Lecture notes on: Dynamic Asset Allocation

Jerome Detemple
(based on notes with Marcel Rindisbacher)

January 16, 2009

PART 1: Consumption-portfolio choice

- Introduction to standard consumption-portfolio choice problem
- Merton (1971):
- Diffusion models
- Dynamic programming
- Cox \& Huang (1989, 1991), Karatzas, Lehoczky \& Shreve (1987):
- Ito processes
- Probabilistic methods

- Outline

- Dynamic choice problem
- Basic valuation principles
- Equivalent static choice problem
- Optimal policies
- Examples

1.1 Consumption-portfolio choice: the diffusion model

- Underlying structure
- Finite horizon $[0, T]$
- Brownian motion W, d-dimensional
- Information: filtration generated by $W: \mathcal{F}_{(\cdot)}=\left\{\mathcal{F}_{t}: t \in[0, T]\right\}$
- Probability space (Ω, \mathcal{F}, P) - P is physical measure
- Financial market
- Risky assets: d stocks. Price of stock $i, i=1, \ldots, d$, satisfies

$$
\begin{equation*}
d S_{i t}=S_{i t}\left[\left(\mu_{i}\left(Y_{t}, t\right)-\delta_{i}\left(Y_{t}, t\right)\right) d t+\sigma_{i}\left(Y_{t}, t\right) d W_{t}\right] \tag{1}
\end{equation*}
$$

- μ_{i} expected return, δ_{i} dividend yield, σ_{i} volatility coefficients $(1 \times d)$
- depend on $k \times 1$ vector of state variables $Y=\left(Y_{1}, \ldots, Y_{k}\right)^{\prime}$
- Satisfy integrability conditions
- Matrix σ assumed invertible at all times (i.e. all risks are hedgeable)
- Riskless asset
- Money market account: pays interest at rate $r\left(Y_{t}, t\right)$
$-r$ is positive and depends on state variables
- Satisfies integrability condition
- State variables: $Y=\left(Y_{1}, \ldots, Y_{k}\right)^{\prime}$
- Any variable affecting return components
- Interest rate, market prices of risk, dividend-price ratio, firm size, sales
- Evolution

$$
\begin{equation*}
d Y_{t}=\mu^{Y}\left(Y_{t}, t\right) d t+\sigma^{Y}\left(Y_{t}, t\right) d W_{t} \tag{2}
\end{equation*}
$$

- $\mu^{Y}\left(Y_{t}, t\right)$ is $k \times 1$ vector of drift coeff., $\sigma^{Y}\left(Y_{t}, t\right)$ is $k \times d$ volatility matrix
- Lipschitz+Growth conditions: existence of unique strong solution
- Consumption, portfolios and wealth
- Investor consumes and invests in the different assets available
- Wealth X. Consumption c.
- Portfolio π : $d \times 1$ vector of wealth fractions in stocks
- Fraction in riskless asset is $1-\pi_{t}^{\prime} 1$
- Evolution of wealth:

$$
\begin{equation*}
d X_{t}=\left(X_{t} r_{t}-c_{t}\right) d t+X_{t} \pi_{t}^{\prime}\left[\left(\mu_{t}-r_{t} \mathbf{1}\right) d t+\sigma_{t} d W_{t}\right] \tag{3}
\end{equation*}
$$

- Initial condition $X_{0}=x$: amount of capital at initial date
- Assume integrability conditions

- Preferences

- Time-separable von Neumann-Morgenstern representation
- Consumption-bequest plan $\left(c, X_{T}\right)$ ranked according to

$$
\begin{equation*}
\mathbf{E}\left[\int_{0}^{T} u\left(c_{v}, v\right) d v+U\left(X_{T}, T\right)\right] \tag{4}
\end{equation*}
$$

- Instantaneous utility function $u: R_{+} \times[0, T] \rightarrow R$
- Bequest (terminal utility) function $U: R_{+} \rightarrow R$
- Strictly increasing, strictly concave, differentiable over domains
- Various behavioral assumptions can be embedded in this setting:
* Here assume Inada condition at 0 and ∞
* $\lim _{c \rightarrow 0} u^{\prime}(c, t)=\lim _{X \rightarrow 0} U^{\prime}(X, T)=\infty$
* $\lim _{c \rightarrow \infty} u^{\prime}(c, t)=\lim _{X \rightarrow \infty} U^{\prime}(X, T)=0$ hold for all $t \in[0, T]$
- Example: constant relative risk aversion (CRRA)

$$
u(c, t)=a_{t}\left\{\begin{array}{ccc}
\frac{1}{1-R} c^{1-R} & \text { for } R \neq 1, R>0 & \text { Power utility } \\
\log (c) & \text { for } R=1 & \text { Log utility }
\end{array}\right.
$$

- a_{t} is subjective discount factor; assumed deterministic
- Marginal utility

$$
u^{\prime}(c, t)=a_{t}\left\{\begin{array}{ccc}
c^{-R} & \text { for } R \neq 1, R>0 & \text { Power utility } \\
c^{-1} & \text { for } R=1 & \text { Log utility }
\end{array}\right.
$$

- Relative risk aversion

$$
R(c)=-\frac{u^{\prime \prime}(c, t) c}{u^{\prime}(c, t)}=\left\{\begin{array}{ccc}
R & \text { for } R \neq 1, R>0 & \text { Power utility } \\
1 & \text { for } R=1 & \text { Log utility }
\end{array}\right.
$$

- Under assumptions above inverse marginal utility functions exist and unique:
$-I^{u}: R_{+} \times[0, T] \rightarrow R_{+}$solves $u^{\prime}\left(I^{u}(y, t), t\right)=y$
- $I^{U}: R_{+} \rightarrow R_{+}$solves $U^{\prime}\left(I^{U}(y, T), T\right)=y$
- Strictly decreasing
$-\lim _{y \rightarrow 0} I^{u}(y, t)=\lim _{y \rightarrow 0} I^{U}(y, T)=\infty$ and $\lim _{y \rightarrow \infty} I^{u}(y, t)=\lim _{y \rightarrow \infty} I^{U}(y, T)=0$

- Example: CRRA

- Inverse marginal utility

$$
I(y, t)=\left\{\begin{array}{ccc}
\left(\frac{y}{a_{t}}\right)^{-1 / R} & \text { for } R \neq 1, R>0 & \text { Power utility } \\
\left(\frac{y}{a_{t}}\right)^{-1} & \text { for } R=1 & \text { Log utility }
\end{array}\right.
$$

- Dynamic consumption-portfolio choice problem

$$
\begin{gather*}
\max _{\left(c, \pi, X_{T}\right)} E\left[\int_{0}^{T} u\left(c_{v}, v\right) d v+U\left(X_{T}, T\right)\right] \tag{5}\\
\text { s.t. } \quad\left\{\begin{array}{l}
d X_{t}=\left(r_{t} X_{t}-c_{t}\right) d t+X_{t} \pi_{t}^{\prime}\left[\left(\mu_{t}-r_{t} \mathbf{1}\right) d t+\sigma_{t} d W_{t}\right] ; X_{0}=x \\
c_{t} \geq 0, t \in[0, T], \quad \text { and } \quad X_{T} \geq 0 \\
X_{t} \geq 0, t \in[0, T]
\end{array}\right.
\end{gather*}
$$

- First eq. describes evolution of wealth given policy (c, π)
- Second captures physical restriction that consumption cannot be negative
- Last constraint is no-bankruptcy condition: wealth cannot be negative
- Optimization over consumption, terminal wealth (bequest) and portfolios

1.2 Valuation principles

- State prices
- Market price of risk:
- $\theta_{t} \equiv \sigma_{t}^{-1}\left(\mu_{t}-r_{t} 1\right)$ where $1=(1, \ldots, 1)^{\prime}$ is d-dimensional vector
- Premia per unit risk (price of Brownian motions) - Sharpe ratios
- State price density (SPD)

$$
\xi_{v} \equiv \exp \left(-\int_{0}^{v}\left(r_{s}+\frac{1}{2} \theta_{s}^{\prime} \theta_{s}\right) d s-\int_{0}^{v} \theta_{s}^{\prime} d W_{s}\right), v \in[0, T]
$$

- Stochastic discount factor for valuation at 0 of cash flows received at v
- Marginal cost of consumption at time v
- Conditional state price density (CSPD)

$$
\xi_{t, v} \equiv \exp \left(-\int_{t}^{v}\left(r_{s}+\frac{1}{2} \theta_{s}^{\prime} \theta_{s}\right) d s-\int_{t}^{v} \theta_{s}^{\prime} d W_{s}\right)=\frac{\xi_{v}}{\xi_{t}}, v \in[t, T]
$$

- Stochastic discount factor for valuation at t of cash flows received at v
- Valuation
- Stocks

$$
S_{t}=E_{t}\left[\int_{t}^{T} \xi_{t, v} D_{v} d v+\xi_{t, T} S_{T}\right]
$$

- Stock price is present value of future dividends
- Dividends are discounted using risk-adjusted rates (implicit in θ)
- Contingent claim with payoff (f, F)

$$
V_{t}=E_{t}\left[\int_{t}^{T} \xi_{t, s} f_{v} d v+\xi_{t, T} F_{T}\right]
$$

- Price of claim is present value of future cash flows
- Cash flows discounted at same risk-adjusted rate
- Price behavior
- Discounted cum-dividend prices are P-martingales

$$
\xi_{t} S_{t}+\int_{0}^{t} \xi_{v} D_{v} d v=E_{t}\left[\int_{0}^{T} \xi_{v} D_{v} d v+\xi_{T} S_{T}\right]
$$

- Discounted ex-dividend prices are P-supermartingales (assuming $D>0$)

$$
\xi_{t} S_{t}=E_{t}\left[\int_{t}^{T} \xi_{v} D_{v} d v+\xi_{T} S_{T}\right] \geq E_{t}\left[\xi_{T} S_{T}\right]
$$

1.3 Static consumption choice problem

- Static budget constraint
- Consumption plan $\left(c, X_{T}\right)$ is budget feasible at x iff

$$
\begin{equation*}
E\left[\int_{0}^{T} \xi_{v} c_{v} d v+\xi_{T} X\right] \leq x . \tag{6}
\end{equation*}
$$

- Budget set is set of consumption-bequest plans satisfying (6)
- Constraint (6) is static budget constraint:
- Constraint on resource allocation, at zero, for all future times, states
- Does not specify manner in which resources transferred over time
- Market completeness ensures required transfers can be made
- Static consumption-portfolio choice problem

$$
\begin{align*}
& \max _{\left(c, X_{T}\right)} \mathbf{E}\left[\int_{0}^{T} u\left(c_{v}, v\right) d v+U\left(X_{T}, T\right)\right] \tag{7}\\
\text { s.t. } & \left\{\begin{array}{l}
E\left[\int_{0}^{T} \xi_{v} c_{v} d v+\xi_{T} X\right] \leq x \\
c_{t} \geq 0, t \in[0, T] \quad \text { and } \quad X_{T} \geq 0 .
\end{array}\right. \tag{8}
\end{align*}
$$

- First constraint: static budget constraint
- Second: captures same physical restrictions as in dynamic problem
- Maximization is over consumption-bequest policies $\left(c, X_{T}\right)$
- Theorem 1.1: (Cox-Huang $(1989,1991)$ and Karatzas-Lehoczky-Shreve (1987))
- Suppose $\left(c, \pi, X_{T}\right)$ solves dynamic consumption-portfolio choice problem. Then, $\left(c, X_{T}\right)$ solves static problem
- Conversely, suppose $\left(c, X_{T}\right)$ is a solution to the static problem. Then there exists a portfolio π such that $\left(c, \pi, X_{T}\right)$ solves dynamic problem

- Remarks:

- Portfolio π financing (c, X_{T}) leads to wealth process

$$
\xi_{t} X_{t}=x+E_{t}\left[\int_{t}^{T} \xi_{v} c_{v} d v+\xi_{T} X_{T}\right]-E\left[\int_{0}^{T} \xi_{v} c_{v} d v+\xi_{T} X_{T}\right]
$$

- Assume cons.-bequest policy saturates budget: $E\left[\int_{0}^{T} \xi_{v} c_{v} d v+\xi_{T} X_{T}\right]=x$
- Then wealth finances exactly PV future consumption at all times

$$
\xi_{t} X_{t}=E_{t}\left[\int_{t}^{T} \xi_{v} c_{v} d v+\xi_{T} X_{T}\right] \equiv \xi_{t} V_{t}
$$

* Wealth is present value of future consumption
* In particular $X_{T}=V_{T}$
- Otherwise resources are left over after financing consumption

$$
\xi_{t} X_{t}=\xi_{t} V_{t}+\left(x-E\left[\int_{0}^{T} \xi_{v} c_{v} d v+\xi_{T} X_{T}\right]\right)
$$

- Optimal portfolio
- If $\left(c, X_{T}\right)$ solves static problem, optimal portfolio is $X \pi^{\prime} \sigma=\xi^{-1} \phi^{\prime}+X \theta^{\prime}$ where ϕ is square integrable process representing martingale

$$
M_{t} \equiv E_{t}\left[\int_{0}^{T} \xi_{v} c_{v} d v+\xi_{T} X_{T}\right]-E\left[\int_{0}^{T} \xi_{v} c_{v} d v+\xi_{T} X_{T}\right]=\int_{0}^{t} \phi_{v}^{\prime} d W_{v} .
$$

- Martingale representation theorem shows existence of ϕ and π
- Formula not very explicit. Structure of portfolio?

1.4 Optimal consumption-bequest policies

- Optimality conditions
- Complete market:
- Every state contingent allocation can be attained by some port.
- Investor free to select consumption state by state
- No need to worry about means of transferring wealth across states-time
- State by state optimization: compare marginal cost and benefits
- Marginal benefit of consumption at t is marginal utility $u^{\prime}(c, t)$
- Marginal benefit of bequest is $U^{\prime}\left(X_{T}, T\right)$
- Marginal cost of consumption at $t \in[0, T]$ is SPD
- First order conditions are

$$
\begin{gather*}
u^{\prime}(c, t)=y \xi_{t} \tag{9}\\
U^{\prime}\left(X_{T}, T\right)=y \xi_{T} \tag{10}\\
E\left[\int_{0}^{T} \xi_{v} c_{v} d v+\xi_{T} X_{T}\right] \leq x
\end{gather*}
$$

- Theorem 1.2: Consumption-bequest policy $\left(c^{*}, X_{T}^{*}\right)$ is optimal for the static problem (hence the dynamic problem), if and only if there exists a constant $y^{*}>0$ such that (c^{*}, X_{T}^{*}, y^{*}) solves (9)-(11)
- Theorem 1.3:
- Optimal consumption and bequest policies

$$
c_{t}^{*}=I^{u}\left(y^{*} \xi_{t}, t\right), t \in[0, T], \quad X_{T}^{*}=I^{U}\left(y^{*} \xi_{T}, T\right)
$$

- where y^{*} is unique solution of non-linear equation

$$
x=E\left[\int_{0}^{T} \xi_{t} I^{u}\left(y^{*} \xi_{t}, t\right) d t+\xi_{T} I^{U}\left(y^{*} \xi_{T}, T\right)\right] .
$$

- Optimal portfolio

$$
X_{t}^{*} \pi_{t}^{*}=X_{t}^{*}\left(\sigma_{t}^{\prime}\right)^{-1} \theta_{t}+\xi_{t}^{-1}\left(\sigma_{t}^{\prime}\right)^{-1} \phi_{t}^{*}, t \in[0, T]
$$

- ϕ^{*} is d-dimensional, square-integrable and progressively meas. process
- uniquely represents P-martingale

$$
M_{t}=E_{t}\left[\int_{0}^{T} \xi_{t} c_{t}^{*} d t+\xi_{T} X_{T}^{*}\right]-E\left[\int_{0}^{T} \xi_{t} c_{t}^{*} d t+\xi_{T} X_{T}^{*}\right] .
$$

- Optimal wealth process

$$
X_{t}^{*}=E_{t}\left[\int_{t}^{T} \xi_{t, v} v_{v}^{*} d t+\xi_{t, T} X_{T}^{*}\right], t \in[0, T]
$$

- Value function

$$
J_{t}^{*}=E_{t}\left[\int_{t}^{T} u\left(I^{u}\left(y^{*} \xi_{t}, t\right), t\right) d t+U\left(I^{U}\left(y^{*} \xi_{T}, T\right), T\right)\right], t \in[0, T]
$$

1.5 Examples

- Examples: constant relative risk aversion
- $u(c, t)=a_{t} v_{c}(c), U(X, T)=a_{T} v_{x}(X)$
- $a_{t}, t \in[0, T]$ is deterministic process with initial value $a_{0}=1$
- Example 1: Logarithmic utility, bequest functions (unit relative risk aversion)
- $v_{c}(e)=v_{x}(e)=\log (e)$
- Optimal consumption, bequest, wealth and value function J^{*} are

$$
\left\{\begin{array}{l}
c_{t}^{*}=\left(\frac{y^{*} \xi_{t}}{a_{t}}\right)^{-1} \quad X_{T}=\left(\frac{y^{*} \xi_{T}}{a_{T}}\right)^{-1} \\
X_{t}^{*}=\left(\frac{y^{*} \xi_{t}}{a_{t}}\right)^{-1} m_{t}^{-1} \\
J_{t}^{*}=-\log \left(\frac{y^{*} \xi_{t}}{a_{t}}\right) a_{t} m_{t}^{-1}-E_{t}\left[\int_{t}^{T} a_{v} \log \left(\frac{\xi_{t, v}}{a_{t, v}}\right) d v+a_{T} \log \left(\frac{\xi_{t, T}}{a_{t, T}}\right)\right]
\end{array}\right.
$$

where

$$
\begin{aligned}
y^{*} & =x^{-1} E\left[\int_{0}^{T} a_{v} d t+a_{T}\right] \\
m_{t} & =\left(E_{t}\left[\int_{t}^{T} a_{t, v} d t+a_{t, T}\right]\right)^{-1}
\end{aligned}
$$

- Alternatively

$$
\begin{gathered}
c_{t}^{*}=m_{t} X_{t}^{*} \\
J_{t}^{*}=\left(\log \left(m_{t}\right)+\log \left(X_{t}^{*}\right)\right) a_{t} m_{t}^{-1}-E_{t}\left[\int_{t}^{T} a_{v} \log \left(\frac{\xi_{t, v}}{a_{t, v}}\right) d v+a_{T} \log \left(\frac{\xi_{t, T}}{a_{t, T}}\right)\right]
\end{gathered}
$$

- m_{t} is marginal propensity to consume out of wealth

- Construction:

- Inverse marginal functions: $I^{u}(y, t)=\left(y / a_{t}\right)^{-1}$ and $I^{U}(y, t)=\left(y / a_{T}\right)^{-1}$
- Candidate consumption-bequest functions:

$$
c_{v}=I^{u}\left(y \xi_{v}, v\right)=\left(\frac{y \xi_{v}}{a_{v}}\right)^{-1} \quad X_{T}=I^{U}\left(y \xi_{T}, T\right)=\left(\frac{y \xi_{T}}{a_{T}}\right)^{-1} .
$$

- Budget constraint multiplier

$$
\begin{aligned}
\Psi(y) & =E\left[\int_{0}^{T} \xi_{v} I^{u}\left(y \xi_{v}, v\right) d t+\xi_{T} I^{U}\left(y \xi_{T}, T\right)\right] \\
& =E\left[\int_{0}^{T} \xi_{v}\left(\frac{y \xi_{v}}{a_{v}}\right)^{-1} d t+\xi_{T}\left(\frac{y \xi_{T}}{a_{T}}\right)^{-1}\right] \\
& =y^{-1} E\left[\int_{0}^{T} a_{v} d t+a_{T}\right]
\end{aligned}
$$

so that

$$
\left(y^{*}\right)^{-1}=\frac{x}{E\left[\int_{0}^{T} a_{v} d t+a_{T}\right]} .
$$

- Demand functions

$$
\begin{gathered}
c_{v}^{*}=I^{u}\left(y^{*} \xi_{v}, v\right)=\left(\frac{y^{*} \xi_{v}}{a_{v}}\right)^{-1}=\frac{x}{E\left[\int_{0}^{T} a_{v} d t+a_{T}\right]}\left(\frac{\xi_{v}}{a_{v}}\right)^{-1} \\
X_{T}^{*}=I^{U}\left(y^{*} \xi_{T}, T\right)=\left(\frac{y^{*} \xi_{T}}{a_{T}}\right)^{-1}=\frac{x}{E\left[\int_{0}^{T} a_{v} d t+a_{T}\right]}\left(\frac{\xi_{T}}{a_{T}}\right)^{-1} .
\end{gathered}
$$

- Optimal wealth

$$
\begin{aligned}
X_{t}^{*} & =E_{t}\left[\int_{t}^{T} \xi_{t, v}\left(\frac{y^{*} \xi_{v}}{a_{v}}\right)^{-1} d v+\xi_{t, T}\left(\frac{y^{*} \xi_{T}}{a_{T}}\right)^{-1}\right] \\
& =\left(\frac{y^{*} \xi_{t}}{a_{t}}\right)^{-1} E_{t}\left[\int_{t}^{T} \xi_{t, v}\left(\frac{\xi_{t, v}}{a_{t, v}}\right)^{-1} d v+\xi_{t, T}\left(\frac{\xi_{t, T}}{a_{t, T}}\right)^{-1}\right] \\
& =\left(\frac{y^{*} \xi_{t}}{a_{t}}\right)^{-1} E_{t}\left[\int_{t}^{T} a_{t, v} d v+a_{t, T}\right] \equiv\left(\frac{y^{*} \xi_{t}}{a_{t}}\right)^{-1} m_{t}^{-1}
\end{aligned}
$$

- Feedback policies
- Inverting wealth

$$
\left(\frac{y^{*} \xi_{t}}{a_{t}}\right)^{-1}=m_{t} X_{t}^{*}
$$

- Optimal policies

$$
c_{t}^{*}=\left(\frac{y^{*} \xi_{t}}{a_{t}}\right)^{-1}=m_{t} X_{t}^{*}
$$

- Remarks:

- Consumption proportional to wealth
- Marginal propensity to consume does not depend on market coefficients (r, θ)
- Lifecycle behavior:
- Marginal propensity to consume explodes as $t \rightarrow T$ if no bequest motive
- Want to exhaust all resources as horizon approaches
- Example 2: Power utility, bequest functions (constant relative risk aversion)
- $v_{c}(e)=v_{x}(e)=(1-R)^{-1} e^{1-R}, R>0$
- Optimal policies

$$
\left\{\begin{array}{l}
c_{t}^{*}=\left(\frac{y^{*} \xi_{t}}{a_{t}}\right)^{-1 / R} \text { and } X_{T}=\left(\frac{y^{*} \xi_{T}}{a_{T}}\right)^{-1 / R} \\
X_{t}^{*}=\left(\frac{y^{*} \xi_{t}}{a_{t}}\right)^{-1 / R} m_{t}^{-1} \\
J_{t}^{*}=\frac{1}{1-R}\left(\frac{y^{*} \xi_{t}}{a_{t}}\right)^{\rho} a_{t} E_{t}\left[\int_{t}^{T} a_{t, v}^{1 / R} \xi_{t, v}^{\rho} d v+a_{t, T}^{1 / R} \xi_{t, T}^{\rho}\right]
\end{array}\right.
$$

where

$$
\begin{aligned}
& y^{*}=x^{-R}\left(E\left[\int_{0}^{T} \xi_{v}^{\rho} a_{v}^{1 / R} d v+\xi_{T}^{\rho} a_{T}^{1 / R}\right]\right)^{R} \\
& m_{t}=\left(E_{t}\left[\int_{t}^{T} a_{t, v}^{1 / R} \xi_{t, v}^{\rho} d v+a_{t, T}^{1 / R} \xi_{t, T}^{\rho}\right]\right)^{-1}
\end{aligned}
$$

- Feedback form

$$
\begin{gathered}
c_{t}=m_{t} X_{t} \\
J_{t}^{*}=\frac{1}{1-R} X_{t}^{* 1-R} a_{t} m_{t}^{-R}
\end{gathered}
$$

- Consumption behavior:
- Consumption linear in wealth
- Market structure matters: dependence on (r, θ)
- Lifecycle behavior:
- Horizon behavior similar to log utility
- But dependence on state
- Assume constant coefficients β, r, θ

$$
\begin{gathered}
E_{t}\left[\xi_{t, v}^{\rho}\right]=\exp \left(-\left(\rho r+\frac{1}{2} \rho(1-\rho) \theta^{\prime} \theta\right)(v-t)\right) \\
a_{t, v}^{1 / R} E_{t}\left[\xi_{t, v}^{\rho}\right]=\exp \left(-\left(\frac{1}{R} \beta+\rho r+\frac{1}{2} \rho(1-\rho) \theta^{\prime} \theta\right)(v-t)\right) \equiv \exp (-K(v-t)) \\
m_{t}=\left(E_{t}\left[\int_{t}^{T} a_{t, v}^{1 / R} \xi_{t, v}^{\rho} d v+a_{t, T}^{1 / R} \xi_{t, T}^{\rho}\right]\right)^{-1}=\left(\frac{1}{K}(1-\exp (-K(T-t)))+\exp (-K(T-t))\right)^{-1}
\end{gathered}
$$

Figure 1: Marginal propensity to consume (CRRA). Parameter values: $\beta=0.01, r=0.06$, $\theta=0.30$

1.6 Some extensions

- Failure of Inada condition at zero

- $u^{\prime}(0, t)<\infty$ at $c=0$
- Example: HARA
$-u(c, t)=\frac{1}{1-R}(c+A)^{1-R}$ with $A \geq 0$
$-u^{\prime}(c, t)=(c+A)^{-R}$ so that $u^{\prime}(0, t)=A^{-R}$
$-u^{\prime \prime}(c, t)=-R(c+A)^{-R-1}$
$-R(c)=-\frac{u^{\prime \prime}(c, t) c}{u^{\prime \prime}(c, t)}=\frac{R(c+A)^{-R-1} c}{(c+A)^{-R}}=R \frac{c}{c+A}$

Figure 2: Utility and marginal utility for HARA with $A=5$.

- Inverse marginal utility: $I^{u}(y)=y^{-1 / R}-A$

- Optimal policy: $c_{t}=\max \left\{I^{u}\left(y^{*} \xi_{t}, t\right), 0\right\}=\max \left\{\left(y^{*} \xi_{t}\right)^{-1 / R}-A, 0\right\}$
- Subsistence consumption, intolerance to shortfalls
- utility function

$$
u(c, t)=\left\{\begin{array}{cl}
u(c-s, t) & \text { for } c \geq s \\
-\infty & \text { for } c<s
\end{array}\right.
$$

$$
\begin{aligned}
& -s>0 \\
& -u^{\prime}(0, t)=\infty
\end{aligned}
$$

- Example: HARA
$-u(c-s, t)=\frac{1}{1-R}(c-s)^{1-R}$ for $c \geq s$
- $u^{\prime}(c-s, t)=(c-s)^{-R}$ so that $u^{\prime}(0, t)=\infty$
$-u^{\prime \prime}(c-s, t)=-R(c-s)^{-R-1}$
$-R(c)=-\frac{u^{\prime \prime}(c-s, t) c}{u^{\prime \prime}(c-s, t)}=\frac{R(c-s)^{-R-1} c}{(c-s)^{-R}}=R \frac{c}{c-s}$
- Optimal policy: $c_{t}=I^{u}\left(y^{*} \xi_{t}, t\right)+s$
- Loss aversion and threshold effects
- Discontinuous derivative at some critical point(s)
- Asymmetric behavrior above and below threshold

PART 2: Introduction to Malliavin calculus

- Malliavin calculus is a calculus of variations for stochastic processes
- Applies to Brownian functionals: random variables and stochastic processes that depend on trajectories of Brownian motion
- Malliavin derivative measures impact of small change in trajectory of Brownian motion on value of Brownian functional
- Development of theory:
- Malliavin, Stroock, Bismut,...
- Existence and smoothness of densities
- Reference: Nualart (1995)
- Outline
- Definition
- Riemann, Wiener and Ito integrals
- Clark-Ocone formula
- Chain rule
- Stochastic differential equations

2.1 Definition

- Smooth Brownian functionals
- Space of (smooth) functions: $C_{p}^{\infty}\left(R^{n d}\right)$
$-f(\cdot): R^{n d} \rightarrow R$
- Infinitely differentiable
- Polynomial growth
- Wiener space generated by d-dimensional Brownian motion $W=\left(W_{1}, \ldots, W_{d}\right)^{\prime}$
- Each state of nature corresponds to a trajectory of BM
- Set of states is space of trajectories
- Let $\left(t_{1}, \ldots, t_{n}\right)$ be a partition of $[0, T]$
- Sample BM at points of this partition: $\left(W_{t_{1}}, \ldots, W_{t_{n}}\right)$
- Construct random variable

$$
F(W) \equiv f\left(W_{t_{1}}, \ldots, W_{t_{n}}\right)
$$

- $f \in C_{p}^{\infty}\left(R^{n d}\right)$
$-F$ is smooth Brownian functional
- Examples: assume W is one-dimensional
- Quadratic function: $W_{T}^{2}, \sum_{j=1}^{n} W_{t_{j}}^{2}$
- Any polynomial: $\sum_{k=1}^{K} a_{k} W_{T}^{k}, \sum_{j=1}^{n}\left(\sum_{k=1}^{K} a_{k} W_{t_{j}}^{k}\right)$
- Stock price in Black-Scholes model: (limit of sequence of SBF)
$-S_{T}=S_{0} \exp \left(\left(\mu-\frac{1}{2} \sigma^{2}\right) T+\sigma W_{T}\right)$
- Write $S_{T}=f\left(W_{T}\right)$ with $f(x)=S_{0} \exp \left(\left(\mu-\frac{1}{2} \sigma^{2}\right) T+\sigma x\right)$
- S_{T} is (limit of) smooth Brownian functional (sampled at one point)

- Experiment:

- Perturbate trajectoy of BM from some time t onward
- Shift W by ε starting at t, where $t_{k} \leq t<t_{k+1}$ for some $k=1, \ldots, d$

- Malliavin derivative of smooth Brownian functional (assume $d=1$)
- MD at t of F is change in F due to a change in path of W starting at t
- MD of F at t is defined by

$$
\begin{align*}
\mathcal{D}_{t} F(W) & \left.\equiv \frac{\left.\partial f\left(W_{t_{1}}+\varepsilon \mathbf{1}_{[t, \infty[}\left(t_{1}\right), \ldots, W_{t_{n}}+\varepsilon \mathbf{1}_{[t, \infty[}\left(t_{n}\right)\right)\right)}{\partial \varepsilon}\right|_{\varepsilon=0} \tag{12}\\
& =\lim _{\varepsilon \rightarrow 0} \frac{F\left(W+\varepsilon \mathbf{1}_{[t, \infty]}\right)-F(W)}{\varepsilon} \tag{13}
\end{align*}
$$

- where $1_{[t, \infty[}$ is indicator of $[t, \infty)$ (i.e., $1_{[t, \infty[}(s)=1$ for $s \in[t, \infty) ; 0$ otherwise)
- Compact notation

$$
\begin{equation*}
\mathcal{D}_{t} F(W)=\sum_{j=1}^{n} \partial_{j} f\left(W_{t_{1}}, \ldots, W_{t_{k}}, \ldots, W_{t_{n}}\right) \mathbf{1}_{[t, \infty[}\left(t_{j}\right) \tag{14}
\end{equation*}
$$

where $\partial_{j} f$ is derivative of f with respect to $j^{\text {th }}$ argument of f

- MD of F is $\mathcal{D} F(W)=\left\{\mathcal{D}_{t} F(W): t \in[0, T]\right\}$
- Example: Black-Scholes model
- Recall $S_{T}=f\left(W_{T}\right)$ with $f(x)=S_{0} \exp \left(\left(\mu-\frac{1}{2} \sigma^{2}\right) T+\sigma x\right)$
- Direct application of definition gives

$$
\begin{aligned}
\mathcal{D}_{t} S_{T} & =\partial f\left(W_{T}\right) \mathbf{1}_{[t, \infty[}(T) \\
& =\sigma S_{0} \exp \left(\left(\mu-\frac{1}{2} \sigma^{2}\right) T+\sigma W_{T}\right) \mathbf{1}_{[t, \infty[}(T)=\sigma S_{T} \mathbf{1}_{[t, \infty[}(T)
\end{aligned}
$$

- Malliavin derivative is derivative with respect to W_{T} :
- Perturbation of path of W from t onward affects S_{T} only through W_{T}
- Malliavin derivative at t of S_{v}

$$
\mathcal{D}_{t} S_{v}=\sigma S_{v} \mathbf{1}_{[t, \infty \mid}(v)
$$

- Multidimensional case: $d>1$
- MD of F at t is now $1 \times d$-dimensional vector $\mathcal{D}_{t} F=\left(\mathcal{D}_{1 t} F, \ldots, \mathcal{D}_{d t} F\right)$
- $i^{\text {th }}$ coordinate $\mathcal{D}_{i t} F$ measures impact of perturbation in W_{i} by ε starting at t
- If $t_{k} \leq t<t_{k+1}$ can write one-dimensional definition for this derivative

$$
\begin{equation*}
\mathcal{D}_{i t} F=\sum_{j=k}^{n} \frac{\partial f}{\partial x_{i j}}\left(W_{t_{1}}, \ldots, W_{t_{k}}, \ldots, W_{t_{n}}\right) \mathbf{1}_{[t, \infty[}\left(t_{j}\right) \tag{15}
\end{equation*}
$$

- where $\partial f / \partial x_{i j}$ is derivative with respect to $i^{\text {th }}$ component of $j^{\text {th }}$ argument of f (i.e. derivative with respect to $W_{i t_{j}}$)
- MD of F is $\mathcal{D} F(W)=\left\{\mathcal{D}_{t} F(W): t \in[0, T]\right\} ; d$-dimensional (row) stoch. proc.
- Domain of Malliavin derivative operator
- MD exists for $F \in D^{1,2}$
- Completion of set of smooth Brownian functionals in norm

$$
\|F\|_{1,2}=\left(E\left(F^{2}\right)+\mathbf{E}\left(\int_{0}^{T}\left\|\mathcal{D}_{t} F\right\|^{2} d t\right)\right)^{\frac{1}{2}}
$$

where $\left\|\mathcal{D}_{t} F\right\|^{2}=\sum_{i}\left(\mathcal{D}_{i t} F\right)^{2}$.

2.2 Malliavin derivatives of Riemann, Wiener, Ito integrals

- Wiener integral $F(W)=\int_{0}^{T} h(t) d W_{t}$, where $h(t)$ is fct of time and W is one-dim.
- Integration by parts: $F(W)=h(T) W_{T}-\int_{0}^{T} W_{s} d h(s)$
- Application of definition gives

$$
\begin{aligned}
F\left(W+\varepsilon \mathbf{1}_{[t, \infty[}\right)-F(W)= & h(T)\left(W_{T}+\varepsilon \mathbf{1}_{[t, \infty[}(T)\right)-\int_{0}^{T}\left(W_{s}+\varepsilon \mathbf{1}_{[t, \infty[}(s)\right) d h(s) \\
& -\left(h(T) W_{T}-\int_{0}^{T} W_{s} d h(s)\right) \\
= & h(T) \varepsilon \mathbf{1}_{[t, \infty[}(T)-\int_{0}^{T} \varepsilon \mathbf{1}_{[t, \infty[}(s) d h(s) \\
= & \varepsilon\left(h(T)-\int_{0}^{T} \mathbf{1}_{[t, \infty[}(s) d h(s)\right) \\
= & \varepsilon\left(h(T)-\int_{t}^{T} d h(s)\right) \\
= & \varepsilon h(t) .
\end{aligned}
$$

so that

$$
\begin{equation*}
\mathcal{D}_{t} F(W)=\lim _{\varepsilon \rightarrow 0} \frac{F\left(W+\varepsilon \mathbf{1}_{[t, \infty \mid}\right)-F(W)}{\varepsilon}=h(t) \tag{16}
\end{equation*}
$$

- Conclusion: $D_{t} F=h(t)$
- MD of F at t is volatility $h(t)$ of stochastic integral at t
- Measures sensitivity of random variable F to Brownian shock at t
- Random Riemann integral with integrand depending on path of BM
- $F(W) \equiv \int_{0}^{T} h_{s} d s$ where h_{s} progressively measurable
- MD

$$
\begin{aligned}
\mathcal{D}_{t} F & =\lim _{\varepsilon \rightarrow 0} \frac{F\left(W+\varepsilon \mathbf{1}_{[t, \infty[}\right)-F(W)}{\varepsilon} \\
& =\lim _{\varepsilon \rightarrow 0} \int_{0}^{T}\left(\frac{h_{s}\left(W+\varepsilon \mathbf{1}\left[t, \infty[)-h_{s}(W)\right.\right.}{\varepsilon}\right) d s=\int_{t}^{T} \mathcal{D}_{t} h_{s} d s
\end{aligned}
$$

- Ito integral
- $F(W)=\int_{0}^{T} h_{s}(W) d W_{s}$
- MD

$$
\mathcal{D}_{t} F=h_{t}+\int_{t}^{T} \mathcal{D}_{t} h_{s} d W_{s}
$$

- Malliavin derivatives of Wiener, Riemann, Ito integrals depending on multidimensional BM defined in same way (component by component)

2.3 Clark-Ocone formula

- Clark-Ocone formula:
- Any random variable $F \in D^{1,2}$ can be decomposed as

$$
\begin{equation*}
F=E[F]+\int_{0}^{T} E_{t}\left[\mathcal{D}_{t} F\right] d W_{t} \tag{17}
\end{equation*}
$$

- Martingale closed by $F \in D^{1,2}$ (i.e. $\left.M_{t}=E_{t}[F]\right)$:
- Take conditional expectations
- $M_{t}=E[F]+\int_{0}^{t} E_{s}\left[\mathcal{D}_{s} F\right] d W_{s}$

- Remark

- Results can be used to show MD and conditional expectation commute
- For martingale $M_{v}=E_{v}[F]$ Malliavin derivative is $\mathcal{D}_{t} M_{v}=E_{v}\left[\mathcal{D}_{t} F\right]$
- Equivalently, $\mathcal{D}_{t} E_{v}[F]=E_{v}\left[\mathcal{D}_{t} F\right]$

2.4 Chain rule of Malliavin calculus

- In applications often need MD of function of path-dependent random variable
- Chain rule also applies in Malliavin calculus
- Let $G=g(F)$ where
- $F=\left(F_{1}, \ldots, F_{n}\right)$ is vector of random variables in $D^{1,2}$
- g is a differentiable function of F with bounded derivatives
- Malliavin derivative of $G=g(F)$ is

$$
\mathcal{D}_{t} G=\mathcal{D}_{t} g(F)=\sum_{i=1}^{n} \frac{\partial g}{\partial x_{i}}(F) \mathcal{D}_{t} F_{i}
$$

where $\frac{\partial g}{\partial x_{i}}(F)$ is derivative relative to the $i^{\text {th }}$ argument of ϕ.

2.5 Stochastic differential equations

- Suppose state variable Y_{t} follows diffusion process
- $d Y_{t}=\mu^{Y}\left(Y_{t}\right) d t+\sigma^{Y}\left(Y_{t}\right) d W_{t}$ where Y_{0} given
- Assume W one dimensional
- Integral form

$$
Y_{t}=Y_{0}+\int_{0}^{t} \mu^{Y}\left(Y_{s}\right) d s+\int_{0}^{t} \sigma^{Y}\left(Y_{s}\right) d W_{s} .
$$

- Taking Malliavin derivative on each side gives, for $s \geq t$,

$$
\begin{aligned}
\mathcal{D}_{t} Y_{s} & =D_{t} Y_{0}+\int_{t}^{s} \partial \mu^{Y} \mathcal{D}_{t} Y_{v} d v+\int_{t}^{s} \partial \sigma^{Y} \mathcal{D}_{t} Y_{v} d W_{v}+\sigma\left(Y_{t}\right) \\
& =\int_{t}^{s} \partial \mu^{Y} \mathcal{D}_{t} Y_{v} d v+\int_{t}^{s} \partial \sigma^{Y} \mathcal{D}_{t} Y_{v} d W_{v}+\sigma\left(Y_{t}\right)
\end{aligned}
$$

where second equality follows from $\mathcal{D}_{t} Y_{0}=0$

- Conclusion: MD follows linear SDE

$$
\begin{equation*}
d\left(\mathcal{D}_{t} Y_{s}\right)=\left[\partial \mu^{Y}\left(Y_{s}\right) d s+\partial \sigma^{Y}\left(Y_{s}\right) d W_{s}\right]\left(\mathcal{D}_{t} Y_{s}\right) \tag{18}
\end{equation*}
$$

subject to initial condition $\lim _{s \rightarrow t} \mathcal{D}_{t} Y_{s}=\sigma^{Y}\left(Y_{t}\right)$

- Solution

$$
\mathcal{D}_{t} Y_{s}=\mathcal{D}_{t} Y_{t} \times \exp \left(\int_{t}^{s}\left(\partial \mu^{Y}\left(Y_{v}\right)-\frac{1}{2}\left(\partial \sigma^{Y}\left(Y_{v}\right)\right)^{2}\right) d v+\int_{t}^{s} \partial \sigma^{Y}\left(Y_{v}\right) d W_{v}\right)
$$

- Multidimensional case:
- If $\sigma^{Y}\left(Y_{t}\right)$ is $1 \times d$ vector (W is d-dimensional BM) same arguments apply
- Obtain (18) subject to initial condition $\lim _{s \rightarrow t} \mathcal{D}_{t} Y_{s}=\sigma\left(Y_{t}\right)$
$-\partial \sigma^{Y}\left(Y_{s}\right) \equiv\left(\partial \sigma_{1}^{Y}\left(Y_{s}\right), \ldots, \partial \sigma_{d}^{Y}\left(Y_{s}\right)\right)$ is row vect: deriv. of components of $\sigma^{Y}\left(Y_{s}\right)$
- MD $\mathcal{D}_{t} Y_{s}$ is $1 \times d$ row vector $\mathcal{D}_{t} Y_{s}=\left(\mathcal{D}_{1 t} Y_{s}, \ldots, \mathcal{D}_{d t} Y_{s}\right)$

PART 3: Optimal portfolios

- Determination of optimal portfolio (financing the consumption-bequest policy)
- Ocone and Karatzas (1991): Clark-Ocone formula
- Detemple, Garcia, Rindisbacher (2003): diffusion models - implementation
- Outline:
- Optimal portfolio formula
- Special cases and examples
- Implementation
- Example

3.1 The portfolio formula

- Summary:

- Optimal portfolio uniquely given by

$$
\begin{equation*}
X_{t}^{*} \pi_{t}^{*}=X_{t}^{*}\left(\sigma_{t}^{\prime}\right)^{-1} \theta_{t}+\xi_{t}^{-1}\left(\sigma_{t}^{\prime}\right)^{-1} \phi_{t}^{*} \tag{19}
\end{equation*}
$$

- ϕ^{*} is d-dimensional process representing martingale

$$
\begin{gathered}
M_{t} \equiv E_{t}\left[F_{T}^{*}\right]-E\left[F_{T}^{*}\right] \\
F_{T}^{*} \equiv \int_{0}^{T} \xi_{t} c_{t}^{*} d t+\xi_{T} X_{T}^{*}
\end{gathered}
$$

- $\left(c^{*}, X_{T}^{*}\right)$ as given in Theorem 1.3
- For explicit formula it suffices to identify ϕ^{*} in terms of primitives (r, θ, u, U, T)
- Malliavin calculus is instrumental: Clark-Ocone formula
- Derivation:
- Assume $F_{T}^{*} \in D^{1,2}$
- Clark-Ocone formula gives

$$
\begin{equation*}
\phi_{t}^{*}=E_{t}\left[\left(\mathcal{D}_{t} F_{T}^{*}\right)^{\prime}\right] \tag{20}
\end{equation*}
$$

- Using rules of Malliavin calculus,

$$
\begin{align*}
\mathcal{D}_{t} F_{T}^{*}= & \mathcal{D}_{t}\left(\int_{0}^{T} \xi_{v} I^{u}\left(y^{*} \xi_{v}, v\right) d t+\xi_{T} I^{U}\left(y^{*} \xi_{T}, T\right)\right) \\
= & \int_{t}^{T} \mathcal{D}_{t}\left(\xi_{v} I^{u}\left(y^{*} \xi_{v}, v\right)\right) d t+\mathcal{D}_{t}\left(\xi_{T} I^{U}\left(y^{*} \xi_{T}, T\right)\right) \\
= & \int_{t}^{T}\left(I^{u}\left(y^{*} \xi_{v}, v\right)+y^{*} \xi_{v} \partial_{y} I^{u}\left(y^{*} \xi_{v}, v\right)\right) \mathcal{D}_{t} \xi_{v} d v \\
& +\left(I^{U}\left(y^{*} \xi_{T}, T\right)+y^{*} \xi_{T} \partial_{y} I^{U}\left(y^{*} \xi_{T}, T\right)\right) \mathcal{D}_{t} \xi_{T} \\
\equiv & \int_{t}^{T} Z^{u}\left(y^{*} \xi_{v}, v\right) \mathcal{D}_{t} \xi_{v} d v+Z^{U}\left(y^{*} \xi_{T}, T\right) \mathcal{D}_{t} \xi_{T}
\end{align*}
$$

where $\partial_{y} I^{u}\left(y^{*} \xi_{v}, v\right), \partial_{y} I^{U}\left(y^{*} \xi_{T}, T\right)$ are derivatives of $I^{u}\left(y^{*} \xi_{v}, v\right), I^{U}\left(y^{*} \xi_{T}, T\right)$ with respect to first argument

- MD of SPD: for all $v \geq t$

$$
\begin{array}{rlrl}
\mathcal{D}_{t} \xi_{v} & =\mathcal{D}_{t} \exp \left(-\int_{0}^{v}\left(r_{s}+\frac{1}{2} \theta_{s}^{\prime} \theta_{s}\right) d s-\int_{0}^{v} \theta_{s}^{\prime} d W_{s}\right) & \text { definition of SPD } \\
& =\xi_{v} \times \mathcal{D}_{t}\left(-\int_{0}^{v}\left(r_{s}+\frac{1}{2} \theta_{s}^{\prime} \theta_{s}\right) d s-\int_{0}^{v} \theta_{s}^{\prime} d W_{s}\right) & \text { chain rule } \\
& =-\xi_{v}\left(\int_{t}^{v}\left(\mathcal{D}_{t} r_{s}+\theta_{s}^{\prime} \mathcal{D}_{t} \theta_{s}\right) d s+\int_{t}^{v}\left(d W_{s}\right)^{\prime} \mathcal{D}_{t} \theta_{s}+\theta_{t}^{\prime}\right) & & \text { MD of Riemann, Ito int. } \\
& \equiv-\xi_{v}\left(H_{t, v}^{\prime}+\theta_{t}^{\prime}\right) & \text { def. of } H_{t, v} \tag{22}
\end{array}
$$

- Malliavin derivatives of r, θ
- Chain rule: $\mathcal{D}_{t} r_{s}=\partial r\left(Y_{s}, s\right) \mathcal{D}_{t} Y_{s}$ and $\mathcal{D}_{t} \theta_{s}=\partial \theta\left(Y_{s}, s\right) \mathcal{D}_{t} Y_{s}$
- Where $\mathcal{D}_{t} Y_{s}$ is derivative of solution of SDE

$$
\begin{equation*}
d \mathcal{D}_{t} Y_{s}=\left[\partial \mu^{Y}\left(s, Y_{s}\right) d s+\sum_{i=1}^{d} \partial \sigma_{i}^{Y}\left(s, Y_{s}\right) d W_{i s}\right] \mathcal{D}_{t} Y_{s} ; \quad \mathcal{D}_{t} Y_{t}=\sigma^{Y}\left(t, Y_{t}\right) . \tag{23}
\end{equation*}
$$

* Here $\partial f(Y)$ is $1 \times k$-gradient of function f with respect to Y
- Substituting (20)-(22) into (20) and (19)

$$
\begin{aligned}
\phi_{t}^{*}= & E_{t}\left[\left(\int_{t}^{T} Z^{u}\left(y^{*} \xi_{v}, v\right) \mathcal{D}_{t} \xi_{v} d v+Z^{U}\left(y^{*} \xi_{T}, T\right) \mathcal{D}_{t} \xi_{T}^{\prime}\right)^{\prime}\right] \\
= & -E_{t}\left[\int_{t}^{T} Z^{u}\left(y^{*} \xi_{v}, v\right) \xi_{v}\left(H_{t, v}+\theta_{t}\right) d v+Z^{U}\left(y^{*} \xi_{T}, T\right) \xi_{T}\left(H_{t, T}+\theta_{t}\right)\right] \\
\phi_{t}^{*}= & X_{t}^{*}\left(\sigma_{t}^{\prime}\right)^{-1} \theta_{t}+\xi_{t}^{-1}\left(\sigma_{t}^{\prime}\right)^{-1} \phi_{t}^{*} \\
= & X_{t}^{*}\left(\sigma_{t}^{\prime}\right)^{-1} \theta_{t} \\
& -\xi_{t}^{-1}\left(\sigma_{t}^{\prime}\right)^{-1} E_{t}\left[\int_{t}^{T} Z^{u}\left(y^{*} \xi_{v}, v\right) \xi_{v}\left(H_{t, v}+\theta_{t}\right) d v+Z^{U}\left(y^{*} \xi_{T}, T\right) \xi_{T}\left(H_{t, T}+\theta_{t}\right)\right] \\
= & {\left[X_{t}^{*}-E_{t}\left[\int_{t}^{T} Z^{u}\left(y^{*} \xi_{v}, v\right) \xi_{t, v} d v+Z^{U}\left(y^{*} \xi_{T}, T\right) \xi_{t, T}\right]\right]\left(\sigma_{t}^{\prime}\right)^{-1} \theta_{t} } \\
& -\left(\sigma_{t}^{\prime}\right)^{-1} E_{t}\left[\int_{t}^{T} Z^{u}\left(y^{*} \xi_{v}, v\right) \xi_{t, v} H_{t, v} d v+Z^{U}\left(y^{*} \xi_{T}, T\right) \xi_{t, T} H_{t, T}\right] .
\end{aligned}
$$

- Finally

$$
\begin{aligned}
& X_{t}^{*}-E_{t}\left[\int_{t}^{T} Z^{u}\left(y^{*} \xi_{v}, v\right) \xi_{t, v} d v+Z^{U}\left(y^{*} \xi_{T}, T\right) \xi_{t, T}\right] \\
= & -E_{t}\left[\int_{t}^{T} y^{*} \xi_{v} \partial_{y} I^{u}\left(y^{*} \xi_{v}, v\right) \xi_{t, v} d v+y^{*} \xi_{T} \partial_{y} I^{U}\left(y^{*} \xi_{T}, T\right) \xi_{t, T}\right]
\end{aligned}
$$

- Theorem 3.1:
- Optimal portfolio has decomposition $X_{t}^{*} \pi_{t}^{*}=X_{t}^{*}\left[\pi_{1 t}^{*}+\pi_{2 t}^{*}\right]$ where

$$
\begin{align*}
X_{t}^{*} \pi_{1 t}^{*}= & -E_{t}\left[\int_{t}^{T} y^{*} \xi_{v} \partial_{y} I^{u}\left(y^{*} \xi_{v}, v\right) \xi_{t, v} d v+y^{*} \xi_{T} \partial_{y} I^{U}\left(y^{*} \xi_{T}, T\right) \xi_{t, T}\right]\left(\sigma_{t}^{\prime}\right)^{-1} \theta_{t} \\
= & E_{t}\left[\int_{t}^{T} \xi_{t, v} \Gamma^{u}\left(c_{v}^{*}, v\right) d v+\xi_{t, T} \Gamma^{U}\left(X_{T}^{*}, T\right)\right]\left(\sigma_{t}^{\prime}\right)^{-1} \theta_{t} \tag{24}\\
X_{t}^{*} \pi_{2 t}^{*}= & -\left(\sigma_{t}^{\prime}\right)^{-1} E_{t}\left[\int_{t}^{T} Z^{u}\left(y^{*} \xi_{v}, v\right) \xi_{t, v} H_{t, v} d v+Z^{U}\left(y^{*} \xi_{T}, T\right) \xi_{t, T} H_{t, T}\right] \\
= & \left.-\left(\sigma_{t}^{\prime}\right)^{-1} E_{t}\left[\int_{t}^{T} \xi_{t, v}\left(c_{v}^{*}-\Gamma^{u}\left(c_{v}^{*}, v\right)\right) H_{t, v} d v+\xi_{t, T}\left(X_{T}^{*}-\Gamma^{U}\left(X_{T}^{*}, T\right)\right) H_{t, T}\right] 25\right)
\end{align*}
$$

- MD of state variables, $D_{t} Y_{s}$, satisfies $\operatorname{SDE}(23)$
- $\Gamma^{u}\left(c_{v}^{*}, v\right), \Gamma^{U}\left(X_{T}^{*}, T\right)$ are absolute risk tolerance measures

$$
\Gamma^{u}(c, v) \equiv-\frac{u^{\prime}(c, v)}{u^{\prime \prime}(c, v)}, \quad \Gamma^{U}(X, T) \equiv-\frac{U^{\prime}(X, T)}{U^{\prime \prime}(X, T)}
$$

- Evaluated at optimal consumption-bequest
- Remarks: two motives for investment
- First motive:
- Tradeoff risk $\sigma \sigma^{\prime}$ vs expected excess return $\mu-r 1:\left(\sigma^{\prime}\right)^{-1} \theta=\left(\sigma \sigma^{\prime}\right)^{-1}(\mu-r \mathbf{1})$
- Underlies mean-variance demand π_{1}
- Originally identified by Markowitz (1952)
- Still at core of practical implementations and financial advice
- Second motive:
- Hedging motive: prompted by stochastic fluctuations in opportunity set (interest rate and market price of risk)
- Underlies demand component π_{2}
- Identified by Merton (1971)
- Important aspect of optimal dynamic asset allocation policies

3.2 Special cases and examples

- Deterministic opportunity set (r, θ deterministic)
- Malliavin derivatives $D_{t} r_{v}=D_{t} \theta_{v}=0$. Hedging demand vanishes $X_{t}^{*} \pi_{2 t}^{*}=0$
- Investment demand reduces to mean-variance term

$$
X_{t}^{*} \pi_{1 t}^{*}=E_{t}\left[\int_{t}^{T} \xi_{t, v} \Gamma^{u}\left(c_{v}^{*}, v\right) d v+\xi_{t, T} \Gamma^{u}\left(X_{T}^{*}, T\right)\right]\left(\sigma_{t}^{\prime}\right)^{-1} \theta_{t}
$$

- Irrespective of preferences
- Coefficient in MV demand is cost of optimal risk tolerance
- Stochastic opportunity set (r, θ stochastic)
- Dynamic hedging motive becomes relevant
- Signing hedges:
- Suppose condition $\left[\left(\sigma_{t}^{\prime}\right)^{-1} H_{t, v}\right]_{i} \geq 0$ for all $v \in[t, T]$
- Hedging increases (decreases) holdings of asset i if risk tolerance exceeds (falls below) consumption and bequest
* As $c_{v}^{*}-\Gamma^{u}\left(c_{v}^{*}, v\right) \leq 0$ and $X_{T}^{*}-\Gamma^{U}\left(X_{T}^{*}, T\right) \leq 0$
* Can be restated in terms of relative risk aversion (Breeden (1979))

$$
\begin{aligned}
c_{v}^{*}-\Gamma^{u}\left(c_{v}^{*}, v\right) & =\frac{c_{v}^{*}}{R^{u}\left(c_{v}^{*}, v\right)}\left(R^{u}\left(c_{v}^{*}, v\right)-1\right) \\
X_{T}^{*}-\Gamma^{U}\left(X_{T}^{*}, T\right) & =\frac{X_{T}^{*}}{R^{U}\left(X_{T}^{*}, T\right)}\left(R^{U}\left(X_{T}^{*}, T\right)-1\right)
\end{aligned}
$$

- Condition on $H_{t, v}$ applies, in particular for IRH in one risky asset model
* if interest rate negatively impacted by innovations, and
* the stock market returns positively affected by innovations
- Constant relative risk aversion (Example 2) with subjective discount factor $a_{t} \equiv \exp (-\beta t)$ where β is a constant
- Optimal consumption policy $c_{v}^{*}=\left(y^{*} \xi_{v} / a_{v}\right)^{-1 / R}$ and $X_{T}^{*}=\left(y^{*} \xi_{T} / a_{T}\right)^{-1 / R}$
- Optimal portfolio $X_{t}^{*} \pi_{t}^{*}=X_{t}^{*}\left[\pi_{1 t}^{*}+\pi_{2 t}^{*}\right]$ where

$$
\begin{gather*}
X_{t}^{*} \pi_{1 t}^{*}=\frac{X_{t}^{*}}{R}\left(\sigma_{t}^{\prime}\right)^{-1} \theta_{t} \tag{26}\\
X_{t}^{*} \pi_{2 t}^{*}=-X_{t}^{*} \rho\left(\sigma_{t}^{\prime}\right)^{-1} \frac{E_{t}\left[\int_{t}^{T} \xi_{t, v}^{\rho} a_{t, v}^{1 / R} H_{t, v} d v+\xi_{t, T}^{\rho} a_{t, T}^{1 / R} H_{t, T}\right]}{E_{t}\left[\int_{t}^{T} \xi_{t, v}^{\rho} a_{t, v}^{1 / R} d v+\xi_{t, T}^{\rho} a_{t, T}^{1 / R}\right]} \tag{27}
\end{gather*}
$$

with $\rho=1-1 / R$

- Details:
- Consumption-bequest functions: $c_{v}^{*}=\left(y^{*} \xi_{v} / a_{v}\right)^{-1 / R}$ and $X_{T}^{*}=\left(y^{*} \xi_{T} / a_{T}\right)^{-1 / R}$
- Substituting $\Gamma^{u}\left(c_{v}^{*}, v\right)=c_{v}^{*} / R$ and $\Gamma^{U}\left(X_{T}^{*}, T\right)=X_{T}^{*} / R$ in portfolio gives

$$
\begin{aligned}
& X_{t}^{*} \pi_{1 t}^{*}=\frac{1}{R} E_{t}\left[\int_{t}^{T} \xi_{t, v} v_{v}^{*} d v+\xi_{t, T} X_{T}^{*}\right]\left(\sigma_{t}^{\prime}\right)^{-1} \theta_{t}=\frac{1}{R} X_{t}^{*} \theta_{t} \\
& X_{t}^{*} \pi_{2 t}^{*}=-\rho\left(\sigma_{t}^{\prime}\right)^{-1} E_{t}\left[\int_{t}^{T} \xi_{t, v} v_{v}^{*} H_{t, v} d v+\xi_{t, T} X_{T}^{*} H_{t, T}\right] \\
&=-\rho\left(\sigma_{t}^{\prime}\right)^{-1} E_{t}\left[\int_{t}^{T} \xi_{t, v}\left(\frac{y^{*} \xi_{v}}{a_{v}}\right)^{-1 / R} H_{t, v} d v+\xi_{t, T}\left(\frac{y^{*} \xi_{T}}{a_{T}}\right)^{-1 / R} H_{t, T}\right] \\
&=-\left(\frac{y^{*} \xi_{t}}{a_{t}}\right)^{-1 / R} \rho\left(\sigma_{t}^{\prime}\right)^{-1} E_{t}\left[\int_{t}^{T} \xi_{t, v}\left(\frac{\xi_{t, v}}{a_{t, v}}\right)^{-1 / R} H_{t, v} d v+\xi_{t, T}\left(\frac{\xi_{t, T}}{a_{t, T}}\right)^{-1 / R} H_{t, T}\right] \\
&=-\left(\frac{y^{*} \xi_{t}}{a_{t}}\right)^{-1 / R} \rho\left(\sigma_{t}^{\prime}\right)^{-1} E_{t}\left[\int_{t}^{T} \xi_{t, v}^{\rho} a_{t, v}^{1 / R} H_{t, v} d v+\xi_{t, T}^{\rho} a_{t, T}^{1 / R} H_{t, T}\right] .
\end{aligned}
$$

- Constant y^{*} eliminated by using wealth

$$
\begin{aligned}
X_{t}^{*} & =E_{t}\left[\int_{t}^{T} \xi_{t, v} v_{v}^{*} d v+\xi_{t, T} X_{T}^{*}\right] \\
& =E_{t}\left[\int_{t}^{T} \xi_{t, v}\left(\frac{y^{*} \xi_{v}}{a_{v}}\right)^{-1 / R} d v+\xi_{t, T}\left(\frac{y^{*} \xi_{T}}{a_{T}}\right)^{-1 / R}\right] \\
& =\left(\frac{y^{*} \xi_{t}}{a_{t}}\right)^{-1 / R} E_{t}\left[\int_{t}^{T} \xi_{t, v}^{\rho} a_{t, v}^{1 / R} d v+\xi_{t, T}^{\rho} a_{t, T}^{1 / R}\right]
\end{aligned}
$$

to deduce

$$
\left(\frac{y^{*} \xi_{t}}{a_{t}}\right)^{-1 / R}=\frac{X_{t}^{*}}{E_{t}\left[\int_{t}^{T} \xi_{t, v}^{\rho} a_{t, v}^{1 / R} d v+\xi_{t, T}^{\rho} a_{t, T}^{1 / R}\right]}
$$

- Properties:
- Portfolio linear in wealth
- Fraction of wealth invested depends on state (r, θ)

3.3 Implementation

- Computation of optimal portfolios:
- Structure of portfolios as conditional expectations suggests Monte Carlo
- Several possibilities for implementation: here method using formula above
- Monte Carlo Malliavin derivatives method - MCMD (DGR (2003))
- Two cases: depending on whether y^{*} is known or not
- Case 1: known multiplier
- Write $X_{t}^{*} \pi_{2 t}^{*}=-\left(\sigma_{t}^{\prime}\right)^{-1} E_{t}\left[G_{t, T}\right]$ where $G_{t, T} \equiv G_{t, T}^{c}+G_{t, T}^{x}$, with

$$
\begin{equation*}
G_{t, s}^{c} \equiv \int_{t}^{s} \xi_{t, v} Z_{1}\left(y^{*} \xi_{v}, v\right) H_{t, v} d v \quad \text { and } \quad G_{t, T}^{x} \equiv \xi_{t, T} Z_{2}\left(y^{*} \xi_{T}, T\right) H_{t, T} . \tag{28}
\end{equation*}
$$

- Write RV in hedges as joint system $V_{t, s} \equiv\left(Y_{s}, D_{t} Y_{s}, K_{t, s}, H_{t, s}, G_{s}^{c}\right)$, where

$$
\begin{gathered}
K_{t, v} \equiv \int_{t}^{v}\left(r_{s}+\frac{1}{2} \theta_{s}^{\prime} \theta_{s}\right) d s+\int_{t}^{v} \theta_{s}^{\prime} d W_{s} \\
H_{t, v}^{\prime} \equiv \int_{t}^{v} \partial r\left(Y_{s}, s\right) \mathcal{D}_{t} Y_{s} d s+\int_{t}^{v} \theta_{s}^{\prime} \partial \theta\left(Y_{s}, s\right) \mathcal{D}_{t} Y_{s} d s+\int_{t}^{v} d W_{s}^{\prime} \cdot \partial \theta\left(Y_{s}, s\right) \mathcal{D}_{t} Y_{s} \\
\xi_{t, v}=\exp \left(-K_{t, v}\right)
\end{gathered}
$$

- By Ito's Lemma

$$
\begin{gather*}
d K_{t, s}=\left(r_{s}+\frac{1}{2} \theta_{s}^{\prime} \theta_{s}\right) d s+\theta_{s}^{\prime} d W_{s} \tag{29}\\
d H_{t, s}^{\prime}=\partial r\left(Y_{s}, s\right) \mathcal{D}_{t} Y_{s} d s+\left(d W_{s}+\theta\left(Y_{s}, s\right) d s\right)^{\prime} \partial \theta\left(Y_{s}, s\right) \mathcal{D}_{t} Y_{s} \tag{30}\\
d G_{t, s}^{c}=\xi_{t, s} Z_{1}\left(y^{*} \xi_{s}, s\right) H_{t, s} d s \tag{31}
\end{gather*}
$$

and $\left(Y_{s}, \mathcal{D}_{t} Y_{s}\right)$ satisfy SDEs

$$
\begin{gather*}
d Y_{t}=\mu^{Y}\left(Y_{t}, t\right) d t+\sigma^{Y}\left(Y_{t}, t\right) d W_{t} \tag{32}\\
d \mathcal{D}_{t} Y_{s}=\left[\partial \mu^{Y}\left(s, Y_{s}\right) d s+\sum_{i=1}^{d} \partial \sigma_{i}^{Y}\left(s, Y_{s}\right) d W_{i s}\right] \mathcal{D}_{t} Y_{s} ; \quad \mathcal{D}_{t} Y_{t}=\sigma^{Y}\left(t, Y_{t}\right) . \tag{33}
\end{gather*}
$$

- Simulate M trajectories of V using (29)-(31), (32)-(33)
- Select discretization scheme (e.g., Euler, Milshtein, ...): N points in $[0, T]$
- Simulate M trajectories of W along discretization. Construct traject. V
- Get M estimates $\left\{V_{t, s}^{N, i}: s \in[t, T]\right\}, i=1, \ldots, M$ of trajectories $\left\{V_{t, s}: s \in[t, T]\right\}$
- From terminal values of simulated proc. construct M estimates of $G_{t, T}$
- Averaging over these M values produces estimate of hedging demand

$$
\widehat{X_{t}^{*} \pi_{2 t}^{*}}=-\left(\sigma_{t}^{\prime}\right)^{-1} \frac{1}{M} \sum_{i=1}^{M} G_{t, T}^{N, i}
$$

- Case 2: y^{*} is unknown. Use two stage procedure:
- Stage 1: calculate y^{*} by simulation-iteration
- Fix candidate multiplier y
- Based on this choice simulate $\left(K_{0, s}, F_{0, s}^{c}\right)$ where $F_{0, s}^{c}=\int_{0}^{s} \xi_{v} I\left(y \xi_{v}, v\right) d v$
- Obtain estimate of cost of consumption by taking average
- If budget constraint fails raise y and repeat. Else reduce y
- Repeat to desired precision
- Stage 2: proceed as described above
- Various schemes can be used to accelerate stage 1 (Newton-Raphson,...)

3.4 Example

- Model:
- One stock and riskless asset
- State variables (r, θ)
- Constant relative risk aversion
- Evolution of opportunity set

$$
\begin{gather*}
d r_{t}=\kappa_{r}\left(\bar{r}-r_{t}\right)\left(1+\phi_{r}\left(\bar{r}-r_{t}\right)^{2 \eta_{r}}\right) d t-\sigma_{r} r_{t}^{\gamma_{r}} d W_{t}, \quad r_{0} \text { given } \tag{34}\\
d \theta_{t}=\left(\kappa_{\theta}\left(\bar{\theta}-\theta_{t}\right)+\mu_{\theta}^{r}\left(r_{t}, \theta_{t}\right)\right) d t+\sigma_{\theta}\left(\theta_{t}\right) d W_{t}, \quad \theta_{0} \text { given, } \tag{35}
\end{gather*}
$$

where W is one dimensional

$$
\begin{align*}
& \mu_{\theta}^{r}\left(r_{t}, \theta_{t}\right) \equiv \delta_{r}\left(\bar{r}-r_{t}\right)\left(\theta_{l}+\theta_{t}\right)\left(1-\left(\frac{\theta_{l}+\theta_{t}}{\theta_{l}+\theta_{u}}\right)\right) \tag{36}\\
& \sigma_{\theta}\left(\theta_{t}\right)=\sigma_{\theta}\left(\theta_{l}+\theta_{t}\right)^{\gamma_{1 \theta}}\left(1-\left(\frac{\theta_{l}+\theta_{t}}{\theta_{l}+\theta_{u}}\right)^{1-\gamma_{1 \theta}}\right)^{\gamma_{2 \theta}} \tag{37}
\end{align*}
$$

- Coefficients
- $\left(\kappa_{r}, \bar{r}, \phi_{r}, \eta_{r}, \sigma_{r}, \gamma_{r}, \kappa_{\theta}, \bar{\theta}, \eta_{\theta}, \sigma_{\theta}, \theta_{l}, \theta_{u}, \gamma_{1 \theta}, \gamma_{2 \theta}\right)$ are constants
$-\left(\kappa_{r}, \bar{r}, \kappa_{\theta}, \theta_{l}, \theta_{u}\right)$ are positive, and $\bar{\theta} \in\left(-\theta_{l}, \theta_{u}\right)$
- Brownian motion W is unidimensional
- Remarks:
- Interest rate process:
- Mean reverting with constant elasticity of variance (NMRCEV), $2 \gamma_{r}$
- Nonlinear speed of mean reversion: $\phi_{r}\left(\bar{r}-r_{t}\right)^{2 \eta_{r}}$
- Market price of risk process:
- Mean reverting with hyperbolic elasticity of variance
- Interest dependence in drift (MRHEVID)
- Elasticity

$$
\varepsilon(x)=-2 \frac{x}{\theta_{l}+x}\left[\gamma_{1 \theta}-\gamma_{2 \theta}\left(1-\gamma_{1 \theta}\right) \frac{\left(\frac{\theta_{l}+x}{\theta_{l}+\theta_{u}}\right)^{1-\gamma_{1 \theta}}}{1-\left(\frac{\theta_{l}+x}{\theta_{l}+\theta_{u}}\right)^{1-\gamma_{1 \theta}}}\right] .
$$

Process stays between bounds

- Malliavin derivatives

$$
\begin{gathered}
d \mathcal{D}_{t} r_{v}=\left(\frac{\partial}{\partial r} \mu^{r}\left(r_{v}\right) d t-\frac{\partial}{\partial r} \sigma^{r}\left(r_{v}\right) d W_{v}\right) \mathcal{D}_{t} r_{v}, \quad \mathcal{D}_{t} r_{t}=\sigma^{r}\left(r_{t}\right) \\
d \mathcal{D}_{t} \theta_{v}=\left(\frac{\partial}{\partial \theta} \mu_{\theta}\left(r_{v}, \theta_{v}\right) d v+\frac{\partial}{\partial \theta} \sigma_{\theta}\left(\theta_{v}\right) d W_{v}\right) \mathcal{D}_{t} \theta_{v}+\frac{\partial}{\partial r} \mu_{\theta}\left(r_{v}, \theta_{v}\right) \mathcal{D}_{t} r_{v} d v ; \quad \mathcal{D}_{t} \theta_{t}=\sigma_{\theta}\left(\theta_{t}\right)
\end{gathered}
$$

- Parameter values (see DGR 2003)
- Implementation: portfolio components - risk aversion and horizon effects

- Dynamic behavior of portfolio components

PART 4: Optimal Portfolio and Bonds

- Alternative decomposition of portfolio
- Unobserved short rate: substitute information in term structure
- Portfolio behavior for long horizons: long run risk factors
- Portfolio and bond pricing models
- Detemple-Rindisbacher (2006)

- Outline

- Forward measure
- Optimal portfolio: utility of terminal wealth
- Optimal portfolio: intermediate consumption
- Diffusion models: implementation
- Deterministic forward density

4.1 Bond pricing and forward measure

- Forward measure:
- Pure discount bond with maturity $T \geq t$ has price: $B_{t}^{T}=E_{t}\left[\xi_{t, T}\right]$
- State price density in bond numeraire

$$
Z_{t, T} \equiv \frac{\xi_{t, T}}{E_{t}\left[\xi_{t, T}\right]}=\frac{\xi_{t, T}}{B_{t}^{T}}
$$

- $Z_{t, T}>0$ and $E_{t}\left[Z_{t, T}\right]=1$
- Use as density of new measure
- Forward T-measure
$-d Q_{t}^{T}=Z_{t, T} d P$
- Equivalent to P
- $Z_{t, T}$ is forward T-density
- Geman (1989), Jamshidian (1989)
- Pricing in bond numeraire
- Claim with payoff Y_{T} has price

$$
V(t)=E_{t}\left[\xi_{t, T} Y_{T}\right]=E_{t}\left[\xi_{t, T}\right] E_{t}\left[\frac{\xi_{t, T}}{E_{t}\left[\xi_{t, T}\right]} Y_{T}\right]=B_{t}^{T} E_{t}^{T}\left[Y_{T}\right]
$$

- $E_{t}^{T}[\cdot] \equiv E_{t}\left[Z_{t, T} \cdot\right]$ is expectation under Q_{t}^{T}
- Price in bond numeraire

$$
\frac{V(t)}{B_{t}^{T}}=E_{t}^{T}\left[Y_{T}\right]=E_{t}\left[Z_{t, T} Y_{T}\right]
$$

- Density $Z_{t, T}$ is stochastic discount factor
- Converting future cash flows into current values measured in bond units
- Theorem 4.1:
- The conditional state price density at time t is $\xi_{t, T}=B_{t}^{T} Z_{t, T}$
- The forward T-density is

$$
\begin{equation*}
Z_{t, T} \equiv \exp \left(\int_{t}^{T} \sigma^{Z}(s, T)^{\prime} d W_{s}-\frac{1}{2} \int_{t}^{T} \sigma^{Z}(s, T)^{\prime} \sigma^{Z}(s, T) d s\right) \tag{38}
\end{equation*}
$$

- Volatility $\sigma^{Z}(s, T) \equiv \sigma^{B}(s, T)-\theta_{s}$
- $\sigma^{B}(s, T)^{\prime} \equiv \mathcal{D}_{s} \log B_{s}^{T}$ is vol. of return on discount bond with maturity T
\bullet Decomposition of SPD: $\xi_{t, T}=B_{t}^{T} Z_{t, T}$. Two parts
- Bond price
- Risk-adjusted SDF: applies to risky cash flows in bond numeraire
- Forward density formula:
- Volatility $-\sigma^{Z}(\cdot, T) \equiv \theta .-\sigma^{B}(\cdot, T)$
- MPR in bond numéraire: forward market price of risk
- Cumulative standard deviation of the growth rate of the forward density

$$
\begin{equation*}
\Sigma(t, T)=\left(\int_{t}^{T} \sigma^{Z}(s, T)^{\prime} \sigma^{Z}(s, T) d s\right)^{1 / 2} . \tag{39}
\end{equation*}
$$

- Measures risk to horizon T, in forward density
- $\Sigma(t, T)$ is forward T-risk or forward risk

4.2 Optimal portfolio and long term bonds

- Theorem 4.2:
- Optimal wealth, for $t \in[0, T]$, is $X_{t}^{*}=B_{t}^{T} E_{t}\left[Z_{t, T} I\left(y^{*} \xi_{t} B_{t}^{T} Z_{t, T}\right)^{+}\right]$.
- Portfolio has decomposition $\pi_{t}^{*}=\pi_{t}^{m}+\pi_{t}^{b}+\pi_{t}^{z}$

$$
\begin{aligned}
& X_{t}^{*} \pi_{t}^{m}=E_{t}^{T}\left[\Gamma_{T}^{*} 1_{\left\{I_{T} \geq 0\right\}}\right] B_{t}^{T}\left(\sigma_{t}^{\prime}\right)^{-1} \theta_{t} \\
& X_{t}^{*} \pi_{t}^{b}=\left(\sigma_{t}^{\prime}\right)^{-1} \sigma^{B}(t, T) E_{t}^{T}\left[\left(X_{T}^{*}-\Gamma_{T}^{*}\right) 1_{\left\{I_{T} \geq 0\right\}}\right] B_{t}^{T} \\
& X_{t}^{*} \pi_{t}^{z}=\left(\sigma_{t}^{\prime}\right)^{-1} E_{t}^{T}\left[\left(X_{T}^{*}-\Gamma_{T}^{*}\right) 1_{\left\{I_{T} \geq 0\right\}} \mathcal{D}_{t} \log \left(Z_{t, T}\right)\right]^{\prime} B_{t}^{T} . \\
& -I_{T} \equiv I\left(y^{*} \xi_{t} B_{t}^{T} Z_{t, T}\right) \\
& -E_{t}^{T}[\cdot] \equiv E_{t}\left[Z_{t, T} \cdot\right] \text { is under forward } T \text {-measure. }
\end{aligned}
$$

$$
-I_{T} \equiv I\left(y^{*} \xi_{t} B_{t}^{T} Z_{t, T}\right)
$$

- Interpretation:
- Mean-variance term π_{t}^{m} : as before
- Long term bond hedge π_{t}^{b} : fluctuations in price of horizon-matching bond
- Forward density hedge π_{t}^{z} : fluctuations in MPR in bond numeraire
- Shift focus from risk relative to short rate to risk relative to LT bond
- Additional remarks:
- Consistent with Preferred Habitat theory
- Modigliani and Sutch
- Investor naturally seeks LT bond with horizon-matching maturity
- Hedges
- First hedge is static hedge (instantaneous fluct. in bond price)
- Forward density hedge is dynamic hedge (fluct. in opportunity set)
- Corollary 4.1: HARA utility function

$$
U(x)=\left\{\begin{array}{ll}
\frac{1}{1-R}(x-A)^{1-R} & \text { if } x \geq A \tag{43}\\
-\infty & \text { if } x<A
\end{array}, \quad R>0, A \gtreqless 0 .\right.
$$

- When $A \geq 0$ optimal asset allocation is $\pi_{t}^{*}=\pi_{t}^{m}+\pi_{t}^{b}+\pi_{t}^{z}$ with

$$
\begin{gathered}
X_{t}^{*} \pi_{t}^{m}=\frac{1}{R}\left(X_{t}^{*}-A B_{t}^{T}\right)\left(\sigma_{t}^{\prime}\right)^{-1} \theta_{t} \\
X_{t}^{*} \pi_{t}^{b}=\left(\rho\left(X_{t}^{*}-A B_{t}^{T}\right)+A B_{t}^{T}\right)\left(\sigma_{t}^{\prime}\right)^{-1} \sigma^{B}(t, T) \\
X_{t}^{*} \pi_{t}^{z}=\rho\left(X_{t}^{*}-A B_{t}^{T}\right)\left(\sigma_{t}^{\prime}\right)^{-1} E_{t}^{T}\left[\frac{Z_{t, T}^{\rho-1}}{E_{t}^{T}\left[Z_{t, T}^{\rho-1}\right]} \mathcal{D}_{t} \log \left(Z_{t, T}\right)\right]^{\prime}
\end{gathered}
$$

where $\rho=1-1 / R$.

- When $A<0$ portfolio components are as in Theorem 4.1 with

$$
X_{T}^{*}=\left(\left(y^{*} \xi_{t} B_{t}^{T} Z_{t, T}\right)^{-1 / R}+A\right)^{+}, \quad \Gamma_{T}^{*}=\frac{1}{R}\left(X_{T}^{*}-A\right)
$$

and $I_{T} \equiv\left(y^{*} \xi_{t} B_{t}^{T} Z_{t, T}\right)^{-1 / R}+A$.

- Power utility $(A=0)$:
- Knife edge property of log (Breeden (1979))
- Logarithmic investor: myopic
- More (less) RA than log holds (shorts) port. with highest correlation with LT bd
- More (less) RA than log holds (shorts) portfolio that hedges $\log \left(Z_{t, T}\right)$
- HARA with $A>0$: subsistence threshold

- Structure:

- MV dem and forward density hedge proport. to excess wealth $X_{t}^{*}-A B_{t}^{T}$
- Bond hedge affine in $X_{t}^{*}-A B_{t}^{T}$ with translation factor $A B_{t}^{T}$
- Explanation:
- Decomposition of wealth:
* Cost of financing threshold $A B_{t}^{T}$
* Excess wealth $X_{t}^{*}-A B$
- Portfolio financing excess wealth is proportional to $X_{t}^{*}-A B_{t}^{T}$
- Portfolio financing cost of threshold is hedging port.; proport. to cost

4.3 Running consumption

- Model:

- Utility of intermediate consumption: $u(\cdot, \cdot): D_{u} \times[0, T] \rightarrow R$
- Strictly increasing, strictly concave, differentiable
- Domain $D_{u}=\left[A_{u}, \infty\right) \subset R$ with A_{u} positive or negative
- Inada: for all $t \in[0, T], \lim _{c \rightarrow \infty} u^{\prime}(c, t)=0, \lim _{c \rightarrow A_{u}} u^{\prime}(c, t)=\infty$
- Utility of terminal wealth $U: D_{U} \rightarrow R$
- Strictly increasing, strictly concave and differentiable
- Domain $D_{U}=\left[A_{U}, \infty\right) \subset R$
- Inada: $\lim _{X \rightarrow \infty} U^{\prime}(X)=0, \lim _{X \rightarrow A_{U}} U^{\prime}(X)=\infty$
- Initial wealth condition: $x>A_{u}^{+}\left(\int_{0}^{T} B_{0}^{v} d v\right)+A_{U}^{+} B_{0}^{T}$
- Theorem 4.3:
- Optimal consumption-bequest: $c_{v}^{*}=I^{u}\left(y^{*} \xi_{t} B_{t}^{v} Z_{t, v}, v\right)^{+}$and $X_{T}^{*}=I^{U}\left(y^{*} \xi_{t} B_{t}^{T} Z_{t, T}\right)^{+}$
- Intermediate wealth satisfies

$$
X_{t}^{*}=\int_{t}^{T} B_{t}^{v} E_{t}^{v}\left[c_{v}^{*}\right] d v+B_{t}^{T} E_{t}^{T}\left[X_{T}^{*}\right]
$$

- Let $I_{v}^{u} \equiv I^{u}\left(y^{*} \xi_{t} B_{t}^{v} Z_{t, v}, v\right)$ and $I_{T}^{U} \equiv I\left(y^{*} \xi_{t} B_{t}^{T} Z_{t, T}\right)$
- Optimal portfolio has decomposition $\pi_{t}^{*}=\pi_{t}^{m}+\pi_{t}^{b}+\pi_{t}^{z}$ with

$$
\begin{gathered}
X_{t}^{*} \pi_{t}^{m}=\left(\int_{t}^{T} E_{t}^{v}\left[\Gamma_{v}^{*} 1_{\left\{I_{v}^{u} \geq 0\right\}}\right] B_{t}^{v} d v+E_{t}^{T}\left[\Gamma_{T}^{*} 1_{\left\{I_{T}^{U} \geq 0\right\}}\right] B_{t}^{T}\right)\left(\sigma_{t}^{\prime}\right)^{-1} \theta_{t} \\
X_{t}^{*} \pi_{t}^{b}=\left(\sigma_{t}^{\prime}\right)^{-1}\left(\int_{t}^{T} \sigma^{B}(t, v) B_{t}^{v} E_{t}^{v}\left[\left(c_{v}^{*}-\Gamma_{v}^{*}\right) 1_{\left\{\left\{t_{v}^{u} \geq 0\right\}\right.}\right] d v+\sigma^{B}(t, T) B_{t}^{T} E_{t}^{T}\left[\left(X_{T}^{*}-\Gamma_{T}^{*}\right) 1_{\left\{I_{T}^{U} \geq 0\right\}}\right]\right) \\
X_{t}^{*} \pi_{t}^{z}=\left(\sigma_{t}^{\prime}\right)^{-1}\left(\int_{t}^{T} E_{t}^{v}\left[\left(c_{v}^{*}-\Gamma_{v}^{*}\right) 1_{\left\{I_{v}^{u} \geq 0\right\}} \mathcal{D}_{t} \log Z_{t, v}\right] B_{t}^{v} d v+E_{t}^{T}\left[\left(X_{T}^{*}-\Gamma_{T}^{*}\right) 1_{\left\{I_{T}^{U} \geq 0\right\}} \mathcal{D}_{t} \log Z_{t, T}\right] B_{t}^{T}\right)
\end{gathered}
$$

- $Z_{t, v}$ is density of forward v-measure
* Volatility $\sigma^{Z}(s, v) \equiv \sigma^{B}(s, v)-\theta_{s}$
* $\sigma^{B}(s, v)^{\prime} \equiv \mathcal{D}_{s} \log B_{s}^{v}$ is bond return volatility
- $E_{t}^{v}[\cdot] \equiv E_{t}\left[Z_{t, v} \cdot\right]$ is under forward v-measure, $v \in[t, T]$.

- Interpretation:

- Mean-variance term, bond hedge, forward density hedge
- Bond hedge:
- Coupon-paying bond
* Coupon $C(v) \equiv E_{t}^{v}\left[\left(c_{v}^{*}-\Gamma_{v}^{*}\right) 1_{\left\{I_{v}^{u} \geq 0\right\}}\right]$ at $v \in[0, T)$
* Bullet payment $F \equiv E_{t}^{T}\left[\left(X_{T}^{*}-\Gamma_{T}^{*}\right) 1_{\left\{I_{T}^{U} \geq 0\right\}}\right]$ at T
- Coupon bond price

$$
B_{t}^{T}(C, F) \equiv \int_{t}^{T} B_{t}^{v} C(v) d v+B_{t}^{T} F
$$

- Instantaneous coupon bond volatility (taking coupon as given)

$$
\sigma\left(B_{t}^{T}(C, F)\right) B_{t}^{T}(C, F)=\int_{t}^{T} \sigma^{B}(t, v) B_{t}^{v} C(v) d v+\sigma^{B}(t, T) B_{t}^{T} F
$$

- Hedge is positive if $c_{v}^{*}-\Gamma_{v}^{*} \geq 0$ for $v \in[0, T)$ and $X_{T}^{*}-\Gamma_{T}^{*} \geq 0$
- Corollary 4.2: HARA utilities with A_{u}, R_{u} for $u(c, t)$ and A_{U}, R_{U} for $U(x)$
- Assume $x \geq A_{u}^{+} \int_{0}^{T} B_{0}^{v} d v+A_{U}^{+} B_{0}^{T}$
- Portfolio components given by formulas in Theorem 4.3 with

$$
\begin{gathered}
c_{v}^{*}=\left(\left(y^{*} \xi_{t}\right)^{-1 / R_{u}}\left(B_{t}^{v} Z_{t, v}\right)^{-1 / R_{u}}+A_{u}\right)^{+}, \quad X_{T}^{*}=\left(\left(y^{*} \xi_{t}\right)^{-1 / R_{U}}\left(B_{t}^{T} Z_{t, T}\right)^{-1 / R_{U}}+A_{U}\right)^{+} \\
I_{v}^{u} \equiv\left(y^{*} \xi_{t}\right)^{-1 / R_{u}}\left(B_{t}^{v} Z_{t, v}\right)^{-1 / R_{u}}+A_{u} \quad \text { and } \quad I_{T}^{U} \equiv\left(y^{*} \xi_{t}\right)^{-1 / R_{U}}\left(B_{t}^{T} Z_{t, T}\right)^{-1 / R_{U}}+A_{U} .
\end{gathered}
$$

- When $A_{u}, A_{U} \geq 0$ portfolio components take the form

$$
\begin{gathered}
X_{t}^{*} \pi_{t}^{m}=\left(\frac{1}{R_{u}}\left(\int_{t}^{T}\left(\Pi_{t}^{v}-A_{u}\right) B_{t}^{v} d v\right)+\frac{1}{R_{U}}\left(\Pi_{t}^{T}-A_{U}\right) B_{t}^{T}\right)\left(\sigma_{t}^{\prime}\right)^{-1} \theta_{t} \\
X_{t}^{*} \pi_{t}^{b}=\left(\sigma_{t}^{\prime}\right)^{-1}\left(\int_{t}^{T} \sigma^{B}(t, v) B_{t}^{v}\left(\rho_{u} \Pi_{t}^{v}+\frac{1}{R_{u}} A_{u}\right) d v+\sigma^{B}(t, T) B_{t}^{T}\left(\rho_{U} \Pi_{t}^{T}+\frac{1}{R_{U}} A_{U}\right)\right) \\
X_{t}^{*} \pi_{t}^{z}=\left(\sigma_{t}^{\prime}\right)^{-1}\left(\rho_{u} \int_{t}^{T} E_{t}^{v}\left[c_{v}^{*} \mathcal{D}_{t} \log Z_{t, v}\right] B_{t}^{v} d v+\rho_{U} E_{t}^{T}\left[X_{T}^{*} \mathcal{D}_{t} \log Z_{t, T}\right] B_{t}^{T}\right)^{\prime} \\
* \Pi_{t}^{v}=E_{t}^{v}\left[c_{v}^{*}\right] \text { is date } t \text { cost in bond numéraire of date } v \text { consumption } \\
* \Pi_{t}^{T}=E_{t}^{T}\left[X_{T}^{*}\right] \text { is date } t \text { cost in bond numéraire of terminal wealth } \\
* \rho_{u}=1-1 / R_{u}, \rho_{U}=1-1 / R_{U} .
\end{gathered}
$$

- Coupon bond hedge:
- Coupon $C(v)=\rho_{u} \Pi_{t}^{v}+\frac{A_{u}}{R_{u}}$: affine in cost of date v consumption in bd numéraire
- Bullet payt $F=\rho_{U} \Pi_{t}^{T}+\frac{A_{U}}{R_{U}}$: affine in cost of terminal wealth in bd numéraire
- Can have positive coupon hedge $\rho_{u} \Pi_{t}^{v}+\frac{A_{u}}{R_{u}} \&$ negative bullet hedge $\rho_{U} \Pi_{t}^{T}+\frac{A_{U}}{R_{U}}$

4.4 Diffusion models - implementation

- Model:
- Utility of terminal wealth (no intermediate consumption)
- Diffusion model:
- Vector of state variables Y
- Evolution of $\zeta_{t}^{\prime} \equiv\left(\sigma^{Z}(t, T)^{\prime}, Y_{t}^{\prime}\right)$

$$
\left\{\begin{array}{l}
d \sigma^{Z}(t, T)=\Phi\left(\zeta_{t}, t\right) d t+\Lambda\left(\zeta_{t}, t\right) d W_{t} \tag{44}\\
d Y_{t}=\mu^{Y}\left(Y_{t}, t\right) d t+\sigma^{Y}\left(Y_{t}, t\right) d W_{t}
\end{array}\right.
$$

with initial conditions $\sigma^{Z}(0, T)$ and Y_{0}

- Functions $\Phi(\cdot, \cdot), \Lambda(\cdot, \cdot), \mu^{Y}(\cdot, \cdot), \sigma^{Y}(\cdot, \cdot)$ are continuously differentiable
- Theorem 4.5: (utility of terminal wealth)
- Malliavin derivative of \log forward density

$$
\begin{equation*}
\mathcal{D}_{t} \log Z_{t, T}=\int_{t}^{T}\left(d W_{s}^{T}\right)^{\prime} \mathcal{D}_{t} \sigma^{Z}(s, T) \tag{45}
\end{equation*}
$$

where $\left(\mathcal{D}_{t} \sigma^{Z}(s, T), \mathcal{D}_{t} Y_{s}\right)$ satisfies linear SDE

$$
\left\{\begin{array}{l}
d\left(\mathcal{D}_{t} \sigma^{Z}(s, T)\right)=\left(A_{1}^{Z} d s+\sum_{j=1}^{d} \partial_{1} \Lambda_{j} d W_{j s}^{T}\right) \mathcal{D}_{t} \sigma^{Z}(s, T)+\left(A_{2}^{Z} d s+\sum_{j=1}^{d} \partial_{2} \Lambda_{j} d W_{j s}^{T}\right) \mathcal{D}_{t} Y_{s} \tag{46}\\
d\left(\mathcal{D}_{t} Y_{s}\right)=\left(A^{Y} d s+\sum_{j=1}^{d} \partial \sigma_{j}^{Y} d W_{j s}^{T}\right) \mathcal{D}_{t} Y_{s}
\end{array}\right.
$$

- Coefficients

$$
A_{1}^{Z} \equiv \partial_{1} \Phi+\sum_{j=1}^{d} \partial_{1} \Lambda_{j} \sigma_{j}^{Z}, \quad A_{2}^{Z} \equiv \partial_{2} \Phi+\sum_{j=1}^{d} \partial_{2} \Lambda_{j} \sigma_{j}^{Z}, \quad A^{Y} \equiv \partial \mu^{Y}+\sum_{j=1}^{d} \sigma_{j}^{Z} \partial \sigma_{j}^{Y}
$$

$-\partial_{i} \Phi, \partial_{i} \Lambda$ are gradients with respect to $i^{\text {th }}$ component of vector ζ in Φ, Λ

- Forward density

$$
\begin{equation*}
Z_{t, T} \equiv \exp \left(\int_{t}^{T} \sigma^{Z}(s, T)^{\prime} d W_{s}^{T}+\frac{1}{2} \int_{t}^{T} \sigma^{Z}(s, T)^{\prime} \sigma^{Z}(s, T) d s\right) \tag{47}
\end{equation*}
$$

under bond numéraire, where $\left(\sigma^{Z}(t, T), Y_{t}\right)$ satisfies

$$
\left\{\begin{array}{l}
d \sigma^{Z}(t, T)=\left(\Phi\left(\zeta_{t}, t\right)+\Lambda\left(\zeta_{t}, t\right) \sigma^{Z}(t, T)\right) d t+\Lambda\left(\zeta_{t}, t\right) d W_{t}^{T} \tag{48}\\
d Y_{t}=\left(\mu^{Y}\left(Y_{t}, t\right)+\sigma^{Y}\left(Y_{t}, t\right) \sigma^{Z}(t, T)\right) d t+\sigma^{Y}\left(Y_{t}, t\right) d W_{t}^{T}
\end{array}\right.
$$

- Computation:

- Simulate relevant processes directly under forward measure
- Compute expectations by averaging over simulated values

4.5 Deterministic forward density volatility

- Assumption
- Forward density volatility $\sigma^{Z}(t, T)$ is a (nonstochastic) function of time
- Forward risk $\Sigma(t, T)$ is deterministic
- Corollary 4.3: (deterministic forward density vol)
- Optimal wealth

$$
\begin{gather*}
\frac{X_{t}^{*}}{B_{t}^{T}}=\int_{-\infty}^{d\left(U^{\prime}(0 \vee A), y^{*} \xi_{t} B_{t}^{T}\right)} I\left(y^{*} \xi_{t} B_{t}^{T} e^{\frac{1}{2} \Sigma(t, T)^{2}+\Sigma(t, T) z}\right) n(z) d z \equiv \chi\left(y^{*} \xi_{t} B_{t}^{T}\right) \tag{4}\\
d\left(U^{\prime}(0 \vee A), y^{*} \xi_{t} B_{t}^{T}\right) \equiv \frac{1}{\Sigma(t, T)}\left(\log \frac{U^{\prime}(0 \vee A)}{y^{*} \xi_{t} B_{t}^{T}}-\frac{1}{2} \Sigma(t, T)^{2}\right) \tag{50}
\end{gather*}
$$

- $\chi\left(y^{*} \xi_{t} B_{t}^{T}\right)$ is optimal wealth in bond numéraire
$-n(z)$ is standard normal density
- Inverting $\chi(\cdot)$ in (49) gives $y^{*} \xi_{t} B_{t}^{T}=\chi^{-1}\left(X_{t}^{*} / B_{t}^{T}\right)$
- Portfolio

$$
\begin{gather*}
X_{t}^{*} \pi_{t}^{m}=B_{t}^{T} K\left(\frac{X_{t}^{*}}{B_{t}^{T}}, \Sigma(t, T)\right)\left(\sigma_{t}^{\prime}\right)^{-1} \theta_{t} \tag{51}\\
X_{t}^{*} \pi_{t}^{b}=\left(\sigma_{t}^{\prime}\right)^{-1} \sigma^{B}(t, T)\left(X_{t}^{*}-B_{t}^{T} K\left(\frac{X_{t}^{*}}{B_{t}^{T}}, \Sigma(t, T)\right)\right) \tag{52}\\
X_{t}^{*} \pi_{t}^{z}=0 \tag{53}
\end{gather*}
$$

$-K(\cdot, \cdot) \equiv E_{t}^{T}\left[\Gamma_{T}^{*} 1_{\left\{I_{T} \geq 0\right\}}\right]:$ cost of optimal risk tol. in bd numéraire

$$
\begin{equation*}
K\left(\frac{X_{t}^{*}}{B_{t}^{T}}, \Sigma(t, T)\right)=\int_{-\infty}^{d\left(U^{\prime}(0 \vee A), \chi^{-1}\left(\frac{X_{t}^{*}}{B_{t}^{T}}\right)\right)} \Gamma\left(I\left(\chi^{-1}\left(\frac{X_{t}^{*}}{B_{t}^{T}}\right) e^{\frac{1}{2} \Sigma(t, T)^{2}+\Sigma(t, T) z}\right)\right) n(z) d z \tag{54}
\end{equation*}
$$

HARA: $U^{\prime}(0 \vee A)=(-A \vee 0)^{-R}$ and

$$
\begin{align*}
& \chi\left(y^{*} \xi_{t} B_{t}^{T}\right)=\left(y^{*} \xi_{t} B_{t}^{T}\right)^{-1 / R} e^{-\frac{1}{R} \rho \frac{1}{2} \Sigma(t, T)^{2}} N\left(d\left((-A \vee 0)^{-R}, y^{*} \xi_{t} B_{t}^{T}\right)+\frac{1}{R} \Sigma(t, T)\right) \\
&+A N\left(d\left((-A \vee 0)^{-R}, y^{*} \xi_{t} B_{t}^{T}\right)\right) \tag{55}\\
& K\left(\frac{X_{t}^{*}}{B_{t}^{T}}, \Sigma(t, T)\right)=\frac{1}{R}\left(\frac{X_{t}^{*}}{B_{t}^{T}}-A N\left(d\left((-A \vee 0)^{-R}, \chi^{-1}\left(\frac{X_{t}^{*}}{B_{t}^{T}}\right)\right)\right)\right) \tag{56}
\end{align*}
$$

- $N(\cdot)$: cumulative normal distribution function
- Remarks:
- Forward market price of risk deterministic:
- No reason to hedge
- Forward density hedge null
- Components
- Expressed in terms of optimal wealth and model coefficients
- Truncated integrals of risk tolerance w.r.t. to normal random variate
- HARA utility
- Risk tolerance affine in terminal wealth over domain where it is positive
- Optimal wealth \& port. components involve cumulative normal distrib.
- Nonlinear wealth effects in portfolio components
- Proposition 4.1: (wealth effects)
- Derivative of cost of optimal risk tolerance $K(\cdot, \Sigma(t, T))$ w.r.t. X_{t}^{*} / B_{t}^{T}

$$
K_{1}\left(\frac{X_{t}^{*}}{B_{t}^{T}}, \Sigma(t, T)\right)=\frac{\int_{-\infty}^{d(\cdot)} \Gamma^{\prime}(\cdot) \Gamma(\cdot) n(z) d z+\Gamma(0 \vee A) n(d(\cdot)) \frac{1}{\Sigma(t, T)}}{K\left(\frac{X_{t}^{*}}{B_{t}^{T}}, \Sigma(t, T)\right)+(0 \vee A) n(d(\cdot)) \frac{1}{\Sigma(t, T)}}
$$

- $\Gamma^{\prime}(\cdot), \Gamma(\cdot)$ evaluated at $I\left(\chi^{-1}\left(X_{t}^{*} / B_{t}^{T}\right) e^{\frac{1}{2} \Sigma(t, T)^{2}+\Sigma(t, T) z}\right)$
$-d(\cdot) \equiv d\left(U^{\prime}(0 \vee A), \chi^{-1}\left(X_{t}^{*} / B_{t}^{T}\right)\right)$
- Impact of wealth on portfolio share components

$$
\begin{gathered}
\frac{\partial \pi_{t}^{m}}{\partial X_{t}^{*}} \gtreqless 0 \Longleftrightarrow\left(K_{1}\left(\frac{X_{t}^{*}}{B_{t}^{T}}, \Sigma(t, T)\right) \frac{X_{t}^{*}}{B_{t}^{T}}-K\left(\frac{X_{t}^{*}}{B_{t}^{T}}, \Sigma(t, T)\right)\right)\left(\sigma_{t}^{\prime}\right)^{-1} \theta_{t} \gtreqless 0 \\
\frac{\partial \pi_{t}^{b}}{\partial X_{t}^{*}} \gtreqless 0 \Longleftrightarrow-\left(\sigma_{t}^{\prime}\right)^{-1} \sigma^{B}(t, T)\left(K_{1}\left(\frac{X_{t}^{*}}{B_{t}^{T}}, \Sigma(t, T)\right) \frac{X_{t}^{*}}{B_{t}^{T}}-K\left(\frac{X_{t}^{*}}{B_{t}^{T}}, \Sigma(t, T)\right)\right) \gtreqless 0 .
\end{gathered}
$$

- Under the assumptions:
- Absolute risk tol. is decreasing function $\left(\Gamma^{\prime}(X)<0\right)$
- Relative risk tol. is increasing function $\left((\Gamma(X) / X)^{\prime}>0\right)$
- MV share π_{t}^{m} decreases with wealth when $\left(\sigma_{t}^{\prime}\right)^{-1} \theta_{t}>0$
- Bond hedge share increases with wealth when $\left(\sigma_{t}^{\prime}\right)^{-1} \sigma^{B}(t, T)>0$
- Arrow (1965): reasonable model for behavior
- Decreasing absolute risk tolerance
- Increasing relative risk tolerance
- In particular, if equities and bond with horizon-matching maturity marketed
- $\left(\sigma_{t} \sigma_{t}^{\prime}\right)^{-1} \sigma_{t} \sigma^{B}(t, T)=[0,1]^{\prime}$
- Equity and bond shares

$$
\begin{gather*}
\pi_{t}^{S}=\frac{K\left(X_{t}^{*} / B_{t}^{T}, \Sigma(t, T)\right)}{X_{t}^{*} / B_{t}^{T}} m_{t}^{S} \tag{57}\\
\pi_{t}^{B}=\frac{K\left(X_{t}^{*} / B_{t}^{T}, \Sigma(t, T)\right)}{X_{t}^{*} / B_{t}^{T}} m_{t}^{B}+\left(1-\frac{K\left(X_{t}^{*} / B_{t}^{T}, \Sigma(t, T)\right)}{X_{t}^{*} / B_{t}^{T}}\right) \tag{58}
\end{gather*}
$$

with

$$
\left(\sigma_{t}^{\prime}\right)^{-1} \theta_{t} \equiv\left[\begin{array}{c}
m_{t}^{S} \\
m_{t}^{B}
\end{array}\right]
$$

- Bond held for diversification and hedging
- Equities held exclusively for diversification
- When wealth increases:
- MV part of bond share decreases while hedge part increases (if $m_{t}^{B}>0$)
- Bond increasingly held for hedging; diversification motive weakens
- Bonds-to-equities ratio $\pi_{t}^{B} / \pi_{t}^{S}$ increases
- Perspective:
- Flight-to-safety: substitution from stocks to bds during downturns or after losses
- Analysis shows flight-to-safety depends on risk attitudes
- Under conditions stated wealth reductions imply decrease in BTE
- Substitution away from bonds and into stocks!
- Conventional wisdom inconsistent with Arrow's "reasonable" behavioral postulates
- Proposition 4.2: (forward risk effects)
- Derivative of $K\left(X_{t}^{*} / B_{t}^{T}, \cdot\right)$ wrt forward T-risk Σ has two parts $\left(K_{2}=K_{21}+K_{22}\right)$

$$
\begin{aligned}
K_{21} & =-\left(\int_{-\infty}^{d(\cdot)} \Gamma^{\prime}(\cdot) \Gamma(\cdot)(\Sigma(t, T)+z) n(z) d z+\Gamma(0 \vee A) n(d(\cdot))\left(\frac{d(\cdot)}{\Sigma(t, T)}+1\right)\right) \\
K_{22} & =-K_{1} \times\left(\int_{-\infty}^{d(\cdot)} \Gamma(\cdot)(\Sigma(t, T)+z) n(z) d z+(0 \vee A) n(d(\cdot))\left(\frac{d(\cdot)}{\Sigma(t, T)}+1\right)\right)
\end{aligned}
$$

- K_{21} is direct impact of $\Sigma(t, T)$ keeping $\chi^{-1}\left(X_{t}^{*} / B_{t}^{T}\right)$ fixed
- K_{22} is indirect effect through $\chi^{-1}\left(X_{t}^{*} / B_{t}^{T}\right)$
- Impact of forward risk on portfolio share components

$$
\begin{gathered}
\frac{\partial\left(\pi_{t}^{m} / X_{t}^{*}\right)}{\partial \Sigma(t, T)} \gtreqless 0 \Longleftrightarrow\left(K_{21}+K_{22}\right)\left(\sigma_{t}^{\prime}\right)^{-1} \theta_{t} \gtreqless 0 \\
\frac{\partial\left(\pi_{t}^{b} / X_{t}^{*}\right)}{\partial \Sigma(t, T)} \gtreqless 0 \Longleftrightarrow-\left(\sigma_{t}^{\prime}\right)^{-1} \sigma^{B}(t, T)\left(K_{21}+K_{22}\right) \gtreqless 0 .
\end{gathered}
$$

- Impact of investment horizon on portfolio share components:
* Keeping wealth in bond numéraire X_{t}^{*} / B_{t}^{T} fixed
* Identical to impact of forward risk
- Intuition: Investor averse to long run risk should shy away from risky long-lived assets when forward risk increases
- Aversion to forward T-risk
- Negative impact of $\Sigma(t, T)$ on cost of optimal risk tolerance
$-K_{2}=K_{21}+K_{22}<0$
- When $K_{2}<0$
- Diversification part of port. shares decreases if $\left(\sigma_{t}^{\prime}\right)^{-1} \theta_{t}>0$: risk reduction
- Static hedge part of port. shares increases if $\left(\sigma_{t}^{\prime}\right)^{-1} \sigma^{B}>0$: enhanced protection
- Bond versus equity choice:
- Assume $\left(\sigma_{t}^{\prime}\right)^{-1} \theta_{t}=\left[m_{t}^{S}, m_{t}^{B}\right]^{\prime}>0$ and $K_{2}<0$
- If long run risk increases:
- Investor reduces fraction of wealth allocated to equities
- Increases (reduces) share in the bond if $m_{t}^{B}<1$ (if $m_{t}^{B}>1$)
- Unambiguously increases BTE ratio
- Aging effects (horizon effects):
- As horizon increases (age decreases) forward risk increases
- Suppose wealth in bond numéraire held constant. Horizon effects are then same as forward risk effects
- Standard advice:
- Increase BTE when individuals age
- Perception that "stocks are for the long run"
* Siegel (1998)
* Large magnitude of long horizon Sharpe ratios for stocks wrt bds
- Analysis above shows optimal behavior critically depends on preferences
- Investors averse to forward T-risk will actually increase their BTE in response to increase in risk induced by longer horizon
- Younger investors of this sort will find it optimal to tilt their risky allocation toward bonds, not toward equities as recommended

PART 5: Applications

- Questions of interest:
- Extreme risk aversion:
- Impact on portfolio
- Preferences for risky assets (stocks and bonds)
- Long run portfolios
- Investors caring about distant horizons (pension plans, institutions,...)
- How to invest?

5.1 Extreme risk aversion

- Extreme risk aversion:
- Absolute risk aversion goes to infinity
- Absolute risk tolerance goes to zero
- $\left(\Gamma_{u}(z, v), \Gamma_{U}(z)\right) \rightarrow(0,0)$ for all $z \in D$ and all $v \in[0, T]$
- Extreme behavior can take various forms:
- More intense in certain maturity ranges
- Consumption \& bequest preferences provide natural classification of behavior
- Behavior of ratio: $\Gamma_{u}\left(z_{1}, v\right) / \Gamma_{U}\left(z_{2}\right)$

- Proposition 5.1:

- Assume risk tolerance measures vanish
- $\left(\Gamma_{u}(z, v), \Gamma_{U}(z)\right) \rightarrow(0,0)$ for all $z \in D$ and all $v \in[0, T]$
- Ratios of risk tolerance measures

$$
\begin{gathered}
\frac{\Gamma_{u}\left(z_{1}, v\right)}{\Gamma_{U}\left(z_{2}\right)} \rightarrow k \quad \text { for all } z_{1}, z_{2} \in \mathbb{D} \text { and all } v \in[0, T] \\
\frac{\Gamma_{u}\left(z_{1}, v_{1}\right)}{\Gamma_{u}\left(z_{2}, v_{2}\right)} \rightarrow 1 \text { for all } z_{1}, z_{2} \in \mathbb{D} \text { and all } v_{1}, v_{2} \in[0, T]
\end{gathered}
$$

* for some constant $k \in[0,+\infty)$
- Optimal allocation in the limit:
- Coupon-paying bond with constant coupon C and face value F

$$
C=\frac{x}{\int_{0}^{T} B_{0}^{v} d v+B_{0}^{T} / k} \quad \text { and } \quad F=\frac{x}{\int_{0}^{T} B_{0}^{v} d v k+B_{0}^{T}} .
$$

- If $k=0$ exclusive preference for pure discount bd: $(C, F)=\left(0, x / B_{0}^{T}\right)$
- If $k \rightarrow \infty$ preference for a pure coupon bond: $(C, F)=\left(x / \int_{0}^{T} B_{0}^{v} d v, 0\right)$
- Limit habitat preferences are striking
- Natural conjecture: more extreme RA determines preferred instrument
- Reverse holds
- Least extreme drives habitat
- More weight on maturities where risk tolerance greater

- Reason:

- When absolute risk tolerances vanish investor seeks perfect smoothing
- Preference for certainty: constant consumption and terminal wealth
- With vNM preferences:
- Vanishing risk tolerance implies vanishing elasticity of intertemp. substit.
- Limit preferences, in (C, F) plane, induce Leontief indifference curves
- Engle curves:
* Relate demand for C, F to income
* Keeping prices B_{t}^{T} and $\int_{t}^{T} B_{t}^{v} d v$ constant
* Slope k
- If k is finite solution is interior as both income elast of $C \& F$ are finite

- If $k=0$ Engle curves horizontal; income elast of consumption fct. null

- If $k \rightarrow \infty$ Engle curves vertical; income elast. of bequest fct. null

- Income elasticity behavior explains choice of preferred habitat

- Remark:

- Wachter (2003) special case with utility over bequest and Ito prices
- Finds preferred habitat when relative RA goes to infinity: pure discount bd

5.2 Portfolio turnpike theorems: asymptotic portfolios

- Market:
- Preferences: vNM with utility over terminal wealth
- Financial market: equities, long term bonds and money market account

$$
\left[\begin{array}{c}
d S_{t} / S_{t} \\
d B_{t}^{T} / B_{t}^{T}
\end{array}\right]=\left[\begin{array}{c}
\mu_{t}^{S}-\delta_{t} \\
\mu_{t}^{B}
\end{array}\right] d t+\left[\begin{array}{cc}
\sigma_{t}^{S} & 0 \\
\sigma^{B}(t, T) \varrho(t, T) & \sigma^{B}(t, T) \sqrt{1-\varrho(t, T)^{2}}
\end{array}\right]\left[\begin{array}{l}
d W_{1 t} \\
d W_{2 t}
\end{array}\right]
$$

- $\sigma^{B}(t, T)$ instantaneous bond return volatility
- $\varrho(t, T)$ instantaneous correlation between bond and equities return
- Proposition 5.1: (Gaussian bond return models)
- Deterministic forward market price of risk $-\sigma^{Z}(t, T)$
- Limits

$$
\begin{gather*}
\lim _{T \uparrow \infty} B_{t}^{T}=0,(P-\text { a.s. }) \quad(\text { normal market }) \tag{59}\\
\lim _{T \uparrow \infty} \varrho(t, T)=\varrho^{L}(t) \in(-1,1) \tag{60}\\
\lim _{T \uparrow \infty} \sigma^{B}(t, T)=\sigma^{B, L}(t) \in[-\infty,+\infty] \tag{61}
\end{gather*}
$$

(where $\varrho^{L}(t), \sigma^{B, L}(t)$ are deterministic)

- If positive part of inverse marginal utility has MD (i.e., $I\left(y^{*} \xi_{T}\right)^{+} \in D^{1,2}$) and marginal utility U^{\prime} varies regularly at infinity with exponent $-R^{L}$, i.e.,

$$
\lim _{x \uparrow \infty} \frac{U^{\prime}(a x)}{U^{\prime}(x)}=a^{-R^{L}}, \quad \text { for all } a>0
$$

then long run optimal portfolio is given by

$$
\begin{gathered}
\left(\frac{\pi_{t}^{S}}{X_{t}^{*}}\right)_{L} \equiv \lim _{T \rightarrow \infty} \frac{\pi_{t}^{S}}{X_{t}^{*}}=\frac{1}{R^{L}}\left(\frac{\theta_{1 t}}{\sigma_{t}^{S}}-\gamma^{L}(t) \frac{\theta_{2 t}}{\sigma_{t}^{S}}\right) \\
\left(\frac{\pi_{t}^{B}}{X_{t}^{*}}\right)_{L} \equiv \lim _{T \uparrow \infty} \frac{\pi_{t}^{B}}{X_{t}^{*}}= \begin{cases}\operatorname{sign}\left(\theta_{2 t}\right) \times \infty & \text { if } \sigma^{B, L}(t)=0 \\
1-\frac{1}{R^{L}} & \text { i草,L}(t) \mid=+\infty \\
\frac{1}{R^{L}}\left(\frac{\theta_{2 t}}{\sigma^{B, L}(t) \sqrt{1-\rho^{L}(t)}}\right)+1-\frac{1}{R^{L}} & \text { otherwise }\end{cases}
\end{gathered}
$$

where $\gamma^{L}(t) \equiv \varrho^{L}(t) / \sqrt{1-\varrho^{L}(t)^{2}}$. The long run bond-to-equities ratio is

$$
e_{t}^{L} \equiv \frac{\left(\frac{\pi_{t}^{B}}{X_{t}^{*}}\right)_{L}}{\left(\frac{\pi T_{t}^{S}}{X_{t}^{*}}\right)_{L}}= \begin{cases}\operatorname{sign}\left(\frac{\theta_{2 t}}{\sigma_{t}^{t}}\right) \times \operatorname{sign}\left(\theta_{1 t}-\gamma^{L}(t) \theta_{2 t}\right) \times \infty & \text { if } \sigma^{B, L}(t)=0 \\ \left(R^{L}-1\right)\left(\frac{\theta_{1}}{\sigma_{t}^{t}}-\gamma^{L}(t) \frac{\theta_{2 t}}{\sigma_{t}^{t}}\right)^{-1} & \text { if }\left|\sigma^{B, L}(t)\right|=+\infty \\ \sigma_{t}^{S}\left(\frac{\theta_{2 t}}{\sigma^{B, L}(t) \sqrt{1-e^{L}(t)^{2}}}+R^{L}-1\right)\left(\theta_{1 t}-\gamma^{L}(t) \theta_{2 t}\right)^{-1} & \text { otherwise }\end{cases}
$$

- Assumptions: markets
- Condition (59): normal market - Dybvig, Rogers and Back (1999)
- Condition (60): markets are complete and non-degenerate in the limit
- Condition (61): limit of bond volatilities exists, but may take infinite values
- Assumptions: preferences
- Regularly varying marginal util. behaves like CRRA as wealth becomes large
- HARA utility: regular variation with coefficient $-R$ at infinity

$$
\begin{gathered}
U(x)=\frac{1}{1-R}(x-A)^{1-R}, \quad U^{\prime}(x)=(x-A)^{-R}, \quad A>0 \\
\lim _{x \uparrow \infty} \frac{U^{\prime}(a x)}{U^{\prime}(x)}=\lim _{x \uparrow \infty} \frac{(a x-A)^{-R}}{(x-A)^{-R}}=a^{-R}, \quad \text { for all } a>0
\end{gathered}
$$

- Mixtures of power utilities: regular variation with exponent $-R_{1}$ at infiniti

$$
\begin{gathered}
U(x)=\sum_{k=1}^{K} \frac{1}{1-R_{k}} x^{1-R_{k}}, \quad U^{\prime}(x)=\sum_{k=1}^{K} x^{-R_{k}}, \quad 0<R_{1}<\ldots<R_{K} \\
\lim _{x \uparrow \infty} \frac{U^{\prime}(a x)}{U^{\prime}(x)}=\lim _{x \uparrow \infty} \frac{\sum_{k=1}^{K}(a x)^{-R_{k}}}{\sum_{k=1}^{K} x^{-R_{k}}}=a^{-R_{1}}, \quad \text { for all } a>0
\end{gathered}
$$

- Mixtures of HARA: regular variation with exponent $-R_{1}$

$$
U(x)=\sum_{k=1}^{K} \frac{1}{1-R_{k}}\left(x-A_{k}\right)^{1-R_{k}}, \quad U^{\prime}(x)=\sum_{k=1}^{K}\left(x-A_{k}\right)^{-R_{k}}, \quad 0<R_{1}<\ldots<R_{K}
$$

with $A_{k}>0, k=1, \ldots, K$, satisfy

$$
\lim _{x \notinfty \infty} \frac{U^{\prime}(a x)}{U^{\prime}(x)}=\lim _{x \notinfty \infty} \frac{\sum_{k=1}^{K}\left(a x-A_{k}\right)^{-R_{k}}}{\sum_{k=1}^{K}\left(x-A_{k}\right)^{-R_{k}}}=a^{-R_{1}}, \quad \text { for all } a>0
$$

- Sums, products, compositions of RV functions are RV (Seneta (1976))
- Portfolio behavior:
- No forward density hedge: MPR in bd numeraire deterministic
- Demand for equities is pure mean-variance
- Demand for bonds depends on bond volatility
- Bond vol null: bond demand goes to infinity
- Bond vol infinite: mean-variance demand vanishes, bond hedge remains
- Otherwise: combination of these two motives
- Remarks: relation to literature
- Financial market: covers most models examined for long run behavior
- Long run risk models: Bansal \& Yaron (2004), Alvarez \& Jermann (2005)
- Portfolio turnpike models:
- Huberman-Ross (1983), Theorem 2 of Dybvig-Rogers-Back (1999)
- Asset returns serially independent and interest rate non-random
- Here interest rates can be random
- Results identify limit portfolio explictly

References

[1] D. Breeden, "An intertemporal asset pricing model with stochastic consumption and investment opportunities, Journal of Financial Economics, 7, 1979: 265-296.
[2] J.C. Cox and C-f. Huang, "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, 49, 1989: 33-83.
[3] J.C. Cox and C-f. Huang. "A variational problem arising in financial economics," Journal of Mathematical Economics, 20, 1991: 465-487.
[4] J.B. Detemple, R. Garcia and M. Rindisbacher, "A Monte-Carlo method for optimal portfolios," Journal of Finance, 58, 2003: 401-446.
[5] J. Detemple, R. Garcia and M. Rindisbacher, "Representation formulas for Malliavin Derivatives of diffusion processes," Finance and Stochastics, 9, 2005a: 349-367.
[6] J. Detemple, R. Garcia and M. Rindisbacher, "Intertemporal asset allocation: a comparison of methods," Journal of Banking and Finance, 29, 2005b: 2821-2848.
[7] J. Detemple, R. Garcia and M. Rindisbacher, "Simulation methods for optimal portfolios," Handbooks in Operations Research and Management Science, 15, 2008: 867-923.
[8] I. Karatzas, J.P. Lehoczky and S.E. Shreve, "Optimal portfolio and consumption decisions for a "small investor" on a finite horizon," SIAM Journal of Control and Optimization, 25, 1987: 1557-1586.
[9] I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag, 1987.
[10] I. Karatzas and S. Shreve, Methods of Mathematical Finance, Springer-Verlag, 1999.
[11] H. Markowitz, "Portfolio selection," Journal of Finance, 7, 1952: 77-91.
[12] R.C. Merton, "Lifetime portfolio selection under uncertainty: the continuous-time case," Review of Economics and Statistics, 51, 1969: 247-257.
[13] R.C. Merton, "Optimum consumption and portfolio rules in a continuous time model," Journal of Economic Theory, 3, 1971: 273-413.
[14] D. Nualart, The Malliavin Calculus and Related Topics, Springer Verlag, New York, 1995.
[15] D. Ocone and I. Karatzas, "A generalized Clark representation formula, with application to optimal portfolios," Stochastics and Stochastics Reports, 34, 1991: 187-220.
[16] S. Pliska, "A Stochastic Calculus Model of Continuous Trading: Optimal Portfolios," Mathematics of Operations Research, 11, 1986: 371-382.

