
Longevity Risk Pricing

Jiajia Cui

Twente University, APG and Netspar

Jan 20, 2009

Longevity trend

- Longevity trend is difficult to predict.
- The asserted ceilings were surpassed repeatedly.

Longevity risk

Definition: Unexpected improvements in life expectancies

Severity: Even small longevity risk may lead to severe solvency issues for life insurers & pension funds

Challenges for annuity providers:

- Longevity risk is a systematic risk (macro risk)
 - Non-diversifiable (by pooling)
 - The capacity of reinsurance is limited (OECD(2005))
- Longevity linked claims cannot be replicated.

(i.e. replicating portfolio does not exist (yet))

EIB/BNP survivor bond

- EIB/BNP longevity bond
 - First announced in Nov 2004;
 - A 'coupon-based' bond;
 - Longevity risk premium of 20 basis points
 - Withdrawn for redesign in late 2005;
 - Obstacles: Pricing, design, institutional issues (Blake, Cairns and Dowd (2006))
- No clear view on the 'right' price
 - Incomplete market, unhedgeable risk

➢ Goal: Quantify longevity risk premium

Potential market for Longevity linked securities

- Benefits to the buy side
 - Ideal protection from longevity risk
 - Avoid solvency problem at low cost
- Benefits to the sell side
 - Diversified portfolio (uncorrelated financial risks and insurance risks)
 - Earn longevity risk premium
- Pricing is difficult in the incomplete markets
 - Longevity risk is unhedgeable risk (claims can not be replicated)
 - Non-arbitrage pricing is not applicable

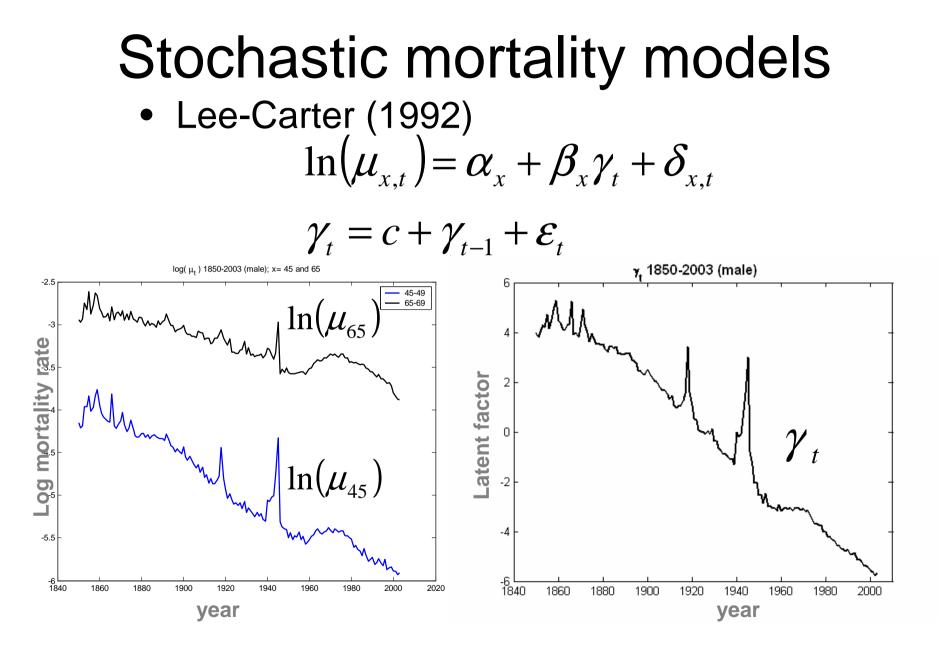
Methods proposed in the literatures

- CAPM (Friedberg and Webb (2006))
 - Longevity risk premium (LRP)
 = beta * market risk premium
 - 75 bp (= 0.15 * 5%), Confidence Interval. [-75, 230] bp
 - Drawback: large error of estimated risk premium
- CCAPM (Friedberg and Webb (2006))
 - LRP is proportional to the covariance of its return with per capita consumption
 - 2 bp
 - Drawback: inconsistent with market risk primia
- Sharpe Ratio (Milevsky, Promislow and Young (2006))
 - Only a proposal $SR^{Ins} = \frac{N(1+L) E(W_N)}{\sigma(W_N)}$

Desirable pricing methodology Should be:

- Applicable for pricing unhedgeable risks under incomplete market
- Market-based method (consistent with market risk premia)
- Capable to handle real-world complications: e.g. natural hedging and basis risk

Therefore, utility-based pricing method


Overview

- Introduction & Motivations
- Three building blocks
 - Longevity linked securities
 - Stochastic mortality modeling
 - Equivalent Utility Pricing principle
- Pricing longevity bonds & derivatives
 - Bonds, swaps, floors, ...
- Impacts of natural hedging and basis risk
- Conclusion

Longevity linked securities

- Longevity-linked zero coupon bonds
- Coupon based longevity bonds
- Deferred starting longevity bonds
- Longevity Swaps
- Floors (caps)

Blake, Cairns and Dowd (2006), 'Living with Mortality: Longevity bonds and other mortality-linked securities', British Actuarial Journal, Vol. 12, No. 1, 2006, pp. 153-197

Equivalent Utility Pricing

- Compensate the longevity bond seller (e.g. EIB/BNP), such that, he is indifferent between bearing risk after compensation and not bearing risk.
 - Seller's minimum price
- The longevity bond buyer (e.g. annuity providers) pays, such that, she is indifferent between bearing risk and not bearing risk after the payment.
 - Buyer's maximum price
- Negotiation range: [min, max]

Seller's minimum price

• Without longevity risk

$$V_{0} = \max_{\{D_{t}, x_{t}\}} E\left[\int_{0}^{T} \beta^{-t} u(D_{t}) dt + \beta^{-T} u(W_{T})\right]$$

s.t.
$$E\left[\int_{0}^{T} M_{t} D_{t} dt + M_{T} W_{T}\right] = W_{0}$$

• With longevity risk

$$V_0^{\pi} = \max_{\{D_{t,x_t}\}} E\left[\int_0^T \beta^{-t} u \left(D_t^{\pi} + E(S_t) - S_t\right) dt + \beta^{-T} u \left(W_T^{\pi}\right)\right]$$

s.t. $E\left[\int_0^T M_t D_t^{\pi} dt + M_T W_T^{\pi}\right] = W_0 + \pi$

 $V_0^{\ \pi} = V_0$

• Indifferent

Buyer's maximum price

• Without longevity risk

$$V_{t}^{\pi} = \max_{\{D_{t}^{\pi}, x_{t}\}} E\left[\int_{0}^{T} \beta^{-t} u(D_{t}^{\pi}) dt + \beta^{-T} u(W_{T}^{\pi})\right]$$

s.t.
$$E\left[\int_{0}^{T} M_{t} D_{t}^{\pi} dt + M_{T} W_{T}^{\pi}\right] = W_{0} - \pi$$

• With longevity risk

lacksquare

$$V_{0} = \max_{\{D_{t}, x_{t}\}} E\left[\int_{0}^{T} \beta^{-t} u(D_{t} + E(S_{t}) - S_{t}) dt + \beta^{-T} u(W_{T})\right]$$

s.t. $E\left[\int_{0}^{T} M_{t} D_{t} dt + M_{T} W_{T}\right] = W_{0}$
Indifferent $V_{0}^{\pi} = V_{0}$

Utility function assumption

- Negative exponential utility with wealthdependent risk aversion
 - Risk aversion decreases as wealth increases
 - -b = 0, ..., 1 (from CARA to CRRA)

$$u(X) = -\frac{1}{\alpha(W_0)} \exp(-\alpha(W_0)X)$$

where $\alpha(W_0) = \overline{\alpha}(W_0)^{-b}$

Results

• Risk loading (\$) π

$$\pi = \frac{1}{\alpha} E \left[\int_0^T e^{-rt} \ln G_t dt \right]$$

where
$$G \equiv E \left[\exp(-\alpha (E[S_t] - S_t)) \right]$$

• Risk premium (bp) R_p

$$\int_{0}^{T} e^{-rt} E[S_{t}] dt + \pi = \int_{0}^{T} e^{-(r+R_{p})t} E[S_{t}] dt$$

Overview

- Introduction & Motivations
- Three building blocks
 - Longevity linked securities
 - Stochastic mortality modeling
 - Equivalent Utility Pricing principle
- Pricing longevity bonds & derivatives
 - Bonds, swaps, floors, ...
- Impacts of natural hedging and basis risk
- Conclusion

Longevity Bond: Risk premia in basis points

maturity	equity capital = 10000				equity capital = 100			
(year)	b=1	b = 1/4	b=1/8	b=0	b=1	b=1/4	b=1/8	b=0
5	0	0	0	- 1	0	0	-1	- 1
10	0	0	- 1	-3	0	- 1	-2	-3
15	0	- 1	-2	-7	0	-2	-4	-7
20	0	- 1	-4	-11	0	- 4	-7	-11
25	0	-2	-5	-15	0	-5	-8	-15
30	0	-2	-5	-16	0	-5	-9	-16
35	0	-2	-5	-16	0	-5	-9	-16

- Financially stronger seller requires lower risk premium
- Smaller amount of principal requires lower risk premium
- Implication: More participants. Every one issues moderate amount of longevity bonds, which are linked to the same survivor index.

Longevity Bond: When to deal in

Sell side

Buy side

 $\overline{\alpha} = 3$

 $\overline{\alpha} = 5$

Minimum Ask price Maximum Bid price

equity		w0 = 10000				eq	uity cap	oital = 1	00
maturity	b=1	b=1/4	b=1/8	b=0		b=1	b=1/4	b=1/8	b=0
5	0	0	0	-1		0	0	-1	-2
10	0	0	-1	-3		0	-2	-3	-5
15	0	-1	-2	-7		0	-4	-7	-11
20	0	-1	-4	-11		0	-6	-11	-16
25	0	-2	-5			0		-14	-21
30	0	-2	-0	-16		0	-8	-15	-23
35	0	-2	-5	-16		0	-8	-15	-23

- A simple table to facilitate deal making

Other Securities: Deferred

• Deferred starting longevity bonds

# year	equ	equity capital = 10000				equity capital = 100				
defer	b=1	b=1/4	b=1/8	b=0	b=1	b=1/4	b=1/8	b=0		
0	0	-2	-5	-16	0	-5	-9	-16		
5	0	-2	-6	-17	0	-6	-10	-17		
10	0	-2	-7	-21	0	-7	-12	-21		
15	0	- 3	-9	-26	0	-9	-15	-26		
20	0	- 3	-10	-30	0	-10	-18	-30		

- Skip inefficient coupons
- Higher risk premium than longevity bond
- Different payoff, different risk premium in incomplete market

Other Securities: Swaps, floors & Caps

• Longevity swaps, floors & Caps

	equity	capital =	10000	equity capital = 100			
maturity	swap	floor	cap	swap	floor	cap	
5	0	-3	3	-1	-3	3	
10	-1	-5	4	-2	-5	4	
15	-2	-7	5	-4	-8	5	
20	-4	-9	7	-7	-11	6	
25	-5	-11	8	-8	-14	7	
30	-5	-12	8	-9	-15	8	
35	-5	-12	9	-9	-15	8	

- More efficient way of using capital
- Different payoff leads to different risk premium in incomplete market

The impact of natural hedging

- Term insurance is a natural hedge for annuity
- Suppose a life insurer has both annuity and term insurance business units. Is EIB/BNP survivor bond a good deal for the life insurer?
- Buyer's view

maturity	equ	equity capital = 10000				equity capital = 100			
(year)	b=1	b=1/4	b=1/8	b=0	b=1	b=1/4	b=1/8	b=0	
5	0	0	0	0	0	0	0	0	
10	0	0	0	- 1	0	0	0	- 1	
15	0	0	-1	-2	0	-1	- 1	-2	
20	0	0	- 1	-5	0	- 1	-3	-5	
25	0	-1	-2	-6	0	-2	-3	-6	
30	0	- 1	-2	-7	0	-2	-4	-7	

Conclusion: Natural hedging may significantly reduce the risk premium

The impact of basis risk

- Basis risk:
 - a discrepancy between the reference population and the annuitant population
- EIB/BNP survivor bond is linked British survivor index.
 - Is it a good deal for Dutch pension fund?
- Buyer's view
 - Dutch pension fund

Dutch buyer's price to EIB/BNP bonds

• Without basis risk (if bond links to Dutch mortality)

	equi	ty capi	tal = 1	0000	equity capital = 100				
maturity	b=1	b=1/4	b=1/8	b=0	b=1	b=1/4	b=1/8	b=0	
5	0	0	- 1	-2	0	- 1	-1	-2	
10	0	- 1	-2	-7	0	-2	-4	-7	
15	0	-2	-5	-15	0	-5	-9	-15	
20	0	-3	-8	-23	0	-8	-14	-23	
25	0	-3	-10	-28	0	-10	-17	-28	
30	0	-3	-10	-30	0	-10	-18	-30	

• With basis risk (if bond links to British mortality)

equity	equity capital = 10000				equity capital = 100			
maturity	b=1	b=1/4	b=1/8	b=0	b=1	b=1/4	b=1/8	b=0
5	0	0	0	-1	0	0	0	-1
10	0	0	-1	-2	0	-1	-1	-2
15	0	-1	-2	-6	0	-2	-4	-6
20	0	-1	-4	-11	0	-4	-7	-11
25	0	-2	-6	-16	0	-6	-10	-16
30	0	-2	-7	-18	0	-7	-12	-18

• Conclusion: Basis risk matters.

Conclusions (1)

- Longevity risk imposes severe solvency issue.
- Longevity linked securities offer a solution
- Advantages of our pricing method:
 - Pricing in incomplete market
 - Different payoff structures require different risk premia (bonds, deferred, swaps, floors, caps)
 - Consistent with observed equity premium
 - Able to tell when to deal in
 - Narrow price range
 - Capable to handle realities: natural hedging and basis risk. These matter!

Conclusion (2)

Our results also imply:

- Natural hedging and basis risk may have significant impacts on pricing.
- Financially stronger sellers require lower risk premiums
- Smaller amount of principal requires lower risk premium
- Distributing instead of accumulating. Market calls for more sellers. Every one issues a moderate amount of longevity bonds linked to same survivor index.