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Abstract

In this paper we address the problem of solving for optimal portfolio allocation in a dynamic set-

ting, where conditional correlation is modeled using observable factors, which allows us to isolate the

demand for hedging correlation risk. We are able to analyse separately the impact of tail dependence

through the unconditional distribution and that of conditional correlation on portfolio holdings. With

those distinct ways of modeling dependence we aim at replicating the stylised fact of increased depen-

dence during extreme market downturns, rising market-wide volatility, or worsening macroeconomic

conditions. We �nd that both correlation hedging demands and intertemporal hedges due to increased

tail dependence have distinct portfolio implications and cannot act as substitutes to each other. As

well, there are substantial economic costs for disregarding both the dynamics of conditional correlation

and the dependence in the extremes.

JEL Classi�cation: C15, C16, C51, G11

Keywords: correlation hedging, dynamic portfolio allocation, Monte Carlo simulation, tail depen-

dence.

�Corresponding author: Denitsa Stefanova, VU University Amsterdam, Department of Finance, FEWEB/FIN, De Boele-
laan 1105, 1081 HV Amsterdam, The Netherlands. Tel.: +31 (20) 598 6594. Email: dstefanova@feweb.vu.nl.

1



1 Introduction

An increasing body of literature is interested in modeling time variations in the conditional dependence

of asset returns in terms of conditional covariances and correlations (Bollerslev et al. (1988) or Engle

(2002) to cite a few). From a modeling perspective, popular choices for the time-varying correlation

phenomenon are the Dynamic Conditional Correlation model of Engle (2002) in a discrete-time setting,

or the continuous-time Wischart process, introduced by Bru (1991) that gives rise to an a¢ ne model and

tractable portfolio allocation rules.

The main theme behind those models is the fact that the correlation structure of world equity markets

is not constant over time, but is highly time varying. A number of studies have addressed this issue, as

well as the driving factors behind this time variation. Based on data from the last 150 years, Goetzmann

et al. (2005) �nd that correlations between equity returns vary substantially over time and achieve their

highest levels during periods characterized by highly integrated �nancial markets. As well peaks in

correlations and not only volatility can be attributed to major market crashes, as for example the Crash

of 1929. Longin and Solnik (1995) study shifts in global equity markets correlation structure and reject

the hypothesis of constant correlations among international stock markets. Moreover, they �nd evidence

that correlations increase during highly volatile periods. Using Extreme Value Theory, Longin and Solnik

(2001) �nd that international stock markets tend to be highly correlated during extreme market downturns

than during extreme market upturns, establishing a pattern of asymmetric dependence. Further, Ang

and Chen (2002) con�rm this �nding for the US market for correlations between stock returns and an

aggregate market index. Another strand of literature connects the variability of stock return correlations

to the phase of the business cycle. Ledoit et al. (2003) and Erb et al. (1994) show that correlations are

time-varying and depend on the state of the economy, tending to be higher during periods of recession.

Similar evidence is brought forward by Moskowitz (2003) who links time variation of volatilities and

covariances to NBER recessions.

The above empirical �ndings �nd theoretical justi�cation in Ribeiro and Veronesi (2002) where in a

Rational Expectations Equilibrium model time variations in correlations are obtained endogenously as a

result of changes in agents�uncertainty about the state of the economy. Further, by relating recessionary

periods to a higher level of uncertainty, excess co-movements across international stock markets are

obtained during bad times when the global economy slows down.

The evidence of highly varying conditional correlations on equity markets has motivated us to pro-

pose a continuous time process for asset prices that incorporates the above mentioned stylized facts in

two distinct ways. First, we allow for tail dependence between extreme realizations of asset returns by

explicitly modeling the stationary distribution of the process using copula functions that incorporate

dependence in the left or the right tail. This construction of a multivariate di¤usion with a pre-speci�ed

stationary distribution relies on Chen et al. (2002) and follows the lines of Stefanova (2008). It allows
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us to obtain higher dependence when markets experience downturns than during upward moves. How-

ever, this approach does not exploit the conditional correlation structure of the process. To this end,

we further propose a speci�cation for modeling correlation dynamics using observed factors, including

macroeconomic and market volatility factors. With those we aim at capturing the above mentioned fea-

tures of asset returns, and namely the fact that correlations increase during extreme market downside

moves, hectic periods and recessionary states of the economy.

This paper further concentrates on the portfolio implications of those distributional assumptions.

Staying within a complete market framework, we are able to undertake the standard portfolio solution

methodology of Cox and Huang (1989), further developed by Ocone and Karatzas (1991) and Detemple

et al. (2003), which allows us to obtain in closed form up to numerical integration the optimal portfolio

components in terms of mean-variance demand and intertemporal hedging demands. For the case where

we model conditional correlation as a function of observed factors, we are able to isolate the hedging

demands for correlation risk, due to stochastic changes in the factors. We use the solution for the optimal

portfolio allocation in order to address the following issues:

a) We test whether the implications of allowing for tail dependence through the stationary distribution

and for dynamic conditional correlation on the optimal portfolio hedging demands are similar in

magnitude and direction. As those distributional assumptions aim at replicating the same stylized

behavior, it is interesting to see whether the portfolio e¤ects will share this similarity. For an in-

sample market timing exercise along realized paths of the state variables over a 20-year investment

horizon and two risky funds, we �nd that allowing for dynamic conditional correlation generally

drives up the intertemporal hedging demands, while allowing for tail dependence in the stationary

distribution diminishes them. There is also a distinction in the portfolio composition between the

risky funds: in the presence of dynamic conditional correlation the spread between the hedging

demands for the two funds increases, while in the presence of tail dependence it decreases, bringing

about smaller hedging components in absolute value for the two funds. Those e¤ects become more

important when increasing the investment horizon.

b) We further investigate the evolution of the correlation hedging demands implied by the observable

factors. Using a factor to capture market-wide volatility and another one to account for macro-

economic conditions, we �nd that the total correlation demands due to those factors are generally

negative throughout the period we consider. The impact of the macroeconomic factor is more

signi�cant and directs the behavior of the hedging demands.

c) We test whether results are sensitive to the particular choice of investment period. We consider two

sub-periods that di¤er in the level of stock market volatility and macroeconomic conditions, and we

consider an investor with investment horizon set at the end of each of these sub-periods. We �nd
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that for a relatively calm period with almost no extreme events towards its end the impact of tail

dependence disappears once we allow for a data generating process that incorporates dynamics in the

conditional correlation behavior. To the contrary, for a hectic period with declining macroeconomic

conditions and a number of extreme events, especially towards its end, the importance of modeling

tail dependence for the optimal hedging demand cannot be overwritten by allowing for dynamically

varying correlations.

d) We further test the economic importance of considering dynamic conditional correlation or tail

dependence using the concept of the certainty equivalent cost and �nd substantial utility loss due

to disregarding either form of dependence, which increases with the investment horizon and for low

levels of the agent�s relative risk aversion. As well, we �nd substantial utility loss for disregarding

dependence between extreme realizations, even when dynamic conditional correlation has already

been accounted for, and vice versa. We also compare di¤erent dynamic conditional correlation

speci�cations that take into account or not observable factors and we �nd that there is utility loss

related to disregarding observable factors, especially factors related to macroeconomic conditions.

e) As well we study the sensitivity of the optimal hedging behavior for di¤erent levels of average cor-

relation and �nd higher hedging demands for high correlation levels, when the impact of stochastic

changes in conditional correlation on investor�s utility is expected to be the highest. This �nding

is con�rmed by the certainty equivalent cost of disregarding dynamic conditional correlation: the

utility loss increases for higher levels of average correlation. Alternatively, we study the impact of

disregarding tail dependence for varying levels of tail dependence coe¢ cients in the data generat-

ing process and �nd that there are far more signi�cant costs of disregarding dependence between

extreme realizations when its level increases, even when dynamic conditional correlation is already

taken into account.

The present study is closely related to the work of Buraschi et al. (2007) who solve for the optimal

portfolio hedging behavior in the presence of correlation risk in a setting where both volatilities and

correlations are stochastic, giving rise to separate demands for volatility and correlation risk. They

model covariance dynamics using the analytically tractable Wischart process and study the portfolio

impact of stylized facts of asset returns such as volatility and correlation persistence and leverage e¤ects.

However they work in an incomplete market setting which allows them to obtain closed-form portfolio

solutions for only the CRRA investor. While in Buraschi et al. (2007) the correlation between the

risky assets is stochastic and is driven by its independent risk source, the model of Liu (2007) allows for

stochastic correlations that however are deterministic functions of return volatilities, which does not allow

disentangling the portfolio e¤ect of correlation from that of volatility. Under this model�s assumptions,

including quadratic returns, for which the four elements, describing the investment opportunity set (the
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short rate, the maximal squared Sharpe ratio, the hedging coe¢ cient vector, and the unspanned covariance

matrix), are all Markovian di¤usions with quadratic drift and di¤usion coe¢ cients, it is again possible to

obtain explicit dynamic portfolio solutions for an investor with CRRA utility. The portfolio problem can

be solved under either complete markets (when utility is de�ned over consumption and terminal wealth)

or incomplete markets (when utility is de�ned only over terminal wealth).

The portfolio solution methodology that we consider allows us to identify the intertemporal hedging

demands that arise from the need to hedge against changes in the stochastic investment opportunity

set, and separate them from the mean-variance component. As well, we can solve under general utility

preferences, that are not constrained to the CRRA case. We consider a case when conditional correlation

is modeled as a deterministic function of the state variables driving volatility, and alternatively as a

function of observed state variables, linked to market-wide volatility and macroeconomic conditions. In

the second case we are able to isolate the correlation hedging demands that appear due to the need to

hedge against �uctuations in the observed factors.

The present study is also related to another strand of literature that studies the implications of asset

co-movements on dynamic portfolio choice. Ang and Bekaert (2002) consider a regime-switching model

of asset returns that accounts for asymmetries in their dependence structure by including a �bear�regime

with low expected returns, coupled with high volatilities and correlations, and a �normal�regime with high

expected returns, low volatilities and correlations. They �nd that the asymmetric correlation structure

between the two regimes becomes important for an international investor only when she is allowed to

trade in the risk-free asset. Only in this case there are any signi�cant economic costs of disregarding

regime switching. Liu et al. (2003) model event related jumps in prices and volatility in the double-jump

framework, introduced by Du¢ e et al. (2000). The presence of event jumps renders the optimal portfolio

holdings similar to those that could be obtained for an investor faced with short-selling and borrowing

constraints. As well, event risk has a larger impact on the portfolio composition of investors with low

levels of risk aversion. However, these results are obtained for a single risky asset portfolio. Das and

Uppal (2004) consider the impact of systemic risk on dynamic portfolio choice by introducing a jump

component in asset prices that is common for all assets. They work in a constant investment opportunity

set and �nd that investors who ignore systemic risk would have larger holdings of the risky assets. As

well, there is higher cost associated to ignoring systemic risk for investors with low levels of risk aversion

and levered portfolios. In this setting there are portfolio e¤ects due to higher moments that arise from

the inclusion of jumps. Alternatively, Cvitanic et al. (2008) develop optimal allocation rules under higher

moments when risky assets are driven by a time-changed di¤usion of the Variance Gamma type, and �nd

that ignoring skewness and kurtosis leads to overinvestment in the risky assets and a substantial wealth

loss, especially for high volatility levels.

In this study we consider an alternative way to model asset co-movement asymmetries through the
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stationary distribution of the process for the state variables, driving the prices of the risky assets. We

introduce an asymmetric dependence structure of the distribution explicitly by using copula functions

that allow us to isolate the e¤ect of the marginal distributions from that of the dependence structure itself.

This allows us to model the above mentioned stylized facts without reverting to an incomplete market

through the inclusion of jumps, which allows us to have a tractable portfolio solution for a general utility

function speci�cation. We chose between copula functions that incorporate dependence between extreme

realizations of the state variables and copulas that imply no tail dependence and study the di¤erences in

the intertemporal hedging demands entailed by the alternative data generating processes.

The remainder of the paper is organized as follows. Section 2 discusses several stylized facts of dynamic

correlation and motivates the possibility to model it using observable factors. Section 3 describes the

model, the solution to the portfolio choice problem, and the correlation hedging demands that appear

due to observable factors driving correlation. Section 4 discusses the particular portfolio holdings for a

bivariate application. In Section 5 we present numerical results used to gauge the importance of hedging

demands that arise due to dynamic correlation or tail dependence. Section 6 concludes. Technical details

are provided in the appendix.

2 Dynamic correlation and exogenous factors

Established empirical �ndings point towards several stylized facts that characterize conditional correlation

dynamics of asset returns. It tends to increase in periods of high market volatility, or in cases of extreme

downside market moves. As well, it appears to be linked to the business cycle and is higher in recessionary

states of the economy.

We approach the above mentioned facts in two methodologically distinct ways. First, we achieve

increased correlation during market downturns through the stationary distribution of the multivariate

di¤usion of state variables that underlines the stock price process. With this �static�approach we are able

to achieve a certain degree of left tail dependence which translates into increased dependence for low levels

of the state variables. Second, we allow for dynamic correlation of the state variables, driven by factors

that are supposed to capture market volatility and the state of the business cycle. To this end, we choose

the Chicago Board Options Exchange Volatility Index (VIX) which measures the implied volatility of S&P

index options and thus incorporates market�s expectations of near-term volatility. In order to incorporate

the e¤ect of the business cycle on the dynamics of correlation, we take the Chicago Fed National Activity

Index (CFNAI) that synthesizes information on various macroeconomic factors in a single index. It is

a monthly index that aggregates information on overall macroeconomic activity and in�ation, as it is a

weighted average of 85 indicators of national economic activity, ranging from production, employment,

housing and consumption, income, sales, orders and inventories. The methodology behind the CFNAI is

based on Stock and Watson (1999), who �nd a common factor behind various in�ation indicators. The
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Figure 2.1: Evolution of the VIX index (upper panel) and of CFNAI index (bottom panel) for the period
1986 - 2006.
The VIX is quoted in terms of percentage points and the data is available at the daily frequency. The
CFNAI is quoted monthly. A negative value of the CFNAI index indicates a below-average growth of the
national economy, whereas a positive value of the index points towards an above-average growth. A zero
value means that the economy grows at its historical average rate.
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evolution of the VIX and of the CFNAI are given in Figure 2.1.

In order to appreciate the time variation in asset correlations, driven by the chosen indices, we estimate

a DCC model with exogenous factors on the asset return series that will be used later in the portfolio

application. Data used in this study consists in two stock market indices representing old economy stocks

(S&P 500) and new economy stocks (NASDAQ) for the period 1986-2006. This relatively long period

includes several market crashes among which the October 1987 crash in the beginning of the sample

period, the Asian crisis that triggered the market crash in October 1997, as well as the Dot-com bubble

crash in 2000-2002.

The DCC speci�cation, as well as the estimated coe¢ cients are given in Table 2.1, and the correlation

dynamics are plotted in Figure 2.2.

All the DCC parameters are signi�cantly estimated which points towards a certain degree of persis-

tence of correlation. Estimated correlation levels range between 0.55 and 0.90 and there can be seen a

general tendency of increasing correlation over the years. There are some distinct spikes in conditional

correlation, some of which can be linked to speci�c events (e.g. the late 1987 and 1997 market crashes).

There is a distinct period of lower conditional correlations between 1992 and 1997, which is also character-
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Table 2.1: Parameter estimates of a DCC model with exgenous factors for SP 500 and NASDAQ returns.
The model that we estimate is an extended version of the DCC model of Engle (2002) to include exogenous factors
driving the conditional covariance and it has the following speci�cation. Denote by yt the d � 1 vector of asset
returns, and by Ft the n� 1 vector of exogenous variables. Then for the conditional mean equation we have:

yt = �t + "t

"t = H
1=2
t �t where �t � N (0; 1) thus "t � N (0;Ht)

The conditional covariance matrix Ht can be expressed as Ht = DtRtDt =
�
�ij;t

p
hii;thjj;t

�
, where �ij;t are

entries of the conditional correlation matrix and hii;t are entries of the conditional covariance matrix. Further,

Rt = eQ�1t Qt eQ�1t , where eQ�1t = diag
�p
qii;t
�
. The dynamics of Qt are given by:

Qt=Q (1� �� �)+�e"t�1e"t�1+�Qt�1+Ip|Ft�1
where e"t � N (0; Rt), and it is a d� 1 vector of standardized residuals e"t = "tp

hii;t
, I is the identity matrix and

p is an n� 1 vector of parameters pertaining to the exogenous factors Ft.
In our case yt denotes the returns of S&P 500 and NASDAQ, and Ft are the VIX and the CFNAI indices. Parameter
estimates and their corresponding standard errors are given below.

Parameters Standard errors � 1000
� 0:0221 (0:1025)
� 0:9744 (0:0063)
p1 (V IX) 0:0008 (0:0000)
p2 (CFNAI) �0:0001 (0:0081)

Figure 2.2: Estimated dynamic conditional correlation for SP 500 and NASDAQ returns from a DCC
model with exogenous factors
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ized by low market volatility and a generally above average growth trend in the economy. The parameters

for the exogenous factors that drive the time-varying conditional covariance have the expected signs: pos-

itive for the VIX and negative for the CFNAI, which translates into increasing conditional correlation

during hectic periods and recessionary states of the economy.

3 The investment problem

This section describes the problem faced by the investor in allocating her wealth between a set of risky

assets and the money market account. It introduces the distributional and utility assumptions we impose

and presents the general solution methodology using the Martingale technique following the portfolio

decomposition formula of Detemple et al. (2003) and its implementation via Monte Carlo simulations.

We consider the case where the investor maximizes expected utility of terminal wealth, so that we do not

allow for intermediate consumption.

3.1 The economy

We de�ne a �ltered probability space
�
FXT ;

�
FXT
	T
t=0
; P Y

�
over the investment horizon [0; T ] where FYT

is the �ltration generated by state variables Yt under the empirical probability measure P Y . We consider

a complete market setup with d + 1 state variables Yit; i = 1; :::d, where uncertainty is driven by d + 1

Brownian motions Wit; i = 1; :::d + 1. There are d + 2 securities available for investment: d stocks, a

long term pure discount bond, and the risk-free asset. The state variable vector Yt consists of d+1 state

variables Xt, each one a¤ecting its corresponding stock price process, and a state variable Y rt that governs

the dynamics of the short rate rt, that is Yt = (Xt; Y rt )
|.

The investor has at her disposal the following three asset categories. First, she can invest in a risk-free

money market account and its value at time t is given by:

B0 (t) = exp

�Z t

0
r (s; Y rs ) ds

�
(3.1)

As well, another tradeable asset in the portfolio is a default-free zero-coupon bond with a maturity T .

Its price B (t; T ) at time t can be expressed as a conditional expectation under the equivalent martingale

measure Q:

B (t; T ) = EQ
�
exp

�
�
Z T

t
r (s; Y rs ) ds

�
jFYt

�
(3.2)

The rest of the portfolio consists in a collection of stocks whose price process is modeled using the d

state variables Xt:
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Si (t) = exp (Xit + ' (t)) ; i = 1; :::; d (3.3)

where ' (t) is a deterministic function of time. This speci�cation was chosen in order to be as close

as possible to the Geometric Brownian motion underlying the Black-Scholes formula for option pricing:

if the process for Xit is given by Xit = Xi0 + �i
R t
0 dWit, then we are exactly in the Black-Scholes

setting where all the assets are independent from each other; if alternatively we apply a stochastic time

transformation to the Brownian motion and de�ne the process for Xit as Xit = Xi0 +
R t
0 � (t;Xit) dWit,

then we obtain a simple generalization of the Geometric Brownian motion that already departs from the

normality assumption. As it will be shown below, we will further introduce a drift to the process for the

state variables Xt which will be consistent with a chosen stationary distribution for the process, as well

as correlations between the Brownians that will be allowed to be stochastic. This will bring the model

closer to the discrete-time alternative of a dynamic conditional correlation model, as the one introduced

by Engle (2002).

3.2 The a¢ ne setup for the bond price

In what follows, we will restrict the framework for the bond price to the a¢ ne class, in that the short

interest rate rt will be an a¢ ne function of state variable Y rt . This will allow us to express the yield of

the bond as an a¢ ne function of the state variable as well. Thus, we assume that the short rate can be

expressed as:

r (t; Y rt ) = �0 + �1Y
r
t (3.4)

The choice of a one-factor a¢ ne model for the short rate may be questionable as there is substantial

empirical evidence concerning the shortcomings of a¢ ne models1, and as well using only one factor to

capture the dynamics of the term structure may be too restrictive. But as the speci�cation for the bond

is marginal for our portfolio application, we proceed with this simple speci�cation which ensures tractable

portfolio solutions. As well, Y rt has the simple interpretation as a state variable that models the dynamics

of the interest rate risk factor which will further determine the hedging terms of the portfolio against

changes in the stochastic interest rate.

Following the evidence of time-varying interest rate risk premia on the bond market (e.g. Chan et al.

1992), we allow the state variable Y rt to evolve over time according to a square-root process. Its dynamics

under the objective measure P Y are given by:

dY rt = �r (�
r � Y rt ) dt+ �r

p
Y rt dW

r
t (3.5)

1Backus et al. (1998) show that term premiums generated by a¢ ne models are too low compared to the observed data;
Du¤ee (2002) �nds that this class of models is not �exible enough to replicate temporal patterns in interest rates.
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Following Dai and Singleton (2000), we assume a market price of risk of the form �
p
Y rt , which

ensures that the process for the state variable will be a¢ ne under the risk neutral measure as well. Then

under the equivalent martingale measure the process will be:

dY rt = �r

�
�r � Y rt

�
dt+ �r

p
Y rt dW

�r
t (3.6)

where �r = �r + �r� and �r = �r�r= (�r + �r�).

Given the a¢ ne term structure parametrization is admissible, we can obtain in closed form the price

of the default-free bond:

B (t; T ) = exp fa (T � t) + b (T � t)Y rt g (3.7)

where a (�) and b (�) solve the Ricatti equations:

@a (�)

@�
= �r�rb (�)� �0

@b (�)

@�
= ��rb (�) +

1

2
(�rb (�))

2 � 1

Then the process for the bond price can be recovered from (3.6) and (3.7) and the speci�cation of the

market price of risk that we adopted. Thus, it can be shown that the bond price follows:

dBt = Bt
�
�B (t; Y rt ) dt+ �

B (t; Y rt ) dW
r
t

�
(3.8)

where �B (t; Y rt ) = r (t; Y rt ) + b (�)�r�Y

and �B (t; Y rt ) = b (�)�r
p
Y rt

As a result of the CIR speci�cation of the state variable Y rt , the market price of risk de�ned by

�B (t; Y rt ) = �
B (t; Y rt )

�1 ��B (t; Y rt )� r (t; Y rt )� is stochastic and is given by �pY rt . It should be noted
that for the bond risk premium to be positive, the market price of risk and thus � should be negative.

3.3 The copula di¤usion for the stock price process with dynamic conditional cor-

relation

In this section we will de�ne the process for the state variables Xt that drive the stock prices. As we are

interested in modeling the dependence between extreme realizations of returns, we will adopt the copula

di¤usion process, introduced in Stefanova (2008) and extend it to a dynamic conditional correlation

speci�cation. Thus, we introduce two channels for modeling extremal dependence: one through the
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properties of the stationary distribution of the process, and the second through the conditional correlation.

We will explore two options for modeling the correlation dynamics. A �rst straightforward way to do so

is to allow the conditional correlation to be time-varying by being speci�ed as some known function of

the state variables themselves. As there is evidence that correlation increases in volatile states and when

returns are low, we propose to model correlation as a function of the volatility and the level of the state

variables. Thus, the general form of the state variables Xt is given by:

Case A: dXt = � (Xt) dt+ �(Xt) dW
X
t (3.9)

where � is a lower triangular matrix, andWX is a d-dimensional standard Brownian motion, independent

of W r. If we de�ne a continuously di¤erentiable positive de�nite matrix � = ��|, then its entries are

given by �ij (Xt) = �ij (Xt)�Xi (Xt)�
X
j (Xt) ; i; j = 1; :::; d, where the conditional correlation coe¢ cients

�ij (Xt) and the conditional volatility terms �i (Xt) are functions of Xt and thus time varying.

The second way to model dynamic correlation that we explore is by rendering it stochastic in terms

of a function of observable factors. Following the empirical evidence, that correlations increase in volatile

periods and in bad states of the economy, we introduce two exogenous factors to account for that: the

CBOE volatility index (VIX) and the Chicago Fed National Activity Index (CFNAI). Denoting these

observable factors as Ft, we propose a second general speci�cation for the state variable process Xt of

the form:

Case B: dXt = e� (Xt; Ft) dt+ e� (Xt; Ft) dWX
t (3.10)

where e� is a lower triangular matrix, de�ned as a function of the state variables Xt, as well as the

observable factors Ft. The entries of the continuously di¤erentiable positive de�nite matrix e� = e�e�0
are given by e�ij (Xt; Ft) = e�ij (Xt; Ft)�Xi (Xt)�Xj (Xt), where the conditional correlation coe¢ ciente�ij (Xt; Ft) is stochastic in that it is modeled as a function of the observable factors Ft, as well as the
state variables Xt. Note that in this second case we augment the state variable vector Yt to include also

the factors Ft: Yt = (Xt; Ft; Y rt )
|.

Using any of the above speci�cations for Xt and the fact that the stock price is de�ned following (3.3),

we can apply Itô�s lemma in order to recover the stock price process:
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dSit = Sit�
S
i (logSit � ' (t)) dt (3.11)

+Sit

dX
j=1

�Iij (logSit � ' (t)) dWX
jt

where �Si (t; Yt) = �Ii (Yt) + '
0 (t) +

1

2

dX
j=1

�2ij (Yt) ; I = 1; 2

�1i (Yt) = � (Xt) ; �
2
i (Yt) = e� (Xt; Ft)

and �Iij (t; Yt) ; I = 1; 2 are entries of the corresponding matrix:

�1ij (t; Yt) = � (Xt) ; �
2
ij (t; Yt) =

e� (Xt; Ft)
It should be noted, that as we need to stay within the complete market setup, the number of sources

of risk, generated by the Brownian motions, should be the same as the number of traded assets. Thus,

when introducing the observable factors F in the stock price speci�cation, we assume that their dynamics

are governed by the same Brownian motions that drive the stock prices themselves.

As the market is complete and we have an invertible matrix �(I), we can de�ne a market price of risk

as �S (t; Y rt ) = �
(I) (t; Yt)

�1 ��S (t; Yt)� r (t; Y rt ) ��, where � is a d-dimensional vector of ones.
Let us stack the drift and di¤usion terms for the bond and the stocks so that to obtain:

M (t; Yt) =

 
�Si (t; Yt)

�B (t; Yt)

!

� (t; Yt) =

0BBBBB@
�(I) (t; Yt)

0
...

0

0 : : : 0 �B (t; Y rt )

1CCCCCA
Then the market price of risk for all the tradeable assets

�(t; Yt) =
�
�(t; Yt)

S
1 ; :::;�(t; Yt)

S
d ;�

B (t; Yt)
�
is de�ned as:

�(t; Yt) = � (t; Yt)
�1 (M (t; Yt)� r (t; Y rt ) �)

It is assumed to be continuously di¤erentiable and satisfying the Novikov condition:

E

�
exp

�Z T

0
�(t; Yt)

|�(t; Yt) dt

��
<1:
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The market completeness implies the existence of a unique state price density �t de�ned as

�t � B0 (t)
�1 �t exp

�
�
Z t

0
r (s; Y rs ) ds

�
�

exp

�
�
Z t

0
�(s; Ys)

| dWs �
1

2

Z t

0
�(s; Ys)

|�(s; Ys) ds

�
where �t is the Radon-Nykodym derivative, FYT -adapted. We can also de�ne the conditional state price
density that converts cash �ows at time v � t into cash �ows at time t:

�t;v � �v=�t (3.12)

= exp

(
�
R v
t r (s; Y

r
s ) ds�

R v
t �(s; Ys)

| dWs

�1
2

R v
t �(s; Ys)

|�(s; Ys) ds

)

3.3.1 Establishing the di¤usion speci�cation for the state variables X that drive the stock

price dynamics

Having established two alternative ways to model the conditional correlation dynamics with the aim

of answering the stylized fact that asset correlation increases in volatile periods when asset returns are

low and the economy is in a downturn, we now turn to the other possibility of accommodating this

stylized fact: through the stationary distribution of the state variables, as it has been already explored

in Stefanova (2008). This approach models the tail dependence (the asymptotic dependence between tail

realizations of the state variables) in a �static�sense, instead of focusing on the dynamics of a correlation

measure (the correlation between state variables changing stochastically through time). By imposing a

certain stationary distribution on the state variables� process, one can obtain di¤erent degrees of tail

dependence in the left or the right tail of the distribution. Thus, for low levels of the state variable, the

tail dependence index may be high, while for high levels of the state variable it may be low, reproducing

the stylized fact mentioned above.

For the sake of completeness, we will review the construction of a multivariate di¤usion with a given

invariant distribution, de�ned in terms of copula functions. It follows Chen et al. (2002) in exploiting

the relationship that exists between the density of the stationary distribution, the drift and the di¤usion

term of the process de�ned in (3.9) or (3.10):

�j =
1

2
q�1

dX
i=1

@ (�ijq)

@xi
(3.13)

where � and �ij denote either � (Xt) and �ij (Xt) for Case A or e� (Xt; Ft) and e�ij (Xt; Ft) for Case B,
14



and q is a strictly positive continuously di¤erentiable multivariate density function that is the stationary

density of the Markov process for X. Thus the speci�cation of the drift term � depends on both the form

of the invariant density (which will be modeled to determine the degree of asymmetric tail dependence of

the state variables X, that is the �static�representation of the stylized fact of co-movement asymmetries),

and the form of the di¤usion term � (which will be speci�ed in a way to allow or not for dynamic

conditional correlation, dependent or not on observable factors, that is the �dynamic�representation of

the same stylized fact).

In what follows we will establish the alternative assumptions on the form of both the invariant density

and the volatility term.

The form of the invariant density. With the choice of the stationary distribution we seek to answer

several questions concerning the behavior of asset returns. Our major concern is the ability to allow

assets to be dependent when they move towards the tails of the distribution, especially for the left tail.

This would ensure our model the ability to replicate the empirical fact that asset returns are increasingly

dependent as they jointly move towards the lower quantiles of their distribution, that is during market

downturns. As copula functions allow us the �exibility to impose di¤erent types of joint behavior on the

variables while keeping the marginal distributions unchanged, we build the invariant density q based on

the copula density representation following Sklar�s theorem:

q (x1; :::; xd) � ec (x1; :::; xd) dY
i=1

ef i (xi) (3.14)

where ec (x1; :::; xd) = c �F 1 (x1) ; :::; F d (xd)� is a copula density de�ned over the univariate CDFs F i (xi),
and ef i (xi) are the corresponding non-normalized univariate densities. We choose the Normal Inverse
Gaussian (NIG) distribution2 to model the univariate behavior because of its proven ability to account

for stylized facts of univariate asset return dynamics: autocorrelation of squared returns, semi-heavy tails,

possibly asymmetric. Its tail behavior is richly parametrized, nesting tails that vary from an exponential

to a power law. As well, NIG is one of the few members of the class of Generalized Hyperbolic (GH)

distributions that is closed under convolution, that is if the distribution of log prices is modeled under a

NIG law, then the distribution of the increments (asset returns) is also NIG. The univariate NIG di¤usion

is also an alternative to the widely used NIG Levy process (e.g. Eberlein and Keller 1995, Prause 1999)

that allows for an in�nite number of jumps in the price process, but that also imposes independence of

the increments, which is not the case for its di¤usion counterpart.

The most important feature of the copula density representation (3.14) is that it allows us to separate

the e¤ect of the marginal behavior from the implications of the dependence structure, modeled using a

2See the appendix for details.
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copula function. This is important for the portfolio application that we treat in this study, as it allows us

to gauge the di¤erence between the di¤erent ways to model asset dependence (and thus to reproduce or

not the stylized fact of asymmetric asset co-movements) without the impact of the particular assumptions

for the univariate stock price processes. Thus we could measure the impact of the �static�representation of

dependence, ranging from Gaussian (no extreme co-movements) to non-negative tail dependence (extreme

co-movements, possibly asymmetric) on the optimal portfolio terms.

Let us �rst remind the de�nition of the coe¢ cients of upper and lower tail dependence for couples of

random variables X and Y : upper tail dependence is de�ned as the limit probability of the variable Y

exceeding the upper quantile as we approach it, conditional upon the fact that the random variable X

has exceeded that same quantile:

�U = lim
u!1

Pr
�
Y > F�1Y (u) jX > F�1X (u)

�
Alternatively, we de�ne the coe¢ cient of lower tail dependence as:

�L = lim
u!0

Pr
�
Y � F�1Y (u) jX � F�1X (u)

�
Both coe¢ cients can be represented in terms of copula functions: �U = limu!1

(1�2u+C(u;u))
1�u and

�L = limu!0
C(u;u)
u . So di¤erent copulas will have di¤erent degrees of upper and lower tail dependence

depending on their parametric speci�cation. Thus, in order to allow for di¤erent degrees of tail depen-

dence, we assume several copula speci�cations for c3.

Case 1 Gaussian copula CGa: �U = �L = 0

In this case we allow for no dependence between tail realizations of the state variables. The parameter

that governs dependence is the correlation coe¢ cient �.

Case 2 Student�s t copula Ct: �U = �L = 2t�+1
�
�
p
�+1

p
1��p

1+�

�
where t� is the Student�s t density for � degrees of freedom. In this case the copula function allows

for symmetric tail dependence, determined by the correlation parameter � and the degrees of freedom

parameter �.

Case 3 A Gaussian - Symmetrized Joe-Clayton (SJC) mixture copula CGa�SJC : �U 6= �L

The form of the mixture copula is given by:

CGa�SJC = !CSJC + (1� !)CGa

3See the appendix for details on the alternative speci�cations of the copula functions used in the paper.
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where CGa stands for the Gaussian copula function and CSJC - the Symmetrized Joe-Clayton copula,

with a mixing parameter ! that determines the weights of each of the copulas. The symmetrized Joe-

Clayton copula models separately upper and lower tail dependence and its form is particularly appealing,

as the tail dependence coe¢ cients are themselves the parameters of the copula function. It has been

proposed by Patton (2004) as a symmetrized version of the Joe-Clayton copula, in order to overcome the

drawback of the latter in that even when the coe¢ cients of upper and lower tail dependence are equal to

each other, there still exists some asymmetry in the copula, due to its functional form.

We consider a mixture speci�cation with this copula and the tail independent Gaussian one in order

to answer the concerns raised in Poon et al. (2004) that a copula speci�cation whose coe¢ cients explicitly

allow for tail dependence may overestimate the dependence in the tail regions. Thus, by the mixture

copula we let the data determine whether the dependence structure is closer to one imposing no tail

dependence or to one that allows for it.

In the cases considered above dependence is modeled explicitly through the invariant density of the

multivariate state variable process. In the following section we will extend this setup and will introduce

dynamics in the modeling of dependence through the conditional correlation coe¢ cient.

The conditional correlation dynamics. Before proceeding to the speci�cation of the conditional

correlation, we need to de�ne the conditional volatility dynamics. Recall that the di¤usion term of X

was de�ned as a lower triangular matrix � and the entries of the variance-covariance matrix � = ��|

are given by �ij (Xt) = �ij (Xt)�Xi (Xt)�
X
j (Xt). Borrowing the idea of Bibby and Sorensen (2003) for

modeling the di¤usion term of a univariate GH stationary process, we allow each �Xi (Xt) to be a function

of the state variables Xt:

�Xi (Xt) = �i

h ef i (xi)i� 1
2
�i

(3.15)

where ef i (xi) is the non-normalized NIG density for Xi, and we have the following parameter restrictions:
�i > 0 and �i 2 [0; 1]. By expressing the volatility term as the inverse of a power function of the densityef we obtain the familiar U-shape for the volatility, typical for a stationary process. This speci�cation
is especially interesting, as it nests the constant conditional volatility as a special case, setting �i = 0.

Thus, for the portfolio allocation application, we could easily isolate a volatility hedging component due

to stochastic conditional volatility by opposing a model with �i 6= 0 to one that restricts the conditional
volatility to be constant (�i = 0).

Earlier in this section we have discussed two possibilities of rendering the conditional correlation

coe¢ cient dynamic: through modeling it as a function of the state variables X or by allowing it to be

in�uenced by stochastic factors F . Here we will further elaborate the particular assumptions concerning

those two cases.

17



In both cases the conditional correlation coe¢ cient �ij is modeled as a function hij (Yt) of the sto-

chastic state variables Y , whether or not augmented with the observable factors. In order to keep the

correlation coe¢ cient in [�1; 1], we apply the following logistic transform A on the function h (Yt):

�ij (Y ) = A (hij (Y )) =
1� exp (�hij (Y ))
1 + exp (�hij (Y ))

Case A. Dynamic conditional correlation with state variables: �(Xt)

As our aim is to replicate the stylized fact that correlation between asset returns increases in volatile

periods and in extreme market downturns, we model the dynamic conditional correlation coe¢ cient as

a function involving the volatility speci�cation considered earlier (3.15), as well as the level of the state

variables in terms of their probability integral transforms F (Xi). More speci�cally, we model the function

hij (�) as:

hij (Xt) = ij;0 + ij;1max
�
�X1 (Xt) ; :::; �

X
d (Xt)

�
+ ij;2

dY
i=1

F (Xit) (3.16)

where F (Xit) stands for the corresponding univariate NIG CDF. The second term in this speci�cation

involves the conditional volatilities of each univariate series. We expect to obtain a positive coe¢ cient

ij;1 to re�ect the fact that correlation increases in hectic periods. We de�ne this term as the maximum

over all individual volatilities in order to allow high volatility in any of the stocks to trigger increased

conditional correlation. This speci�cation was also used in Goorbergh et al. (2003) in order to model the

dynamics of a conditional copula through Kendall�s tau in an option pricing application. The third term

is motivated by the fact that conditional correlation shoots up when stock prices jointly and abruptly

decline, thus we expect a negative sign for the coe¢ cient ij;2.

Case B. Dynamic conditional correlation with observed factors and latent variables:

�(Xt; Ft)

Instead of letting the dynamics of the conditional correlation parameter be determined exclusively by

the state variables that drive the stock price process, we model it instead with observable factors that

are believed to drive conditional correlation: the VIX and the CFNAI macroeconomic index. Thus we

aim at replicating the stylized fact that correlation increases in volatile markets when the economy is in a

bad state. As the economic cycle does not necessarily coincide with bear/bull �nancial markets, we leave

from the previous speci�cation the term that determines the level of the state variable. More speci�cally,

in this case we model the function h (�) as:

hij (Xt; Ft) = ij;0 + ij;1F
V
t + ij;2

dY
i=1

F (Xit) + ij;3F
M
t (3.17)

where F Vt = log (V IXt) and FMt = CFNAI. The second term in this expression involves the VIX and
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thus tries to account for the fact that conditional correlation will rise in periods of increased volatility, so

that we expect a positive sign for ij;1. The third term involves the probability integral transforms of the

state variables X and is thus meant to capture the fact that correlation increases in market downturns

(which entails an expected negative coe¢ cient ij;2). The last term involves the macroeconomic factor

and thus aims at capturing the e¤ect of the economic cycle on conditional correlation. As the CFNAI

index is designed to take positive values when the economy is in an upturn and negative values otherwise,

we expect to obtain a negative sign for ij;3.

Case C. Dynamic conditional correlation with observed factors: �(Ft)

If we alternatively believe that correlation is driven by factors that do not a¤ect directly the stock

price process, then we may restrict the speci�cation in (3.17) in order to include only observable factors:

hij (Ft) = ij;0 + ij;1F
V
t + ij;3F

M
t (3.18)

This speci�cation will prove quite useful in determining the portfolio correlation hedging demands,

as we will see in the following sections, as it will allow us to explicitly identify them from the rest of the

hedging terms of the portfolio. This is due to the fact that the factors determining conditional correlation

do not a¤ect in a direct way the stock price process itself.

We assume the following processes for the two factors: a CIR process for F V and a Vasicek process

for FM :

dF Vt = �V
�
�V � F Vt

�
dt+ �V

q
F Vt dW

X
t (3.19)

dFMt = �M
�
�M � FMt

�
dt+ �MdWX

t

These processes will greatly facilitate the implementation of the portfolio allocation formula, as the

Vasicek speci�cation will allow for a closed-form solution for the Malliavin derivative of the macroeconomic

factor FM , while the CIR di¤usion term will make possible a variance-reduction technique for the Monte

Carlo simulation of the Malliavin derivative of F V .

3.4 The investor�s objective function

We consider an investor who maximizes utility over terminal wealth, that we denote by U (!T ) by choosing

an optimal investment policy f�tgt2(0;T ) that belongs to an admissible set A for an investment horizon

T :

max
�2A

E [U (!T )] (3.20)
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where the utility function U is strictly increasing, concave and di¤erentiable, and satis�es the conditions

limx!1 U 0 (x) = 0 and limx!0 U 0 (x) < 1. This standard utility speci�cation includes the case of the
Hyperbolic Relative Risk Aversion (HARA) utility function U (!) = 1

1� (! + b)
1� that we assume for

this application. The coe¢ cient of Relative Risk Aversion, de�ned as R (!) � �U 00(!)
U 0(!) !, is equal to 

!
!+b

for the HARA case, which boils down to a constant  for the special case of CRRA utility.

The portfolio policy � is a (d+ 1)-dimensional progressively measurable process that is de�ned as the

proportion of wealth allocated to the risky assets (d stocks and a long term pure discount bond). Thus,

the amount invested in the risk-free asset (the money-market account) is (! � �|1). The portfolio policy
generates a wealth process ! whose dynamics are given by:

d!t = !t frtdt+ �|t [(M (t; Yt)� rt�) dt+ S (t; Yt) dWt]g (3.21)

3.5 The complete market solution

The complete market setup that we have adopted allows us to solve for the optimal portfolio using the

Martingale solution technique that restates the dynamic budget constraint (3.21) as a static one and �rst

solves for the optimal terminal wealth, and then �nds the optimal portfolio policy that �nances it. Thus,

following Cox and Huang (1989), optimal terminal wealth is given by !�T = I (y�T )
+ = max (I (y�T ) ; 0),

where I = [U 0]�1 denotes the inverse of the marginal utility function, and y satis�es the static budget

constraint E
�
�T I (y�T )

+� = !0, where !0 is the initial wealth.
Following Ocone and Karatzas (1991), and using the portfolio decomposition formula of Detemple

et al. (2003), we have the following expression for the optimal portfolio policy, that decomposes the

portfolio holdings into a Mean Variance part (�MV ), an Interest Rate Hedge (�IRH) and a Market Price

of Risk hedge (�MPRH):

��t = �MV
t + �IRHt + �MPRH

t (3.22)

where

�MV
t = (�|(t; Yt))

�1 1

R (!T )
�(t; Yt)Et

�
�t;T

!T
!t

R (!t)

R (!T )
1!T>0

�
�
�IRHt

�|
= � (�|(t; Yt))�1Et

�
�t;T

!T
!t

�
1�R (!T )�1

�
I!T>0H

r
t;T

�
�
�MPRH

�|
= � (�|(t; Yt))�1Et

�
�t;T

!T
!t

�
1�R (!T )�1

�
1!T>0H

�
t;T

�
The terms Hr

t;T and H
�
t;T involve the sensitivities of the short rate and the market price of risk towards

shocks in the Brownian motions that drive uncertainty in the model and are de�ned as follows:
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Hr
t;T =

Z T

t
Dtrsds =

Z T

t
@2r (s; Ys)DtYs (3.23)

H�
t;T =

Z T

t
(dWs +�(s; Ys)ds)

|Dt�(s; Ys)ds (3.24)

=

Z T

t
(dWs +�(s; Ys)ds)

| @2�(s; Ys)DtYsds

where the operator D is the Malliavin derivative, @2f(t; x) refers to the derivative with respect of the

second argument of f(t; x), and where the second equality was obtained using the chain rule for Malliavin

derivatives. For the state variables needed in our application, the Malliavin derivatives are given by:

DtYs =

0BBBBBBBBBB@

D1;tX1;s � � � Dd;tX1;s 0
...

. . .
...

...

D1;tXd;s � � � Dd;tXd;s 0

D1;tF Vs � � � Dd;tF Vs 0

D1;tFMs � � � Dd;tFMs 0

0 � � � 0 Dd+1;tY rs

1CCCCCCCCCCA
=

0BBBBBBBB@

DtX1;s
...

DtF Vs
DtFMs
DtY rs

1CCCCCCCCA
The implementation of the above formula follows Detemple et al. (2003) and relies on the fact that

the Malliavin derivatives, as well as the state variables, follow stochastic di¤erential equations that can

be simulated using standard discretization techniques. Given the particular speci�cation of some of

the state variables, we can further apply the Doss transformation4, reducing the stochastic di¤erential

equation of the given state variable to one with a constant di¤usion term, which ensures that the Malliavin

derivative does not involve a stochastic term. Speci�c solutions for the Malliavin derivative are given in

the appendix.

3.5.1 The long term bond and the interest rate hedging demands

Let us �rst consider the term Hr
t;T that involves the sensitivity of the short rate towards shocks in the

underlying Brownian motions. Recall that r (s; Ys) = �0 + �1Y rt , and that the (d+ 3)-dimensional state

variable vector, augmented with the observable factors, is de�ned as Y �
�
X1; :::; Xd; F

V ; FM ; Y r
�|
.

Thus @2r (s; Ys) = (0; :::; 0; �1), and using the fact that Dd+1;tYs = (0; :::; 0;Dd+1;tY rs ), then:

Hr
t;T =

�
0; :::; 0;

Z T

t
�1Dd+1;tY rs

�
4See Detemple et al. (2003) for further details.
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So the long term bond is the sole security in the portfolio that is used to hedge against changes in

the short rate.

3.6 Correlation hedging

The above portfolio decomposition formula isolates interntemporal hedging demands due to stochastic

changes in the short rate or the market price of risk from the mean-variance demand. As in Cases B and

C we have modeled conditional correlation as a function of certain observable factors, the sensitivities

of those factors to shocks in the underlying Brownian motions would give rise to hedging demands that

can be related (partially for Case B) to correlation hedging. As in Case A conditional correlation is

modeled as a deterministic function of the state variables, determining as well the drift, volatility, and

subsequently the market price of risk dynamics, we cannot isolate correlation hedging from the total

intertemporal demands in this case. The only way to judge the importance of dynamic correlation

modeling for portfolio allocation in this case is to contrast the hedging demands, obtained under a DCC

speci�cation with those obtained from a CCC process. We will consider this possibility in the following

sections when we consider a real data application.

3.6.1 Isolating the correlation hedging demands involving observable factors

As the primary objective of this study is to explicitly isolate the correlation hedging demands in the

portfolio that arise from stochastic changes in the conditional correlation, let us now consider the second

term H�
t;T in the portfolio decomposition formula that handles the sensitivity of the market price of risk

towards shocks in the underlying state variables. Let us de�ne the vector 	 in terms of the market price

of risk and the state variables:

	t = (dWt +�(t; Yt)ds)
| @2�(t; Yt)

Note that in Case B for the conditional correlation speci�cation, where we have augmented the state

variables Y to include observable factors F =
�
F V ; FM

�|
, the vector 	 will be of dimension (d+ 3).

Then we could represent the H�
t;T in terms of 	t and the Malliavin derivatives of the state variables as:

H�
t;T =

Z T

t
	tDtYs

where 	tDtYs could be further decomposed as follows:
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(	tDtYs)|=

0BBBBB@
	1;tD1;tX1;s+:::+	d;tD1;tXd;s+	d+1;tD1;tF

V
s +	d+2;tD1;tF

M
s

...

	1;tDd;tX1;s+:::+	d;tDd;tXd;s +	d+1;tDd;tF
V
s +	d+2;tDd;tF

M
s

	d+3;tDd+1;tY
r
s

1CCCCCA
Apparently, the term H�

t;T;d+1 corresponding to the bond, does not involve any other Malliavin deriv-

atives except that of the state variable Y r driving the short rate. As for the interest rate hedge, Y r will

be the only state variable whose sensitivity with respect to uncertainty shocks will determine the market

price of risk hedging terms for the long term bond.

For each one of the d stocks the term H�
t;T;i can be expressed as:

H�
t;T;i =

Z T

t
	1;tDi;tX1;s + :::+

Z T

t
	d;tDi;tXd;s

+

Z T

t
	d+1;tDi;tF Vs +

Z T

t
	d+2;tDi;tFMs

The last two terms in this expression involve the Malliavin derivatives of the observable factors with

respect to the Brownian shocks. As those factors are solely responsible for describing the dynamics of

the conditional correlation in the process for asset returns, then the term

C�t;T;i =

Z T

t
	d+1;tDi;tF Vs +

Z T

t
	d+2;tDi;tFMs (3.25)

= V �t;T;i +M
�
t;T;i

can be considered as de�ning the correlation hedging demands for the stocks arising from the necessity

to hedge against changes in the observable factors F . Thus we can isolate the e¤ect of the market-wide

volatility factor on correlation through V �t;T;i =
R T
t 	d+1;tDi;tF

V
s , and the e¤ect of the macroeconomic

state variables throughM�
t;T;i =

R T
t 	d+2;tDi;tF

M
s . However, as we have de�ned the conditional correlation

dynamics in (3.17) as been driven as well by the state variables X through the level of the returns, there

will be additional hedging demands, associated with the Malliavin derivatives of X, that cannot be

disentangled from the rest of the market price of risk hedging demands. We would have this problem in

all cases when conditional correlation is modeled as a function of state variables that are not exclusively

�reserved� for driving its dynamics. If to the contrary we believe that correlation is driven solely by

observable factors (eg. by setting ij;2 = 0 in (3.17)), or by other latent factors that do not enter the

speci�cation for the stock prices (3.3) except through correlation itself, then C�t;T;i alone will be responsible

for the correlation hedging in the portfolio.
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Note as well that in Case A, where conditional correlation was de�ned in terms of only the state

variables X that drive the stock price dynamics, the term C�t;T;i is set to zero, but that does not entail

zero correlation hedging. It rather means that the correlation hedging demands cannot be explicitly

isolated in this case. Nevertheless, their importance can be judged by comparing the hedging terms that

arise from a constant conditional correlation stock price process to those that arise from the dynamic

conditional correlation speci�cation.

Let us now get back to the portfolio decomposition formula (3.22). Using (3.25) we can now isolate

the Market Price of Risk (MPR) hedging terms that arise from hedging changes in the observable factors

that drive correlation, that is, the correlation hedging demands:

�
�CORR

�|
= � (�|(t; Yt))�1Et

�
�t;T

!T
!t

�
1�R (!T )�1

�
1!T>0C

�
t;T

�
(3.26)

where C�t;T =
�
C�t;T;1; :::; C

�
t;T;d

�
. This de�nes the explicitly identi�able correlation hedging demand in

our setting. It will amount to the full correlation hedging demand for Case C when the factors driving

correlation do not a¤ect in a direct way the stock price process.

We can restate the above result in terms of the sensitivity of the cost of optimal wealth to changes

in the factors driving the conditional correlation dynamics, as the optimal portfolio policy is indeed

obtained as one that �nances optimal terminal wealth. Recall that optimal wealth at time t is given by

!�t = Et
�
�t;T!

�
T

�
, where �t;T!

�
T = �t;T I

�
y�t�t;T

�+ represents its cost. Then for a nonnegative I (y�T ) its
sensitivity with respect to �uctuations in the observable factors F is given by:

�
I
�
y�t�t;T

�
+ y�t�t;T I

0 �y�t�t;T �� ���t;T ��Z T

t
(dWs +�(s; Ys)ds)

| @2�(s; Y s)DtFs

where we have used (3.12) and the fact that I 0 (y) = (u00 (I (y)))�1 which follows from the de�nition

of I (y) as the inverse of the marginal utility. Thus, the portfolio terms that are responsible for the

sensitivity of the cost of optimal terminal wealth to �uctuations in the factors are indeed the correlation

hedging demands de�ned in (3.26).

4 A bivariate application: S&P500 vs. NASDAQ

In order to appreciate the impact of the correlation hedging demands on the optimal portfolio composition

in a realistic setting and compare them to the intertemporal hedges that arise due to incorporating tail

dependence in the stationary distribution of the process for the state variables, driving asset prices, we

o¤er an application based on real data. We consider a portfolio, formed by a 10-year pure discount bond,
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as well as two risky funds, represented by old and new economy stocks: S&P 500 and NASDAQ. An

application with this choice of a dataset can be found in Detemple et al. (2003). Data is observed at

the daily frequency (except for the CFNAI factor, which is observed monthly) and refers to the period

1986-2006.

Without loss of generality, we assume that the coe¢ cients in the short rate speci�cation (3.4) are

given by �0 = 0 and �1 = 1, so that for the short rate we have that r (t; Y rt ) = Y
r
t . Given the fact that

both the interest rate and the market price of risk of the long term bond are assumed to be stochastic,

the optimal portfolio composition for it will involve both the interest rate and the market price of risk

hedging terms. For the CIR speci�cation we have chosen there are no closed-form solutions for the

hedging terms. Nevertheless, for the simulations of its Malliavin derivatives we can apply a variance

stabilization technique following the Doss transformation that renders a constant the di¤usion term of

the process for Y r, as explained in the appendix.

The long term bond is the only risky asset that is responsible for hedging away the source of risk

related to the short rate (W r), as it is the only one exposed to it. The optimal demand for the bond

involves a mean-variance component and an intertemporal component used to hedge against �uctuations

in the investment opportunity set, induced by W r:

��b;t =
1

�B (t; Y rt )

8>>><>>>:
1

R(!T )
�B (t; Y rt )Et

h
�t;T
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9>>>=>>>;

where �B (t; Y rt ) = b (�)�r
p
Y rt

and �B (t; Y rt ) = �
p
Y rt

In this bivariate application the optimal portfolio parts for the two risky funds have a very intuitive

representation. As we have assumed that they are not driven by the Brownian that is responsible for

interest rate risk, then the di¤usion term of the stock price process is a bivariate triangular matrix:

�(I) =

24 �X1 (Xt) 0

� (Yt)�
X
2 (Xt)

q
1��(Yt)2�X2 (Xt)

35
where �Xi (Xt) ; i = 1; 2 is given by (3.15) and the conditional correlation �(Yt) is either a function of the

state variables Xt in Case A, a function of both the state variables Xt and the observable factors Ft in

Case B, or a function of only the observable factors Ft in Case C. Given this diagonal structure for �(I),

for the two stock prices we obtain:
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dS1t = S1t
�
�S1 (Xt) dt+ �

X
1 (Xt) dW

X
1t

	
dS2t = S2t

�
�S2 (Xt) dt+�(Yt)�

X
2 (Xt) dW

X
1t +

q
1��(Yt)2�X2 (Xt) dWX

2t

�
Without loss of generality we have assumed a linear function for ' (t) in the general speci�cation in

(3.11) given by kit; i = 1; 2, where ki is a deterministic trend. Note that the second fund (NASDAQ in

our example) is the only one a¤ected by WX
2 -risk, i.e. it can be thought of as the incremental risk factor

that in�uences �new-economy� stocks. On the contrary, the WX
1 risk factor a¤ects both funds in our

portfolio. This has some implications on the optimal portfolio choice. As we will see below, the demand

for the second fund is entirely driven by �uctuations induced by exposure to WX
2 -risk. Following the

optimal allocation rule outlined in (3.22), the demand for NASDAQ is given by:

��2;t =
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�X2 (Xt)
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i 9=;
where �i(t; Yt) is the market price of risk for the ith fund, and H�

i;t;T is the term involving the response

to �uctuations in the opportunity set driven by the ith Brownian motion. The absence of the interest

rate hedge is due to the fact that the state variable underlying the short rate is not dependent on any of

the Brownians driving the risky stocks. The demand for S&P 500 is given by:

��1;t =
1

�X1 (Xt)

8<:
1

R(!T )
�1(t; Y t)Et

h
�t;T

!T
!t

R(!t)
R(!T )

1!T>0

i
�Et

h
�t;T

!T
!t

�
1�R (!T )�1

�
1!T>0H

�
1;t;T

i 9=;
� �(Yt)

�X1 (Xt)
q
1��(Yt)2

8<:
1

R(!T )
�2(t; Y t)Et

h
�t;T

!T
!t

R(!t)
R(!T )

1!T>0

i
�Et

h
�t;T

!T
!t

�
1�R (!T )�1

�
1!T>0H

�
2;t;T

i 9=;
=

1

�X1 (Xt)

8<:
1

R(!T )
�1(t; Y t)Et

h
�t;T

!T
!t

R(!t)
R(!T )

1!T>0

i
�Et

h
�t;T

!T
!t

�
1�R (!T )�1

�
1!T>0H

�
1;t;T

i 9=;� �(Yt)�X2 (Xt)�X1 (Xt)
��2;t

Thus, we can see that for the �rst fund the optimal portfolio demand has an additional term that

involves ��2;t, the optimal holdings of the second fund. It happens because the second fund depends also

on WX
1 -risk, so its holding induces also an exposure to it. Consequently, the �rst fund is used to hedge

away this induced exposure, hence the additional term in the optimal portfolio holdings ��1;t. A similar

setup with a triangular di¤usion term was used in Detemple et al. (2003) in their multiasset application.

Note that the market price of risk hedging demands �MPRH can be decomposed in a similar fashion
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Figure 5.1: Quantile dependence plots
Plots of quantile dependence for the de-trended log-prices of S&P 500 vs. NASDAQ for the 1988-1996
and 1996-2004 subperiods.
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for the �rst fund, which will have induced intertemporal hedging demands equal to ��(Yt)�X2 (Xt)

�X1 (Xt)
�MPRH
2;t .

5 Numerical Results

Before discussing the estimation results for the various di¤usion speci�cations that we have chosen for

the state variables X, let us �rst look at data itself in order to verify whether the stylized facts that we

aim at reproducing are indeed present in the data. In the previous sections we have seen that dynamic

conditional correlation, modeled using a DCCmodel with exogenous factors, is indeed time-varying and we

can distinguish periods of relatively high or low correlation, that we were able to attribute to the in�uence

of the macroeconomic or the volatility factor. In a similar fashion, we split the estimation period in two

subsamples, one characterized by decreasing and low volatility and improving macroeconomic conditions

(1988-1996), and the other characterized by high volatility and declining and relatively low CFNAI index,

pointing towards a declining economy (1996-2004). We then construct quantile dependence plots for the

de-trended log-prices of both indices for the corresponding subsamples.

As we can see on Figure 5.1, during the �rst relatively calm period dependence in the extreme

quantiles of the joint distribution decreases substantially, even though it does not disappear completely,

as one would expect under a Gaussian distributional assumption. As well, a test of tail dependence

symmetry, following Hong et al. (2003), does not fail to reject symmetric tails for this particular period,

as it can be seen from Table 5.1.

On the other hand, the period of (1996-2004) brings about extremely high dependence in the tail

quantiles, especially in the left tail, and the dependence symmetry test indeed rejects symmetric tails for

the period. Thus, the unconditional distribution of the two risky funds that we have chosen does possess

the features that we try to asses, and namely increased dependence when markets experience extreme
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Table 5.1: Test of symmetry in the exceedence correlations
The Hong et al. (2003) test of exceedence correlations symmetry in the lower and upper quartiles for the
de-trended log-prices of S&P 500 vs. NASDAQ for the 1988-1996 and 1996-2004 subperiods. The test
statistic is given by:

J = n
�
�+ � ��

�

�1

�
�+ � ��

� d! �2m

where �+ and �� are the exceedence correlations calculated at the corresponding quantile levels, n is the
sample size and m is the number of quantile levels considered.

1988-1996 1996-2004
Test statistic (J) 6.9048 21.5517
p-values (0:4389) (0:0030)

Table 5.2: Parameter estimates for the observable factors
Estimated parameters for the observable factors VIX and CFNAI that have the following speci�cations:

dF Vt = �V
�
�V � F Vt

�
dt+ �V

q
F Vt dW

X
t

dFMt = �M
�
�M � FMt

�
dt+ �MdWX

t

where i = fV;Mg.

parameter CFNAI MC s.e. SIF V IX MC s.e. SIF
�i 2.2521 0.0027 0.8153 1.2094 0.0021 0.8002

�i -0.0457 0.0018 1.7702 2.7800 0.0007 0.8863�
�i
�2

2.9383 0.0005 0.8631 0.1230 0.0000 1.9260

downturns. Also splitting the sample in two periods with quite distinct characteristics will help us later

on to explain the portfolio implications of both conditional correlation and unconditional dependence.

The processes for the observable factors and for the state variables for the risky funds are estimated

using Markov Chain Monte Carlo and the Simulation Filter of Golightly and Wilkinson (2006). This

estimation methodology is particularly convenient for highly nonlinear multivariate di¤usions, as in our

case. As well, it allows us to �lter out unobservable data points, as is the case of the CFNAI factor,

which is observed monthly, whereas the two indices, as well as the VIX factor are observed at the daily

frequency. Parameter estimates for the observable factors are given in Table 5.2.

Let us not turn to the estimation results for the whole sample period, as well as the two subsamples

for the four conditional correlation speci�cations (DCC, Cases A through C, and CCC) and the three

alternative stationary distribution assumptions (no tail dependent Gaussian, symmetric tail dependent

Student�s t, and asymmetric tail dependent Gaussian-SJC di¤usions). As in this application we aim at
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Table 5.3: Univariate parameter estimates
Parameter estimates from the univariate Normal Inverse Gaussian (NIG) di¤usions with density
fNIG (x; �), where � = (�; �; �; �) is the vector of NIG parameters that satisfy the restrictions, given
in the Appendix. The di¤usion for each of the state variables Xit has the following speci�cation:

dXit = b (Xit; �i) dt+ v (Xit; �i) dWit

where b (x; �) =
1

2
v (x; �)

d

dx
ln [v (x; �) fNIG (x; �)]

v (x; �) = �2fNIG (x; �)
�� , �2 > 0; � 2 [0; 1]

Monte Carlo standard errors, obtained using the batch-mean approach (multiplied by a factor of 1000)
and the simulation ine¢ ciency factor (SIF) are reported for each parameter estimate.

parameter X1 (S&P500) MC s.e. SIF X2 (NASDAQ) MC s.e. SIF
� 5.6431 0.0601 1.0262 4.2938 0.2138 0.8070
� -0.6272 0.3091 1.1979 -0.7072 0.4151 0.6343
�2 0.0471 0.0016 0.7755 0.0549 0.0026 0.8782
� 4.6342 0.0083 1.0129 5.1191 0.0146 0.6724
�2 0.0268 0.0006 0.8375 0.0222 0.0003 0.2821
� 0.5776 0.0128 1.0339 0.5349 0.0356 1.2291

determining the impact of the stationary distribution and hence tail dependence on the optimal portfolio

holdings, regardless of the univariate marginals, we do not proceed to a full-scale optimization of all model

parameters, as would be otherwise preferred, but rather undertake a two-step estimation procedure. In

a �rst step, we assume that the two price processes are independent from each other, imposing the

independence (or product) copula on their stationary distribution, as well as zero conditional correlation.

Thus we are able to estimate them separately, and further use the same marginal distribution parameters

for all alternative processes that we consider. In this manner, di¤erences in portfolio demands between the

alternative speci�cations will not depend on the particular parameter choice of the univariate marginals.

Parameter estimates are reported in Table 5.3. The trend parameters ki for each of the state variables Xi

are estimated separately as a linear trend. Their values are 0.1014 for S&P 500 and 0.1100 for NASDAQ.

In a second step, we assume the marginal parameters as known and we proceed to the estimation of

the multivariate processes by assuming all the alternative speci�cations for the stationary distribution of

the conditional correlation. Results are reported in Table 5.4.

Note that the conditional correlation parameters that pertain to volatility (1) (either observed

through the VIX factor or modeled through the state variables X) are generally positive through all

the speci�cations, pointing towards an increase in conditional correlation when there is rise in market-

wide volatility. An exception to this is the 1996-2004 period, during which the VIX coe¢ cient is negatively
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Table 5.4: Parameter estimates from the multivariate di¤usion speci�cations (1986-2006)
Estimates for the parameters of the stationary density, de�ned in terms of copula functions, and the parameters
governing the correlation dynamics for a bivariate di¤usion, de�ned as:

dXt = � (Xt) dt+ �(Xt) dW
X
t

where � =

264 �1

h ef1 (x1)i� 1
2
�1

0

�12 (Xt)�2

h ef2 (x2)i� 1
2
�2 p

1��212 (Xt)�2
h ef2 (x2)i� 1

2
�2

375
�j =

1

2
q�1

2X
i=1

@ (�ijq)

@xi
, j = 1; 2

and q (x1; :::; xd) � ec (x1; :::; xd) dY
i=1

ef i (xi)
where �ij are entries of the matrix � = ��|, and q (x1; :::; xd) is the stationary density of the di¤usion, de�ned

in terms of a copula function ec and the NIG marginal densities ef i. Parameter estimates are given for three cases of
copulas: Ga refers to the Gaussian copula, Ga�SJC - to the mixture Gaussian-Symmetrized Joe-Clayton copula,
and T - to the Student�s t copula. The copula parameters are as follows: � is the correlation parameter for the
Gaussian or the Student�s t copula, � stands for the degrees of freedom of the Student�s t copula, �U and �L are
the upper and lower tail dependence parameters of the Symmetrized Joe-Clayton copula, and ! is the weighting
parameter in the Symmetrized Joe-Clayton copula. The parameters that describe the correlation dynamics are
i; i = 0; :::; 3, consistent with the speci�cation in (3.16) for Case A, with (3.17) for Case B and with (3.18) for
Case C. The Constant Conditional Correlation model in Panel 4 assumes that all correlation parameters are zero
but 0.

Panel 1. Dynamic conditional correlation (Case A)

param Ga MC s.e. SIF Ga-SJC MC s.e. SIF T MC s.e. SIF

� 0.4612 0.3126 0.9440 0.4686 0.2022 0.1966 0.4433 0.6026 1.8164

� - - - - - - 6.4394 2.0178 0.7087

�U - - - 0.5179 0.6057 1.2630 - - -

�L - - - 0.5003 0.5589 1.2407 - - -

! - - - 0.5599 0.7806 1.6945 - - -

0 2.0695 0.0126 0.1636 2.0475 0.0292 0.8041 1.9795 0.0454 1.0962

1 0.4430 1.6643 2.4494 0.6850 0.7402 0.4886 1.3272 0.9481 1.3758

2 -1.4731 0.0422 0.5547 -1.2649 0.0721 0.9250 -0.8214 0.0987 1.3498
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Panel 2. Dynamic conditional correlation (Case B)

param Ga MC s.e. SIF Ga-SJC MC s.e. SIF T MC s.e. SIF

� 0.4036 0.3654 0.9608 0.4596 0.7086 1.6656 0.3652 0.2750 1.6598

� - - - - - - 6.6976 9.2680 1.2306

�U - - - 0.4669 0.3453 0.6012 - - -

�L - - - 0.5178 0.3165 1.1565 - - -

! - - - 0.5513 0.7156 0.7900 - - -

0 1.7273 0.0166 0.6051 1.7401 0.0252 0.6578 1.7589 0.0381 1.2715

1 0.0060 0.0126 0.9784 0.0034 0.0062 0.3958 -0.0020 0.0145 0.7090

2 -0.2873 0.0642 0.9762 -0.2745 0.0484 0.6097 -0.4227 0.0806 1.1133

3 -0.3086 0.0263 1.0807 -0.3487 0.0240 0.9340 -0.2944 0.0252 1.3209

Panel 3. Dynamic conditional correlation (Case C)

param Ga MC s.e. SIF Ga-SJC MC s.e. SIF T MC s.e. SIF

� 0.3734 0.3210 0.3841 0.4984 0.5621 0.9206 0.4146 0.9349 1.8356

� - - - - - - 6.0105 2.2653 0.4660

�U - - - 0.5619 0.3398 0.6210 - - -

�L - - - 0.4805 0.2818 0.8046 - - -

! - - - 0.4690 0.2544 0.2023 - - -

0 1.6288 0.0237 1.0122 1.5920 0.0303 1.7129 1.6122 0.0190 1.1783

1 0.0085 0.0102 0.9935 0.0089 0.0108 0.7495 0.0090 0.0112 2.7264

2 - - - - - - - - -

3 -0.2628 0.0394 1.5915 -0.3540 0.0269 0.7109 -0.2510 0.0183 0.6519

Panel 4. Constant conditional correlation

param Ga MC s.e. SIF Ga-SJC MC s.e. SIF T MC s.e. SIF

� 0.4565 0.2337 1.2678 0.4918 0.3299 1.1136 0.4052 0.2187 0.5737

� - - - - - - 4.3149 2.5652 1.6841

�U - - - 0.5012 0.6331 2.3965 - - -

�L - - - 0.5801 0.4020 1.6656 - - -

! - - - 0.3816 0.6329 1.4994 - - -

0 1.9955 0.0139 1.8733 2.0374 0.0128 0.9472 2.0470 0.0090 0.7893
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Table 5.4 (A). Parameter estimates from the multivariate di¤usion speci�cations (1988-1996)

Panel 1. Dynamic conditional correlation (Case A)

param Ga MC s.e. SIF Ga-SJC MC s.e. SIF T MC s.e. SIF

� 0.4130 0.5533 0.8635 0.3971 0.6171 0.8538 0.3951 0.5808 0.6071

� - - - - - - 5.8728 8.5498 1.0732

�U - - - 0.4479 0.4510 0.5219 - - -

�L - - - 0.4685 0.6630 1.2260 - - -

! - - - 0.5147 0.8890 1.6429 - - -

0 1.8897 0.0680 0.9762 1.8835 0.0812 0.9175 1.9037 0.1103 1.1216

1 1.7028 3.9466 2.3019 2.4512 5.0493 2.0684 3.4598 5.1660 1.5876

2 -1.7556 0.6689 1.6051 -1.7040 0.3697 0.5851 -1.3860 0.4324 0.9937

Panel 2. Dynamic conditional correlation (Case B)

param Ga MC s.e. SIF Ga-SJC MC s.e. SIF T MC s.e. SIF

� 0.4011 0.3787 0.4744 0.3705 0.8203 1.3778 0.4590 0.9433 1.4121

� - - - - - - 6.0486 6.6124 0.3657

�U - - - 0.5159 0.9509 0.9491 - - -

�L - - - 0.5466 0.7998 0.7297 - - -

! - - - 0.5258 1.4451 1.5272 - - -

0 2.1724 0.0426 0.4523 2.1661 0.0716 1.0785 2.1827 0.0425 0.5952

1 0.0102 0.0207 1.1832 0.0079 0.0185 0.5042 0.0112 0.0209 0.8377

2 -0.7282 0.3580 1.2605 -0.9716 0.2619 0.5328 -0.7620 0.2754 1.0575

3 -0.2691 0.1471 1.2750 -0.2887 0.1229 0.7116 -0.2734 0.1109 0.9831

Panel 3. Dynamic conditional correlation (Case C)

param Ga MC s.e. SIF Ga-SJC MC s.e. SIF T MC s.e. SIF

� 0.4111 0.5567 0.5478 0.3633 1.4273 1.2948 0.3155 0.5125 0.5295

� - - - - - - 5.3833 6.6008 1.1860

�U - - - 0.6179 0.4655 0.3730 - - -

�L - - - 0.4446 1.2408 1.4057 - - -

! - - - 0.5042 0.8104 0.6855 - - -

0 2.1615 0.0277 0.4684 2.1441 0.0629 1.7323 2.1550 0.0431 1.2044

1 0.0046 0.0294 2.3139 0.0127 0.0192 1.2285 0.0154 0.0159 1.1747

2 - - - - - - - - -

3 -0.3223 0.1225 1.9323 -0.2987 0.0682 0.5600 -0.3104 0.1126 2.1642

Panel 4. Constant conditional correlation

param Ga MC s.e. SIF Ga-SJC MC s.e. SIF T MC s.e. SIF

� 0.3348 0.5310 0.7963 0.4497 0.5185 0.7457 0.3677 0.8407 1.5087

� - - - - - - 5.5060 8.8090 1.9514

�U - - - 0.5447 1.0077 1.2661 - - -

�L - - - 0.5016 1.1308 1.7278 - - -

! - - - 0.5765 0.8678 0.9065 - - -

0 1.7174 0.0585 1.8229 1.6532 0.0460 0.9813 1.6437 0.0397 1.0072
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Table 5.4 (B). Parameter estimates from the multivariate di¤usion speci�cations (1996-2004)

Panel 1. Dynamic conditional correlation (Case A)

param Ga MC s.e. SIF Ga-SJC MC s.e. SIF T MC s.e. SIF

� 0.5637 0.7203 1.2560 0.5274 0.7029 0.5754 0.3722 0.7644 0.5408

� - - - - - - 4.5172 4.7443 0.6594

�U - - - 0.5158 1.1290 1.1144 - - -

�L - - - 0.4926 0.6007 0.3596 - - -

! - - - 0.4565 0.7126 1.2339 - - -

0 1.4097 0.0483 0.6112 1.3723 0.0702 1.0511 1.3127 0.0621 0.6209

1 2.3400 1.0788 1.0603 2.6907 1.2589 0.8808 2.6206 0.6113 0.4612

2 -0.2872 0.1821 0.8152 -0.3649 0.1190 0.3422 -0.1736 0.1280 1.7100

Panel 2. Dynamic conditional correlation (Case B)

param Ga MC s.e. SIF Ga-SJC MC s.e. SIF T MC s.e. SIF

� 0.5380 0.6157 0.5776 0.5383 1.0569 0.6704 0.3368 0.7195 0.8666

� - - - - - - 4.4252 8.1150 1.5499

�U - - - 0.5093 0.4792 0.2987 - - -

�L - - - 0.5322 0.9009 1.5219 - - -

! - - - 0.5023 0.7294 1.1890 - - -

0 1.9191 0.1318 2.0517 1.9198 0.0576 0.4783 1.7604 0.0689 0.6817

1 -0.0134 0.0221 0.5537 -0.0034 0.0157 0.4258 -0.0083 0.0232 0.5074

2 -0.7266 0.1758 0.8608 -0.7292 0.2284 1.6010 -0.6427 0.1392 0.5934

3 -0.0825 0.0983 0.5140 -0.1403 0.0834 0.6450 -0.0741 0.0710 0.4916

Panel 3. Dynamic conditional correlation (Case C)

param Ga MC s.e. SIF Ga-SJC MC s.e. SIF T MC s.e. SIF

� 0.5892 0.8027 1.4944 0.4499 0.7358 0.7108 0.3368 0.7195 0.8666

� - - - - - - 4.4252 8.1150 1.5499

�U - - - 0.5475 0.5474 0.7226 - - -

�L - - - 0.4939 0.6894 0.7287 - - -

! - - - 0.6078 0.7941 0.6022 - - -

0 1.7373 0.1156 0.9672 1.7783 0.0269 0.4362 1.7604 0.0689 0.6817

1 -0.0341 0.0211 0.5716 -0.0215 0.0074 0.2996 -0.0083 0.0232 0.5074

2 - - - - - - -0.6427 0.1392 0.5934

3 -0.2906 0.1588 1.5428 -0.3344 0.0732 0.9997 -0.0741 0.0710 0.4916

Panel 4. Constant conditional correlation

param Ga MC s.e. SIF Ga-SJC MC s.e. SIF T MC s.e. SIF

� 0.3533 0.5154 0.7736 0.3853 1.4276 0.6995 0.3981 0.5216 0.3485

� - - - - - - 6.0479 3.9435 0.2350

�U - - - 0.5242 0.7559 0.9003 - - -

�L - - - 0.5091 0.7778 0.7893 - - -

! - - - 0.5142 0.9299 0.7847 - - -

0 1.1262 0.0668 1.1726 1.1751 0.0473 0.6244 1.1200 0.0567 0.9024
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estimated for all stationary distributional assumptions. However, 1 has the expected positive sign for

the conditional correlation speci�cation with no observable factors. On the other hand, the parameter

pertaining to the macroeconomic factor (3) is always negatively estimated, pointing towards a decrease

in conditional correlation when there is an improvement in macroeconomic conditions, and vice versa.

5.1 Correlation hedging demands along realized paths of the state variables

In order to examine the evolution of the portfolio hedging demands for the estimation period, we proceed

to a market timing exercise that consists in simulating ahead the Malliavin derivatives of the state

variables, the state price density, as well as the portfolio terms involving hedging against changes in

the interest rate (3.23) and the market price of risk (3.24), while keeping the state variables (the latent

variables and the observable factors) at their observed values throughout the period5. First, we obtain the

optimal portfolio terms for the whole period between 1986-2006 for an investor with a constant, moving-

window horizon of 4 years. With this we aim at studying di¤erences between the optimal portfolio parts

for the alternative speci�cations considered above for modeling unconditional or conditional dependence,

without any in�uence of the time horizon. Next, we consider an investor who keeps her investment horizon

�xed at the end of the period, thus investigating the horizon e¤ect on the optimal portfolio shares.

As during this relatively long 20 year horizon one can distinguish hectic periods, associated with

high volatility, negative CFNAI, pointing towards a slow-down in the economy, and subsequently rising

conditional correlation, as well as relatively calm periods with low volatility, mostly positive levels of the

CFNAI index and thus low conditional correlation, we proceed to a second market timing experiment,

considering instead two subperiods of 8 years. The �rst one spans between 1988 and 1996 and is charac-

terized by increased volatility and a recession in the US economy in the beginning of the period (between

July 1990 and March 1991, as determined by NBER), followed by improving macroeconomic conditions

(positive and rising CFNAI), as well as relatively low and declining volatility. As it can be seen on Figure

2.2, this period is characterized by falling dynamic conditional correlation. On the other hand, the sec-

ond period, spanning between 1996 and 2004 is characterized by increased volatility for the whole period,

a recession towards the end of the period (March 2001 marks the end of a 10-year expansion period,

according to NBER, and there is a trough in business activity in November 2001). Figure 2.2 shows a

rising trend in the dynamic conditional correlations for the period. For both subperiods we consider an

investor who has a �xed investment horizon at the end of each period.

5As the CFNAI index is observed at a monthly frequency, we �lter the unobservable data points at the daily frequency
using the MCMC sequential �lter.
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5.1.1 Correlation hedging for the whole estimation horizon

For the �rst market timing experiment that involves a 20-year investment horizon �xed at the end of

the sample, we consider the three cases of modeling the unconditional distribution of the state variables

underlying the price processes (non-tail dependent Gaussian, symmetric tail dependent Student�s t and

asymmetric tail dependent Gaussian-SJC mixture distribution), as well as the three ways to account

for dynamically changing conditional correlation with or without observable factors driving it. The same

experiment is repeated, but with a moving-window horizon of 4 years. Thus we are able to distinguish the

horizon e¤ect in the evolution of the optimal portfolio hedging demands from the e¤ect of the dynamically

changing investment opportunity set.

In order to get an impression of the magnitude and the variability of the hedging demands for the risky

assets in the portfolio, let us �rst consider the results displayed on Figure 5.2 for a HARA investor with

varying degrees of relative risk aversion6. The intertemporal hedging demands are a sizeable component

of the total portfolio, and they are responsible for a larger portion of the portfolio demands if we increase

the level of relative risk aversion of the investor. As well, the hedging demands are larger for longer

horizons: an investor with a horizon �xed at the end of the 20-year sample period would have higher

hedging demands at each period of time than an investor who has a short rolling-window horizon (4 years

in our case). Also the �xed horizon would cause the hedging demands to shrink as we approach it (it is

visible during the last 4 years on the left column of Figure 5.2), so that the Mean-Variance component

would be increasingly more important in the total portfolio holdings. The results there are based on a

Gaussian-SJC di¤usion with dynamic correlation driven by observed factors (Case B), but the relative

importance of the hedging demands for the other cases is qualitatively the same.

Let us now turn to the results for the di¤erences in the hedging demands of the two risky stocks in the

portfolio due to the unconditional dependence structure (through the stationary distribution of the process

for the state variables underlying stock prices) and due to the dynamics of conditional correlation. On

Figure 5.3, Panel A we have plotted the correlation hedging demands due to observable factors (CFNAI

and VIX) that we have isolated following (3.26) for an investor with a �xed horizon at the end of the

sample period (left column) and an investor with a rolling-window horizon (right column). On Figure

5.3, Panel B we can see the relative importance of the correlation hedging terms due to each one of the

factors for the same 20-year investment horizon. The hedge due to the macroeconomic factor is generally

negative, reducing the total portfolio demand, while the hedging term due to volatility is positive but

very small in absolute value, compared to the CFNAI hedge.

6As the long term bond is the only security in the investor�s portfolio that is responsible for hedging interest rate risk
and as the Brownian motion driving the short rate is independent of the Brownian motions driving the rest of the state
variables, and that the short rate does not enter the stock price dynamics, the hedging terms for the risky assets consist
solely of market price of risk hedges. Due to the chosen speci�cation of the market price of risk of the long term bond, it
has a negative market price of risk hedging term, and a positive interest rate hedge.
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Figure 5.2: Total portfolio holdings and intertemporal hedging demands for the two risky stocks over the
entire sample
The �gure displays the holdings of the two risky stocks in the portfolio for the entire sample period 1886-2006.
The total holdings are contrasted with the intertemporal hedging demands, which for the stocks are entirely given
by the market price of risk hedges. The �gure on the left represents the portfolio holdings for a �xed investment
horizon at the end of the 20-year sample. The �gure on the right represents the holdings for a moving-window
4-year horizon. The two top �gures concern a HARA investor with relative risk aversion of 5, while the bottom
two - a HARA investor with relative risk aversion of 10. The data generating process is a Gaussian-SJC di¤usion
with dynamic correlation (Case B).
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Figure 5.3: Correlation hedging demands due to observed factors
Panel A. The �gure displays the sum of the hedging demands due to observed factors (CFNAI and VIX) driving
conditional correlation for the two risky stocks in the portfolio for the entire sample period 1886-2006. The �gure
on the left represents the correlation hedging demands for a �xed investment horizon at the end of the 20-year
sample. The �gure on the right represents the correlation hedging demands for a moving-window 4-year horizon.
HARA investor with relative risk aversion of 5. The data generating process is a Gaussian-SJC di¤usion with
dynamic correlation (Case C).
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Figure 5.3. Panel B. The �gure displays the hedging demands due to observed factors driving conditional
correlation for the two risky stocks in the portfolio for the entire sample period 1886-2006. The top �gure represents
the demands due to hedging changes factor that proxies the macroeconomic conditions (CFNAI), while the bottom
�gure represents the correlation hedging demands due to the factor that proxies market volatility (VIX). HARA
investor with relative risk aversion of 5. The data generating process is a Gaussian-SJC di¤usion with dynamic
correlation (Case B).
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The magnitude of these correlation hedging components is quite small compared to the total hedging

demands on Figure 5.2. They are negative in sign, pointing towards a reduction in the total portfolio

holdings. One can as well distinguish periods with peaks in the absolute value of the correlation hedging

demands, that can be attributable to some market events (e.g. the market crashes in 1987, 1990-1992,

2001). Those demands are also higher for longer investment horizon, which can be seen by comparing

the holdings of the investor with a �xed vs. rolling-window shorter horizon, and they decline to zero as

we approach the investment horizon. The results are obtained for the dynamic correlation speci�cation

following Case C, that is the case when only the VIX and the CFNAI indices drive conditional correlation.

Results for the Case B, as well as Gaussian or the Student�s t di¤usion are qualitatively the same and

are not reported for brevity.

Those hedging demands arise in order to hedge against stochastic changes in the observable factors

that proxy volatility or the macroeconomic conditions, and they constitute the total correlation demands

in Case C, where the dynamics of conditional correlation are not driven by other state variables. However,

as we consider the case of conditional correlation being dependent as well on the level of the state variables

X (Case B), then there would be another component in the correlation hedging demands apart from the

in�uence of the factors that is not directly identi�able. In order to gauge its importance, we compare

the intertemporal market price of risk hedging parts for a process with dynamic vs. constant conditional

correlation. Figure 5.4 reports the results for an underlying Gaussian and a Gaussian-SJC di¤usion for

a �xed investment horizon at the end of the sample period.

The presence of dynamically varying conditional correlation asks for an increase in the intertemporal

hedging demands for the Gaussian di¤usion, which is mainly driven by NASDAQ, while the hedging

demands for S&P 500 are virtually unchanged. At �rst sight these results are surprising given the evidence

that correlation hedging demands due to observable factors for both �xed and rolling window horizon are

negative throughout the period, so that we would expect a reduction in the total intertemporal hedging

terms for the dynamic conditional correlation case compared to the terms under constant conditional

correlation. However, the in�uence of dynamic correlation does not show up in the correlation hedging

term (3.25) only through the Malliavin derivatives of the factors. It in�uences as well the market price of

risk �(t; Yt), which determines the total market price of risk hedging demands. So while the portfolio term

that is due to the need to hedge against stochastic changes in the observable factors driving correlation

is indeed correlation hedging demand, the di¤erence in the level of the market price of risk hedge terms

between dynamic and constant conditional correlation is not entirely explained by this demand. Hence

the possible disparity, even in sign, between the correlation hedging demands and the di¤erence in the

level of market price of risk hedges between constant and dynamic conditional correlation di¤usions.

It is also of interest to contrast the di¤erences in hedging demands due to dynamic correlation to

those due to dynamic volatility, so we have reported on the right column of Figure 5.4, Panel A the
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Figure 5.4: Hedging demands along realized paths for the risky stocks for the 20-year �xed investment
horizon (Case B)
Plotted are the intertemporal demands (separately for each risky fund and their sum) along realized paths of the
state variables for the whole sample period for the risky stocks for a �xed investment horizon at the end of the
period The left column plots the intertemporal hedging demands obtained under a DCC speci�cation vs. those
under CCC; the right column contrasts hedging terms under constant and time-varying volatility.

1985 1987 1990 1992 1995 1997 2000 2002 2005 2007
0 .5

0

0 .5

1

Sum  of intertem poral MPR hedging parts
Gaussian diffus ion

DCC

CCC

1985 1987 1990 1992 1995 1997 2000 2002 2005 2007
0 .5

0

0 .5

1

1 .5

Intertem poral MPR hedging parts
Gaussian diffus ion  S&P 500

1985 1987 1990 1992 1995 1997 2000 2002 2005 2007
0 .6

0 .4

0 .2

0

0 .2

Intertem poral MPR hedging parts
Gaussian diffus ion  NASDAQ

1985 1987 1990 1992 1995 1997 2000 2002 2005 2007
0.5

0

0.5

1

1.5

2

Sum of intertemporal MPR hedging parts
Gaussian diffusion

Constant correlation, tim evarying vol

Constant correlation, constant vol

1985 1987 1990 1992 1995 1997 2000 2002 2005 2007
1

0.5

0

0.5

1

1.5

Intertemporal MPR hedging parts
Gaussian diffusion  S&P 500

1985 1987 1990 1992 1995 1997 2000 2002 2005 2007
1

0.5

0

0.5

1

1.5

2

Intertemporal MPR hedging parts
Gaussian diffusion  NASDAQ

39



Figure 5.4. Panel B. Induced hedging demands (Case B)
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Figure 5.4. Panel C. Hedging demands due to di¤erences in the unconditional distribution (tail
dependence vs. no tail dependence) for the risky stocks for the 20-year �xed investment horizon for a
CCC di¤usion (left column) and a DCC di¤usion (right column) (Case B)
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results for a process for which we have assumed constant volatility and correlation (note that constant

volatility is nested in the speci�cation given in (3.15) and is achieved by setting the parameter � to zero).

Throughout the sample period the hedging demands for the constant volatility model are signi�cantly

higher than those with time-varying volatility, rendering the volatility e¤ect much more pronounced than

the e¤ect of conditional correlation. The e¤ect is qualitatively the same for a �xed and a rolling-window

investment horizon. Unlike the correlation hedging demands, the hedging parts for the S&P 500 are

increased when we allow for variations in volatility, while those of NASDAQ are signi�cantly reduced for

the whole period.

An alternative way to illustrate the importance of dynamically changing correlation on intertemporal

hedging demands is to look at the induced portfolio holdings of S&P 500 from the position in NASDAQ,

as explained in the previous section. On Panel B of Figure 5.4 we have plotted the induced MPR

hedging demands for S&P 500 for a HARA investor with a 20-year investment horizon. We contrast the

induced hedges for a DCC vs. a CCC model under two alternative unconditional distribution assumptions

(Gaussian and Gaussian-SJC)7. Regardless of the form of the stationary density that we suppose, the

induced hedging demands are lower for the DCC case then for the CCC one, pointing towards a reduction

in the total portfolio holdings when dynamics of conditional correlation are explicitly accounted for.

Until now we have discussed the magnitude and sign of the hedging demands that arise due to

stochastic changes of the state variables driving conditional correlation which increases in down markets,

volatile periods or bad states of the economy. An important question is whether there would be a similar

shift in portfolio composition when the unconditional dependence structure is changed, that is the same

stylized fact is reproduced through the stationary distribution of the process for the state variables X

through a Gaussian copula (no tail dependence) or Gaussian-SJC copula (asymmetric tail dependence).

On Figure 5.4, panel C we have reported the hedging demands of a Gaussian vs. a Gaussian-SJC di¤usion

under a CCC assumption, and the hedging demands of a Gaussian vs. a Gaussian-SJC di¤usion under a

DCC assumption for an investment horizon �xed at the end of the 20-year period. The presence of tail

dependence changes the composition of the portfolio by reducing the absolute value of the intertemporal

hedging terms. The latter are generally positive for S&P 500 and generally negative for NASDAQ, so

tail dependence reduces in absolute value the holdings of both assets, driving them closer to zero. This

result is maintained throughout the investment horizon, regardless of the way conditional correlation

is modeled. Thus, for portfolio allocation, the impact of tail dependence through the unconditional

distribution cannot be swept away by allowing conditional correlation to vary through time, rising in

down markets.

The e¤ect of tail dependence is somewhat subdued for the sum of the intertemporal hedges for both

assets for the �rst half of the sample period, while towards the end of the period, mainly after 2000, the

7Here we have reported results for DCC following Case B. All alternative cases of DCC were considered against the CCC
model, and they all yield qualitatively similar results.

42



e¤ect is more pronounced in the sense that the total intertemporal hedging demands are reduced for the

case where we allow for tail dependence. It appears that for di¤erent subperiods of this relatively long

sample hedging demands may have qualitatively di¤erent behavior. In order to gather more insight into

the reasons behind di¤erences in those demands, we concentrate our attention on two 8-year subperiods:

one relatively calm in the sense of diminishing volatility, economy on the rise, low conditional correlation

(1988-1996), and another period characterized by more hectic behavior in terms of high volatility, declining

economic indicators and increased conditional correlation (1996-2004).

5.1.2 Correlation hedging for the two subperiods

Comparing the intertemporal hedging demands on Figure 5.5 and 5.6 for each one of the two subperiods,

regardless of the assumptions we have made on the conditional correlation or the unconditional distri-

bution, we see that those demands are generally positive throughout the �rst relatively calm period of

economy on the rise and generally negative for the second hectic period of slowing down economy. There

is just one exception to this rule that deserves attention - the hedging demands turn positive towards the

second half of the 1996-2004 period for the Gaussian di¤usion for both constant and dynamic speci�ca-

tions for the conditional correlation. Thus, failing to account for tail dependence increases the demand

for the two risky funds and the fact that we allow for dynamically varying conditional correlation does

not change this. It appears, following this preliminary observation, that unconditional dependence has a

portfolio impact beyond the one induced by correlation hedging.

We now turn to a more detailed analysis of the portfolio implications of modeling conditional or

unconditional dependence. The �rst comparison that we consider for the two chosen subperiods is one that

is aimed at bringing forward the importance of correlation hedging through contrasting the intertemporal

demands for the risky funds under a constant vs. a dynamic conditional correlation speci�cation (for any

of the three cases considered). To this end, we have plotted on Figure 5.5 the evolution of the hedges

for a Gaussian, Gaussian-SJC and a t-di¤usion for a HARA investor with a coe¢ cient of relative risk

aversion of 5.

For any of the unconditional distribution assumptions during the 1988-1996 period the presence of

dynamically varying conditional correlation brings about increased hedging demands. When looking at

the individual demands for any of the risky funds, we �nd that under the DCC assumption those demands

are larger in absolute value, generally positive for S&P 500 and generally negative for NASDAQ. During

the 1996-2004 period dynamic conditional correlation also leads to higher demands in absolute value for

both funds, but the e¤ect on the total hedging demands is more pronounced in the case when conditional

correlation depends both on observable factors F and the level of the state variables X (Case B). In

this case dynamic correlation leads to an increase in the total hedging demands. Results for conditional

correlation speci�cations under Case A and C are qualitatively the same and are not reported for brevity.
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Second, we consider the e¤ect of the unconditional distribution on the hedging demands by comparing

the results under the assumption of Gaussianity with those under the two alternatives of allowing for

tail dependence - a Gaussian-SJC or a Student�s t distribution. With this we aim to determine whether

there is any portfolio e¤ect induced by di¤erent assumptions on modeling tail dependence beyond the

one incurred by dynamic conditional correlation.

On Panel A of Figure 5.6 we have plotted the hedging demands of a HARA investor with a relative

risk aversion coe¢ cient of 5 who models the stock price process using a Gaussian vs. a Gaussian-SJC

di¤usion (the e¤ect of disregarding tail dependence) or alternatively a Student�s t vs. a Gaussian-SJC

di¤usion (the e¤ect of disregarding asymmetric tail dependence). In all cases we have constant conditional

correlation. Contrary to the results on Figure 5.5 which tried to gauge the importance of modeling

conditional correlation, here we have the opposite impact of the presence of tail dependence: it leads to

smaller hedging demands in absolute value for both risky funds which reduces the total intertemporal

demands for the risky assets. Those di¤erences are more pronounced during the 1996-2004 period, and

they are quite signi�cant when the investor disregards tail dependence by assuming a Gaussian di¤usion

(in this case hedging demands grow to be positive in the second half of the period, whereas accounting

for tail dependence both through the Gaussian-SJC and the t-di¤usions leads to negative hedges).

However, when we allow for dynamically varying correlation some interesting results follow. Looking at

Panel B on Figure 5.6, the large di¤erence between the alternative unconditional distribution assumptions

seems to vanish for the �rst subperiod. Allowing or not for tail dependence leads to virtually the same

hedging demands. So, for this relatively calm period of improving economic conditions towards its end the

presence of tail dependence does not lead to any signi�cant change in the portfolio composition beyond

the impact of correlation hedging. Still, the picture for the second highly volatile period is quite di¤erent.

Accounting for tail dependence still leads to a decrease in absolute terms of the hedging components

for both risky funds which generally leads to a decrease in the total hedging demand, especially for the

Gaussian case. Thus, for a volatile period of deteriorating economic conditions tail dependence has a

signi�cant impact on the portfolio composition, even when dynamic conditional correlation has been

accounted for.

5.2 Simulations

Having examined the distinct ways that dynamic conditional correlation or tail dependence in�uence

the optimal portfolio decisions for a particular period and for realized paths of the state variables, we

now turn to a simulations experiment that determines optimal portfolio shares for varying investment

horizons while simulating ahead all the state variables involved. With this we aim to determine whether

for the estimated parameters of the corresponding processes the relative importance of conditional and

unconditional dependence on portfolio hedging demands will remain qualitatively the same as with the
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historical data considered.

Thus, we set up a �rst simulations exercise that aims at determining the importance of correlation

hedging demands for a HARA investor who already believes that the process underlying stock prices

has asymmetric tail dependence, incorporated through the Gaussian-SJC di¤usion. Then we alternate

the way to model conditional correlation by letting it be either constant or dynamic. In this way we

can analyze the correlation hedging demands that arise beyond those that could be attributed to tail

dependence through the unconditional distribution. We use the parameters estimated from a Gaussian-

SJC process with DCC following Case B for the whole estimation period as a benchmark. Then, in order

to obtain a CCC model, we set all parameters, driving conditional correlation, to zero, except for 0. We

calibrate this parameter in order to re�ect the same average correlation throughout the estimation period

as the one implied by the benchmark process. In order to gauge the relative importance of adding each

one of the observable factors to the dynamic correlation speci�cation, we alternatively set either 1 (the

VIX coe¢ cient) or 3 (the CFNAI coe¢ cient) to its corresponding value from the benchmark process,

while setting all the other parameters to zero except 0 that is again calibrated in order to re�ect the same

average correlation. We then simulate ahead all the state variables involved in each of the four alternative

processes, as well as their Malliavin derivatives, in order to obtain the Monte Carlo estimates of their

conditional expectations in (3.22) and thus the intertemporal hedging demands. Results for investment

horizons of 1 and 5 years are reported in Table 5.5, Panels A through C and Panel F.

The major conclusion that we may draw from those results is that for all investment horizons consid-

ered, as well as for all degrees of relative risk aversion, the market price of risk hedge for the DCC model

is the lowest. If we add only the macroeconomic factor to render conditional correlation dynamic, we get

results that are quite close to the benchmark model. So for this application the macroeconomic factor

seems to be the major driving force to determine the optimal portfolio composition. However, adding

only the VIX factor does not change in any substantial way the portfolio holdings and they remain vir-

tually unchanged with respect to the CCC model. As in the portfolio allocation example along realized

paths of the state variables, here we also observe a larger spread between the holdings of S&P 500 and

NASDAQ for the DCC case with respect to CCC. These results are con�rmed for a CRRA as well as

HARA investor and are valid for all investment horizons considered, as well as levels of risk aversion.

Increasing the level of risk aversion invariably leads to a decrease in the intertemporal hedging demands

in absolute terms. It also happens for a HARA investor with a certain subsistence level b below which

she is unwilling to fall as compared to a CRRA investor.

A second simulations experiment that we consider aims at determining the importance of the station-

ary distribution and hence tail dependence for an investor who has already accounted for dynamically

varying conditional correlation. We pick again the Gaussian-SJC di¤usion with DCC according to Case

B as the benchmark case and compare its implied hedging demands with those from a Gaussian or a
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Student�s t alternative. Results are presented on Panels D through F of Table 5.5. As in the portfolio

example over realized paths of the state variables, the stationary distribution still plays a role in deter-

mining the hedging demands, rendering them smaller in the presence of tail dependence. For shorter

horizons its e¤ect is smaller than the e¤ect of disregarding conditional correlation, but at the 5-year

horizon the Gaussian di¤usion renders the highest hedging demands, even higher than the CCC case,

which con�rms our �ndings of the market timing exercise.

The above results may be sensitive to the level of conditional correlation that we impose. Thus, we

repeat the simulations experiment with a Gaussian-SJC di¤usion and DCC following Case B for varying

values of the 0 parameter for the conditional correlation. For levels of 0 of 1, 2 and 3 obtain conditional

correlation levels (averaged over the estimation period) of 0.45, 0.75 and 0.90. For each one of those

DCC cases we �nd the appropriate CCC calibration for the conditional correlation parameters, keeping

the same average correlation levels. Results are plotted on Figure 5.7.

Regardless of the investment horizon, for relatively low correlation levels (0.45) the DCC model

implies signi�cantly lower intertemporal hedging demands, compared to a CCC speci�cation, even after

tail dependence has been accounted for through the Gaussian-SJC stationary distribution. For extremely

high correlation levels (the case of 0 = 3) the roles of DCC and CCC change and now it is the latter

that implies lower hedging demands. Depending on the investment horizon, we may have higher or lower

hedge levels for a mean conditional correlation of 0.75. This behavior can thus explain the higher hedging

demands implied by the DCC speci�cation over a realized path of the state variables that we encountered

earlier.

5.3 Certainty equivalent cost of ignoring correlation hedging

We follow the common approach in literature on portfolio choice and study the e¤ect of ignoring corre-

lation hedging on the wealth of the investor using the utility loss, or the certainty equivalent cost (see

Liu et al. 2003). The approach consists in computing the additional amount of wealth that would be

needed for an investor to consider a suboptimal allocation strategy (that results from ignoring correlation

hedging) instead of the optimal one (that takes into account the dynamics of conditional correlation), in

order to achieve the same expected utility of terminal wealth. In other words, we are looking to determine

the amount ceq such that:

E [U (!�T j !0 = 1)] = E [U (!T j !0 = 1 + ceq)]

where !�T is the terminal wealth achieved under the optimal investment strategy and !T is the terminal

wealth under the suboptimal one.

The �rst question that we address, in accordance with the simulation exercise above, is whether the
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Figure 5.7: Dynamic correlation-induced portfolio hedging terms through simulation: the in�uence of
correlation level
Intertemporal hedging demands for a benchmark Gaussian-SJC di¤usion with DCC (Case B) vs. a CCC
speci�cation with parameter calibrated to match the mean conditional correlation of the corresponding
DCC model. Varying average values of conditional correlation through the parameter o. HARA investor
with b = �0:2 and varying degrees of relative risk aversion, and investment horizon of 1, 3 and 5 years.
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investor would lose anything if she disregards the dynamics of conditional correlation, modeled using

observable factors, given the fact that tail dependence in the unconditional distribution has already been

accounted for. Thus, we choose as a benchmark process the Gaussian-SJC di¤usion with DCC according

to Case B. Then we alternate between setting all conditional correlation parameters to zero except for

0 (CCC alternative), letting only 3 be zero (conditional correlation being driven by the VIX factor),

or letting 1 be nonzero (conditional correlation being driven by the macroeconomic factor). In those

alternative models the 0 parameter is calibrated in order to re�ect the same average correlation as the

DCC benchmark over the estimation horizon. We consider again a HARA investor with varying degrees

of relative risk aversion and a parameter b in the utility function equal to �0:2, 0 or 0:2. The case of
b = 0 corresponds to a CRRA investor, while if b < 0 relative risk aversion is decreasing and convex in

wealth, in which case the investor is intolerant towards wealth falling below a certain subsistence level

�b, and alternatively, if b > 0, then relative risk aversion is increasing and concave. Table 5.6 summarizes
the results on the certainty equivalent cost in each case, calculated in cents per dollar.

The cost of disregarding the dynamics of conditional correlation is comparable to the cost of disre-

garding the presence of the macroeconomic factor driving its dynamics, so we may conclude that the

CFNAI factor is the major player in the present setting in terms of utility loss. The cost decreases with

rising levels of the risk aversion coe¢ cient, and is highest for a HARA investor with relative risk aversion

that is increasing and concave in wealth. However, the impact of disregarding the VIX factor is almost

insigni�cant.

We next address the alternative problem of �nding the utility cost for an investor who disregards the

fact that extreme realizations of the assets in her portfolio may be dependent, as modeled through the

stationary distribution of X. Results are summarized in Table 5.7, where we take as a benchmark process

either the DCC Gaussian-SJC di¤usion (left column), or the CCC one (right column) against the two

Elliptic counterparts. In order to isolate only the impact of the tail dependence through the stationary

distribution, conditional correlation parameters for all processes are taken from the Gaussian-SJC type

with DCC (Case B).

The main conclusion that we can draw from comparing the wealth loss across the alternative spec-

i�cations is that the investor loses more from disregarding tail dependence if she has not taken into

account the dynamics in conditional correlation. It is an anticipated result, as both ways of modeling

dependence through the dynamics of the conditional correlation or through the stationary distribution

aim at reproducing the same stylized fact of increased dependence in down markets. Thus if at least one

of them is taken into account when making portfolio decisions, the impact of disregarding the other in

terms of wealth loss will be subdued.

As we saw in the above simulations exercise, the portfolio composition changes considerably for varying

levels of the mean conditional correlation, modeled through the parameter 0. In order to determine
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Table 5.6: Certainty equivalent cost of ignoring dynamic conditional correlation, modeled with observable
factors
The benchmark process is a Gaussian-SJC di¤usion with DCC according to Case B. All of the alternative processes
have a Gaussian-SJC stationary distribution, but their conditional correlation speci�cations vary from CCC to DCC
with no VIX (1 = 0), and DCC with no CFNAI factor (2 = 0).All parameters of the stationary distribution
are from the Gaussian-SJC type with DCC (Case B), the conditional correlation parameters of the alternative
processes were calibrated in order to re�ect the same mean conditional correlation as the benchmark process. The
Certainty Equivalent Cost is given in cents per dollar. Investment horizon is 5 years.

Panel A. The cost of disregarding DCC
(CCC alternative)

HARA, b = �0:2 CRRA HARA, b = 0:2

 = 2 2.3054 2.4039 2.5024

 = 4 1.8987 1.9369 1.9751

 = 6 1.7983 1.8216 1.8449

 = 8 1.7538 1.7706 1.7873

 = 10 1.7289 1.7419 1.7549

Panel B. The cost of disregarding the CFNAI factor
(DCC with 2 = 0 alternative)

HARA, b = �0:2 CRRA HARA, b = 0:2

 = 2 2.4273 2.5533 2.6792

 = 4 1.9309 1.9832 2.0355

 = 6 1.7988 1.8315 1.8643

 = 8 1.7384 1.7622 1.7860

 = 10 1.7039 1.7226 1.7413

Panel C. The cost of disregarding the VIX factor
(DCC with 1 = 0 alternative)

HARA, b = �0:2 CRRA HARA, b = 0:2

 = 2 0.0000 0.0000 0.0000

 = 4 0.0000 0.0000 0.0000

 = 6 0.0000 0.0000 0.0000

 = 8 0.0000 0.0000 0.0000

 = 10 0.0000 0.0000 0.0000
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Table 5.7: Certainty equivalent cost of ignoring tail dependence
The benchmark process is a Gaussian-SJC di¤usion with DCC according to Case B. The alternative processes have
either a DCC speci�cation (left �gures) or a CCC speci�cation (right column), and their unconditional distribution
varies from Gaussian to Student�s t. All parameters of the conditional correlation speci�cation are from the
Gaussian-SJC type with DCC (Case B) (left column) and from Gaussian-SJC type with CCC (right column). The
Certainty Equivalent Cost is given in cents per dollar. Investment horizon is 5 years.

Panel A. The cost of disregarding tail dependence

(Gaussian alternative, DCC)

HARA CRRA HARA

b=-0.2 b=0 b=0.2

 = 2 1.3153 1.5158 1.7162

 = 4 0.6384 0.7438 0.8492

 = 6 0.3912 0.4619 0.5326

 = 8 0.2658 0.3189 0.3719

 = 10 0.1902 0.2327 0.2751

(Gaussian alternative, CCC)

HARA CRRA HARA

b=-0.2 b=0 b=0.2

3.2467 3.8692 4.4916

1.1366 1.4361 1.7357

0.4602 0.6562 0.8523

0.1301 0.2757 0.4212

0.0000 0.0507 0.1664

Panel B. The cost of disregarding asymmetric tail dependence

(Student�s t alternative, DCC)

HARA CRRA HARA

b=-0.2 b=0 b=0.2

 = 2 0.1886 0.1696 0.1506

 = 4 0.4271 0.4416 0.4561

 = 6 0.4259 0.4403 0.4546

 = 8 0.4121 0.4245 0.4369

 = 10 0.3999 0.4106 0.4213

(Student�s t alternative, CCC)

HARA CRRA HARA

b=-0.2 b=0 b=0.2

0.5891 0.6486 0.7081

0.4755 0.5176 0.5597

0.3960 0.4260 0.4559

0.3509 0.3740 0.3970

0.3224 0.3411 0.3598
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the economic signi�cance of this �nding, we determine the certainty equivalent cost for disregarding

correlation dynamics for any of the three cases that we considered at the end of the previous section.

Results are summarized on Panel A of Figure 5.8.

The certainty equivalent cost is lower for the lowest levels of correlation considered (0 = 1 or average

correlation of 0.45 over the estimation horizon) and increases signi�cantly for higher correlation levels. It

also increases with the investment horizon. Results are consistent over the utility speci�cations considered

(CRRA and 2 types of HARA utility).

For the above cases we have considered the Case B DCC speci�cation as a benchmark, that is the case

when dynamic conditional correlation is driven by both the observable factors F and the state variables

X. In order to gauge the economic importance of any of the other DCC speci�cations, we calculate the

wealth loss of an investor who believes that conditional correlation is either driven exclusively by observed

factors (Case C) or they do not enter correlation dynamics (Case A), instead of the benchmark Case B.

Results for an investment horizon of 5 years are summarized on Panel B on Figure 5.8. We �nd that the

di¤erence in terms of wealth loss between cases B and C is negligible, that is the investor does not lose

much by just considering the observed factors for the dynamics of conditional correlation. The loss for an

investor who totally disregards observed factors is higher, especially for low levels of risk aversion. But

for extremely risk averse investors there is virtually no cost for considering any of the alternative DCC

models instead of the benchmark one.

Being consistent with the simulations experiment, we consider also the economic loss for disregard-

ing tail dependence, given that the dynamics of conditional correlation have been accounted for. We

compute it by comparing the benchmark Gaussian-SJC di¤usion with DCC according to Case B with a

corresponding Gaussian di¤usion with the same correlation dynamics. We do so for varying weights ! of

the mixture copula CGa�SJC = !CSJC + (1� !)CGa. Parameters are taken from the benchmark model

over the whole estimation horizon, and the Gaussian correlation parameter is set so that the Kendall�s tau

implied by the Gaussian copula is equal to the one implied by the SJC copula, so varying the composition

of the Gaussian-SJC copula will not change the Kendall�s tau, but only the relative importance of tail

dependence. Results are presented on Panel C on Figure 5.8. Even if dynamic conditional correlation

has already been accounted for, there are substantial economic costs for disregarding tail dependence,

reaching over ten cents per dollar for a 5-year investment horizon. They increase with increasing the

weight of the SJC copula in the benchmark model (and hence the importance of tail dependence in the

data generating process), and are higher for investors with lower levels of risk aversion.

6 Conclusion

In this chapter we address the issue of determining the impact of dynamic correlation modeled through

observable factors on the portfolio hedging demands. The solution methodology that we apply allows us
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Figure 5.8: Certainty Equivalent Cost
Panel. A. Certainty Equivalent Cost of ignoring dynamic conditional correlation, modeled with observable
factors for varying mean levels of conditional correlation
The certainty equivalent cost of disregarding dynamic conditional correlation for a benchmark Gaussian-SJC dif-
fusion with DCC (Case B) vs. a Gaussian di¤usion with CCC with parameter calibrated to match the mean
conditional correlation of the corresponding DCC model. Varying average values of conditional correlation through
the parameter o. HARA investor with b = �0:2 and varying degrees of relative risk aversion, and investment
horizon of 1, 3 and 5 years.
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Table 5.8. Panel. B. Certainty Equivalent Cost of using alternative DCC speci�cations
The certainty equivalent cost of modeling DCC following Case A or C vs. the benchmark case B for a Gaussian-SJC
di¤usion. 5-year investment horizon. Parameters for cases A and C are calibrated so as to re�ect the same average
conditional correlation over the estimation period as that implied by the benchmark case.
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to disentangle the intertemporal demands due to the need to hedge against stochastic changes in those

factors from the rest of the market price of risk hedging terms. We also account for tail dependence that

manifests itself through increased co-movements between risky stocks during sharp market downfalls. We

�nd that demands for correlation hedging and intertemporal demands due to high tail dependence have

a distinct impact on the optimal portfolio behavior both in terms of optimal portfolio composition and

of loss of wealth criterion.

There are a number of ways in which the present study could be extended. First, we could test

the sensitivity of the results to an increased number of assets in the portfolio, as we would expect

that hedging demands should increase as a result of the higher level of uncertainty linked to both the

conditional correlation structure and the dependence through the stationary distribution. Second, it

would be of interest to extend the dynamic treatment to the dependence structure modeled by the

copula, assumed to be �xed in the present setup, in the spirit of dynamic copula models as in Patton

(2004) . By letting observable factors a¤ect the evolution of tail dependence we may �nd similar hedging

demands as those implied by dynamic correlation. As well, we have seen that the dependence structure

changes dramatically from relatively calm periods of low volatility and rising economic conditions, when

it is not far from Gaussian to highly volatile periods marked with recessionary states, when dependence

exhibits asymmetries and high tail coe¢ cients. This could motivate us to consider a speci�cation where

the copula composition changes from normal to extreme value dependent one through varying weights of

the copula.

Finally, for the sake of simplicity, we have assumed so far that the bond and stock dynamics are

independent from each other. As there is compelling evidence of co-movement between bond and stock

returns that could be linked to common exposure to macroeconomic factors (e.g. Li 2002), it would be

of interest to incorporate this �nding in the present portfolio solution setup.



Table 5.8. Panel. C. Certainty Equivalent Cost of disregarding tail dependence
The certainty equivalent cost of disregarding tail dependence by considering a Gaussian DCC di¤usion instead of
the benchmark data generating process of a Gaussian-SJC DCC di¤usion for varying levels of the !SJC parameter
determining the weight of the SJC copula in the mixture distribution. DCC speci�cation follows Case B. Parameters
are taken from estimating the benchmark case over the whole estimation horizon, while the correlation parameter
of the Gaussian copula is calibrated so that to re�ect the same Kendall�s tau as the one implied by the SJC copula
with the estimated parameters.
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A Copula Functions

The following d-dimensional copula functions are used in the chapter.

� Gaussian copula

CGa (u1; u2; :::; ud j RGa)

=

Z ��1(u1)

�1
:::

Z ��1(ud)

�1

1

2� jRGaj1=2
exp

�
�1
2
x|R�1=2Ga x

�
dx1:::dxd

where RGa denotes the correlation matrix, and ��1 (ui) is the inverse of the univariate standard
normal CDF.

� Student�s t copula

Ct (u1; u2; :::; ud j Rt; �) (A.1)

=

Z t�1� (u1)

�1
:::

Z t�1� (ud)

�1

�
�
�+d
2

�
jRtj1=2

�
�
�
2

�
(��)d=2

�
1 +

1

�
x|R�1t x

�� �+d
2

dx1:::dxd

where Rt denotes the correlation matrix, � is the degrees of freedom parameter, and t�1 (ui) is the
inverse CDF of the univariate Student�s t distribution with � degrees of freedom.

� Symmetrized Joe-Clayton copula

This copula function was introduced by Patton (2004) and is based on the bivariate Joe-Clayton
copula, that is a two-parameter copula function with parameters �L 2 (0; 1) and �U 2 (0; 1) that are a
measure of the lower and upper tail dependence. The Joe-Clayton copula has the following form:

CJC (u1; u2 j �L; �U )

= 1�
�
1�

h
(1� (1� u1)�)� + (1� (1� u2)�)� � 1

i� 1


� 1
�

where � =
1

log2 (2� �U )

 = � 1

log2 (2� �L)

The symmetrized version of the copula, designed to render it completely symmetric for equal values
of the lower and upper tail dependence parameters has the following form:

CSJC (u1; u2 j �L; �U )

=
1

2

�
CJC (u1; u2 j �L; �U ) + CJC (1� u1; 1� u2 j �U ; �L) + u1 + u2 � 1

�
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B Malliavin Derivatives of the State Variables

Recall that the Malliavin derivatives of the state variables Y �
�
X1; X2; F

V ; FM ; Y r
�
can be represented

as the solutions to a linear stochastic di¤erential equation8:

DtYs = �
Y (t; Yt) exp

�Z s

t
dLv

�
where �Y (t; Yt) is the 5� 5 matrix of di¤usion terms of the state variables, and dLt is de�ned by:

dLt �

0@@2�Y (t; Yt)� 1
2

5X
j=1

@2�
Y
�j (t; Yt) @�

Y
�j (t; Yt)

|

1A dt+ 5X
j=1

@2�
Y
�j (t; Yt) dWjt

where @2�Y (t; Yt) and @2�Yj (t; Yt) denote the derivatives of �
Y (t; Yt) and �Y�j (t; Yt) with respect to Yt,

and �Y�j (t; Yt) denotes the j
th column of the matrix �Y (t; Yt). The particular forms of the drift �Y (t; Yt)

and the di¤usion term �Y (t; Yt) of the state variables are given by:

�Y (t; Y ) =

0BBBBB@
�X1
�
t;Xt; F

V ; FM
�

�X2
�
t;Xt; F

V ; FM
�

�F
V �
t; F V

�
�F

M �
t; FM

�
�Y

r
(t; Y r)

1CCCCCA
where �Xi

�
t;Xt; F

V ; FM
�
; i = 1; 2 are given by (3.13), �F

V �
t; F V

�
= �V

�
�V � F V

�
, �F

M �
t; FM

�
=

�M
�
�M � FM

�
, �Y

r
(t; Y r) = �r (�

r � Y rt ).

�Y (t; Y ) =

0BBBBB@
�X11 (t;X) �X12 (t;X) 0
�X21 (t;X) �X22 (t;X) 0

�F
V �
t; F V

�
�F

V �
t; F V

�
0

�F
M �
t; FM

�
�F

M �
t; FM

�
0

0 0 �Y
r
(t; Y r)

1CCCCCA
where �X (t;X) is given by (??), �F

V �
t; F V

�
= �V

p
F V , �F

M �
t; FM

�
= �M , and �Y

r
(t; Y r) =

�r
p
Y rt .
Given the chosen speci�cations for the state variables, we can solve separately for the Malliavin

derivatives of state variable driving the short rate, as well as for the Malliavin derivatives of the two
factors. The processes that we have assumed for the observable factors (F V for the VIX and FM for
CFNAI), as well as for the state variable Y r, allow for either closed form solutions for the Malliavin
derivatives (in the case of a Vasicek process) or for signi�cant variance reduction in their simulation
following the Doss transformation9 that eliminates the stochastic term in the Malliavin derivative (for a
CIR process).

In the Vasicek case, the Malliavin derivative of FM simpli�es signi�cantly to:

Di;tF
M
s = �M exp

�
��M (s� t)

	
; i = 1; 2

8See Theorem 1 in Detemple et al. (2003)
9See Detemple et al. (2003)
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For the other two state variables, Y r and F V , we have assumed a CIR process, that can be reduced to
have constant di¤usion term through a suitable change of variable technique, which then eliminates the
stochastic terms for the simulation of the corresponding Malliavin derivatives. For a univariate di¤usion,
this variance stabilizing transformation is described in detail in Proposition 2 of Detemple et al. (2003)
and we reproduce it here for completeness.

Consider a state variable Y satisfying a stochastic di¤erential equation

dYt = � (t; Yt) dt+ � (t; Yt) dWt

We can replace it with a new state variable Zt = F (t; Yt) where the function F : [0; T ]� R! R is such
that @2F = 1

�Y
. Then for a continuously di¤erentiable drift �, twice continuously di¤erentiable di¤usion

term �, that also satisfy the growth conditions that � (t; 0) and � (t; 0) are bounded for all t 2 [0; T ], then
we have for t � s:

DtYs = � (t; Yt)DtZs

where DtZs = exp

�Z s

t
@2m (v; Zv) dv

�
m (t; Z) �

�
�

�
� 1
2
@2� + @1F

�
(t; Y )
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