting property: by the duality theory,
following for example [10] or earlier papers such as [6], it turns out that a good candidate
for the optimal terminal value of a portfolio at initial value x in an incomplete market
is

X̂T (x) = I

 

λ
dQ̂x

dP

!

where I is the inverse of the derivative of u, and λ minimizes

λx + E

"

u∗
 

λ
dQ̂x

dP

!#

where u∗ is the convex conjugated function to u.

In general, even if the minimax measure exists, is it not necessarily equivalent to
the objective probability measure P . Using the quadratic utility function, already in
[2] has been stated that even for a model with only three states, this measure is not
necessarily equivalent.

Why is the question of equivalence an interesting one? Firstly, when assuming a
market which is free of arbitrage, and thinking about a representative investor with
utility function u and initial wealth x, then, when completing the market by the min-
imax martingale measure, one would like to have that the completed market is also
free of arbitrage. This is not the case when the minimax measure is only absolutely
continuous with respect to P . Indeed, let Qx be the minimax measure. If it is not
equivalent, there is a measurable set A with P (A) > 0 and Qx(A) = 0. It follows
that the L∞-claim 1A is nonnegative and positive with strictly positive probability.

However, this claim has, due to the pricing rule p(1A) = EQ̂x [1A] = 0 zero price, and
is therefore an arbitrage opportunity. A price system like that seems therefore not to
be very reasonable. In this sense, one can see the question of equivalence as a test of
the model on its reasonability.

A second reason why the question of equivalence might be interesting has been
stated in [10]: if the utility function satisfies the suitable regularity conditions as well



3

as the property of a reasonable asymptotic elasticity (see [10] for details), it follows
that the optimal claim, defined by

X̂T (x) = I

 

λ
dQ̂x

dP

!

is replicable at price x using only the traded assets in the incomplete market.

Having motivated why the question about equivalence may be interesting, we turn
now to the answer of it. In specific situations, equivalence has already been proved in
literature. For example, if the price processes are continuous, and using a quadratic
utility function (or equivalently a mean-variance optimization), equivalence of the min-
imal martingale measure has already been proved in [2]. Even if the definition of this
measure is different from the definition in [4], it is stated in the latter paper that for
continuous processes, the two definitions agree.

Another situation where continuity is not needed has been proved in [3] for the case
of exponential utility functions, or for more general utility functions in [5]. In the case
of utility functions that are unbounded from above, the equivalence of the minimax
martingale measure has been proved in [4].

The present paper generalizes the results of [2]. In the case of a continuous filtration,
equivalence will be proved for a very broad class of utility functions which have a
satiation point, using only a slight assumption about boundedness of the relative risk
aversion. It will turn out as a consequence that all q-optimal measures with q > 1 are
equivalent, provided the filtration is continuous, and there exists an equivalent local
martingale measure which is in Lq . This includes obviously the case of the variance-
optimal martingale measure. The technique for this proof follows the idea of [2], but
uses a generalized version of the Hölder inequalities for Young functions in Orlicz
spaces.

For the case of unsatiated investors with bounded utility functions, there is already
a quite general result in [5]. We will show that this result, combined with the one
for unbounded utility functions stated in [4], holds for all strictly increasing utility
functions.

The outline of this paper is as follows. In section 2, Young functions and Orlicz
spaces are introduced. Section 3 introduces a generalized definition of the relative risk
aversion which can also be applied if the Young function is not differentiable. Further-
more, some important consequences of the boundedness of the relative risk aversion
are proved. In section 4, a conditional version of the generalized Hölder inequality for
Young functions is proved, a topic that may be interesting on its own. The main proof
concerning the equivalence of the minimax martingale measure for the situation of sa-
tiated investors in is presented in section 5. Section 6 then proves the equivalence for
all bounded concave utility functions of unsatiated investors. Applications to q-optimal
measures are given in section 7. Section 8 concludes.

2 Young functions and Orlicz spaces

If the utility function u is nondecreasing but not strictly increasing, that is if there
exists a satiation point c ∈ R with u(x) ≤ u(c) for all x ∈ R and u(x) < u(c) for x < c,
then the function

Φ∗(x) := u(c) − u(c − |x|)
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is a Young function, with a slight generalization which we will state next. It makes sense
to apply Young functions for studying the equivalence problem for utility functions that
have a satiation point. We will therefore firstly prove the theorems for Young functions,
and subsequently we will show how this is connected to utility functions.

2.1 Generalized Young functions

Definition 2.1 (Young function) A Young function Φ(x) is an even function R →
R+ with

– Φ(x) is convex

– limx→0
Φ(x)

x = 0

– limx→∞
Φ(x)

x = ∞

The general theory of Young functions and Orlicz spaces can be found for example in
[1]. For our purposes, we need a slightly more general class of functions which we call
generalized Young functions.

Definition 2.2 (Generalized Young function) A function Φ : R → R ∪ {∞} is a
generalized Young function if it satisfies the following properties:

1. Φ(0) = 0
2. Φ(x) is convex and lower semicontinuous for x ∈ R

3. There exists a constant c > 0 such that Φ(x) < ∞ for all |x| ≤ c

4. Φ(x) → ∞ for x → ∞
5. Φ(x) = Φ(−x)

Definition 2.3 (Conjugate function) A function Φ∗(y) is conjugate to a general-
ized Young function Φ(x) if it satisfies

Φ∗(y) = sup
x∈R

(xy − Φ(x)) (2.1)

Lemma 2.1 Let Φ be a generalized Young function. Then the following statements
hold:

– Φ(x) is continuous on the interior of {Φ(x) < ∞}.
– Φ(x) is nonnegative.
– If Φ∗ is defined by equation (2.1), then Φ∗ is also a generalized Young function.
– (Φ∗)∗ = Φ.

Proof The continuity on the interior of {Φ(x) < ∞} follows from the convexity.
For the nonnegativity, let there be a point x0 where Φ(x0) < 0. Then Φ(−x0) < 0

by property (5) in Definition 2.2. By the convexity and property (1), we have that

0 = Φ(0) = Φ
`

− 1
2x0 + 1

2x0
´

≤ 1
2 (Φ(−x0) + Φ(x0)) = Φ(x0) < 0

which is an obvious contradiction. If follows that Φ(x) ≥ 0.
Let now Φ∗(y) be the conjugate function of Φ(x). We have to check the properties

(1)-(5).
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We have that Φ∗(0) = supx(−Φ(x)) ≤ 0, because Φ(x) is nonnegative. But by
property (1), Φ(0) = 0, and therefore Φ∗(0) = 0.

Property (5) is also easy to check:

Φ(−y) = sup
x

(x(−y) − Φ(x)) = sup
x

((−x)y − Φ(−x)) = sup
x

(xy − Φ(x)) = Φ(y)

The convexity can be checked as follows:

Φ∗(ty1 + (1 − t)y2) = supx (txy1 + (1 − t)xy2 − tΦ(x) − (1 − t)Φ(x))
≤ t supx (xy1 − Φ(x)) + (1 − t) supx (xy2 − Φ(x))
= tΦ∗(y1) + (1 − t)Φ∗(y2)

For showing the lower semicontinuity, we have to prove that the set

U := {y ∈ R : Φ∗(y) > α}

is open for all α ∈ R. Because this is trivial for α < 0, we only show it for α ≥ 0.
Let y ∈ U . Then there exists an x∗ ∈ R with x∗y − Φ(x∗) > α. It follows obviously
Φ(x∗) < ∞ and x∗ > 0. Because {y > 1

x∗ (α + Φ(x∗))} is obviously an open set, we
have an open ball Uε(y) around y with

Φ∗(η) = sup
x

(ηx − Φ(x)) ≥ ηx∗ − Φ(x∗) > α ∀ η ∈ Uε(y)

It follows that Uε(y) ⊂ U and therefore the lower semicontinuity.
For property (3), there should exist an ε > 0 such that

sup
x

(xε− Φ(x)) < ∞

If there exists an x0 > 0 such that Φ(x0) = ∞, this is obviously the case, because then

sup
x

(xε− Φ(x)) = sup
|x|≤x0

(xε− Φ(x)) ≤ x0ε < ∞

Because of property (4), if Φ(x) < ∞ ∀x ∈ R, we must have that there exists an x0 > 0
with Φ(x0) > 0. By the convexity of Φ(x), it follows for x *= x0 that

Φ(x) − Φ(x0)

x − x0
≥ Φ(x0)

x0
=: γ > 0

and therefore

Φ∗(y) = sup
x

(xy − Φ(x)) ≤ sup
x

(xy − Φ(x0) − γ(x − x0))

Because γ > 0, we are done, because we can choose 0 < ε < γ, and the right-hand side
of the above equation is finite for all y ≤ ε, which proves property (3).

For property (4), we see that, because there exists a c > 0 such that Φ(x) < ∞
on |x| ≤ c and the fact that this implies continuity on [0, c], that Φ(x) is Lipschitz-
continuous on [0, c] because of the convexity. Let L > 0 be the Lipschitz constant, then,
for y > L,

supx (xy − Φ(x)) ≥ supx∈[0,c] (xy − Φ(x)) ≥ supx∈[0,c] (xy − Lx)

≥ c(y − L) → ∞ as y → ∞

Recognizing that from the properties (1)-(5) it follows that Φ(x) < ∞ on an open set
around 0, the last statement of the lemma follows from the Fenchel-Moreau theorem
([9]). Therefore the lemma is completely proved. +,
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2.2 Orlicz spaces

Definition 2.4 (Orlicz space) Let (Ω,F , P ) be a probability space, and Φ(x) be
a generalized Young function. The Orlicz space LΦ defined by Φ is the space of all
F-measurable random variables X, for which there exists a λ > 0 such that

E

»

Φ

„

X

λ

«–

< ∞

The Orlicz space can then be endowed with the Luxemburg norm, which is defined by

||X||Φ := inf{λ > 0 : E

»

Φ

„

X

λ

«–

≤ 1} (2.2)

Example 2.1 For a c > 0 set

Φ(x) :=

„

0 for |x| ≤ c

∞ for |x| > c

«

It is easily checked that this is an example of a generalized Young function. Looking
at the Luxemburg norm for a random variable X, one finds that

||X||Φ =
1
c
||X||∞ =

1
c

ess sup
ω

|X(ω)|

Example 2.2 Φ(x) := |x|. It is again easily checked that this is a Young function, and
the corresponding Luxemburg norm is

||X||Φ = ||X||L1

One can see furthermore that example 2 is the conjugate function of example 1, if c = 1
in example 1.

We will see later that we want sometimes to exclude ’singular’ cases. Therefore
we state here an additional assumption that we will need sometimes, namely that a
generalized Young function Φ is differentiable at 0. We will say sometimes also that Φ
is smooth at 0.

As can be seen, example 1 is smooth at 0, whereas example 2 is not.

Proposition 2.1 If Φ and Φ∗ are conjugate, and if X ∈ LΦ and Y ∈ LΦ
∗

, then XY

is in L1 and we have the Hölder inequality

E[XY ] ≤ 2||X||Φ||Y ||Φ∗ (2.3)

For Young functions this statement is shown in [1]. The proof for generalized Young
functions follows from the one of the conditional Luxemburg norm, which we will prove
later in the paper.

It is easily checked that this inequality holds also for the pair (L1, L∞).
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2.3 A Property of generalized Young functions

In this section we prove an auxiliary property that requires only tools of real analysis.

Proposition 2.2 Let the generalized Young function Φ(x) be smooth at 0. Then there
exists an y0 > 0 such that the conjugate function Φ∗(y) is invertible for 0 ≤ y ≤ y0,
and there exists a constant x0 ≤ (Φ∗)−1(y0) such that

1
2
≤ Φ(x)

x(Φ∗)−1(Φ(x))
≤ 1 ∀ 0 ≤ x ≤ x0 : Φ(x) > 0 (2.4)

Proof By the Young inequality, we have for any x, y that

xy ≤ Φ(x) + Φ∗(y)

In particular, this inequality holds for y := (Φ∗)−1(Φ(x)), where by the continuity of
Φ(x) for small values of x, we have that the inverse exists for x sufficiently small. It
follows that

x(Φ∗)−1(Φ(x)) ≤ Φ(x) + Φ∗((Φ∗)−1(Φ(x))) = 2Φ(x)

Division by 2x(Φ∗)−1(Φ(x)) gives the lefthand inequality.
On the other hand, we have for every y ≥ 0 an ∞ ≥ xopt ≥ 0 such that

xopty = Φ(xopt) + Φ∗(y) (2.5)

This follows from the fact that

Φ∗(y) = sup
x≥0

(xy − Φ(x))

If there is an xmax > 0 with xmaxy ≤ Φ(xmax) and Φ(xmax) < ∞, then xy−Φ(x) is a
continuous function on a compact interval [0, xmax] and attains therefore its maximum
at xopt. Because of the convexity of Φ, Φ∗(y) cannot be larger than xopty − Φ(xopt).

If xmaxy ≤ Φ(x) holds only when Φ(xmax) = ∞, but still xmax < ∞, then there
is, by the convexity and the lower semicontinuity of Φ, an x̃ such that Φ(x̃) < ∞
and Φ(x) = ∞ for x > x̃. Again, xy − Φ(x) is a continuous function on the compact
interval [0, x̃], and attains therefore its maximum at xopt. Because for any larger x,
xy − Φ(x) = −∞, the maximum at xopt is also the value of Φ∗(y). If there exists
no xmax < ∞ with xmaxy ≤ Φ(xmax), then, by the convexity of Φ(x), the function
xy − Φ(x) is increasing for all x ≥ 0. This means xopt = ∞.

Now let y = (Φ∗)−1(Φ(x)). Again, this number is well defined and small if x is
sufficiently small. If x < xopt, then x̃y − Φ(x̃) is monotonically increasing on [0, xopt[,
and therefore x̃y ≥ Φ(x̃) for all x̃ < xopt. This holds in particular for x̃ = x, and
therefore

x(Φ∗)−1(Φ(x)) = xy ≥ Φ(x)

and equation (2.4) is proved. If x ≥ xopt, then xopt < ∞ and

x(Φ∗)−1(Φ(x)) ≥ xopt(Φ∗)−1(Φ(x)) = Φ(xopt) + Φ∗((Φ∗)−1(Φ(x))) ≥ Φ(x)

because by the nonnegativity of Φ we have Φ(xopt) ≥ 0, and for the equality equation
(2.5) has been applied. +,
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3 Generalized Young functions and relative risk aversion

It will turn out that relative risk aversion of a generalized Young function φ is an
important issue in order to be able to replace any absolutely continuous local martingale
measure by an equivalent one which has a smaller Lφ-expectation, as has been done in
[2] for the case φ(x) = x2. The relative risk aversion is connected to a power function
property, that is that if φ(x) has in a region a constant relative risk aversion of γ, it
’behaves’ in this region like a power function with power γ+1. We will extend this fact
to generalized Young functions with bounded relative risk aversion. Furthermore, we
will see how the relative risk aversion of the primal and its dual function is connected.

In the standard literature, relative risk aversion is only defined if the utility function
is twice differentiable. We will extend this definition to all generalized Young functions.
Furthermore, a strict requirement of bounded relative risk aversion may be easily vio-
lated, even if this is only so at a few ’irrelevant’ points. We will therefore introduce the
definition of essential relative risk aversion, in order to be able to exclude irrelevant
points.

The usual definition of relative risk aversion from the literature is the following:

Definition 3.1 (Relative risk aversion) Let φ(x) be a generalized Young function
with φ(x) > 0 for all x > 0 which is at least twice differentiable. Then one may define
the relative risk aversion of φ through

rra(x) :=
xφ′′(x)
φ′(x)

(3.1)

Now let us go to a more general definition. We can restrict to the interval ]0,∞[, as a
generalized Young function is symmetric. By the fact that φ is convex, we have that the
subdifferential δφ(x) always exists and is nonempty in the region where φ(x) is finite,
and by the fact that φ is a generalized Young function on ]0,∞[, it is nondecreasing
in the sense that for x < y we have zx ≤ zy for every zx ∈ δφ(x), zy ∈ δφ(y). We may
therefore uniquely define

φ′r(x) := sup
y

{y ∈ δφ(x)} (3.2)

It is easy to show that φ′r(x) ∈ δφ(x) and the function φ′r(x) is right-continuous and
monotonic and therefore of finite variation, and we may define the Lebesgue-Stieltjes
measure dφ′r(x) without ambiguity if φ(x) < ∞. It is clear that if x = inf{y : φ(y) =
∞}, we must have φ′r(x) = ∞. For consistency and for preserving the monotonicity
of φ′r, we define therefore φ′r = ∞ for all x with φ(x) = ∞. Rearranging the terms in
equation (3.1), we have, for a twice continuously differentiable function with φ(x) > 0
for all x > 0, that d lnφ′ is absolutely continuous with respect to d lnx, and there
exists a unique Radon-Nikodym derivative γ(x). We may therefore say that φ(x) has
a relative risk aversion γ(x) on an interval I ⊂]0,∞[ if

Z

B
d lnφ′ =

Z

B
γ(x)d ln x (3.3)

or in differential notation

d lnφ′ = γ(x)d lnx

for every Borel set B ⊂ I .
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We assumed here that the measure d lnφ′ is defined on the whole inteval ]0,∞[.
This is not necessarily the case for generalized Young functions. Indeed, if φ(x) = 0 or
if φ(x) = ∞, the measure d lnφ′r is not defined. We define therefore the domain

D := {x ∈]0,∞[: ∃ε > 0 : 0 < φ(y) < ∞ ∀y ∈ Bε(x)}

which is something like an effective domain for the measure d lnφ′r. It follows that this
measure is sigma-finite on D. On Dc, we define the measure

d lnφ′r({x}) := ∞

for every point x ∈ Dc, and it follows that on this subset the measure d lnφ′r is obviously
not sigma-finite.

Remark 3.1 If φ is a (not generalized) Young function, then D =]0,∞[.

We turn now to the general definition of the integrated relative risk aversion.

Definition 3.2 (Integrated relative risk aversion) Let φ(x) be a generalized
Young function. Then the integrated relative risk aversion of φ is defined as the measure
d lnφ′r.

If this measure is absolutely continuous with respect to d ln x, then φ has a relative risk
aversion γ(x) on an interval I ⊂]0,∞[ if the measure d lnφ′r satisfies equation (3.3) on
every Borel subset B ⊂ I .

Remark 3.2 If φ′(x) exists, the measure dφ′(x) is equivalent to dφ′r(x). But replacing
dφ′(x) by dφ′r(x), we may apply the notion of integrated relative risk aversion for all
generalized Young functions.

Remark 3.3 If the measure d lnφ′r is absolutely continuous with respect to the measure
d lnx, then the relative risk aversion γ(x) is nothing else than the Radon-Nikodym
derivative. However, in general, this measure is not absolutely continuous, and therefore
the expression γ(x) makes no sense by its own, but only in the integrated version stated
in equation (3.3), where the righthand side is only a notion for the defined expression
on the lefthand side.

Before stating the main inequalities, we would like to define a partial ordering of
the relative risk aversion.

Definition 3.3 (Comparison of relative risk aversions) Let I ⊂]0,∞[ be an
interval, and γ1(x),γ2(x) two relative risk aversion functions corresponding to the
generalized Young functions φ1 and φ2. Then we say that γ1 ≤ γ2 on I if for all Borel
sets B ⊂ I we have for their integrated relative risk aversion that

d lnφ′1,r(B) ≤ d lnφ′2,r(B)

Remark 3.4 It follows that if γ1 ≤ γ2, then d lnφ′1,r is absolutely continuous with
respect to d lnφ′2,r. Furthermore, if d lnφ′2,r is absolutely continuous with respect to
d lnx, it follows that γ1(x) ≤ γ2(x) d ln x- almost surely on I . On the other hand, if
γ(x) ≤ γmax is a bounded function, then the integrated relative risk aversion defined
in equation (3.3) is absolutely continuous with respect to d ln x.
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We will now prove the important relationship which connects relative risk aversion
to the power property of a function.

Proposition 3.1 The relative risk aversion of a generalized Young function φ is uni-
formly bounded from below (above) by a constant γ > 0 in a region R :=]0, b] if and
only if for every 0 < x < y < b we have the inequality

φ′r(y) ≥ φ′r(x)
“ y

x

”γ
(3.4)

or inequality in the other direction if bounded from above.

Proof Let firstly x be in D, and x < y < b. If y ∈ Dc, then φ′r(y) = ∞, and nothing is
to prove, because the left-hand side is already ∞.

Let therefore y ∈ D. By assumption we have

d lnφ′r ≥ γd ln ξ

on ]x, y]. Therefore by integration

lnφ′r(y) − lnφ′r(x) ≥ γ (ln y − ln x)

and by the rules of the logarithm and the monotonicity of the exponential function

φ′r(y)
φ′r(x)

≥
“y

x

”γ

which is equation (3.4).
If x ∈ D, then either φ′r(x) = 0 from which equation (3.4) follows directly, or

φ(ξ) > 0 for all ξ > x. In the latter case, inequality (3.4) holds for all ξ > x, and by
the right-continuity of φ′r then also for x.

Let now equation (3.4) hold and consider the interval ]x, y]. We consider firstly the
case where x, b ∈ D. Then the measures d lnφ′r and d ln x are sigma-finite. By taking
the logarithm which is monotonic we have

lnφ′r(y) − lnφ′r(x) ≥ γ (ln y − ln x)

on every half-open interval in D∩]0, b]. The result follows by the following Lemma 3.1
for sigma-finite measures.

If x ∈ Dc, then d lnφ′r({x}) = ∞ but γd ln y({x}) = 0, for every γ > 0, and
therefore the relative risk aversion must be bounded from below by any constant γ > 0.

+,

Lemma 3.1 Let µ1 and µ2 two sigma-finite measures on the Borel set with µ1(I) ≤
µ2(I) for every half-open interval I. Then µ1(B) ≤ µ2(B) for every Borel set B.

Proof Let µ1 and µ2 be two sigma-finite measures on the Borel set with µ1(I) ≤ µ2(I)
for all half-open intervals I . If there would be a Borel set B on which µ1(B) > µ2(B),
this inequality would also have to hold on one of the countably many sets on which µ1

and µ2 are finite. We may therefore assume that both measures are finite. We define
then a signed measure λ := µ2 − µ1. This measure is obviously countably additive,
positive on all half-open intervals, and negative on B. Because of the additivity of λ,
we have that λ ≥ 0 for all finite unions of half-open intervals, which form an algebra.
Because this algebra is a subset of the Borel sets, λ is also countably additive on
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this algebra. By Carathéodory’s extension theorem [12], one can therefore extend λ

(defined on this algebra, where it is positive) to a positive measure λ̃, defined on the
whole Borel set. It follows that λ̃(B) ≥ 0. The two measures λ and λ̃ coincide on
a π-system generating the Borel set, and by the uniqueness lemma which holds also
for signed measures it follows that λ = λ̃ on the Borel set, therefore λ(B) ≥ 0, a
contradiction. +,

The following proposition connects the relative risk aversion of a generalized Young
function to the one of its dual function. This issue will be needed later when proving
the equivalence of the minimax martingale measure.

Proposition 3.2 Let φ be a generalized Young function. Then its dual function φ∗(y)
has a relative risk aversion bounded from above (below) by 1

γ on ]0, b] if φ(x) has a
relative risk aversion bounded from below (above) by γ on ]0,φ∗(b)].

Proof Let 0 < x < y ≤ b and assume firstly that x, y ∈ Dφ∗ . We have that
Z

]x,y]
d ln(φ∗)′r = ln(φ∗)′r(y) − ln(φ∗)′r(x)

and
Z

](φ∗)′r(x),(φ∗)′r(y)]
d ln x = ln(φ∗)′r(y) − ln(φ∗)′r(x)

and therefore the integrals are the same. Because for x > 0 the measure d ln x is
absolutely continuous with respect to the Lebesgue measure, we may exclude the point
(φ∗)′r(y) from the integration without changing the value. By assumption,

Z

]x,y]
d ln(φ∗)′r =

Z

](φ∗)′r(x),(φ∗)′r(y)[
d ln x ≤ 1

γ

Z

](φ∗)′r(x),(φ∗)′r(y)[
d lnφ′r

and the right-hand side is then equal to

1
γ

`

lnφ′r((φ
∗)′r(y)−) − lnφ′r((φ∗)′r(x))

´

≤ 1
γ

(ln y − ln x) =
1
γ

Z

]x,y]
d ln ξ

which is the required result. The first inequality follows from the fact that

(φ∗)′r(y) ∈ δφ∗(y) ⇒ y ∈ δφ((φ∗)′r(y))

by the general duality rules of subdifferentials, and φ′r((φ
∗)′r(y)−) is the infimum

of those subdifferentials, and therefore smaller. This holds by the general rule that
φ′r(z−) = inf{δφ(z)}. On the other hand, by the same argument, we have that x ∈
δφ((φ∗)′r(x)) and therefore smaller than or equal to the supremum of the subdifferen-
tial, which is φ′r((φ

∗)′r(x)).
We will show now that x, y ∈ Dφ∗ is always true if φ has a relative risk aversion

bounded from below. We have in general D =]dmin, dmax[. If dmin > 0, we have that
0 ∈ δφ∗(dmin) and thus dmin ∈ δφ(0). It follows that φ(x) ≥ dminx and because φ′r is
monotonically increasing we have φ′r ≥ dmin. For ε > 0, it follows that

Z

]0,ε]
d lnφ′r ≤ 1

dmin

Z

]0,ε]
dφ′r =

1
dmin

`

φ′r(ε) − φ′r(0)
´

→ 0

as ε → 0. On the other hand, d ln x(]0, ε]) = ∞ for every ε > 0. It follows that the
relative risk aversion of φ cannot be bounded from below.
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Let on the other side dmax ≤ b. It follows that

φ(x) = sup
y

`

xy − φ∗(y)
´

≤ xb

because φ∗(y) = ∞ for y > b. By the fact that φ′r is nondecreasing, it follows that
φ′r(x) ≤ b for all x ∈]0,∞[. Furthermore we have (φ∗)′r(b) = ∞. If we choose a K > 0
so large that φ′r(K) > 0, we get

d lnφ′r(]K,∞[) < ∞

but d ln x(]K,∞[= ∞. Again, the relative risk aversion of φ cannot be bounded from
below.

We have therefore that the boundedness from above holds on any half-open interval,
and because ]0, b] ⊂ D, we have that the measures d ln x and d ln(φ∗)′r are sigma-finite.
The result follows now by Lemma 3.1. +,

Equation (3.3) and Definition 3.3 would imply that there cannot be jumps in φ′r if the
relative risk aversion is bounded from above. It is clear that the relative risk aversion is
not bounded from above at the jumps. On the other hand, Definitions 3.2 and 3.3 are
too strict: for having that the right-hand side of inequality (3.3) can be estimated by
the left-hand side with a constant that may be different from 1, it is only necessary that
the relative risk aversion is bounded from below (or bounded from above) ”mostly”.
There may be some x where this statement is not satisfied.

A first idea of a generalization of risk aversion would be if we would say that a
generalized Young function φ has essentially relative risk aversion of γ(x) on ]0, b] if

sup
B′∈B]0,b]

Z

B′

(d lnφ′r − γd ln x) < ∞

and

inf
B′∈B]0,b]

Z

B′

(d lnφ′r − γd ln x) > −∞

For obtaining again an if and only if statement analoguous to Proposition 3.1, we define
it again slightly more generally.

Definition 3.4 (Essential bounds for relative risk aversion) A generalized Young
function φ(x) has essentially a relative risk aversion bounded from above by γ(x),
0 < γ ≤ γmax < ∞, on a Borel set ]0, b] if the supremum

sup
I=]x,y]:0<x<y≤b

„
Z

I
d lnφ′r −

Z

I
γ(x)d ln x

«

< ∞ (3.5)

It has a relative risk aversion essentially bounded from below by γ(x) if the infimum

inf
I=]x,y]:0<x<y≤b

„
Z

I
d lnφ′r −

Z

I
γ(x)d ln x

«

> −∞ (3.6)

It has essentially a risk aversion of γ(x) if both (3.5) and (3.6) are valid.

Remark 3.5 We have to restrict here to the case where γ(x) is bounded, in order to get
that at least the second integral is finite for all fixed intervals that we have considered.
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Example 3.1 For n ≥ 0 define

d lnφ′r(x) =
ln 2 if x = 3

42−n

0 otherwise

Then we have that
R

B(d lnφ′r −γd ln x) is unbounded from above as well as from below
with respect to all B ∈ B]0, b]. But looking only at intervals, one can see that the
function φ(x) has essentially a relative risk aversion of 1 due to Definition 3.4. Looking
only at intervals, the positive and negative parts of the ’measure’ d lnφ′r − γd lnx

cancel out to a uniformly bounded number, even if this (signed) ’measure’ is infinite
from below as well as from above and does therefore not define a true signed measure.

Remark 3.6 A sufficient condition for φ having a relative risk aversion essentially
bounded from above is that there exists a Borel-measurable set C ⊂]0, b] such that

Z

B′

d lnφ′r ≤
Z

B′

γd ln x (3.7)

for each Borel set B′ ⊂ (]0, b] \ C), where

Z

C
d lnφ′r(x) < ∞ (3.8)

Example 3.2 If φ′r has a finite amount of jumps in 0 < x1 < ... < xn < ∞ it satisfies
assumption (3.8) if φ′r(x1 ) > 0. By the transformation of variable formula for finite
variation processes equation (3.8) then gives for C = {x1, ..., xn}

Z

C
d lnφ′r(x) =

X

i

ln

 

φ′r(xi)

φ′r(x
−
i )

!

< ∞

Example 3.3 The function φ(x) := x
1
x is convex if x > 0 is sufficiently small, and

φ(0) = 0. But the relative risk aversion according to to Definition 3.4 is not essentially
bounded from above on any interval ]0, b].

Remark 3.7 A sufficient condition for φ having a relative risk aversion essentially
bounded from below is that there exists a Borel set C ⊂]0, b] such that

Z

B′

d lnφ′r ≥ γ

Z

B′

d ln x (3.9)

for each Borel set B′ ⊂ (]0, b] \ C), where

Z

C
d ln(x) < ∞ (3.10)

Example 3.4 Assumption (3.10) is satisfied for a finite amount of closed intervals away
from 0: C = [x1, y1] ∪ ... ∪ [xn, yn] with 0 < x1 < y1 < x2 < y2 < ... < yn < ∞.

Example 3.5 The function φ(x) := − x
ln x is convex if x > 0 is sufficiently small, and

φ(0) = 0. The relative risk aversion is not essentially bounded from below by a constant
γ > 0 on any interval ]0, b]. The function is asymptotically linear.
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Remark 3.8 Equations (3.5) and (3.6) indeed hold for all intervals I ⊂]0, b] which are
bounded away from 0. Let (3.5) be satisfied for half-open intervals I =]a, c] with a > 0
and a < c ≤ b. By the fact that d ln x is absolutely continuous and d lnφ′r is a positive
measure,

Z

]a,c[
d lnφ′r −

Z

]a,c[
γd ln x ≤

Z

]a,c]
d lnφ′r −

Z

]a,c]
γd ln x < ∞

Now consider the interval [a, c]. Then, with 0 < a1 < a, we have
Z

[a,c]
d lnφ′r −

Z

[a,c]
γd ln x ≤

Z

]a1,c]
d lnφ′r −

Z

]a1,c]
γd ln x + γmax

Z

]a1,a]
d lnx < ∞

because d ln x is absolutely continuous with respect to the Lebesgue measure, and γ(x)
is bounded.

On the other hand, let equation (3.6) be satisfied for all half-open intervals ]a, c] ⊂
]0, b]. By the fact that d ln x is absolutely continuous and d lnφ′r is a positive measure,
we have that

Z

[a,c]
d lnφ′r −

Z

[a,c]
γd ln x ≥

Z

]a,c]
d lnφ′r −

Z

]a,c]
γd ln x ≥ K > −∞

Now consider the interval ]a, c[. By the absolute continuity of d ln x and the positivity
of d lnφ′r we have

Z

]a,c[
d lnφ′r −

Z

]a,c[
γd ln x ≥ sup

c̃<c

 

Z

]a,c̃]
d lnφ′r −

Z

]a,c̃]
γd ln x

!

≥ K > −∞

+,

We now reformulate Propositions 3.1 and 3.2 for the case of essentially bounded relative
risk aversion:

Proposition 3.3 Let φ be a generalized Young function. Then the relative risk aver-
sion of φ is essentially bounded from above (below) by a constant 0 < γ < ∞ for
0 < x ≤ b, with b > 0 if and only if φ(b) > 0 and there exists a constant K > 0 such
that for all 0 < x < y < b, we have the inequality

φ′r(y) ≤ Kφ′r(x)
“y

x

”γ
(3.11)

Proof Let φ(x) satisfy equation (3.5) of Definition 3.4 on ]0, b]. Let 0 < x < y < b.
Because ]x, y] ⊂]0, b] is an interval, we have

Z

]x,y]
d lnφ′r ≤ γ

Z

]x,y]
d ln x + K1

where K1 > 0 is the supremum from equation (3.5). It follows by the rules of the
logarithm that if φ(x) > 0

lnφ′r(y) ≤ lnφ′r(x) + γ ln
“y

x

”

+ K1

By the monotonicity of the exponential function, equation (3.11) follows with the
constant K = exp(K1). If there would be an x > 0 with φ(x) = 0, then also φ(x1) = 0
with x1 < x, and by definition, d lnφ′r(]x1, x]) = ∞. On the other hand, d lnx(]x1, x]) <
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∞, and therefore equation (3.5) could not be valid. It follows that φ′r > 0 for all x > 0,
and therefore also φ(b) > 0.

On the other hand, let there be a constant K > 0 such that for all 0 < x < y < b,
equation (3.11) is satisfied. If φ′r(x) = 0 for an x > 0, then equation (3.11) could not
be valid for y = b, because if φ(b) > 0 we must also have φ′r > 0. It follows that we can
always take the logarithm. Then, by doing this, we have

lnφ′r(y) − lnφ′r(x) ≤ γ(ln y − ln x) + ln K

Therefore, the supremum in equation (3.5) must be bounded by ln K.
The statement for the case with boundedness from below is proved in the same

way. +,

Corollary 3.1 Let φ be a generalized Young function with relative risk aversion es-
sentially bounded from above by a constant γ on ]0, b]. Then for all b > y > x > 0 the
following inequality holds:

φ(y) ≤ Kφ(x)
“y

x

”γ+1
(3.12)

Proof Because φ′r(x) is nondecreasing, it is continuous with exception of at most count-
ably many points, which are a Lebesgue-Nullset. Therefore φ′r is Riemann integrable.
By the fact that φ(0) = 0, we have for all partitions 0 = x0 < .. < xn = x

φ(x) =
n−1
X

j=0

φ(xj+1) − φ(xj)

and by the convexity of φ and the fact that φ′r(ξ) ∈ δφ(ξ), it follows

φ(xj+1) − φ(xj) ≥ φ′r(xj)∆xj

where ∆xj := xj+1 − xj , and

φ(xj+1) − φ(xj) ≤ φ′r(xj+1)∆xj

It follows that
n−1
X

j=0

φ′r(xj)∆xj ≤ φ(x) ≤
n−1
X

j=0

φ′r(xj+1)∆xj

Because of the Riemann integrability, the lefthand side as well as the righthand side
converge to the integral of φ′r.

The same thing holds obviously also for φ(y). The result follows now by performing
an integration with respect to x as well as another with respect to y, by the mono-
tonicity of the integral. +,

Proposition 3.4 The relative risk aversion of a generalized Young function φ is es-
sentially bounded from below by a constant γ on a the set ]0, b] if its conjugate function
φ∗(y) has a relative risk aversion essentially bounded from above by the constant 1

γ

on the set ]0,φ′r(b)]. Furthermore, the statement holds also if we exchange the words
’above’ and ’below’.
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Proof Let 0 < x < y < b be given and let firstly x, y ∈ D. We have
Z

]x,y]
d lnφ′r = lnφ′r(y) − lnφ′r(x) =

Z

]φ′

r(x),φ′

r(y)]
d ln x

and on the right-hand side we can take the closed interval instead, because the difference
is only a Lebesgue-Nullset.

By the fact that φ∗ has a relative risk aversion essentially bounded from above by
γ > 0, we have

Z

[φ′

r(x),φ′

r(y)]
d ln x + γK ≥ γ

 

Z

[φ′

r(x),φ′

r(y)]
d ln(φ∗)′

!

where K is the supremum in equation (3.5), and therefore independent of the choice
of x and y. A similar argument as in the proof of Proposition 3.2 gives that

γK +

Z

]x,y]
d lnφ′r ≥ γ

Z

[φ′

r(x),φ′

r(y)]
d ln(φ∗)′ ≥ γ(ln y − ln x) = γ

Z

]x,y]
d ln ξ

from which equation (3.6) follows, because this holds uniformly for all intervals ]x, y].
For intervals which contain elements in Dc, equation (3.6) holds trivially, because

by definition the measure d lnφ′r would be infinite on this set, whereas the measure
d lnx would be finite. +,

Proposition 3.5 Let φ(x) > 0 for all x > 0, and let on a set ]0, b] with φ(b) < ∞, φ(x)
satisfy for all 0 < x < y < b the inequality (3.12) for a constant γ > 0 (respectively the
reverse inequality). Then φ(x) is invertible on [0, b], and its inverse φ−1(ξ) satisfies for
all 0 < ξ < η < φ(b)

φ−1(η)

φ−1(ξ)
≥ 1

K

„

η

ξ

«
1

γ+1

(3.13)

Proof Because of the fact that φ(x) > 0 for x > 0 and φ(0) = 0, it follows that φ(x)
is strictly increasing on {x > 0}, and by the convexity and the fact that φ(b) < ∞ it
is also continuous on [0, b], and therefore invertible. Equation (3.13) then follows from
equation (3.12) by setting x = φ−1(ξ) and y = φ−1(η). +,

The final corollary of this section will give the important technical condition which
makes it possible to prove the equivalence of the minimax martingale measure.

Corollary 3.2 Let the generalized Young function φ(x) have a relative risk aversion
which is essentially bounded from below by γ > 0 in a region around 0, and let φ∗(y) > 0
for all y > 0. Then we have for all sequences xn → 0 and pn → 0 that

(φ∗)−1(pnxn)

(φ∗)−1(xn)
→ 0

Proof By Proposition 3.4, we have that φ∗(y) has a relative risk aversion which is
essentially bounded from above by 1

γ if y > 0 is sufficiently small. By Proposition 3.5,

it follows that (φ∗)−1(x) satisfies the inequality (3.13) with γ replaced by 1
γ , that is

y

x
≤
„

K
(φ∗)−1(y)
(φ∗)−1(x)

«

γ+1
γ
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Applying this for xn as y and pnxn as x we get

(φ∗)−1(pnxn)

(φ∗)−1(xn)
≤ Kp

γ
γ+1
n

Because γ > 0, the right-hand side tends to 0 as pn → 0. +,

4 Conditional Luxemburg norm and Hölder inequality

The aim of this section is to get a conditional version of the Hölder inequality for
general Luxemburg norms. We also have to make a further generalization with respect
to the definition (2.2) of the Luxemburg norm. Indeed, the norm defined there gives in
principle a comparison of random variables at the point where E[Φ(λX)] = 1. In Lp

spaces, this does not matter, because E[Φ(λX)] = λpE[Φ(X)], such that if we would
replace the constant 1 in (2.2) by another constant c, we would get an equivalent norm.
However, this is not true any more for a general function Φ(x). The fact that a random
variable X has a larger Luxemburg norm than a random variable Y does not imply
that E[Φ(X)] ≥ E[Φ(Y )], if we are not in the Lp case. For finding later an equivalent
martingale measure Z̃ which contradicts that an absolutely continuous measure Zopt is
a minimax measure, we have to compare the measures at the right point. The point 1
is completely arbitrary. In general, for the conditional version of the Luxemburg norm,
we take only a strictly positive random variable which is measurable with respect to
the sub-sigma-algebra.

A final issue is that a power function Φ(x) = xp always satisfies the so-called ∆2

condition stated for example in [1], which in particular implies for a specific t0 > 0
that

E[Φ(t0X)] < ∞ ⇒ E[Φ(tX)] < ∞ ∀t ≥ 0

This is in general not satisfied by a generalized Young function. Therefore, on some
subsets of Ω, equation (2.2) still may be satisfied for a specific λ, even if the expec-
tation is infinity on the total Ω for this λ. Therefore, for a definition of a conditional
Luxemburg norm, one would like to have a conditional expectation even if the random
variable is not integrable. On the other hand, by the definition of the generalized Young
functions, the random variables are always nonnegative. We therefore have to use the
nonnegative version of the conditional expectation, which has been discussed in [11].

4.1 Conditional expectation for nonnegative random variables

The aim of this section is to prove a statement about existence of a left-continuous as
well as monotonically increasing version of the conditional expectation for nonnegative
random variables, which will be needed in order to prove the existence of the conditional
Luxemburg norm. The statement would be a consequence of the standard result for
supermartingales, as soon as we assume integrability. One may expect that this holds
also for the case of nonnegative random variables. For completeness, we give here the
proofs.

We repeat here the definition of the conditional expectation for nonnegative random
variables, as in [11].
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Definition 4.1 (Conditional expectation) Let X ≥ 0 be a random variable which
may attain the value ∞, and let G be a sub-sigma-algebra. Then a random variable
Y : Ω → [0,∞] is said to be a version of the conditional expectation of X conditionally
upon G, denoted by E[X|G], if

1. Y is nonnegative
2. Y is G-measurable
3. For every subset G ∈ G we have

Z

G
XdP =

Z

G
Y dP (4.1)

where equality in [0,∞] means that either both are finite and equal or both are
infinite.

It has been stated in [11] that all rules about the conditional expectation with integra-
bility condition can also been used for the nonnegative version of it.

With the existence of the conditional expectation for nonnegative random vari-
ables, we can define, for a nondecreasing, nonnegative and left-continuous process Xt,
a process Yt by

Yt := E[Xt|G] (4.2)

We will now show that Yt has a nonnegative, nondecreasing, left-continuous modifi-
cation. For this, we would like to proceed as in [7], but we cannot directly apply the
results, because there integrability has been assumed. For doing so, we need firstly a
new upcrossing lemma:

Lemma 4.1 Let Xt be a nonnegative and nondecreasing process, G a sub-sigma-algebra,
and Yt as in (4.2). Then the following is true:

1. For any increasing sequence tn, the process Ytn is almost surely nondecreasing
2. The process Yt is almost surely nondecreasing for t ∈ Q

3. For any a < b, the amount of upcrossings UN [a, b] is almost surely bounded by 1

Proof Let t1 < t2. Then, by the monotonicity of the conditional expectation, E[Xt1 |G] ≤
Ẽ[Xt2 |G] almost surely, and therefore P [Yt1 > Yt2 ] = 0. It follows that

P [∃tn < tm : Ytn > Ytm ] = P [∪n<m{Ytn > Ytm ] = 0

and therefore almost every process Ytn is nondecreasing, which shows item 1.

For item 2, define the set

A := {ω ∈ Ω : ∃t1 < t2 ∈ Q : Yt1 > Yt2}

Then A is a countable union of sets At1,t2 := {Yt1 > Yt2} for fixed t1 < t2, which have
probability 0. Therefore A has probability 0.

For proving 3, we have that Ytn is a nonnegative nondecreasing process, and there-
fore for any a < b, we have

UN [a, b] ≤ 1

+,
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From Lemma 4.1, it follows also that U∞[a, b] ≤ 1 almost surely, and therefore, for any
a < b,

E[U∞[a, b]] ≤ 1 < ∞

We proceed now in a similar way as in [7]. Firstly, we define, from Yt, a process Ỹt

which is nonnegative, nondecreasing and left-continuous, and subsequently we prove
that this process is a modification of Yt.

Proposition 4.1 For any version of the proces Yt defined above, define the process

Ỹt := sup
s<t;s∈Q

Ys (4.3)

Then there exists a subset Ω∗ ⊂ Ω with P [Ω∗] = 1, such that for all ω ∈ Ω∗ the
following is true:

1. Ỹt(ω) is nonnegative for all t

2. Ỹt(ω) is nondecreasing
3. Ỹt(ω) is left-continuous
4. Ỹt is a modification of Yt

Proof We define Ω∗ := Ω \ A, with the set A from the proof of the previous Lemma.
It follows that P [Ω∗] = 1. Nonnegativity is due to the definition of the conditional
expectation for nonnegative random variables. That Ỹt is nondecreasing follows from
the definition of the supremum.

We now show the left-continuity. Let tn < t be any sequence converging monotoni-
cally to t. Because Ỹt is nondecreasing it follows that Ỹtn is a nondecreasing sequence,
bounded by Ỹt, or Ỹt = ∞. Let the limit for n → ∞ be strictly smaller than Ỹt. Then
there exists a sequence sm < t, sm ∈ Q such that Ysm > limn→∞ Ỹtn for all m and n.
Because tn → t, we may choose a subsequence tnm =: tm such that tm > sm, and a
sequence qm ∈ Q with tm > qm > sm. By the definition of the supremum, it follows
that

Yqm ≤ Ỹtm < Ysm

Because qm > sm, this realization is not nondecreasing on Q, and can therefore not be
in Ω∗. It follows that Ỹt is left-continuous.

That Ỹt is a modification of Yt is shown as follows. By definition, there exists a
sequence tn ∈ Q such that Ỹt = limn→∞ Ytn , where tn < t. By the fact that Yt is
nondecreasing on Q (Lemma 4.1), we may choose this sequence in such a way that
tn → t. Furthermore, we may choose a subsequence which is increasing. Then Ytn is
nondecreasing. Therefore, by the monotone convergence theorem, for G ∈ G

Z

G
ỸtdP = lim

n→∞

Z

G
YtndP = lim

n→∞

Z

G
XtndP =

Z

G
XtdP

where the second equality follows from the fact that Ytn is a version of the conditional
expectation of Xtn , and the last by the fact that Xt is left-continuous and again the
monotone convergence theorem. +,

Proposition 4.2 Let the process Xt be continuous at a point t0, and integrable for a
t1 > t0. Then Ỹt0 = Ŷt0 almost surely, and Ỹt is continuous at t0 too.
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Proof Define the process
Ŷt := inf

s>t;s∈Q
Ys

Then with the same arguments as in Proposition 4.1, we have that Ŷt is nonnegative,
nondecreasing and right-continuous on t0, for all ω ∈ Ω∗. Furthermore, for every
s, q ∈ Q with s < t < q, we have Ys ≤ Yq on Ω∗. Taking on the left-hand side the
supremum and on the right-hand side the infimum yields

Ỹt ≤ Ŷt ∀ω ∈ Ω∗, ∀ t

Because of the right-continuity of Ŷt at t0 and the fact that Ỹt is nondecreasing, we
have that for any sequence tn → t0, tn > t0 that

Ỹt0 ≤ Ỹtn ≤ Ŷtn → Ŷt0

for all ω ∈ Ω∗. If there is a t > t0 for which Xt is integrable, then, by the dominated
convergence theorem, Ŷt0 is a version of the conditional expectation too, and therefore
Ŷt0 = Ỹt0 almost surely. The result follows. +,

Corollary 4.1 Let the process Xt be left-continuous, integrable at t = t0 > 0 and
continuous at 0 with X0 = 0. Then the process Ỹt converges to 0 almost surely as
t → 0.

Proof By the dominated convergence theorem, setting Y0 = 0 gives a modification of
Ŷ0. The result follows by the right-continuity of Ŷt at t = 0. +,

4.2 Conditional Luxemburg norm

Definition 4.2 (Conditional Luxemburg norm) For a generalized Young function
Φ, a subsigma-algebra G ⊂ F , a nonnegative random variable X in the Orlicz space LΦ

and for a G-measurable, nonnegative and integrable random variable ξ, the conditional
Luxemburg norm is the G-measurable random variable Ω → [0,∞] given by

lux[Φ(X)|G]ξ(ω) :=
inf Λ(ω) if Λ(ω) *= ∅
∞ if Λ(ω) = ∅ (4.4)

where the set Λ(ω) is defined as

Λ(ω) := {λ > 0, Erc
»

Φ

„

X

λ

«

|G
–

≤ ξ} (4.5)

and the notion of Erc means a version of the conditional expectation for nonnegative
random variables which is right-continuous in λ.

Theorem 4.1 The conditional Luxemburg norm as defined above exists and is unique
in the sense that if λ and λ̃ are two versions of the conditional Luxemburg norm, then

P [λ = λ̃] = 1

Furthermore, if λ is the conditional Luxemburg norm defined in (4.4) and (4.5), we
have on {λ > 0}

E

»

Φ

„

X

λ

«

|G
–

≤ ξ a.s. (4.6)
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whereas on {λ = 0}, we have E[Φ(X)|G] = 0.
Moreover, if ξ is strictly positive, then the conditional Luxemburg norm is almost

surely finite.

Proof We firstly have to show that such a right-continuous version as stated in (4.5)
exists. This follows from the fact that with t := 1

λ

Zt := E [Φ (tX) |G] = E

»

Φ

„

X

λ

«

|G
–

(4.7)

satisfies the assumptions of Proposition 4.1, and therefore has a left-continuous ver-
sion, which is furthermore monotonically increasing. Therefore Zλ = Z 1

t
has a right-

continuous version which is monotonically decreasing in λ.
Consider now for the moment a specific right-continuous version of the conditional

expectation. Then for each ω ∈ Ω∗, P [Ω∗] = 1, the set Λ(ω) is uniquely defined as
a subset in R which is bounded by 0 from below. Therefore the infimum exists for
all ω ∈ Ω∗ for which Λ(ω) is nonempty. We may therefore define the conditional
Luxemburg norm by (4.4) without ambiguity on Ω∗ .

We show now that this definition is independent of the choice of the version of
the right-continuous conditional expectation. Let Y1 and Y2 be two right-continuous
versions of the conditional expectation. It follows that they are indistinguishable, that
is there exists a set Ω∗∗ ⊂ Ω where Y1 = Y2. The set Ω∗ ∩ Ω∗∗ has probability 1,
and the sets Λ(ω) from (4.5) are the same for every ω ∈ Ω∗ ∩Ω∗∗. It follows that the
definition is unique on a set with probability 1.

Because X ∈ LΦ, we have by definition that X is almost surely finite, and X
λ → 0

as λ → ∞, and the same property holds for Φ(X
λ ), by the continuity of generalized

Young functions at 0. It follows that the left-continuous modification of the process
in (4.7) satisfies the assumptions of corollary 4.1, and converges therefore to 0 almost
surely. If ξ > 0 strictly, it follows that Λ(ω) is almost surely nonempty, and therefore
the infimum in (4.4) exists and is finite.

Let now the random variable defined in (4.4) and (4.5) be denoted by λ∗(ω). We
have seen that this random variable exists and is unique. We need to show that λ∗(ω)
is G-measurable. Let γ ∈ R. We need to show that {ω : λ∗(ω) ≤ γ} ∈ G. But for
γ < ∞, we have

{λ∗ ≤ γ} = {Yγ := Erc
»

Φ

„

X

γ

«

|G
–

≤ ξ}

Let namely ω be in the set on the left. Then the set Λ(ω) is nonempty, and there exists
a sequence λn converging to λ∗ from above. Because λn ∈ Λ(ω), it satisfies equation
(4.5), and Yλn

≤ ξ. Because Yλ is right-continuous, also Yγ ≤ ξ. If on the other hand
Yγ ≤ ξ, then by definition γ ∈ Λ(ω), and its infimum λ∗ is always smaller than or
equal to γ. Because Yγ is obviously G-measurable, the result follows.

It remains to prove equation (4.6). On the set {λ∗ = ∞}, we have Φ( X
λ∗ ) = Φ(0) =

0, and therefore equation (4.6) is satisfied, because ξ is nonnegative. Now consider the
set {λ∗ < ∞}. It is enough to show the inequality for the sets S := {λ∗ ≤ λmax} for
all λmax > 0. Because λ∗ ∈ G and bounded from above on S, we may approximate it
from above by step functions λn :=

P

k λnk1Ank
with Ank ∈ G. On the set Ank, we

have therefore that λ(ω) ≤ λnk, and by the monotonicity and right-continuity of Zλ
in (4.7) it follows that λnk ∈ Λ(ω) on Ank. This implies by definition (4.5)

E

»

Φ

„

X

λnk

«

|G
–

≤ ξ
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on the set Ank, and therefore

E

»

Φ

„

X

λn

«

|G
–

=
X

k

E

»

Φ

„

X

λnk

«

|G
–

1Ank
≤ ξ

on the whole set S. Because this holds for every step function on S, we conclude
inequality (4.6) by the monotone convergence theorem. Finally, on {λ∗ = 0}, we may
take the sequence λnk = 1

n , and it follows that

E[Φ(nX)|G] ≤ ξ

for all n ∈ N. But because Φ(nX) tends to infinity on {X > 0} and ξ is almost surely
finite, this can only happen if X = 0 and therefore E[Φ(X)|G] = 0 on the set {λ∗ = 0}.
Theorem 4.1 is now proved. +,

4.3 Hölder inequality

We now prove a generalization of the Hölder inequality in conditional form, which will
be important for the development below:

Theorem 4.2 Let Φ and Φ∗ be complementary Young functions, that vanish only at
0, and let ξ be a strictly positive random variable. Then

E[|XY ||G] ≤ 2ξlux[Φ(X)|G]ξ lux[Φ∗(Y )|G]ξ (4.8)

Furthermore, if X ∈ LΦ, Y ∈ LΦ
∗

, then XY is integrable.

Proof It is enough to prove the statement for X and Y nonnegative. Let us firstly
assume that the conditional Luxemburg norms are almost surely strictly positive, and
let λ and µ be two strictly positive G-measurable random variables such that

E
h

Φ
“

X
λ

”

|G
i

≤ ξ a.s.

E
h

Φ∗
“

Y
µ

”

|G
i

≤ ξ a.s.
(4.9)

By the Young inequality, we have almost surely that

XY

λµ
≤ Φ

„

X

λ

«

+ Φ∗
„

Y

µ

«

By the monotonicity of the conditional expectation, this yields

E

»

XY

λµ
|G
–

≤ E

»

Φ

„

X

λ

«

+ Φ∗
„

Y

µ

«

|G
–

almost surely. But by (4.9) the right-hand side is almost surely smaller than or equal
to 2ξ. Because λ and µ are G-measurable, we get

E[XY |G] ≤ 2ξλµ a.s.

By (4.6), inequality (4.9) holds in particular for λ = lux[Φ(X)|G]ξ and µ = lux[Φ∗(Y )|G]ξ ,
which yields (4.8).

If on a set with nonzero probability at least one of the conditional Luxemburg
norms is 0, then, by Theorem 4.1, either E[Φ(X)|G] = 0 or E[Φ∗(Y )|G] = 0. Becase Φ

and Φ∗ vanish only at 0, we have E[XY |G] = 0 on this set, and (4.8) is still satisfied.
+,
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5 Minimax measures for satiated utility functions

5.1 Definitions and assumptions

Throughout this section, we work in an environment with continuous filtration. It is
known that without this assumption, equivalence of the minimax martingale measure
can even be violated in a three-state model (see [2]).

Assumption 5.1 The probability space (Ω,F ,Ft, P ) has a continous filtration Ft.

It follows that every price process, as well as every density process, has to be continuous.
We work here in the environment of [4], and use therefore the same assumptions about

the utility functions, with the additional requirement that there is a satiation point.

Assumption 5.2 The utility function u : R → R ∪ {−∞} is upper semicontinuous
and concave on R, and nondecreasing in its effective domain, which is assumed to have
a nonempty interior. Furthermore u has a satiation point in the interior of its effective
domain, that is a point c with u(x) < u(c) for x < c and u(x) = u(c) for x ≥ c.

Remark 5.1 Because c is in the interior of the effective domain of u, it follows that
there is a point x < c with u(x) > −∞.

We state here again the definition of the minimax martingale measure as in [4].

Definition 5.1 (Minimax martingale measure) An absolutely continuous sepa-
rating measure Q̂x is a minimax martingale measure if it satisfies

sup
w∈L∞:EQ̂x [w≤0]

{EP [u(x + w)]} = min
Q∈M1

sup
w∈L∞:EQ[w]≤0

{EP [u(x + w)]}

where M1 is the set of all absolutely continuous separating measures, that is

M1 := {z ∈ L1
+(P ) : EP [zw] ≤ 0 ∀w ∈ C, EP [z] = 1}

where C is the convex cone of superreplicable claims at zero initial portfolio value.

Remark 5.2 Because we are working in an environment where the filtration is contin-
uous, it follows by Lemma 1.1 of [4] that the set of absolutely continuous separating
measures corresponds to the set of absolutely continuous local martingale measures.
We will therefore not make a distinction between those two notions, as long as we work
in an environment with continuous filtration.

Remark 5.3 By Corollary 2.1 of [4], it follows that if Q̂x is a minimax martingale
measure it must satisfy

min
λ≥0

"

λx − EP

"

u∗
 

λ
dQ̂x

dP

!##

≤ min
λ≥0

»

λx − EP
»

u∗
„

λ
dQ

dP

«––

(5.1)

where Q is any absolutely continuous local martingale measure, and u∗(y) is the concave
conjugated function of u, that is

u∗(y) := inf
x

(xy − u(x)) (5.2)
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Assumption 5.3 There exists at least one equivalent separating measure Z
(0)
∞ , which

is in L1.

Assumption 5.4 The conditions stated in [4] are satisfied in order to guarantee that
the minimax measure Zopt

∞ exists, defined in Definition 5.1.

Because Zopt
∞ is integrable, it follows that the martingales

Z
(0)
t := E[Z

(0)
∞ |Ft]

Zopt
t := E[Zopt

∞ |Ft]
(5.3)

are uniformly integrable, and with the assumption that the filtration Ft is continuous,
they are also continuous. The stopping times Tn and T are defined through

T := inf{t ≥ 0 : Zopt
t = 0}

Tn := inf{t ≥ 0 : Zopt
t = 1

n} ∧ n
(5.4)

It follows that Tn < Tn+1 < T and Tn → T almost surely.

5.2 Utility functions and generalized Young functions

With u(x) a utility function satisfying Assumption 5.2, it is easy to see that

Φ∗(x) := u(c) − u(c − |x|) (5.5)

is a generalized Young function (Definition 2.2).
The next lemma shows why we can restrict our considerations to generalized Young

functions:

Lemma 5.1 Let the utility function satisfy Assumption 5.2. Then

1. For all y ≥ 0, the concave conjugate function as defined in (5.2) satisfies

u∗(y) = yc − u(c) − Φ(y) (5.6)

where Φ(y) = Φ∗∗(y) is the conjugate function to Φ∗(x), defined in (5.5).
2. If Q̂x is a minimax martingale measure (Definition 5.1), it satisfies

λ̂x0 + E[Φ(λ̂Zopt
∞ )] ≤ λx0 + E[Φ(λZ∞)] ∀Z∞ ∈ M, ∀λ > 0 (5.7)

where M is the set of all absolutely continuous local martingale measures, and λ̂ is
the minimum of the left-hand side of (5.1).

Proof For y ≥ 0 we have

Φ(y) = supx (xy − Φ∗(x)) = supx (xy − u(c) + u(c − |x|))
= supx≥0 (xy − u(c) + u(c − x))
= supx′≤c

`

(c − x′)y − u(c) + u(x′)
´

= cy − u(c) + supx′≤c

`

u(x′) − x′y
´

= cy − u(c) − infx′≤c

`

x′y − u(x′)
´

= cy − u(c) − infx′

`

x′y − u(x′)
´

= cy − u(c) − u∗(y)
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From this statement 1 follows.
For any λ ≥ 0, for any local martingale measure Q, it follows that

λx − EP
»

u∗
„

λ
dQ

dP

«–

= λx − λc + u(c) + E

»

Φ

„

λ
dQ

dP

«–

Hence, if Q̂x is a minimax martingale measure, we have from Remark 5.3 that

min
λ≥0

"

λx + EP

"

Φ

 

λ
dQ̂x

dP

!##

≤ min
λ≥0

»

λx + EP
»

Φ

„

λ
dQ

dP

«––

for all absolutely continuous local martingale measures Q. Performing the minimization
over λ on the left-hand side yields statement 2. +,

5.3 Boundedness of the relative risk process

We come now to the key reasons of the above considerations. We would like to prove
an extension of the argument stated in [2]. Indeed we would like to show that if the
relative risk aversion near 0 is essentially bounded from below away from 0, then the
relative risk, as will be defined next, converges to infinity for a continuous martingale
on the set where it converges to 0. On the other hand, if the equivalent martingale
measure has enough integrability property, the relative risk of it will remain bounded.

Definition 5.2 (Relative risk) Let X be a LΦ-integrable random variable, and c a
constant. Then the relative risk of X at the point c is defined as

RR(c) :=
E[Φ(cX)]

Φ(c)
≤ ∞ (5.8)

Proposition 5.1 Let Φ be a generalized Young function with Φ(x) > 0 for all x > 0
and let the relative risk aversion of Φ(x) be essentially bounded from above by 0 ≤ γ ≤
∞ for all x ≥ 0. Furthermore, let X be a random variable which is Lγ+1-integrable,
and let Fn be a filtration. If γ < ∞, then for every sequence an ∈ Fn with an > 0 which
is uniformly bounded from below away from 0 for all ω, and for every sequence cn ∈ Fn

such that cn → 0 almost surely, the relative risk remains almost surely bounded, that is

E [Φ(cnX)Fn]
Φ(ancn)

≤ K(ω) < ∞ a.s. (5.9)

If γ = ∞, then there exists for every ω a lower bound β(ω) > 0 such that for every
sequence an > 0, an ∈ FTn

, uniformly bounded from below by β(ω), the statement still
holds for n large enough.

Proof We firstly assume that γ < ∞. Then, by corollary 3.1, we have

Φ(cnX) ≤ KΦ(ancn)

„

X

an

«γ+1

1 X
an

≥1 + Φ(ancn)1 X
an

≤1

and taking the expectations

E [Φ(cnX)] ≤ Φ(ancn)

 

KE

"

„

X

an

«γ+1
#

+ 1

!
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By the assumption that X in Lγ+1 with γ ≥ 0 and that an is almost surely bounded
from below away from 0, the expression within the brackets at the right-hand side is a
bounded, and the result follows.

If γ = ∞ and Φ(x) > 0 for all x > 0, then, by the monotonicity of Φ, we have

Φ(cnX) ≤ Φ(cn||X||∞)

and therefore

E [Φ(cnX)|FTn
] ≤ Φ(cn||X||∞)

Because Φ is a generalized Young function, there is a constant 1 > b > 0 with Φ(b) < ∞.
Because cn → 0, we must have an N ∈ N such that cn||X||∞ ≤ b < 1 for all n ≥ N .
Because Φ is convex, we have

Φ(cn||X||∞) ≤ cN ||X||∞Φ

„

cn

cN

«

for n ≥ N . Hence, with a lower bound of an ≥ 1
cN

for n ≥ N , we get, for n ≥ N ,

E[Φ(cnX)|FTn
]

Φ(ancn)
≤ cN ||X||∞

+,

We will prove a generalization of Lemma 3.4 in [2]. The idea of the proof is the same,
with the Hölder inequality for Orlicz spaces instead of the Cauchy-Schwarz inequality,
and some additional arguments.

Proposition 5.2 Let Xt be a continuous uniformly integrable martingale with stop-
ping times as in (31) for the process Xt instead of Zopt

t . If the relative risk aversion of
Φ(x) is essentially bounded from below away from 0 in a region around 0, and Φ(y) > 0
as well as Φ∗(y) > 0 for all y > 0, then for all FTn

-measurable sequences an > 0 which
are bounded from above in n for every ω, we have that the relative risk

E[φ(X∞)|FTn
]

φ(anXTn
)

→ ∞

on the set {XT = 0}.

Proof We take ξn = Φ(anXTn
) and apply the Hölder inequality, which is possible

because XTn
and therefore ξ is strictly positive. Then

E[X∞1XT )=0|FTn
] ≤ 2Φ(anXTn

)lux[Φ(X∞|FTn
)]Φ(anXTn )lux[Φ∗(1T )=0)|FTn

]Φ(anXTn )

We have that Φ∗ is invertible in a region around 0 and

lux[Φ∗(1T )=0)|FTn
]φ(anXTn ) = inf{λ > 0 : Φ∗ ` 1

λ

´

pn ≤ Φ(anXTn
)}

=
“

(Φ∗)−1(
φ(anXTn )

pn
)
”−1

with pn = P [ZT *= 0|FTn
] → 0 on the set {Z∞ = 0}, where the second equality follows

if we define

(Φ∗)−1(x) := inf{y ≥ 0 : Φ∗(y) ≥ x}
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so that by the fact that Φ∗(y) is strictly increasing it coincides with the usual inverse
as long as Φ∗(y) is finite, and it remains constant after the point where Φ∗(y) jumps
to ∞.

It follows that

1
2
≤ lux[Φ(X∞|FTn

)]Φ(anXTn )
Φ(anXTn

)

XTn
(Φ∗)−1(Φ(anXTn

))

(Φ∗)−1(Φ(anXTn
))

(Φ∗)−1(
Φ(anXTn )

pn
)

(5.10)

By Proposition 2.4, we have that the expression

Φ(anXTn
)

anXTn
(Φ∗)−1(Φ(anXTn

))

converges to a finite constant away from 0 if anXTn
→ 0. Because an is bounded in

n, this is always satisfied if XTn
→ 0. By the fact that (Φ∗)−1(x) → 0 as x → 0 and

Φ(anXTn
) → 0 as well, the last fraction of equation (5.10) can only converge to a

value different from 0 (or not converge) if
Φ(anXTn )

pn
→ 0 as well. But in this case, the

Corollary 3.2 guarantees that this last fraction of equation (5.10) still converges to 0
if the relative risk aversion is essentially bounded from below away from 0, in a region
of 0. It follows, again by the boundedness of the sequence an from above, that

lux[Φ(X∞|FTn
)]Φ(anXTn ) → ∞

on {ZTn
*= 0}. This means that, almost surely, for every λ > 0, we may find an n ∈ N

with

E[Φ(
X∞
λ

)|FTn
] ≥ Φ(anXTn

)

By the convexity of Φ and Φ(0) = 0, we have that Φ(X∞

λ ) ≤ 1
λΦ(anX∞) for λ ≥ 1,

and thus
E[Φ(X∞)|FTn

]

Φ(anXTn
)

≥ λ

Because λ can be made arbitrarily large, the relative risk converges to infinity. +,

5.4 Equivalence of minimax martingale measures

Theorem 5.1 Let Φ be a generalized Young function, and let Assumptions (5.1) to
(5.4) be satisfied, where Ft is a continuous filtration. Assume that

– Φ(x) > 0 for x > 0, and Φ(x) is smooth at 0.
– The relative risk aversion of Φ(x) is essentially bounded from below away from 0

in a neighborhood of 0.
– The relative risk aversion of Φ(x) is essentially bounded from above by a constant

γ ≤ ∞.

– There exists an equivalent martingale measure Z
(0)
∞ which is in Lγ+1.

Then any minimal martingale measure satisfying equation (5.7) is equivalent to the
original measure P .
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Proof We follow here the arguments in [2], which we can extend to this general situa-
tion using Propositions 5.1 and 5.2. Assume that Zopt

∞ is not equivalent, but satisfies
equation (5.7). We have therefore with Tn and T as in section 5.1 that {Zopt

T = 0} has
nonzero probability. Define, as in [2], the process

Zt :=
Zopt

t on Ac
n ∪ {Tn > t}

Z
(0)
t

Zopt
Tn

Z
(0)
Tn

on An ∩ {Tn ≤ t} (5.11)

for any FTn
-measurable set An. Because the martingale Z

(0)
∞ is strictly positive, it

follows that the sequence Z
(0)
Tn

is uniformly bounded from below away from 0, almost
surely. Therefore the FTn

-measurable random variables

cn := λ̂
Zopt

Tn

Z
(0)
Tn

→ 0 a.s.

Because Z
(0)
∞ ∈ Lγ+1, it follows by Proposition 5.1 that the relative risk

E
h

Φ(cnZ
(0)
∞ )|FTn

i

Φ(ancn)

remains bounded as n → ∞, for every sequence an ∈ FTn
with a sufficiently large

lower bound. We may therefore choose a sequence which is also bounded from above.
On the other hand, the assumption that Φ(x) is smooth at 0 implies that Φ∗(y) > 0

for all y > 0, and therefore the assumptions for Proposition 5.2 are satisfied, and the
relative risk converges to ∞ as n → ∞ on the set {Zopt

T = 0}, that is

E
h

Φ(Xopt
∞ )|FTn

i

Φ(ancn)
→ ∞

with the same choice of an and cn as above, because an

Z
(0)
Tn

is almost surely bounded

from above. For almost every ω on {Zopt
T = 0} we may find therefore an N ∈ N with

E[Φ(λ̂Zopt
∞ )|FTn

] > E[Φ(λ̂Z
(0)
∞ )|FTn

]

for all n ≥ N . But this means that for n large enough, we have a set An which is
FTn

-measurable and has strictly positive probability, on which

E[Φ(λ̂Zopt
∞ )|FTn

] > E[Φ(λ̂Z
(0)
∞ )|FTn

]

Taking this set for equation (5.11), we have that the martingale measure Zt defined in
(5.11) satisfies

λ̂x0 + E[Φ(λ̂Zopt
∞ )] > λ̂x0 + E[Φ(λ̂Z∞)]

But this means that Zopt
∞ cannot satisfy equation (5.7). +,

Corollary 5.1 Let the Assumptions 5.1 to 5.4 be satisfied. Let furthermore the utility
function u(x) satisfy the following properties:

– u satisfies Assumption 5.2.
– u is smooth at c.
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– there is an ε > 0 such that, u(x) has a relative risk aversion essentially bounded
from above for x ∈ (c − ε, c).

– for x < c, u(x) has a relative risk aversion essentially bounded from below by 1
γ

with γ > 0.

– there exists an equivalent local martingale measure Z
(0)
∞ which is in Lγ+1.

Then the minimax martingale measure, as defined in Definition 5.1, is equivalent.

Proof Consider the generalized Young function Φ∗(x) defined in equation (5.5). By
Assumption 5.2 it follows that Φ∗(x) is smooth at 0 and Φ∗(x) > 0 for all x > 0. It is
obvious that its conjugate function Φ(y) satisfies also those properties.

Furthermore, by the assumptions of the corollary, Φ∗(x) has a relative risk aversion
which is essentially bounded from above in a region of 0, as well as essentially bounded
from below by 1

γ . By Proposition 3.4, it follows that Φ(y) has a relative risk aversion
bounded from below away from 0 around 0, as well as a relative risk aversion bounded
from above by γ. It follows that the assumptions for Theorem 5.1 are satisfied.

By Lemma 5.1, the minimax martingale measure satisfies the property (5.7). It
follows from Theorem 5.1 that this measure must be equivalent. +,

6 Second case: Nonsatiated investors

We begin with an easy lemma.

Lemma 6.1 Let the utility function u(x) be increasing, concave, unsatiated and bounded.
Then the dual function Φ(y) satisfies

Φ(y) − Φ(0)
y

→ −∞ as y → 0 (6.1)

Proof Without loss of generality we assume that supx u(x) = 0. We have

Φ(y) = sup
x

(u(x) − xy)

For every n ∈ N, we can find an yn such that for all x ≤ n, the subdifferential of u at
x contains only values larger than yn. We have therefore that

sup
x

„

u(x)
yn

− x

«

≤ sup
x

u(x)
yn

− n ≤ −n → −∞

+,

We have therefore, for the class of nonsatiated investors with bounded utility function,
the important property (6.1). An important example of such a utility function is the
exponential one treated in [3]. An extension of the arguments there, using mainly the
property (6.1) of the dual utility function, leads to a general proof of equivalence for
this class of utility functions.

The case of unbounded utility functions has already been treated in [4] and therefore
does not need to be discussed any more.
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Theorem 6.1 Let Z0 be the minimax measure for a strictly increasing, concave and
bounded utility function, such that the dual function Φ(y) satisfies property (6.1). Fur-
thermore let there be an equivalent separating measure Z1 and a constant λ > 0 such
that

E[Φ(λZ1)] < ∞

Then the minimax measure Z0 is equivalent.

Remark 6.1 Notice that in this situation we do not need that the filtration is continu-
ous.

Remark 6.2 Theorem 6.1 is similar to the Proposition 3.1 in [5]. The difference is that
here we do not assume differentiability nor boundedness from below for the dual utility
function. We will therefore give a proof under our assumptions.

Proof Firstly we would like to mention a fact that has already been proved in [8] for
the case when the wealth cannot become negative, namely that Φ−(Z) are integrable
random variables for separating measures Z (Lemma 3.2, integrability follows from
uniform integrability). This holds for any convex function Φ if Z is integrable, because
by the convexity,

Φ(y) ≥ Φ(y0) + (y − y0)δΦ(y0)

where y0 is a point where the subdifferential is finite, and therefore

Φ−(y) ≤ C + Dy+

where C and D are positive constants. The result follows by the integrability of Z.
We again assume without loss of generality that Φ(0) = 0. With the assumptions of

Theorem 6.1 it follows that Φ(λ̂Z0) and Φ(λZ1) are integrable, where λ̂ is the minimal
λ from the minimax measure.

Because Z0 and Z1 are separating measures, for 0 ≤ x ≤ 1, also Zx is a separating
measure, where

λxZx := xλZ1 + (1 − x)λ̂Z0

and
λx := xλ + (1 − x)λ̂ (6.2)

It follows that also Φ−(λxZx) is integrable. From the convexity of Φ, the function

1
x

“

Φ(λxZx) − Φ(λ̂Z0)
”

(6.3)

is nondecreasing almost surely in x, and as x → 1, the function converges almost surely
to the integrable random variable

Φ(λZ1) − Φ(λ̂Z0)

We may therefore apply the monotone convergence theorem to conclude that

lim
x→0

1
x

E
h

Φ(λxZx) − Φ(λ̂Z0)
i

= E

»

lim
x→0

1
x

“

Φ(λxZx) − Φ(λ̂Z0)
”

–

(6.4)

Let now Z1 be equivalent, and A := {Z0 = 0} be a set with P (A) > 0. Then we have
on A that

1
x

“

Φ(λxZx) − Φ(λ̂Z0)
”

=
1
x
Φ(xλZ1) → −∞
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because P ({Z1 = 0}) = 0 as Z1 is equivalent. Because the sequence in (6.3) is decreas-
ing as x → 0, the positive part is bounded from above by an integrable function, and
therefore the positive part of the integrand on the right-hand side in (6.4) is integrable.
From the fact that the integrand is −∞ on a set with nonzero probability, we conclude
that the expectation on the right-hand side is −∞, and so is the left-hand side.

This means that for every constant C > 0 we find an x̂ > 0 such that

E [Φ(λxZx)] + Cx ≤ E
h

Φ(λ̂Z0)
i

∀x ≤ x̂ (6.5)

On the other hand, because Z0 is the minimax measure, we must have for all λ > 0
and all 0 ≤ x ≤ 1 that

E [Φ(λxZx)] + λxx0 ≥ E
h

Φ(λ̂Z0)
i

+ λ0x0

where x0 means the initial wealth. With (6.2), we get

E [Φ(λxZx)] + x
“

λ1 − λ̂
”

x0 ≥ E
h

Φ(λ̂Z0)
i

But this is a contradiction to (6.5), if we choose the constant C > 0 large enough. +,

7 Counterexamples

The aim of this section is to provide examples for what may happen if the assumptions
are not satisfied.

7.1 An LΦ integrable random variable for which the relative risk does not remain
bounded

We consider the following generalized Young function:

Φ(x) :=
x2 if |x| ≤ 1
2|x|− 1 if |x| > 1

(7.1)

This is a Young function which even has a continuous derivative. The relative risk
aversion as x → 0 is 1. As x → ∞, the function behaves as a linear function, and there-
fore every integrable random variable is in LΦ. The relative risk aversion is therefore
uniformly bounded from above by 1, and from below by 1 as x → 0. Consider now the
following random variable:

X :=
1

U
2
3

− 1 (7.2)

where U is a uniformly distributed random variable. Using a Brownian filtration, this
random variable may be generated for example by

U = Φ̃(Wn − Wn−1)

where Φ̃ is the cumulative standard normal distribution, n is an integer (indeed it may
be any real number) and Wt a Wiener process.
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We have that X > 0 with probability 1 and

E[X] =

Z 1

0

du

u− 2
3

− 1 = 3u
1
3 |u=1 − 1 = 2

and therefore X is integrable. But looking at the second moment, we have

E[X2] =

Z 1

0

“

u− 2
3 − 1

”2
du =

Z 1

0
u− 4

3 du − 2

Z 1

0
u− 2

3 du + 1 = −3u− 1
3 |10 − 5 = ∞

It follows that X is not square-integrable and therefore does not satisfy the assumption
of Proposition 5.1.

Let now cn := 1
n be a sequence converging to 0. Then we have

E[Φ(cnX)] = E[
1
n2 X21X≤n] + E[(

2X

n
− 1)1X>n]

To evaluate this expression, we recognize that {X ≤ n} = {U ≥ 1

(n+1)
3
2
} and thus

with u0 := 1

(n+1)
3
2

E[Φ( 1
nX)] = 1

n2

R 1
u0

“

u− 2
3 − 1

”2
du +

R u0

0

“

2
n (u− 2

3 − 1) − 1
”

du

= 1
n2

„

3(u
− 1

3
0 − 1) + 6(1 − u

1
3
0 ) + 1 − u0

«

+ 1
n

„

6u
1
3
0 − 2u0

«

− u0

= 1
n2

„

3
√

n + 1 − 6√
n+1

− 1

(n+1)
3
2

+ 4

«

+ 1
n

„

6√
n+1

− 2

(n+1)
3
2

«

− 1

(n+1)
3
2

The dominating terms behave as 8

(n+1)
3
2

, and therefore, as n → ∞, the relative risk

satisfies
E[Φ(X

n )]

Φ( 1
n )

∼ 8
n2

(n + 1)
3
2

→ ∞

This example shows that, if X is not in Lγ+1 where γ is the essential upper bound of
the relative risk aversion of Φ, the statement of Proposition 5.1 does not need to be
true.

7.2 A uniformly integrable martingale for which the relative risk does not converge to
infinity

We start with the following discrete-time martingale with Z1 = 1:

Zn :=

Zn−1 if Zn−1 ≥ Zn−2 and n > 2
Cn otherwise with probability pn = 1

n2

1
n4 otherwise with probability (1 − pn) = n2−1

n2

(7.3)
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and Cn chosen in such a way that the process is indeed a martingale. Obviously this
discrete-time martingale is bounded, nonnegative, and converges to 0 as n → ∞ with
nonzero probability, which can be seen by

ln

 

Y

n

n2 − 1
n2

!

=
X

n

ln

„

1 − 1
n2

«

∼
X

n

− 1
n2 > −∞

which shows that the product of the probabilities that this martingale goes down
converges to a number strictly larger than 0.

With an underlying Brownian motion, we define

pn := P
h

Wn4 − W(n−1)4 ≤ an

i

(7.4)

where obviously an is chosen in a way that the probabilities fit. With

Z∞ := lim
n→∞

Zn

the process
Xt := E[Z∞|Ft] (7.5)

with the filtration generated by the Brownian motion Wt defines therefore a bounded
continuous nonnegative martingale which converges to 0 on a set with nonzero proba-
bility.

For t = n4, we have furthermore that Xt = Zn. If Tn is the announcing sequence
of stopping times, that is XTn

= 1
n , we would like to show that the supremum

yn := sup
ω

{X∞(ω) : XTn
(ω) =

1
n
}

converges to 0 with
p

XTn
. Firstly, this is true if n = k4 for a k ∈ N, because then, by

the definition (7.3) of the martingale XTn
= Zk,

Ck =
k2

(k − 1)4
− k2 − 1

k4 ≤ K

k2

for a constant K > 0. But also if n ∈
i

(k − 1)4, k4
i

, by the construction, the maximum

that the random variable X∞ can achieve must be bounded by Ck−1, and therefore,

for n ∈
“

(k − 1)4, k4
i

,

Cn ≤ Ck−1 ≤ K

(k − 1)2
≤ K2

k2 ≤ K2√
n

= K2
p

ZTn

where K2 is another constant. This was to prove.
Now we take our dual utility function φ which has a relative risk aversion which is

not essentially bounded from below, that is

φ(x) :=
x

ln( 1
x )

when x is small enough. We want to calculate the fraction

E[φ(Z∞)|FTn
]

φ(ZTn
)
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On the set where ZT = 0, conditional on FTn
, we have ZTn

= 1
n , and the supremum

the random variable can reach if ZTn
= 1

n is K2
1√
n
. We have therefore

E

"

Z∞

ln( 1
Z∞

)
|FTn

#

≤ E

2

4

Z∞

ln(
√

n
K2

)
|FTn

3

5 =
1

n ln(
√

n
K2

)
(7.6)

On the other hand,

φ(ZTn
) =

1

n ln( 1
n )

and the relative risk becomes

E[φ(Z∞)|FTn
]

φ(ZTn
)

≤ ln n

ln(
√

nK2)
=

ln n

0.5 ln n − ln K2

which is obviously bounded as n → ∞. We have therefore an example which shows
that if the relative risk aversion of φ is not essentially bounded from below away from
0, the conclusion of Proposition 5.2 does not need to hold, and the relative risk does
not need to converge to ∞.

7.3 A continuous market with a non-equivalent q-optimal martingale measure

Let W 1 and W 2 be two independent Brownian motions, and let the stock price process
until time t = 1 satisfy

dS = dW 1 (7.7)

The filtration is generated by W 1 and W 2 until time t = 1. It is clear that Zt = 1 is
the density process of an equivalent martingale measure for t ≤ 1 and that the market
admits an absolutely continuous martingale measure which is not equivalent, that is
there exists a density process Zabs

t of an absolutely continuous martingale measure as
well as a set A with strictly positive probability and with Zabs

1 (ω) = 0 for ω ∈ A. We
may even choose Zabs

1 in such a way that it is bounded.
For 1 ≤ t ≤ 2, the price process is constructed in the following way. Let F (x)

be the cumulative distribution function of a strictly positive random variable which is
integrable but has bad integrability property in the sense that it is not, say, p-integrable.
Let ψ be its inverse, and

X := ψ(Φ(W 2
2 − W 2

1 )) (7.8)

Furthermore, the filtration for t ≥ 1 is now only the one generated by W 1
1 and W 2

t ,
that is for t > 1, the first Brownian motion does not play a role any more. It is clear
that X is independent of F1, and that X is integrable but not p- integrable. Because
A ∈ F1, we have also that X1A is integrable but not p-integrable:

E[(X1A)p] = E[E[Xp|F1]1A] = E[Xp]E[1A] = ∞

Because X1A is integrable, we may chose it in a way that E[X1A] = P [A]. Now we
define for 1 ≤ t ≤ 2 the martingale

Xt := E[X1A|Ft] + 1Ac (7.9)
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It is clear that Xt is a strictly positive uniformly integrable martingale for all 1 ≤ t ≤ 2.
We may therefore take the stochastic logarithm of Xt and define the process λ(t) in
such a way that

Xt = E
„

−
Z t

1
λ(s)dW 2

s

«

where we applied here also the martingale representation theorem.
Now we define the stock price process for 1 ≤ t ≤ 2 in the following way:

dS := λ(t)dt + dW 2 (7.10)

With this construction, we have the following properties:

1. For any choice of the martingale measure Z1 for t ≤ 1, we have that the measure
Z := Z1X2 is a uniformly integrable martingale measure

2. The martingale measure Ẑ := Zabs
1 X2 is not equivalent but bounded and therefore

in Lq for any q ≥ 1.
3. All equivalent local martingale measures in this market are of the form Z = Z1X2

4. The market does not admit an equivalent martingale measure which is p-integrable

Proof Because Z1 ∈ F1 and X is independent of F1, we have for t ≥ 1

E[Z|Ft] = Z1 (E[X1A + 1Ac |Ft]) = Z1Xt

and for t ≤ 1 we have

E[Z|Ft] = E[Z1E[X2|F1]|Ft] = E[X2]E[Z1|Ft] = Zt

and therefore Zt is a martingale. For t ≤ 1, the construction of Zt already guarantees
that Zt is a martingale measure. For 1 ≤ t ≤ 2, we have

dZt = Z1dXt = −λ(t)Z1XtdW 2
t = −λ(t)ZtdW 2

t

and thus

d(SZ) = λ(t)Ztdt − λ(t)Ztd〈W 2, W 2〉t + loc. martingale

which is obviously a local martingale.
From the proof before, it is clear that Ẑ is a martingale measure. Because Ẑ = 0

on A and P [A] > 0, it is also clear that this martingale measure is not equivalent. By
construction, we have that Zabs

1 is bounded. But on Ac, we have that X2 = 1, and
therefore Ẑ remains bounded on this subset. But on A, it is 0 and therefore bounded
too. It follows that Ẑ is bounded.

Let now be Z any absolutely continuous local martingale measure. Because the
density process is a martingale, we must have E[Z|F1] = Z1. For the economy up to
time t = 1, we have therefore E[SZ|Ft] = E[SZ1|Ft], and therefore Z1 must be one of
the martingale measures chosen in the economy for t ≤ 1.

For t ≥ 1, we will follow a market completeness argument. Firstly we have that
X2 is a strictly positive integrable random variable with expectation 1. Therefore, the
measure Q defined by dQ

dP = X2 is equivalent. By construction, the density process Zt

follows the stochastic differential equation

dZ = −λ(t)ZtdW 2
t
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with λ(t) = 0 for t < 1 and λ(t) as above for t ≥ 1. By the Girsanov theorem, the
process W̃ 2

t defined by

dW̃ 2 := dW 2 + λdt

is a Brownian motion under Q. We have therefore that for t ≥ 1, S follows under Q

the dynamics

dS = λ(t)dt + dW 2
t = λ(t)dt + (dW̃ 2

t − λ(2)dt) = dW̃ 2
t

Let now Q̃ be any equivalent local martingale measure, and let Z̃ := dQ̃
dQ its density.

Then the process Z̃t is a martingale under Q, and by the martingale representation
theorem it can be represented for t ≥ 1 by

Z̃t = Z̃1 +

Z t

0
HsdW̃ 2

s = Z̃1 +

Z t

0
HsdS

for a predictable process Hs. Because Q̃ is also a local martingale measure, we have
that Z̃S must be a local martingale under Q. This implies that the quadratic variation
of Z̃S must vanish, because both Z̃ and S are martingales under Q. It follows for t ≥ 2
that

0 = d〈Z̃, S〉 = d〈
Z

HdS, S〉 = Hd〈S〉 = Hd〈W 2〉 = Hdt

and therefore H = 0. It follows that any density process of an equivalent local martin-

gale measure is dQ̃
dQ = Z1, and from this

dQ̃

dP
=

dQ̃

dQ

dQ

dP
= Z1X2

Let Z now be an equivalent martingale measure. It follows that Z1 > 0, and therefore
there exists a set An ⊂ A, An ∈ Ft, with P [An] > 0 and on which Z1 ≥ 1

n . Because
An ∈ F1, it is independent of X. Because Z = Z1X2, we have

E[Zp] = E
ˆ

Z
p
1E
ˆ

(1AX + 1Ac)p|F1
˜˜

≥ 1
np

P [An]E[Xp] = ∞

+,

The financial market defined before shows that, if the assumption of the existence of
a square integrable local martingale measure in Theorem 1.3 in [2] is dropped, the
variance-optimal martingale measure does not need to be equivalent.

Proof With the example before, it is clear that there is an absolutely continuous local
martingale measure which is bounded and therefore square-integrable, but for which
there does not exist any equivalent local martingale measure which is p-integrable. With
the choice p = 2 (and therefore the appropriate choice of the distribution function
F (x)), we have that no equivalent local martingale measure is square-integrable. It
follows that an equivalent local martingale measure cannot be variance-optimal. +,
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8 Application: q−optimal measures

From section 5, it follows that q-optimal local martingale measures, that is martingale
measures Q̂ which minimize the expression

E

»„

dQ

dP

«q–

(8.1)

for q > 1 over all absolutely continuous local martingale measures Q, are always equiv-
alent, provided there exists an equivalent local martingale measure which is bounded
in Lq . By [4], this q-optimal measure always exists if q > 1. Because the function
Φ(x) = xq has constant relative risk-aversion of q− 1 which is obviously bounded from
below away from 0, the assumptions of Theorem 5.1 are obviously satisfied.

On the other hand, section 7.3 shows how to construct a financial market for which
there does not exist an equivalent local martingale measure which is in Lq, and for
which the q-optimal measure is only absolutely continuous and not equivalent.

From section 6, it follows that if there exists an equivalent local martingale measure
for which the expectation (8.1) remains bounded, we still have that the q-optimal local
martingale measure is equivalent provided it exists. But from [4], this existence is not
guaranteed any more.

9 Conclusion

In this paper, we have shown that the minimax martingale measure in the sense of
[4] is equivalent to the objective probability measure under some conditions on the
utility function as well as on the existence of an equivalent local martingale measure
which is sufficiently integrable, and, for the case of satiated investors, the continuity of
the filtration. Whereas the case with strictly increasing utility functions has essentially
already been treated in [5], the situation with a utility function that has a maximum
has only been treated in the specific case of the variance-optimal martingale measure in
[2]. In our paper, we use essentially the same method as there for proving a substantial
generalization of this result. Furthermore, we provide an example which shows that the
condition of the existence of an equivalent local martingale measure which is square-
integrable cannot be dropped without possibly additional assumptions on the financial
market.

For further research, one could try to find a sharper distinction whether or not the
minimax martingale measure is equivalent for situations where the relative risk either
remains bounded or converges to infinity for the absolutely continuous as well as for the
equivalent local martingale measure. Furthermore, for finding counterexamples, we had
to assume quite specific market situations, which are different from the models that are
normally used. It may therefore be advantageous to find conditions on the market rather
than on the utility function which guarantee that the minimax martingale measure is
equivalent.

One main question remains, namely if we really need the stronger condition of
the existence of an equivalent local martingale measure which is in Lγ+1, where γ is
the upper bound of the essential relative risk aversion, rather than only the weaker
one, namely the existence of an equivalent local martingale measure which is in LΦ.
From the counterexamples, it becomes clear that we will not be able to prove the
stronger result using this method of proof. Combining the counterexamples, it would



38

even be possible to construct a situation where the relative risk of every equivalent local
martingale measure tends faster to infinity than the one for the absolutely continuous
one on the set where the absolutely continuous local martingale measure tends to 0.
But the question is then still what happens on the set where the absolutely continuous
local martingale measure does not converge to 0.

Finally, we had, as in [4], always the assumption of the existence of a risk-free
asset, or equivalently, that the investor optimizes his terminal wealth by discounting
everything by a numéraire. If this assumption is dropped, the optimal portfolio may
more easily hit the maximum point of the utility function, which mostly implies by the
duality results that the dual minimizer is 0 with nonzero probability.
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