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Abstract

Longevity risks, i.e. unexpected improvements in life expectancies, may lead to severe

solvency issues for annuity providers. Longevity-linked securities provide the desirable hedg-

ing instruments to annuity providers, and in the meanwhile, diversi�cation bene�ts to their

counterparties. But longevity-linked securities are not traded in �nancial markets due to

the pricing di¢ culty. This paper proposes a new method to price the longevity risk premia

in order to tackle the pricing obstacle. Based on the equivalent utility pricing principle,

our method obtains the minimum risk premium required by the longevity insurance seller

and the maximum acceptable risk premium by the longevity insurance buyer. The proposed

methodology satis�es four important requirements for applications in practice: i) suitable for

incomplete market pricing, ii) accurate estimation of the risk premia, iii) consistent with other

�nancial market risk premia and iv) �exible in handling di¤erent payo¤ structures, basis risk

and natural hedging possibilities. The method is applied in pricing various longevity-linked

securities (bonds, swaps, caps and �oors). We show that the size of the risk premium depends

on the payo¤ structure of the security due to the market incompleteness. Furthermore, we

show that the �nancial strength of the longevity insurance seller and buyer, the availability of

the natural hedges and the presence of basis risk may signi�cantly a¤ect the size of longevity

risk premium.
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1 Introduction

Longevity risks, i.e., unexpected improvements in life expectancies, impose a challenge on pension

plans and insurance companies because small unexpected improvement in life expectancies may lead

to severe solvency issues for these annuity providers. Longevity-linked securities are designed to pay

out more when a selected population group lives longer than originally expected. They are attractive

securities to �nancial markets because, on one hand, they are desirable assets for annuity providers

to hedge their longevity risks, and on the other hand, investors may �nd these securities attractive

for the bene�ts of diversi�cation provided that the risk premia are set appropriately. Moreover,

�nancial markets may provide a more e¢ cient risk allocation than the traditional insurance markets.

Although academic researchers, policy makers and practitioners have talked about it for years,

longevity-linked securities are not traded in �nancial markets due to the pricing di¢ culty. This

paper therefore proposes a new method to price the longevity risk premia in order to tackle the

pricing obstacles of the innovative longevity-linked securities.

This paper contributes to the literature by quantifying the longevity risk premia in various

longevity-linked securities (bonds, swaps, caps and �oors), applying the equivalent utility pricing

principle. Based on the equivalent utility pricing principle, we obtain a minimum risk premium

required by the longevity insurance seller and a maximum acceptable risk premium by the longevity

insurance buyer. These upper and lower bounds indicate a price range for negotiation between the

sellers and the buyers. The four main advantages of our methodology are: i) the suitability for

incomplete market pricing, ii) a narrow range of the risk premia, iii) the consistency with other

�nancial market risk premia (like in�ation risk premium) and iv) its �exibility in handling di¤erent

payo¤ structures, basis risk and natural hedging possibilities.

In practice, life insurers, also pension funds, claim that their annuity businesses are losing

money due to the unexpected longevity improvements over years. In the past centuries remarkable

improvements in human life expectancy have been observed. The uncertainties about the further

improvements of human life expectancy are referred to as the longevity risks. Oeppon and Vaupel

(2002, in Science) report striking evidences that the record life expectancy has been rising nearly

three months per year in the past 160 years, and the asserted ceilings on life expectancy were

surpassed repeatedly in the past century. In fact, the future improvements of life expectancy are

di¢ cult to be predicted accurately.1 The general opinion from the experts tends to be that the

trend of longevity improvements is certain, but deviations to both sides are possible.

Reinsurance contracts do exist, but the capacity of reinsurance is limited (OECD (2005)). By

a reinsurance contract, the longevity risk is concentrated on one large reinsurance company. The

reinsurance approach works best when the underlying risks are diversi�able. However, the fact

that longevity risk is a systematic risk weakens the diversi�cation principle that the reinsurance

1Brown and Orszag (2006) discuss the di¢ culties in making an accurate mortality projection.
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requires. Longevity risk cannot be reduced by diversi�cation or increasing the size of the pool.2

Alternatively, the longevity risk could be transferred to �nancial markets, also known as securi-

tization. By transferring longevity risk to �nancial markets, the risk is distributed among a (large)

number of market participants who can shoulder the risk better, i.e., achieving more e¢ cient risk

allocation. Longevity-linked securities are one of the current �nancial market innovations. The

�rst longevity bond was announced by the EIB and BNP3 Paribas in November 2004, but it has

been under-subscribed, and withdrawn for redesign in late 2005.4 The EIB/BNP survivor bond is

a coupon-based bond, with �oating annual coupons linked to a cohort survivor index. The problem

with this issuance is that there is no clear view on how longevity risk should be charged. The

EIB/BNP survivor bond required a longevity risk premium of 20 basis points, which was regarded

as too high for some annuity providers. The EIB/BNP bond, although linked to the British survivor

index, was also marketed among Dutch pension funds. However, it was not clear for the Dutch

pension funds whether the 20 basis points was a good deal or not.

The origin of the pricing di¢ culty lies in the fact that the �nancial market is incomplete when

longevity securities are not traded. Therefore, the goal of this paper is to provide a pricing frame-

work suitable for pricing longevity risks in incomplete market setting. Based on the equivalent

utility pricing principle, our method obtains the minimum risk premium required by the longevity

insurance seller and the maximum acceptable risk premium by the longevity insurance buyer. We

�nd that the size of the risk premium depends on the payo¤ structure of the security, the �nancial

strength of the seller and the buyer and the availability of the natural hedge. We show that di¤erent

payo¤ structures and maturities may lead to di¤erent risk premia because the market is incomplete.

We also show that �nancially stronger issuer may require a lower risk premium. Furthermore, the

risk premium could be reduced by distributing the longevity risk among more market participants.

The market calls for more longevity bond issuers in order to achieve more e¢ cient allocation and

reduce the longevity risk premium. One important implication for the market development of

longevity-linked securities is that multiple sellers, instead of a single seller, are required.

In this paper, the longevity risk is modeled as proposed by Lee and Carter (1992), and estimated

according to the U.K. and the Dutch mortality data. However our pricing methodology is quite

general. Other stochastic mortality models are also suitable for our pricing framework.

Recently, a few approaches to price longevity risk were proposed in the literature. Friedberg and

2We must di¤erentiate mortality risk from longevity risk. Mortality risk refers to the uncertainty about individual
death events when the life expectancy is known. Therefore, mortality risk is a micro risk, and can be diversi�ed by
increasing the size of the pool.

3EIB/BNP stands for the European Investment Bank (EIB) and Banque Nationale de Paris (BNP).
4Blake, Cairns and Dowd (2006) address the associated obstacles in current market development of longevity-

linked securities. The obstacles are categorized into �design issues�(regarding the payo¤ structure, maturity, choice
of survivor index, nominal or real payments, etc.), �pricing issues�and �institutional issues�. As to the pricing issues,
the authors comment that �even if the (survivor) bond provides a perfect hedge, there will be uncertainty over what
the right price to pay or charge should be."
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Webb (2005) apply Capital Asset Pricing Model (CAPM) and Consumption-based Capital Asset

Pricing Model (CCAPM) to estimate the longevity premium. Their result based on CAPM leads

to a risk premium of 75 basis points, with con�dence interval ranging from -75 to 230 basis points,

due to inaccuracy in estimating the beta. Their result based on CCAPM is merely two basis points,

due to the low variation in consumption data. The discrepancy between the author claimed 2 bp

and the market claimed 20 bp is similar to the equity premium puzzle using the CCAPM approach.

Milevsky, Promislow and Young (2005, 2006) proposed a Sharpe ratio approach, which is based

on mean and volatility of payments instead of returns. The methodology used in this paper is the

equivalent utility pricing principle. Our approach is suitable for pricing in incomplete market. It

provides a narrow price range for negotiation. The resulting risk premia are consistent with other

�nancial market risk premia (like in�ation risk premium). Our pricing framework is �exible in

handling di¤erent payo¤ structures, basis risk and natural hedging possibilities.

Apart from securitization, there are three other possibilities of managing longevity risk,5 namely

hedging, reserving and risk sharing. The longevity risk could be partly hedged using natural

hedging, for example between life annuity and term insurance. This paper illustrates the e¤ect

of the natural hedging on longevity risk premia. The impact of natural hedging is potentially

signi�cant.

The organization of this paper is the following: Section 2 introduces stochastic mortality models

in order to quantify longevity risks. Section 3 describes longevity-linked securities, and incomplete-

market pricing principles. In Section 4 we quantify the (seller�s minimum) longevity risk premium

for EIB/BNP type of longevity bonds using the equivalent utility pricing principle. Section 5

extends the longevity risk premia calculation to other longevity linked securities, including swaps,

deferred bonds, �oors and caps. Section 6 introduces the possibility of natural hedging into our

pricing framework. Section 7 considers buyer�s maximum premium, together with the presence of

basis risk. Section 8 concludes.

2 Stochastic Mortality Models and Longevity-Linked Se-

curities

This section �rst presents a stochastic mortality model to quantify longevity risks, and then de-

scribes the longevity-linked securities in more details.

5See also Brown and Orszag (2006), Blake, Cairns and Dowd (2006).
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2.1 Stochastic Mortality Models

The literature of stochastic mortality trend starts from Lee and Carter (1992).6 According to

Deaton and Paxson (2004), the Lee-Carter model has become the �leading statistical model of

mortality in the demographic literature�. Therefore, the numerical results presented in this paper

are based on Lee and Carter (1992) model.

Other stochastic mortality models may also �t well in our pricing framework. Dahl (2004)

and Schrager (2006) advocate the a¢ ne stochastic mortality models to capture the birth cohort

mortality dynamics over one�s life cycle instead of the time series of an age group over time. We

leave the a¢ ne stochastic mortality approach as a future work for robustness analysis.

Lee and Carter (1992) model the time series behavior of log central death rate of an age group by

using a single latent factor. The latent factor drives the mortality rates of all age cohorts. Formally,

the log mortality rate of the x-year-old, ln
�
�x;t
�
, is determined by a common latent factor, t; with

an age-speci�c sensitivity parameter �x and an age-speci�c level parameter �x

ln
�
�x;t
�
= �x + �xt + �x;t (1)

where transitory shocks �x;t
iid� N (0; �2�) are white noises. And t satis�es a random walk with drift

process as

t = c+ t�1 + "t (2)

where permanent shocks "t
iid� N (0; �2") are white noises. �x;t and "t are independent.

Assuming that the force of mortality is constant during a year �x+u;t+u = �x;t (0 � u < 1), the
survival probability at time t of the x-year-old over one-year horizon is given by px (t) = p[x0]+t (t) =

exp
�
��x;t

�
. Similarly, the conditional probability at time t of an x-year-old surviving next � years

is given by

�px (t) = exp

 
�

�X
i=1

�x+i;t+i

!
(3)

We estimate this model using the yearly U.K. (England and Wales) and Dutch male mortality

data from 1880 to 2003, downloaded from the Human Mortality Database.7 Appendix A provides a

more detailed treatment of the model, together with its estimation and simulation procedures. The

estimation results using the British data are included in the main text below, while the estimation

6Various extensions of the Lee-Carter model can be found in Cairns, Blake and Dowd (2005b), Hari, De Waege-
naere, Melenberg and Nijman (2006).

7Human Mortality Database University of California, Berkeley (USA), and Max Planck Institute for Demographic
Research (Germany). Available at www.mortality.org or www.humanmortality.de (data downloaded on March 27,
2006).
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results using the Dutch data are reported in Appendix A.

The estimated latent process (in the United Kingdom) is the following, including two temporary

shocks captured by a �WWI�dummy and a �WWII�dummy8:

t = �0:0725 + t�1 + 0:65 �WWIt + 1:9 �WWIIt + "t (4)

with the volatility b�" = 0:169: The dummy variables do not change the drift but reduce the volatility
of the innovations.

FIGURE 1: The estimated Lee-Carter (1992) model parameters, with �x (left upper

panel), t (right upper panel); ax (left lower panel) and ln�x (right lower panel, the top

curve for x = 65, and the bottom dashed curve for x = 35).

8The �WWI�dummy takes non-zero values for years {1914 =1.5; 1915 = 1.5; 1916 = 1; 1917 = 1; 1918 = 1; 1919
= -4; 1920 = -2} and zero elsewhere. The �WWII�dummy takes non-zero value for years {1940 = 1; 1944 = 0.1;
1945 = 0.1; 1946 = -1.2} and zero elsewhere.
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FIGURE 2 (a): The forecasted force of mortality �x+t (left panel) and the forecasted

survival probabilities tpx (right panel) of the 65-year-old cohort retiring in year 2004.

FIGURE 2 (b): The standard deviation (left) and skewness (right) of the simulated

survival probability, tp65:

Assuming that the estimated model (4) is the �true�process, and taking the estimated parame-

ters as of year 2003, we could simulate the latent process t and the resulting survival probabilities

of the 65-yaer-old male cohort from year 2004 onwards. Figure 2(a) describes the distribution of a

set of simulated survival probabilities of the 65-year-old male. From Figure 2(b) we see that the

volatility of the survival probabilities exhibits a hump shape, which means that the uncertainty

over a longer horizon (up to 20 years) �rst increases and then decreases. The distribution is also

skewed. The skewness increases with age.

Using the estimation results, we can show the size of the uncertainties involved in life expectancy

and annuity prices. The expected remaining life time of an x-year-old at time t is given by
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Et [T ] = Et

"
!�xX
�=1

(�px (t))

#
(5)

where ! denotes the maximum obtainable age, e.g., ! = 110. The price of an immediate annuity

paying 1 euro in each surviving year, assuming a �xed and �at yield curve r, is given by

Et [L] = Et

"
110�xX
�=1

e�rt (�px (t))

#
: (6)

According to the estimated Lee-Carter model, the remaining lifetime of a 65-year-old British male

in year 2004, is 16 years with standard error of [� 0:2] years, as given by (5). An immediate annuity
paying 1 euro in each surviving year on average worthies9 13:1 euro, assuming a �xed and �at yield

curve at r = 2%, as given by (6). The standard error of the value of this annuity is [� 0:15] euro,
or [� 1:1%] in relative terms. The longevity risk in these immediate annuities is not negligible.

2.2 Longevity-Linked Securities

Given the potential size of the longevity trend uncertainty, �nancial markets proposed longevity-

linked securities. The �rst longevity bond was announced by the EIB and BNP Paribas in November

2004, but withdrawn for redesign in late 2005. The EIB/BNP bond is a �coupon-based�bond, in

which the notional annual coupon is indexed to a cohort survivor index in England and Wales.

This cohort retires at age 65 in 2004. The maturity of this bond is 25 years. Section 4 discusses the

pricing of such bonds. Blake, Cairns and Dowd (2006) address the lessons learned from the failure

of the EIB/BNP survivor bond and provide constructive suggestions for future developments of the

�ourishing new market. The main lessons are the following:

1) The designed 25-year horizon is perhaps too short for an e¤ective hedge, since longevity risk

in the near future (<10 years) is small.

2) The up-front capital requirement is large, especially since a major part of the capital is taken

by the ine¤ective hedge coupons in the near future.

3) The coupons are indexed to 65-year-old males, but annuity providers worry about longevity

risk of younger cohorts and females.

4) There is large uncertainty about what the right price is that should be charged.

5) Hedge failure or basis risks are large, due to a number of ways: the reference population is

di¤erent from that of an annuity provider, the survivor index is not timely available, etc.

6) The payments are nominal, whereas most pension schemes aim at in�ation-linked real pay-

ments.
9Money�s worth of annuity is the expected discounted value of future payments, without risk loadings.
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Their paper also introduces a few innovative hypothetical mortality-linked securities as potential

solutions to the aforementioned problems. These securities include Zero-Coupon Longevity Bonds,

Longevity Bull Spread Bonds, Deferred Longevity Bonds, Vanilla Mortality Swaps, Survivor Caps

and Floors, Mortality Swaptions and Longevity Future. Enlightened by these discussions, this

paper presents the required longevity risk premia in di¤erent longevity-linked security designs,

including zeros, EIB/BNP bonds, swaps, caps and �oors and deferred longevity bonds. This paper

also considers the impacts of natural hedge and basis risk in Sections 6 and 7.

3 Longevity Risk Pricing Principles, A Review

This section reviews the recent literatures on incomplete market pricing, and motivates our choice

of the methodology. Finally, we specify the utility preference needed for the equivalent utility

pricing principle.

CAPM- and CCAPM-based approach. Friedberg and Webb (2005) apply Capital

Asset Pricing Model (CAPM) and Consumption-based Capital Asset Pricing Model (CCAPM) to

estimate the premium for longevity risk. The authors construct a pseudo-EIB/BNP survivor bond.

Let Rb;t denote the returns of such pseudo survivor bonds. Following the CAPM, the longevity risk

premium is its beta, which is de�ned by �b = cov (Rb; Rm) =�
2
m; times the market risk premium:

Et(Rb)�Rf = �b [E (Rm)�Rf ]

The authors claim that the beta on pseudo-EIB/BNP bond is 0.15 with 95 percent con�dence

interval of [-0.15, 0.46]. Therefore, if market risk premium is 5 percent, the longevity risk premium

on this bond is 75 basis points, with con�dence interval of [-75, 230] basis points. Given the wide

con�dence interval, the authors suggest that CCAPM as a better alternative.

Following the CCAPM, the longevity risk premium is determined by the relationship between

the expected return on the asset and the marginal utility of consumption.

Et(Rb;t+1)�Rf = �
Covt(U

0(Ct+1); Rb;t+1)

Et(U 0(Ct+1))

The paper shows that the correlation between consumption growth and survivor bond returns is

-0.1958 and is signi�cant. However, since the standard deviation of mortality bond returns is small,

as a result, the covariance between survivor bond returns and consumption growth is extremely

small at -0.0015 percent. Applying the CCAPM, the risk premium is only two basis points when

the coe¢ cient of risk aversion equals 10. This result is far below the 20 bp risk premium marketed

in the EIB/BNP bonds.

Sharpe ratio approach. Cochrane and Saa-Requejo (2000) suggest that the absolute value
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of the Sharpe ratio on any unhedgeable portfolio should be bounded, so that too �good deals�

are ruled out. Milevsky, Promislow and Young (2005, 2006) propose a so-called instantaneous

Sharpe ratio to determine the mortality risk premia. Using the analogy to the Sharpe ratio in

the �nancial market, which is the ratio of the expected excess return and the return volatility

SRMarket := (E[R]�Rf ) =�[R], the Sharpe ratio in the insurance context could be de�ned as the
excess payo¤ above the expected payment, divided by the standard deviation of the risky payment,

SRInsur := (N(1 + L)� E[WN ]) =�[WN ]: The authors argue that the longevity risk loading L will

be set so that the Sharpe Ratio is consistent with other asset classes in the economy. For example,

if the Sharpe ratio for large cap equities is roughly 0.25, then the Sharpe ratio of the insurance

policy should also be bounded within a similar magnitude.10

Equivalent utility based approach. The pricing method proposed in this paper is based on

the equivalent utility pricing principle. The equivalent utility based approach is a popular pricing

methodology for incomplete market setting. The related literature includes Svensson and Werner

(1993), Young and Zariphopoulou (2002), Young (2004), Musela and Zariphopoulou (2004), De

Jong (2007), Chen, Pelsser and Vellekoop (2007) and other references listed in the bibliography. As

pointed out by Svensson and Werner (1993), the shadow value of a non-traded or non-hedgeable

asset (the price of longevity risks in this case) can be interpreted as an additional amount of wealth

added to the investor�s budget so that the investor is indi¤erent between holding a non-hedgeable

asset and hedgeable asset. Furthermore, the shadow value is investor-speci�c, depending on the

investor�s preference. In the context of longevity-linked securities, equivalent utility pricing principle

reveals the minimum compensation required by the seller and the maximum price acceptable to the

buyer. Therefore, this paper shows the range of possible prices for the longevity-linked securities

before the market opens up.

De Jong (2007) applies the principle of equivalent utility in pricing wage-linked securities, in

an incomplete market setting. In the context of de�ned bene�t pension fund liability valuation,

the main source of unhedgeable risk is the real wage growth. The pension fund is modeled as a

potential buyer of the wage-linked bonds. Hence the equivalent utility pricing gives the maximum

risk premium that the pension fund is willing to pay in order to obtain the insurance against the

wage rate �uctuations. The paper shows the risk premium is determined by the additional wealth

needed to be invested in the �nancial market in order to provide the participants the same level of

utility as a fully wage-indexed pension.

Assuming exponential utility function, Musela and Zariphopoulou (2004), as well as Henderson

(2002), show a simple analytical formula for pricing an non-traded claim. As we shall see, the

pricing formula of the longevity-linked claims derived in this paper is consistent with the result

10The authors are still working on the estimation of the Sharpe ratio using annuity rate quotes. The results are
not available yet.
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found by above mentioned authors. The next sub-section illustrates the idea of equivalence pricing

principle using a very simple model. The complete model is treated in Section 4.

3.1 An Application

Before going into the pricing, let us �x some notations. In the context of annuities, let N denote the

initial size of the x-year-old cohort at time zero, and K is the agreed amount of annuity payment

per annual. In the context of longevity bonds with varying coupons, NK denotes the notional

coupon, and NKtpx is the actual amount of coupon due in year t. In this paper, K is normalized

to 1. Finally, the number of survivors in this cohort in year t is given by St = NKtpx: The survival

index in t years�time is a random variable, with mean E[St], and variance V ar[St]: We assume

that the longevity risk is the only risk factor in this simple illustration.

Now we illustrate the equivalent pricing principle by pricing a zero coupon longevity bond,

with maturity of t years. Such zero coupon bond is e¤ectively a large group of single premium

endowment contracts which pays an agreed amount (normalized to K = 1) at a future time t to

the survivors of the current x-year-old cohort. The longevity risk can be described as the deviation

from the expected survival rate, St�E[St]: Let�s call the longevity bond issuance company (or the
pure endowment seller) the �seller�, since the �seller�provides insurance against longevity risk. The

single premium is paid at time zero, and consists of two parts. One part is the expected loss E[St];

the other part is a risk premium loading P .

The seller invests her initial wealth W0 and the received total premium (E [St] +P ) in risk free

asset. Further assume that the risk free rate is zero, hence, Wt = W0. The minimum premium

loading for this single premium endowment contract is the lowest amount that the seller asks for

bearing the longevity risk St�E[St]: Thus, the minimum premium loading, denoted as P�; equalizes
the expected utility of underwriting the risk St with a compensation E [St] + P�; with the utility

of not underwriting the risk, from the seller�s viewpoint. Let U (�) denote the utility function of
the seller, we have

E
�
U
�
Wt + E [St] + P

� � St
��
= U (Wt)

Case 1: CARA utility

First we assume the seller has a constant absolute risk averse (CARA) utility: U(w) = � 1
�
exp (��w) ;

where � is the absolute risk aversion coe¢ cient.
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E
�
U
�
Wt + E [St] + P

� � St
��

= � 1
�
exp(��Wt)

e(��(E[St]+P
�))E[e(�St)] = 1

P� =
1

�
lnE [exp (� (St � E [St]))] (7)

The resulting risk loading in expression (7) is the so-called exponential risk premium (Kaas,

et al. (2001), p. 7). The total premium can be seen as the �best estimate�plus the (macro) risk

premium which equals the logarithm of the moment generating function of risk St at argument �

divided by the CARA coe¢ cient �: Notice that the risk loading is not a¤ected by the initial wealth,

W0; for the CARA preference.

In a special case, if St is normally distributed, then the minimum loading P� is proportional to

the variance of St; as given in expression (8). However, Figure 2(b) shows that the distribution of

St is skewed. Therefore the handy expression (8) is not an accurate approximation.

if St � N (E [St] ; V ar [St]) ;

then � (St � E [St]) � N
�
0; �2V ar [St]

�
E [exp (� (St � E [St]))] = exp

�
1

2
�2V ar [St]

�
P� =

1

2
�V ar [St] (8)

Case 2: CRRA utility

Alternatively we assume the seller has a constant relative risk averse (CRRA) utility: U(w) =

w1�=(1 � ): Notice that the risk loading does depend on the initial wealth and risk aversion
parameter for the CRRA preference. The minimum loading P� is the one that solves Equation (9).

E
�
U
�
Wt + E [St] + P

� � St
��

=
W 1�
t

1� 
E
h�
Wt + E [St] + P

� � St
�1�i

= W 1�
t

E

"�
1 +

E [St] + P
� � St

Wt

�1�#
= 1 (9)

Numerical results:

The risk loading P� of both cases can be evaluated by means of simulation. Using the estimation

and simulation procedures presented in Appendix A, we calculate the expected loss E [St] and the
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risk loading P� for the endowment contract. The total premium paid per person is E[St]+P�

N
: We

can express P� in terms of risk premium, Rp, which is a discount rate above the risk free rate (i.e.

0 percent as assumed) and an actuarial discount rate Ra:

1

(1 +Ra +Rp)
t =

E [St] + P
�

N

where the actuarial discount rate Ra is de�ned by

1

(1 +Ra)
t =

E [St]

N
= E[tpx]

The risk premia for CARA and CRRA utility speci�cations are presented in Tables 1 and 2

below.

maturity CARA = 1 CARA = 3 CARA = 5 CARA = 1 CARA = 3 CARA = 5 CARA = 1 CARA = 3 CARA = 5
5 0 0 0 1 2 3 5 12 15

10 0 1 1 2 7 11 18 24 26
15 1 2 3 6 16 24 31 38 39
20 1 3 5 10 28 39 48 55 57
25 1 4 6 13 37 54 70 82 85
30 1 3 4 9 27 46 78 104 109
35 0 1 1 3 9 15 31 91 112

N = 10 N = 100 N = 1000

TABLE 1: The longevity risk premium Rp in basis points, for di¤erent cohort sizes

(N=10, 100, 1000 �103) and di¤erent risk aversion values (CARA(�) = 1; 3; 5):

maturity CRRA = 3 CRRA = 5 CRRA = 8 CRRA = 3 CRRA = 5 CRRA = 8 CRRA = 3 CRRA = 5 CRRA = 8
5 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 1 1 2
15 0 0 0 0 0 0 2 3 5
20 0 0 0 0 1 1 3 5 8
25 0 0 0 0 1 1 4 6 10
30 0 0 0 0 0 1 3 4 7
35 0 0 0 0 0 0 1 1 2

N = 10 N = 100 N = 1000

TABLE 2: The longevity risk premium Rp in basis points, for di¤erent cohort sizes

(N=10, 100, 1000 �103) and di¤erent risk aversion values (CRRA() = 3; 5; 8): The
initial wealth of the insurer is assumed to be W0 = 100.

Key features of the results are: 1) The required risk premium is negative, meaning that the

bond yield is lower than the risk free rate, so that the bond price is higher than the risk free bond.
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Thus, the insurer (i.e., the survivor bond issuer) is compensated for bearing longevity risks. 2) The

additional discount rate Rp (in absolute value) increases as the size of the pool increases. 3) The

more risk averse the insurer is, the higher compensation is required. 4) Approximately, the longer

the maturity, the higher compensation is required.

3.2 Preference Assumption

The results in Tables 1 and 2 reveal some unsatis�ed properties of CARA and CRRA prefer-

ences. For a CARA investor, he has the same worry about one additional euro loss no matter

how rich or poor he is. For a CRRA investor, he cares much less when he is rich. In our view,

both preferences are too restrictive to characterize the risk preference of �nancial institutions.

The CARA utility might overestimate the longevity risk premium. Whereas, the CRRA utility

might underestimate the risk premium. Therefore, we modify the CARA utility, to make the risk

aversion depend on the initial capital or initial wealth of the company, � (W0) = �W�b
0 ; where

b 2 [0; 1]: In general, risk aversion decreases with initial wealth.11 At the two extremes, the mod-
i�ed utility approaches CRRA speci�cation when b = 1, and the modi�ed utility is back to the

CARA speci�cation when b = 0. The proposed preference (10) retains some convenient features

of the negative exponential utility function, since it is separable for independent risks x and y, as

E [u(x+ y)] = E [u(x)]E [exp (��y)] :

u (S) = � 1

� (W0)
exp (�� (W0)S) (10)

It is important to be clear about whose preference that (10) captures. Sections 3 to 5 focus

on seller�s minimum required risk premium. Therefore the utility function (10) represents the

preference of the shareholders of the seller. In the context of the EIB/BNP longevity bond, it

is the preference of the shareholders of EIB/BNP. Section 6 discusses the buyer�s maximum risk

premium. Hence the utility function (10) represents the preference of the buyer, e.g., a pension

fund.

4 Pricing of a Coupon-Based Longevity Bond

This section derives the minimum required longevity risk premium of a coupon based longevity

bond from the seller�s point of view. The longevity bond is linked to a large pool of population.

Therefore mortality risk (also called micro longevity risk) is fully diversi�ed. The setup of the

model is the following. The shareholder of a �nancial company (like EIB/BNP) derives her utility

11Wachter and Jogo (2007) (and their references) provide arguments and evidences for a wealth-varying risk
aversion.
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from dividends and �nal wealth. We consider two alternative situations. In the �rst situation,

the company does not insure longevity risk, hence is not exposed to longevity risk. In the second

situation, the company issues a longevity bond and hence bears longevity risk. Furthermore, we

assume that the macro longevity risk is independent from the �nancial risks. The methodology

used in this section combines the martingale approach with the equivalent utility pricing principle.

4.1 Setup

Problem 1 without longevity risk

Assume a complete �nancial market, with constant risk free rate, r: The shareholder (or man-

ager) of the company derives her utility from dividends and �nal wealth at the end of the horizon,

T . The per period utility is described as (10), and � is the subjective discount rate of the share-

holders. The initial equity capital of the company is given by W0: The company maximizes the

shareholder�s utility by optimizing asset allocation (xt) and dividend (Dt) decisions. Formally the

optimization problem is the following

max
fDt;xtgTt=0;WT

V0 = E

�Z T

0

e��tu (Dt) dt+ e
��Tu (WT )

�
(11)

s:t: E

�Z T

0

MtDtdt+MTWT

�
= W0 (12)

where Mt is the pricing kernel for the complete �nancial market. Mt is de�ned by

dMt=Mt = �rdt� �dZt (13)

where � is the market price of equity risk.

Problem 2 with longevity risk

In the same �nancial market, the company issues coupon-based longevity bond, in which the

annual coupon is indexed to the 1939-born cohort survivor index. This cohort retires in 2004 at age

65. The longevity risk is not hedgeable from the �nancial market. Hence, the company derives her

utility from dividends and the residual claim (E[St]�St) from the longevity risk. The initial equity
capital of the company is now augmented by an additional risk loading �: The company maximizes

her utility by optimizing asset allocation and dividend decisions. Formally the optimization problem

is the following

max
fD�

t ;xtgTt=0;W�
T

V �0 = E

�Z T

0

e��tu (D�
t + E[St]� St) dt+ e��Tu (W �

T )

�
(14)
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s:t: E

�Z T

0

MtD
�
t dt+MTW

�
T

�
= W0 + � (15)

Applying the equivalent utility pricing argument, we determine the minimum risk compensation

� such that the company is indi¤erent from bearing the longevity risk and without the longevity

risk. That is, the indirect utility must be equal under these two situations:

V �0 (�) = V0: (16)

4.2 Results

The derivations are given in Appendix B. The main results are the following: The risk loading � is

a present value of the certainty equivalent compensations for the risks St�E[St]; as given by (17):

� =
1

�

Z T

0

e�rt lnE [exp (�� (E[St]� St))] dt (17)

=
1

�

Z T

0

e�rt lnGtdt (18)

where Gt denotes

Gt � E [exp (�� (E[St]� St))]

The value of the coupon-based longevity bonds with maturity T can be decomposed into �best

estimated�price (
R T
0
e�rtE[St]dt) and longevity risk loading (�):

total price = best estimate + risk loading =

Z T

0

e�rtE[St]dt+ � (19)

Table 3 shows the normalized risk loading, �
beste stimate

, of the coupon-based longevity bonds

with maturity T = 5; :::; 35 years. The risk loading depends on the maturity of the bond, the size

of initial equity capital and the risk aversion of the insurer. Recall that the risk aversion is inversely

related to the size of the capital, as � (W0) = � (W0)
�b. When b changes from 1 to 0, the preference

shifts from CRRA to CARA, which results in an increase in risk loading. CRRA investor requires

virtually zero risk compensation. Whereas CARA investor requires a sizable compensation, up to

1.6 percent of the best estimated cost.

We can also express the risk loading � in terms of risk premium, Rp, which can be seen as an

additional discount rate above the risk free rate to adjust for the longevity risk. As explained in

Section 3.1, the risk premium is negative, meaning that the bond yield is lower than the risk free
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rate, so that the bond price is higher than the risk free bond. Thus, the insurer (i.e., the survivor

bond issuer) is compensated for bearing longevity risks.

total price =

Z T

0

e�(r+Rp)tE[St]dt

i:e:

Z T

0

e�rtE[tp65]dt+
�

N
=

Z T

0

e�(r+Rp)tE[tp65]dt

equity
maturity b=1 b=1/4 b=1/8 b=0 b=1 b=1/4 b=1/8 b=0 b=1 b=1/4 b=1/8 b=0

5 0% 0% 0,0% 0,0% 0% 0,0% 0,0% 0,0% 0% 0,0% 0,0% 0,0%
10 0% 0% 0,1% 0,2% 0% 0,0% 0,1% 0,2% 0% 0,1% 0,1% 0,2%
15 0% 0% 0,2% 0,5% 0% 0,1% 0,2% 0,5% 0% 0,2% 0,3% 0,5%
20 0% 0% 0,3% 0,9% 0% 0,2% 0,4% 0,9% 0% 0,3% 0,6% 0,9%
25 0% 0% 0,4% 1,4% 0% 0,3% 0,6% 1,4% 0% 0,4% 0,8% 1,4%
30 0% 0% 0,5% 1,5% 0% 0,3% 0,7% 1,5% 0% 0,5% 0,9% 1,5%
35 0% 0% 0,5% 1,6% 0% 0,3% 0,7% 1,6% 0% 0,5% 0,9% 1,6%

w0 = 10000 w0 = 1000 w0 = 100

TABLE 3: The normalized risk loading per person, �=best estimate, of EIB/BNP

longevity bonds for di¤erent sizes of the initial equity capital, W0 = [10000; 1000; 100]

million, and di¤erent risk aversion speci�cations � (W0) = � (W0)
�b ; with � = 3;

b = [1; 1
4
; 1
8
; 0]: The size of the insured pool is N = 100 million, K = 1.

equity
maturity b=1 b=1/4 b=1/8 b=0 b=1 b=1/4 b=1/8 b=0 b=1 b=1/4 b=1/8 b=0

5 0 0 0 1 0 0 0 1 0 0 1 1
10 0 0 1 3 0 1 1 3 0 1 2 3
15 0 1 2 7 0 1 3 7 0 2 4 7
20 0 1 4 11 0 2 5 11 0 4 7 11
25 0 2 5 15 0 3 6 15 0 5 8 15
30 0 2 5 16 0 3 7 16 0 5 9 16
35 0 2 5 16 0 3 7 16 0 5 9 16

w0 = 10000 w0 = 1000 w0 = 100

TABLE 4: The longevity risk premium Rp (in basis points) of EIB/BNP longevity bonds

for di¤erent sizes of the initial equity capital, W0 = [10000; 1000; 100] million, and

di¤erent risk aversion speci�cations � (W0) = � (W0)
�b ; with � = 3; b = [1; 1

4
; 1
8
; 0]: The

size of the insured pool is N = 100 million, K = 1.

Table 4 presents the risk premium Rp (in basis points) of the �coupon-based�longevity bonds

with maturity T = 1; :::; 35 year. The results show two things. First, the risk premium increases as

the maturity of the bond increases. The risk premium for short maturity (T � 5 years) is small,
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less than one basis point. The minimum risk premium for long maturity (T = 30) is around 7 to

9 basis points (taking b = 1=8). Second, the risk premium depends on the �nancial position of the

insurer. The larger initial equity a �rm has, the lower risk premium the �rm requires (except for

the CARA case (b = 0)). The face value of the EIB/BNP bond issue was 540 million and the bond

had a 25-year maturity. The initial coupon was set at 50 million, which is comparable with the

initial payments NK = 100 million assumed here. By the end of 2005, EIB�s own fund amounts

to nearly 30000 million, which is comparable with the initial equity W0 = 10000 million assumed

here. The left panel with W0 = 10000 indicates a (sell-side) minimum required risk premium of

�ve basis points with b = 1=8 for 25 years maturity.

4.3 Implications

The implication that we can get from the above results is that longevity risk premium depends on

the �nancial position of the insurer. Large equity �nancial institutions may require a lower risk

premium. Put di¤erently, smaller issues (smaller K) may require lower risk premium. In order to

avoid too high risk premia, it might be helpful to have many large institutions all issuing moderate

amounts of longevity bonds, linked to the same survivor index.

5 Pricing of Other Longevity-Linked Securities

In this section, we look at other types of longevity-linked securities, including swaps, deferred

starting bonds, �oors and caps. Since the market is incomplete, we will show that di¤erent payo¤

structures may lead to di¤erent risk premia.

5.1 Vanilla Longevity Swaps

Vanilla longevity swaps have the same risk structure, E[St] � St, as the longevity bonds. The
insurer or the investment bank pays the counterpart the di¤erence between the expected and

realized mortality. Analogize to interest rate swap, the �xed leg is E[St]; and the �oating leg is St:

The required risk premium of a longevity swap is the same as in a longevity bond with the same

maturity and the same amount of notional issues (Table 4). The main advantages of swap lie in a

much lower up-front capital requirement and lower credit risk, as compared with a long maturity

longevity bond.

5.2 Deferred Longevity Bonds

A deferred longevity bond starts paying the longevity-linked coupons s years after the issuance,

till the bond maturity in year T . An advantage of a deferred longevity bond is that it skips the
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ine¤ective hedge coupons in the �rst few years, and hence requires much less up-front capital than

an immediate coupon paying bond. Following the same pricing principle as in Section 4, the risk

loading of a deferred longevity bond is given by

�def =
1

�

Z T

s

e�rt lnGtdt (20)

where � is the shorthand notation for � (W0) = �W
�b
0 and Gt � E [exp (�� (E[St]� St))] :

Tables 5 and 6 show the relative risk loadings and the risk premia of several deferred longevity

bonds. The following results assume that all deferred longevity bonds mature in 35 years, but the

�rst coupon payments could start 5, 10, 15 or 20 years after the issuance. Notice the �rst row in

the tables is an immediate starting bond for comparison. The initial capital is much smaller than

the immediate starting bond, but the relative risk loading is much larger. As a consequence, the

required risk premia are also larger than the immediate starting bond.

# year best
defer estim. b=1 b=1/4 b=1/8 b=0 b=1 b=1/4 b=1/8 b=0 b=1 b=1/4 b=1/8 b=0

0 13,1 0% 0% 1% 2% 0% 0% 1% 2% 0% 1% 1% 2%
5 8,6 0% 0% 1% 2% 0% 0% 1% 2% 0% 1% 1% 2%

10 5,2 0% 0% 1% 4% 0% 1% 2% 4% 0% 1% 2% 4%
15 2,7 0% 1% 2% 6% 0% 1% 2% 6% 0% 2% 3% 6%
20 1,2 0% 1% 2% 8% 0% 1% 3% 8% 0% 2% 4% 8%

w0 = 10000 w0 = 1000 w0 = 100

TABLE 5: The normalized risk loading, �=best estimate, of the deferred longevity bonds,

for di¤erent sizes of the initial equity capital, W0 = [10000; 1000; 100] million, and di¤erent

risk aversion values � (W0)
�b ; with � = 3; b = [1; 1

4
; 1
8
; 0]: N = 100 million, K = 1.

# year
defer b=1 b=1/4 b=1/8 b=0 b=1 b=1/4 b=1/8 b=0 b=1 b=1/4 b=1/8 b=0

0 0 2 5 16 0 3 7 16 0 5 9 16
5 0 2 6 17 0 3 8 17 0 6 10 17

10 0 2 7 21 0 4 9 21 0 7 12 21
15 0 3 9 26 0 5 12 26 0 9 15 26
20 0 3 10 30 0 6 13 30 0 10 18 30

w0 = 10000 w0 = 1000 w0 = 100

TABLE 6: The longevity risk premium Rp (in basis points) of deferred longevity bonds, for

di¤erent sizes of the initial equity capital, W0 = [10000; 1000; 100] million, and di¤erent

risk aversion values � (W0)
�b ; with � = 3; b = [1; 1

4
; 1
8
; 0]: N = 100 million, K = 1.
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5.3 Longevity Floors and Longevity Caps

For the case of a longevity �oor, the payo¤ structure is min[E[St] � St; 0]. When the number of
survivor is greater than the expected, the insurer faces a �longevity�loss. The payo¤ structure of

a longevity cap is max[E[St] � St; 0]. The insurer makes �longevity�pro�t when the number of
survivor is less than the expected. The risk premium of longevity �oor and cap can be obtained

in similar way based on the equivalent utility approach. The company derives her utility from

dividends and the residual claim ([E[St]� St]�)12. Following the martingale approach, the risk
loading is determined by

�� =
1

�

Z T

0

e�rt lnG�t dt (21)

�+ =
1

�

Z T

0

e�rt lnG+t dt (22)

where G�t � E
�
exp

�
�� [E[St]� St]�

��
, and G+t � E

�
exp

�
�� [E[St]� St]+

��
:

Table 7 compares the longevity risk premium Rp (in basis points) of longevity bonds, longevity

�oors and longevity caps respectively.

maturity bond floor cap bond floor cap bond floor cap
5 0 3 3 0 3 3 1 3 3

10 1 5 4 1 5 4 2 5 4
15 2 7 5 3 7 5 4 8 5
20 4 9 7 5 10 6 7 11 6
25 5 11 8 6 12 7 8 14 7
30 5 12 8 7 13 8 9 15 8
35 5 12 9 7 13 8 9 15 8

w0 = 10000 w0 = 1000 w0 = 100

TABLE 7: The longevity risk premium Rp (in basis points) of longevity bonds,

longevity �oors and longevity caps, for di¤erent sizes of the initial equity

capital, W0 = [10000; 1000; 100] million, and di¤erent risk aversion values

� (W0)
�b ; with � = 3; b = 1

8
: N = 100 million, K = 1.

We observe three things from Table 7. First, the risk premium of the longevity �oor is larger

(in absolute terms) than that of the longevity bond. This is because the payo¤ of the longevity

bond is symmetric, whereas the payo¤ of a longevity �oor is highly asymmetric. Therefore a higher

risk premium is required for bearing losses only. Second, the risk premium of the long position

in this longevity caps is positive, which means that the insurer pays for the call option. The

12 [E[St]� St]� � min (E[St]� St; 0) ; [E[St]� St]+ � max[E[St]� St; 0]
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more risk averse the insurer is, the less willingness to pay (read: compensate) the counterpart,

for receiving the uncertain pro�t. Thirdly, as the initial wealth decreases (hence the relative risk

aversion increases), the value of the �oor increases.

6 The E¤ect of Natural Hedging

It is known that term insurance policies provide a natural hedge for the immediate annuities (see,

e.g., Cox and Lin (2004)). The term insurance pays out a certain amount of death bene�t if the

policy holder dies before the contract expires. Since longevity shocks a¤ect all age cohorts in the

same direction, the unexpected increase in annuity payments to the retirees can be partially o¤set by

the unexpected reduction of death bene�t payments linked to the younger cohorts. The availability

of natural hedging clearly a¤ects the risk premium of the longevity bond issuance company. This

section examines the magnitude of this e¤ect on the pricing of longevity bonds.

Suppose that the longevity bond issuance company bears the risks from both the term in-

surance policies linked to a group of 35-year-olds in 2004 and the longevity bonds linked to a

group of 65-year-olds in 2004. Further, suppose that the estimated Lee-Carter 1992 model is the

true process governing the future mortality dynamics. The number of deaths for the 35-year-

old cohort in year t is S35t�1 � S35t : The unexpected shocks from the term insurance policies are

Bt �
�
E
�
S35t�1 � S35t

�
�
�
S35t�1 � S35t

��
; where Bt denotes the ratio of death bene�t relative to the

annuity payout K (=1, which is the agreed annuity payments). The (unexpected) shocks from

the longevity bonds are captured by E[S65t ]� S65t :The combined unexpected shocks from the term

insurance and the longevity bonds can be denoted by Zt as

Zt � E[S65t ]� S65t +Bt �
�
E
�
S35t�1 � S35t

�
�
�
S35t�1 � S35t

��
:

As explained in Section 4, the minimum longevity risk loading �hedge required by the seller is

determined by setting V �;hedge0 = V0; where V
�;hedge
0 is the indirect utility given by

max
fD�

t ;xtgTt=0;W�
T

V �;hedge0 = E

�Z T

0

e��tu
�
D�;hedge
t + Zt

�
dt+ e��Tu (W �

T )

�
(23)

s:t: E

�Z T

0

MtD
�;hedge
t dt+MTW

�
T

�
= W0 + �

hedge (24)

Following a similar argument as in Section 4.2, equalizing V �;hedge0 = V0; we can �nd the corre-

sponding risk premium as

�hedge =
1

�

Z T

0

e�rt lnGhedget dt (25)
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where Ghedget � E [exp (�� (Zt))] ; measuring the certainty equivalent of the combined shocks Zt.
The following example illustrates the e¤ectiveness of natural hedging. In this example, the level

of death bene�ts linearly decreases over time,13 i.e., Bt = T + 1 � t; for t = 1; 2; :::; T: Figure 3

compares the term insurance with the payout volatility of the longevity bonds with a term insurance

with decreasing death bene�ts. The volatility of the combined shocks is much lower than that of the

longevity bond alone. However, the hedging is not perfect. Table 8 shows the minimum required

risk premia, Rp; which is clearly reduced when natural hedging is available. The risk premia are

more than halved compared with the case without natural hedging.

FIGURE 3: The volatility of payouts of the longevity bond and

the term insurance separately and combined.

13Decreasing death bene�t is very common in life insurance policies bundled with mortgages for young households.
As mortgages are paid o¤ over time, the amount of death bene�t decreases.
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equity
maturity b=1 b=1/4 b=1/8 b=0 b=1 b=1/4 b=1/8 b=0 b=1 b=1/4 b=1/8 b=0

5 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 1 0 0 0 1 0 0 0 1
15 0 0 1 2 0 0 1 2 0 1 1 2
20 0 0 1 5 0 1 2 5 0 1 3 5
25 0 1 2 6 0 1 3 6 0 2 3 6
30 0 1 2 7 0 1 3 7 0 2 4 7

w0 = 10000 w0 = 1000 w0 = 100

TABLE 8: The longevity risk premium Rp (in basis points) of longevity

bonds when natural hedgeing is available (Bt = T + 1� t).

7 The Demand Side Pricing and Basis Risk

7.1 Demand Side Pricing

The demand side pricing considers the maximum price �BUY that the buyers (e.g., annuity providers)

are willing to pay for the longevity bond or other securities in order to be fully insured against

the longevity risk. From buyer�s point of view, �BUY can be derived in the same framework as

in Section 4. Assume an annuity provider sold annuities to a cohort retiring in 2004 at age 65.

The shareholder of this annuity provider derives her utility from dividends and �nal wealth. We

still consider two situations. In the �rst scenario, the annuity provider bought the ideal EIB/BNP

survivor bonds at price �BUY so that the longevity risk from her annuity contracts is completely

insured. In the second scenario, the annuity provider bears the longevity risk herself.

Problem 3 without longevity risk

Assume a complete �nancial market, with constant risk free rate, r: The annuity provider derives

her utility from dividends and �nal wealth at the end of the horizon. The company bought the

ideal EIB/BNP survivor bonds for �BUY ; such that the longevity risk is completely hedged. The

company maximize her utility by optimizing asset allocation (xt) and dividend (Dt) decisions.

max
fD�

t ;xtgTt=0;W�
T

V �0 = E

�Z T

0

e��tu (D�
t ) dt+ e

��Tu (W �
T )

�
(26)

s:t: E

�Z T

0

MtD
�
t dt+MTW

�
T

�
= W0 � �BUY (27)

Problem 4 with longevity risk
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In the same �nancial market, this annuity provider did not buy any longevity bond, and hence

bears the longevity risk herself. The company derives her utility from dividends and the residual

claim (E[St] � St) from the longevity risk. The longevity risk is not hedgeable from the �nancial

market. The company maximizes her utility by optimizing asset allocation and dividend decisions.

max
fDt;xtgTt=0;WT

V0 = E

�Z T

0

e��tu (Dt + E[St]� St) dt+ e��Tu (WT )

�
(28)

s:t: E

�Z T

0

MtDtdt+MTWT

�
= W0 (29)

Applying the equivalent utility pricing argument, we want to �nd the minimum risk compen-

sation �BUY such that the company is indi¤erent from bearing the longevity risk and without the

longevity risk, that is,

V �0 (�
BUY ) = V0: (30)

Following the equivalent utility pricing argument, we have

�BUY =
1

�

Z T

0

e�rt lnGBUYt dt: (31)

where GBUYt denotes

GBUYt � E [exp (�� (E[St]� St))] (32)

The maximum premium that a buyer of the longevity bond is willing to pay has the same form

as the minimum premium that the bond issuance company requires. It is common to assume that

the longevity bond buyer is more risk averse than the bond issuance company, or the �nancial

position of the buyer is weaker than the seller.

The buyer�s maximum price is also in�uenced by whether or not natural hedging is possible.

The availability of natural hedging could reduce the buyer�s price signi�cantly. Furthermore, the

presence of basis risk and the risk sharing possibility will also a¤ect the buyer�s maximum price.

7.2 Basis Risk

An ideal longevity bond which provides a perfect longevity hedge should be linked to the annuitant

population of the annuity provider. However, quite often this is not the case. There is a discrepancy

between the reference population that the bond is linked to and the annuitant population of the

bond buyer. Although the survival probabilities of the two populations might be (highly) correlated,

the longevity bond buyer still exposes to the remaining unhedgeable part, the so-called basis risk.
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As a real life example, the EIB/BNP longevity bond, although linked to the British survivor index,

was also marketed among Dutch pension funds. The idea is that the Dutch survivor index may

be highly correlated with the British one. The question here is whether 20 basis points is a good

deal or not for Dutch pension funds. This depends on the correlation between Dutch and British

mortality rates. The correlation between the innovations of the latent factors (4UKt and 4NLt )

is about 0.8, based on 1880-2003 data from both countries, with 4t � t � t�1. The remaining
part of the section examines the impact of basis risk on the pricing of longevity risk.

The basis risk between the British and the Dutch annuitant population can be captured by

ZBasisRiskt de�ned as

ZBasisRiskt � E[SNLt ]� SNLt �
�
E[SUKt ]� SUKt

�
:

Based on the expression for buyer�s maximum acceptable price (31), we can show that the risk

loading with basis risk is

�BasisRisk =
1

�

Z T

0

e�rt lnGBasisRiskt dt: (33)

where GBasisRiskt denotes

GBasisRiskt � E
�
exp

�
��
�
ZBasisRiskt

���
(34)

Assume that the Dutch pension fund has the same preference and the same level of equity as

the longevity bond issuance company, and also assume that the Dutch pension fund has no natural

hedging possibility. If without basis risk, that is, if there were a longevity bond linked to the Dutch

population, then we get the following maximum acceptable longevity risk premium Rp as given in

Table 914. However, since there is no such longevity bond linked to the Dutch population directly,

but linked to the British population, the hedging will not be perfect. The basis risk between the

two population will reduce the risk premium. Indeed, the demand side risk premium in Table 10

(with basis risk) is lower than that of in Table 9 (without basis risk).

14The risk premium for Dutch population (Table 9) is higher than the minimum required risk premium for

British population (Table 4), due to the fact that the estimated volatility d�NL" = 0:2176 is higher than the British
counterpart (see Appendix A.1).

25



equity
maturity b=1 b=1/4 b=1/8 b=0 b=1 b=1/4 b=1/8 b=0 b=1 b=1/4 b=1/8 b=0

5 0 0 1 2 0 0 1 2 0 1 1 2
10 0 1 2 7 0 1 3 7 0 2 4 7
15 0 2 5 15 0 3 7 15 0 5 9 15
20 0 3 8 23 0 5 11 23 0 8 14 23
25 0 3 10 28 0 6 13 28 0 10 17 28
30 0 3 10 30 0 6 14 30 0 10 18 30

w0 = 10000 w0 = 1000 w0 = 100

TABLE 9: Without basis risk, the buyer�s maximum longevity risk premium

Rp (in basis points) for Dutch pension fund with di¤erent initial equity

capital levels, and di¤erent risk aversion values � (W0)
�b ; with � = 3;

b = [1; 1
4
; 1
8
; 0]: The size of the insured pool is N = 100 million, K = 1.

equity
maturity b=1 b=1/4 b=1/8 b=0 b=1 b=1/4 b=1/8 b=0 b=1 b=1/4 b=1/8 b=0

5 0 0 0 1 0 0 0 1 0 0 0 1
10 0 0 1 2 0 0 1 2 0 1 1 2
15 0 1 2 6 0 1 3 6 0 2 4 6
20 0 1 4 11 0 2 5 11 0 4 7 11
25 0 2 6 16 0 3 8 16 0 6 10 16
30 0 2 7 18 0 4 9 18 0 7 12 18

w0 = 10000 w0 = 1000 w0 = 100

TABLE 10: With basis risk, the buyer�s maximum longevity risk premium Rp

(in basis points) for the same Dutch pension fund as in Table 9.

8 Conclusion

Longevity risk imposes serious solvency issues on pension plans and insurance companies. Longevity-

linked securities are desirable instruments for buyers and sellers, but are not traded yet in �nancial

markets because of the pricing di¢ culty. To tackle the pricing problem, we propose a new pricing

method, which is more accurate, �exible and consistent with other �nancial risk premia and suitable

for incomplete market pricing. Our methodology is based on the equivalent utility pricing principle.

The obtained narrow range of the longevity risk premia captures the seller�s minimum price and

the buyer�s maximum price. We apply the method in pricing various longevity-linked securities

(bonds, swaps, caps and �oors) linked to the U.K. and the Dutch mortality data. We show that

the size of the risk premium depends on the payo¤ structure of the security due to the market

incompleteness. Given a plausible range of risk aversion, �nancial position and other assumptions,
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we show that the resulting risk premia are consistent with the limited market observation and

consistent with other �nancial risk premia (e.g., in�ation risk premium). We also show that the

impact of natural hedging is potentially signi�cant. The results provide design implications for

longevity-linked securities and longevity risk management.
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A The Lee-Carter 1992 Model

This appendix provides a more detailed treatment of the model, together with the estimation and

simulation procedures. Following the Lee Carter 1992 model, the time series property of the log

mortality rate of the x-year-old, ln
�
�x;t
�
, is determined by a common latent factor t with an age

speci�c sensitivity �x and an age speci�c level �x

ln
�
�x;t
�
= �x + �xt + �t (35)

with the latent factor satis�es a random walk with drift process as

t = c+ t�1 + "t (36)

where �t and "t are vectors of white noise, satisfying the distributional assumptions 
�t

"t

!
� N

  
0

0

!
;

 
�� 0

0 �2"

!!
(37)

The forecasted log mortality rate in s years�time of a then x-year-old is

ln
�
�x;t+s

�
= �x + �xt+s + �t+s

= ln
�
�x;t
�
+ �x

�
t+s � t

�
+ (�t+s � �t)

= ln
�
�x;t
�
+ �x

 
sc+

sX
i=1

"t+i

!
+ (�t+s � �t)

That is

�x;t+s = �x;t exp

 
�x

 
sc+

sX
i=1

"t+i

!
+ (�t+s � �t)

!
(38)

Since about 95 percent of the variance in the long-term forecasts is generated by the innovation

of the latent factor t; as reported by Lee and Carter (1992), one can simplify the forecast formula

of �x;t+s as

�x;t+s = �x;t exp

 
�x

 
sc+

sX
i=1

"t+i

!!
(39)

The survival probability of the x-year-old over one year, assuming that the force of mortality is

constant during the year �x+u;t+u = �x;t (0 � u < 1), is given by
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px;t = p[x0]+t;t = exp
�
��x;t

�
(40)

The survival probability of the x-year-old over � years is given by

�px;t = exp

 
�

�X
i=1

�x+i;t+i

!
(41)

A.1 Estimation Procedure of LC92 Model

Let Y denote the matrix of log mortality rates, with each row for each age group ln�x for N

historical observations. We �rst construct a demeaned matrix of log mortalities, X = Y � �x�;
where �x is the mean value of ln�x; and � is a row vector of ones. Then, as proposed by Lee and

Carter (1992), we can use Singular Value Decomposition (SVD) to estimate the latent factor t
and the age-speci�c sensitivity �x: X = USV 0: Since the �rst singular value is signi�cantly larger

than other singular values, one can use one factor to approximate the log of force of mortality, as

proposed by Lee and Carter (1992). �x is the �rst column of U (multiplied by -1 to keep t a

downward sloping trend), and t is the �rst element of S times the �rst column of V (multiplied by

-1 to keep t a downward sloping trend). The straightforward estimations of the drift parameter

c, the variance of the innovation of the latent factor, and the variance of the estimated c are given

by:

bc =
1

N � 1

NX
n=2

4n =
1

N � 1 (N � 1)

b�2" =
1

N � 1

NX
n=2

b"2n = 1

N � 1

NX
n=2

(4n � bc)2
�(bc) =

b�"p
N � 1

The estimated latent process (in the United Kingdom) is the following, including two temporary

shocks captured by a �WWI�dummy and a �WWII�dummy:

UKt = �0:0725 + UKt�1 + 0:65 �WWIt + 1:9 �WWIIt + "t (42)

with d�UK" = 0:169:
The estimated latent process (in the Netherlands) is the following, including two temporary

shocks captured by a ��u�dummy and a �WWII�dummy15:

15The ��u�dummy takes non-zero values for years { 1918 = 1; 1919 = -1} and zero elsewhere. The �WWII�dummy
takes non-zero values for years { 1940 = 1; 1941 = 1; 1942 = 1; 1943 = 1; 1944 = 1; 1945 = 1; 1946 = -6} and zero
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NLt = �0:0748 + NLt�1 + 1:85 � flut + 0:63 �WWIIt + "t (43)

with d�NL" = 0:2176: As pointed out in Lee-Carter (1992), the dummy variables only reduced the
standard errors of the mortality forecast, but not the trend itself.

A.2 Simulation

The simulation steps:

1. simulate the latent factor for T periods according to t+i = bc + t+i�1 + "i; for i = 1; :::; T;
where "i � N

�
0; b�2"� ; and t = 2003 which is the last  obtained from the estimation.

2. compute the force of mortality according to �x+i;t+i = exp
�b�x+i + b�x+it+i� ; for i = 1; :::; T;

3. compute the survival probability of the x-year-old cohort according to �px;t = exp
�
�
P�

i=1 �x+i;t+i
�
;

for � = 1; :::; T

4. compute the survival index St = Ntpx; where N is the initial size of the cohort.

5. repeat 1-4 steps for M times. As a by-product, calculate the mean, variance, and con�dence

interval of the forecasted survival probabilities and the survival index.

B Derivation of the Results in Section 4

First introduce some notations. For any given value of b, we have the marginal utility as u0 (x) =

exp (��x) ; and the inverse function of marginal utility u0(�) as Iv = � 1
�
ln (z) : The inverse function

of the utility function is denoted as Iu = � 1
�
ln (��z) :

Problem 1 (continued)
Set up the Lagrange

L = E

�Z T

0

e��tu (Dt) dt+ e
��Tu (WT )

�
+ �

�
W0 � E

�Z T

0

MtDtdt+MTWT

��

@L

@Dt

= 0 ) e��tu0 (Dt) = �Mt

@L

@WT

= 0 ) e��Tu0 (WT ) = �MT

elsewhere.
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D�
t = Iv

�
e�t�Mt

�
= � 1

�
ln
�
e�t�Mt

�
= � 1

�
�t� 1

�
ln�� 1

�
lnMt

W �
T = Iv

�
e�T�MT

�
= � 1

�
ln
�
e�T�MT

�
Plug into the budget constraint and the indirect utility function, we have

W0 = E

�Z T

0

MtD
�
t dt+MTW

�
T

�
(44)

= � 1
�
E

�Z T

0

Mt ln
�
e�t�Mt

�
dt+MT ln

�
e�T�MT

��
(45)

V0 = E

�Z T

0

e��t
�
� 1
�
exp (��D�

t )

�
dt+ e��Tu (W �

T )

�
= � 1

�
�E

�Z T

0

Mtdt+MT

�
(46)

Problem 2 (continued)
Set up the Lagrange

L = E

�Z T

0

e��tu (D�
t + E[St]� St) dt+ e��Tu (W �

T )

�
+��

�
W0 + � � E

�Z T

0

MtD
�
t dt+MTW

�
T

��
Since longevity risk, E[St]�St; cannot be hedged in the modelled �nancial market, the optimal

strategy,D�
t , is independent fromE[St]�St: Under the assumed preference (10), the above Lagrange

can be rewritten as

L = � 1
�
E

�Z T

0

e��t exp (��D�
t )E [exp (�� (E[St]� St))] dt+ e��Tu (W �

T )

�
+��

�
W0 + � � E

�Z T

0

MtD
�
t dt+MTW

�
T

��
= E

�Z T

0

e��tu (D�
t )Gtdt+ e

��Tu (W �
T )

�
+ ��

�
W0 + � � E

�Z T

0

MtD
�
t dt+MTW

�
T

��
where Gt denotes

Gt � E [exp (�� (E[St]� St))]
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and � is the shorthand notation for � (W0) = �W
�b
0 : Gt can be seen as a function of the certainty

equivalent of E[St]� St.
The optimal dividend strategy can be found by

@L

@D�
t

= 0 ) e��tu0 (D��
t )Gt = �

�Mt

@L

@W �
T

= 0 ) e��Tu0 (W �
T ) = �

�MT

D��
t = Iv

�
e�t��Mt

Gt

�
= � 1

�

�
ln
�
e�t��Mt

�
� lnGt

�
(47)

W ��
T = Iv

�
e�T��MT

�
= � 1

�
ln
�
e�T��MT

�
(48)

Plug into the budget constraint and the indirect utility function

W0 + � = E

�Z T

0

MtD
��
t dt+MTW

��
T

�
= � 1

�
E

�Z T

0

Mt ln
�
e�t��Mt

�
dt+MT ln

�
e�T��MT

��
+
1

�
E

�Z T

0

Mt lnGtdt

�
(49)

V ��0 = E

�Z T

0

e��t
�
� 1
�
exp (��D��

t )

�
Gtdt+ e

��Tu (W ��
T )

�
= � 1

�
��E

�Z T

0

Mtdt+MT

�
(50)

Equalizing the two indirect utilities (46) and (50), V0 = V ��0 , we �nd � = �
�:

Comparing the two budget constraints (44) and (49), with � = ��; we have

W0 = � 1
�
E

�Z T

0

Mt ln
�
e�t��Mt

�
dt+MT ln

�
e�T��MT

��
(51)

W0 + � = � 1
�
E

�Z T

0

Mt ln
�
e�t��Mt

�
dt+MT ln

�
e�T��MT

��
+
1

�
E

�Z T

0

Mt lnGtdt

�
(52)

The di¤erence between the two budget constraints gives the expression for longevity risk loading

of the survival bond
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� =
1

�
E

�Z T

0

Mt lnGtdt

�
=
1

�

Z T

0

E[Mt] lnGtdt (53)

=
1

�

Z T

0

e�rt lnGtdt: (54)

The risk loading is a present value of the certainty equivalent compensations 1
�
lnGt for the

risks St�E[St]: This compensation is paid out as part of dividend in each period, as shown in the
optimal dividends policy (47).
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