Part I: Unconditional and Conditional Risk Functionals

Georg Ch. Pflug

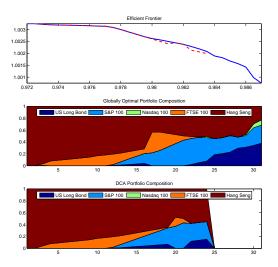
Winter School on Mathematical Finance, Lunteren 2009

Why to measure risk/acceptability

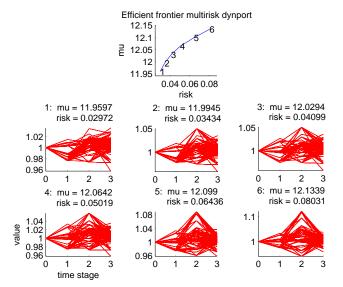
We aim at assigning a numerical value to the "risk" of a random variable Y, or -more generally- to a stochastic process (Y_1, \ldots, Y_T) for the following purposes

- to define acceptable profit&loss distributions or profit&loss processes (from the standpoint of regulators or supervisors);
- ▶ to make possible a comparison between alternatives w.r.t. riskiness (for decision makers);
- to define objectives or constraints in financial optimization problems, which are meaningful and lead to low complexity algorithms.

Example: static portfolio management



Example: dynamic portfolio management



Notations

- ▶ Let $(Y_{\gamma})_{\gamma \in \Gamma}$ be a family of functions in $L_p(\Omega, \mathcal{F}, P), 1 \leq p \leq \infty$, which is bounded from below. Since the L_p spaces are order complete Banach lattices, there exists a function $\underline{Y} = \inf\{Y_{\gamma} : \gamma \in \Gamma\}$, called the infimum (or sometimes the essential infimum), with the properties
 - ▶ $\underline{Y} \le Y_{\gamma}$ a.s. for all $\gamma \in \Gamma$
 - if $Z \leq Y_{\gamma}$ a.s. for all $\gamma \in \Gamma$, then $Z \leq \underline{Y}$ a.s.
- ▶ $Y \triangleleft \mathcal{F}$ stands for: Y is measurable w.r.t. the σ -algebra \mathcal{F} , $(Y_1, \ldots, Y_T) \triangleleft \mathcal{F}$ stands for: The process (Y_1, \ldots, Y_T) is adapted to the filtration $\mathcal{F} = (\mathcal{F}_1, \ldots, \mathcal{F}_T)$.
- denotes a counterintuitive fact or a counterexample

What is a risk/acceptability measure?

- Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. A mapping $\mathcal{A}: \mathcal{Y} = L_p(\Omega, \mathcal{F}, \mathbb{P}) \to \overline{\mathbb{R}}$ is called *acceptability functional* (negative risk functional) if it satisfies the following conditions for all $Y, \ \tilde{Y} \in \mathcal{Y}, \ c \in \mathbb{R}, \ \lambda \in [0,1]$:
- (A1) A(Y + c) = A(Y) + c (translation-equivariance, cash-invariance), or more generally
- (A1') There is a linear subspace $\mathcal{W}\subseteq L_p$ and a function $Z^*\in L_q(\mathcal{F})$ (1/p+1/q=1) such that for $W\in\mathcal{W}$

$$\mathcal{A}(Y+W) = \mathcal{A}(Y) + \mathbb{E}(W|Z^*), \quad (\textit{the}(W,Z^*) \textit{ translation property})$$

(A2)
$$A(\lambda Y + (1 - \lambda)\tilde{Y}) \ge \lambda A(Y) + (1 - \lambda)A(\tilde{Y})$$
 (concavity),

(A3)
$$Y \leq \tilde{Y}$$
 implies $\mathcal{A}(Y) \leq \mathcal{A}(\tilde{Y})$ (monotonicity).

An acceptability functional ${\cal A}$ is called

positively homogeneous if

$$A(\lambda Y) = \lambda A(Y), \quad \forall \lambda \geq 0, Y \in \mathcal{Y}$$

version-independent (law-invariant) if

 $\mathcal{A}(Y)$ depends only on the distribution function $\mathit{G}_{Y}(\mathit{u}) = \mathbb{P}\{\mathit{Y} \leq \mathit{u}\}$

$$\begin{array}{c}
Y \longrightarrow G_Y \\
\downarrow \\
A(Y) = A\{G_Y\}
\end{array}$$

Given an acceptability functional A, the mappings

$$\rho:=-\mathcal{A}$$
 and $\mathcal{D}:=\mathbb{E}-\mathcal{A}$

are called *risk functional* and *deviation risk functional*, respectively. *Coherent* risk functionals are negative acceptability functionals which are positively homogeneous in addition. (Artzner et al., 1999).

By the Fenchel-Moreau Theorem, every concave upper semicontinuous (u.s.c.) functional ${\cal A}$ on ${\cal Y}$ has a representation of the form

$$\mathcal{A}(Y) = \inf\{\mathbb{E}(YZ) - \mathcal{A}^+(Z) : Z \in L_q\},\tag{1}$$

where $\mathcal{A}^+(Z)=\inf\{\mathbb{E}(Y\,Z)-\mathcal{A}(Y):Y\in\mathcal{Y}\}$ is the *conjugate* of \mathcal{A} . We call (1) a *dual representation* and $dom(\mathcal{A}^+)=\{Z:\mathcal{A}^+(Z)>-\infty\}$ the *set of supergradients*. Notice that if Z is a supergradient,

$$A(Y) \leq \mathbb{E}(YZ) - A^+(Z),$$

i.e. the affine-linear functional $Y \mapsto \mathbb{E}(Y|Z) - \mathcal{A}^+(Z)$ is a majorant of \mathcal{A} . The Fenchel-Moreau inequality

$$\mathbb{E}(Y Z) \ge \mathcal{A}(Y) + \mathcal{A}^{+}(Z) \tag{2}$$

follows.

The supergradient of A at $Y_0 \in dom(A)$ is

$$\partial \mathcal{A}(Y_0) = \{ Z \in L_q : \mathbb{E}(Y_0 Z) = \mathcal{A}(Y_0) + \mathcal{A}^+(Z) \}$$

i.e. the Z, which fulfill the Fenchel-Moreau inequality (2) as equality. For $Z \in \partial \mathcal{A}(Y_0)$,

$$\mathcal{A}(Y) \leq \mathbb{E}(Y Z) - \mathbb{E}(Y_0 Z) + \mathcal{A}(Y_0) = \mathcal{A}(Y_0) + \mathbb{E}[(Y - Y_0)Z].$$

Remark. If $Y \in L_{\infty}$, the dual representation looks like

$$\mathcal{A}(Y) = \inf\{\mathbb{E}_Q(Y) - f(Q) : Q \in \mathcal{Q}\}.$$

Properties of A follow from the dual representation

- \mathcal{A} is monotonic, iff $dom(\mathcal{A}^+) \subseteq L_a^+$
- ▶ ${\cal A}$ is positively homogeneous, iff ${\cal A}^+$ takes only the values 0 and $-\infty$
- ▶ \mathcal{A} has the (\mathcal{W}, Z^*) translation property (A1'), iff $dom(\mathcal{A}^+) \subseteq \mathcal{W}^\perp + Z^*$
- ▶ In particular, \mathcal{A} is translation-equivariant, iff all $Z \in dom(\mathcal{A}^+)$ satisfy $\mathbb{E}(Z) = 1$.

We prove here the last assertion, i.e. the fact that the (W, Z^*) -translation property is equivalent to the property, that for $W \in \mathcal{W}$, $\mathcal{A}(W) = \mathbb{E}(WZ^*)$.

Suppose that $Z \in dom(\mathcal{A}^+)$, where \mathcal{A}^+ is the conjugate functional on L_q

$$\mathcal{A}^+(Z) = \inf\{\mathbb{E}(Z,Y) - \mathcal{A}(Y) : Y \in L_p\}.$$

This means that Z is a supergradient of \mathcal{A}

$$A(Y) \leq \mathbb{E}(YZ) - A^+(Z).$$

For $W \in \mathcal{W}$, this implies that $\mathbb{E}(WZ^*) = \mathcal{A}(W) \leq \mathbb{E}(WZ) - \mathcal{A}^+(Z)$. This inequality can hold for all $W \in \mathcal{W}$ only if $\mathbb{E}(WZ) = \mathbb{E}(WZ^*)$ for all $Z \in dom(\mathcal{A}^+)$, i.e. $dom(\mathcal{A}^+) \subseteq \mathcal{W}^\perp + Z^*$. Then

$$\mathcal{A}(Y+W) = \inf\{\mathbb{E}[(Y+W)Z] - \mathcal{A}^{+}(Z) : Z \in L_q\}$$
$$= \inf\{\mathbb{E}[YZ] + \mathbb{E}[WZ^*] - \mathcal{A}^{+}(Z) : Z \in L_q\}$$
$$= \mathcal{A}(Y) + \mathbb{E}(WZ^*).$$

Examples for supergradients

Here $[Y]_{-} = -\min(Y, 0)$.

$$\partial[-\|Y\|_{p}] = -\operatorname{sgn}(Y)|Y|^{p-1}\|Y\|_{p}^{p-1}.$$

$$\partial[-\|Y\|_{p}^{p}] = -\operatorname{sgn}(Y)p|Y|^{p-1}.$$

$$\partial[-\|[Y]_{-}\|_{p}] = \mathbb{1}_{\{Y<0\}}|Y|^{p-1}\|Y\|_{p}^{p-1}.$$

$$\partial[-\|[Y]_{-}\|_{p}^{p}] = \mathbb{1}_{\{Y<0\}}p|Y|^{p-1}.$$

Order relations

Definition: Orderings (Fishburn (1980).

Let $Y^{(1)}, Y^{(2)}$ be profit&loss variables, not necessarily defined on the same probability space.

(i) $Y^{(2)}$ dominates $Y^{(1)}$ in the first order sense (in symbol $Y^{(1)} \prec_{FSD} Y^{(2)}$, if

$$\mathbb{E}[U(Y^{(1)})] \leq \mathbb{E}[U(Y^{(2)})]$$

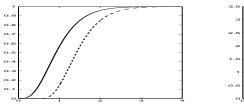
for all nondecreasing utility functions U, for which both integrals exist.

(ii) $Y^{(2)}$ dominates $Y^{(1)}$ in the second order sense (in symbol $Y^{(1)} \prec_{SSD} Y^{(2)}$, if

$$\mathbb{E}[U(Y^{(1)})] \leq \mathbb{E}[U(Y^{(2)})]$$

for all nondecreasing concave U, for which both integrals exist. Trivially

$$Y^{(1)} \prec_{FSD} Y^{(2)}$$
 implies that $Y^{(1)} \prec_{SSD} Y^{(2)}$.



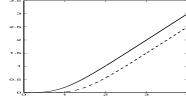
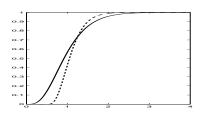


Figure: Left: the distribution functions G_1 of $Y^{(1)}$ (solid) and G_2 of $Y^{(2)}$ (dashed) Right:the integrated distribution functions $\mathcal{G}_1(x) = \int_{-\infty}^x G_1(t) \, dt$ of $Y^{(1)}$ (solid) and \mathcal{G}_2 of $Y^{(2)}$ (dashed); The relation $Y^{(1)} \prec_{FSD} Y^{(2)}$ holds.



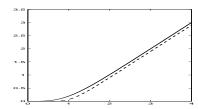


Figure: $Y^{(1)} \prec_{SSD} Y^{(3)}$ holds, but $Y^{(1)} \prec_{FSD} Y^{(3)}$ does not hold.

Coupling

(i) The FSD-coupling: If $Y^{(1)} \prec_{FSD} Y^{(2)}$, then one may construct a pair $\tilde{Y}^{(1)}$, $\tilde{Y}^{(2)}$ of random variables with the same marginal distributions as $Y^{(1)}$, $Y^{(2)}$, such that

$$\tilde{Y}^{(1)} \leq \tilde{Y}^{(2)}$$
 a.s.

(iii) The SSD-coupling. If $Y^{(1)} \prec_{SSD} Y^{(2)}$, then one may construct a pair $\tilde{Y}^{(1)}$, $\tilde{Y}^{(2)}$ of random variables with the same marginal distributions as $Y^{(1)}$, $Y^{(2)}$, such that

$$ilde{Y}^{(2)} \geq \mathbb{E}(ilde{Y}^{(1)}| ilde{Y}^{(2)})$$
 a.s.

(Strassen 1965, Stoyan and Mueller 2002).

Definition. The version-independent functional A is called *monotonic w.r.t. to FSD*, if

$$Y^{(1)} \prec_{\mathit{FSD}} Y^{(2)}$$
 implies that $\mathcal{A}(Y^{(1)}) \leq \mathcal{A}(Y^{(2)})$.

It is called monotonic w.r.t to SSD, if

$$Y^{(1)} \prec_{SSD} Y^{(2)}$$
 implies that $\mathcal{A}(Y^{(1)}) \leq \mathcal{A}(Y^{(2)})$

Remark. SSD-monotonicity implies FSD-monotonicity.

Comonotone coupling and compounding

 $Y^{(1)}$ and $Y^{(2)}$ are comonotone coupled, if

$$\mathbb{P}\{Y^{(1)} \leq u, Y^{(2)} \leq v\} = \min(G_1(u), G_2(v)).$$

(the copula is the upper Fréchet bound).

The *compound* of $Y^{(1)}$ and $Y^{(2)}$ is

$$C(Y^{(1)}, Y^{(2)}, \lambda) = \begin{cases} Y^{(1)} & \text{w.pr. } \lambda \\ Y^{(2)} & \text{w.pr. } 1 - \lambda \end{cases}$$

The distribution function of $C(Y^{(1)}, Y^{(2)}, \lambda)$ is

$$\lambda G_1(u) + (1-\lambda)G_2(u)$$
.

More generally, let $K(\cdot|u)$ be a Markov kernel (d.f.) and G(u) be a further distribution function. The *compound distribution* function $K \circ G$ is defined as

$$(K \circ G)(v) = \int K(v|u) dG(u).$$

Notice the difference: The compound variable $C(Y^{(1)}, Y^{(2)}, 1/2)$ has distribution

$$\frac{1}{2}G_1(u) + \frac{1}{2}G_2(u).$$

The comonotone average of $Y^{(1)}$ and $Y^{(2)}$, has quantile function

$$\frac{1}{2}G_1^{-1}(p)+\frac{1}{2}G_1^{-1}(p),$$

Definition. The functional A is comonotone additive, if

$$A(Y^{(1)} + Y^{(2)}) = A(Y^{(1)}) + A(Y^{(2)})$$

for comonotone $Y^{(1)}$, $Y^{(2)}$.

Definition. The version-independent functional \mathcal{A} is compound convex, if

$$A(K \circ G) \leq \int A(K(v|u)) dG(u).$$

Conditional risk functionals

Let \mathcal{F}_1 be a σ -field contained in \mathcal{F} . A mapping $\mathcal{A}_{\mathcal{F}_1}: L_p(\mathcal{F}) \to L_{p'}(\mathcal{F}_1)$ is called *conditional acceptability mapping* (with observable information \mathcal{F}_1) if the following conditions are satisfied for all Y, $\lambda \in [0,1]$:

- (CA1) $A_{\mathcal{F}_1}(Y + Y^{(1)}) = A_{\mathcal{F}_1}(Y) + Y^{(1)}$ (predictable translation-equivariance),
- $\begin{array}{l} \text{(CA2)} \ \ \mathcal{A}_{\mathcal{F}_1}(\lambda Y + (1-\lambda)\tilde{Y}) \geq \lambda \mathcal{A}_{\mathcal{F}_1}(Y) + (1-\lambda)\mathcal{A}_{\mathcal{F}_1}(\tilde{Y}) \\ \text{(concavity)}, \end{array}$
- (CA3) $Y \leq \tilde{Y}$ implies $\mathcal{A}_{\mathcal{F}_1}(Y) \leq \mathcal{A}_{\mathcal{F}_1}(\tilde{Y})$ (monotonicity).

We write $\mathcal{A}_{\mathcal{F}_1}(\cdot)$ or $\mathcal{A}(\cdot|\mathcal{F}_1)$, whatever is more convenient.

Theorem. A mapping $\mathcal{A}_{\mathcal{F}_1}$ is a conditional acceptability mapping if and only if for all $B \in \mathcal{F}_1$ the functional $Y \mapsto \mathbb{E}(\mathcal{A}_{\mathcal{F}_1}(Y)\mathbf{1}_B)$ is an acceptability functional, which has the $(L_p(\mathcal{F}_1), \mathbf{1}_B)$ translation property, that is

$$\mathbb{E}(\mathcal{A}_{\mathcal{F}_1}(Y+Y^{(1)})\mathbf{1}_B)=\mathbb{E}(\mathcal{A}_{\mathcal{F}_1}(Y)\mathbf{1}_B)+\mathbb{E}(Y^{(1)}\mathbf{1}_B)$$

for all $Y^{(1)} \in L_p(\mathcal{F}_1)$.

One may apply the Theory of concave mappings with values in Banach lattices. The extension of the Fenchel Moreau Theorem to $L_{p'}$ -valued functionals leads to a representation of the form

$$\mathcal{A}_{\mathcal{F}_1}(Y) = \inf\{\mathbb{E}(Y\,Z|\mathcal{F}_1) - \mathcal{A}^+_{\mathcal{F}_1}(Z): Z \in \mathcal{Z}\},$$

(PhD Thesis of R. Kovacevic).

Example: The entropic functional

Primal form

$$\mathcal{A}(Y) = -rac{1}{\gamma}\log \mathbb{E}[\exp(-\gamma Y)].$$

Dual form

$$\mathcal{A}(Y) = \inf\{\mathbb{E}(Y\,Z) + rac{1}{\gamma}\mathbb{E}(Z\log Z): \mathbb{E}(Z) = 1, Z \geq 0\}.$$

Conditional form

$$\mathcal{A}(Y|\mathcal{F}_1) = -rac{1}{\gamma}\log\mathbb{E}[\exp(-\gamma Y)|\mathcal{F}_1].$$

► Dual conditional form

$$\mathcal{A}(Y|\mathcal{F}_1) = \inf\{\mathbb{E}(Y|Z|\mathcal{F}_1) + \frac{1}{\gamma}\mathbb{E}(Z\log Z|\mathcal{F}_1) : \mathbb{E}(Z|\mathcal{F}_1) = 1, Z \geq 0\}$$

Example: The average value-at-risk

▶ Primal form. $\mathbb{A} V@R_{\alpha}(Y) = \frac{1}{\alpha} \int_{0}^{\alpha} G_{Y}^{-1}(p) dp$ $\mathbb{A} V@R_{0}(Y) = \operatorname{ess-inf}(Y).$

Dual form

$$\mathbb{A}V@R_{\alpha}(Y) = \inf{\mathbb{E}(Y Z) : \mathbb{E}(Z) = 1, 0 \le Z \le 1/\alpha}.$$

Conditional form

$$\mathbb{A}\mathsf{VeR}_{\alpha}(Y|\mathcal{F}_1) = \sup\{X - \frac{1}{\alpha}\mathbb{E}([Y - X]_-) : X \lhd \mathcal{F}_1\}.$$

Dual conditional form

$$\mathbb{A} \mathrm{VeR}_{\alpha}\big(Y|\mathcal{F}_1\big) = \inf\{\mathbb{E}\big(Y\,Z|\mathcal{F}_1\big): \mathbb{E}\big(Z|\mathcal{F}_1\big) = 1, 0 \leq Z \leq 1/\alpha\}.$$

Other names for this functional: *conditional value-at-risk* (Rockefellar and Uryasev (2002)), *expected shortfall* (Acerbi and Tasche (2002)) and *tail value-at-risk* (Artzner et al. (1999)). The name average value-at-risk is due to Föllmer and Schied (2004).

More about the conditional average value-at-risk

The conditional $\mathbb{A}V@R_{\alpha}(Y|\mathcal{F}_1)$ has the following properties:

- (i) It is version-independent and maps $L_1(\mathcal{F})$ to $L_1(\mathcal{F}_1)$.
- (ii) It is concave in the following sense: For any \mathcal{F}_1 measurable $\Lambda,$ $0 \leq \Lambda \leq 1,$

$$\begin{split} & \mathbb{A} \mathsf{V} @ \mathsf{R}_{\alpha} \big(\mathsf{\Lambda} \, Y^{(1)} + (1 - \mathsf{\Lambda}) Y^{(2)} | \mathcal{F}_{1} \big) \\ & \geq & \mathsf{\Lambda} \, \mathbb{A} \mathsf{V} @ \mathsf{R}_{\alpha} \big(Y^{(1)} | \mathcal{F}_{1} \big) + (1 - \mathsf{\Lambda}) \mathbb{A} \mathsf{V} @ \mathsf{R}_{\alpha} \big(Y^{(2)} | \mathcal{F}_{1} \big). \end{split}$$

(iii) For any non-negative, bounded \mathcal{F}_1 -measurable Λ

$$\mathbb{A}V@R_{\alpha}(\Lambda Y|\mathcal{F}_1) = \Lambda \mathbb{A}V@R_{\alpha}(Y|\mathcal{F}_1).$$

(iv) If $Y^{(1)} \leq Y^{(2)}$, then $\mathbb{A}V@R_{\alpha}(Y^{(1)}|\mathcal{F}_1) \leq \mathbb{A}V@R_{\alpha}(Y^{(2)}|\mathcal{F}_1)$.

- (v) If $Y \triangleleft \mathcal{F}_1$, then $\mathbb{A}V@R_{\alpha}(Y|\mathcal{F}_1) = Y$.
- (vi) If $\mathcal{F}_0=(\Omega,\emptyset)$, then $\mathbb{A} \text{VeR}_{\alpha}(Y|\mathcal{F}_0)=\mathbb{A} \text{VeR}_{\alpha}(Y)$.
- (vii) If $\alpha_1 \leq \alpha_2$, then

$$\mathbb{A}\mathsf{V@R}_{\alpha_1}(Y|\mathcal{F}_1) \leq \mathbb{A}\mathsf{V@R}_{\alpha_2}(Y|\mathcal{F}_1).$$

(viii)

$$\mathbb{A}$$
V@ $\mathsf{R}_1(Y|\mathcal{F}_1)=\mathbb{E}(Y|\mathcal{F}_1).$

(ix) If $\mathcal{F}_1 \subseteq \mathcal{F}_2$, then

$$\mathbb{A} \mathrm{VeR}_{\alpha}(Y|\mathcal{F}_1) \leq \mathbb{E}[\mathbb{A} \mathrm{VeR}_{\alpha}(Y|\mathcal{F}_2)|\mathcal{F}_1] \leq \mathbb{A} \mathrm{VeR}_{\alpha}(\mathbb{E}(Y|\mathcal{F}_2)|\mathcal{F}_1).$$

Risk corrected expectation I

 $A(Y) = \mathbb{E}(Y) - \mathcal{D}(Y)$, where \mathcal{D} is a convex, translation-invariant functional.

Let h be a nonnegative convex function on \mathbb{R} with h(0) = 0 and $h^*(u) = \sup\{uv - h(v) : v \in \mathbb{R}\}$ be its Fenchel conjugate.

- ▶ Primal form. $A(Y) = \mathbb{E}Y \mathbb{E}[h(Y \mathbb{E}Y)].$
- ▶ Dual form. $\mathcal{A}(Y) = \inf\{\mathbb{E}(Y|Z) + D_{h^*}(Z) : \mathbb{E}Z = 1\}$, where $D_{h^*}(Z) = \inf\{\mathbb{E}[h^*(Z-a)] : a \in \mathbb{R}\}$.
- Conditional form

$$\mathcal{A}(Y|\mathcal{F}_1) = \mathbb{E}(Y|\mathcal{F}_1) - \mathbb{E}[h(Y - \mathbb{E}(Y|\mathcal{F}_1))|\mathcal{F}_1].$$

▶ Dual conditional form $A(Y|\mathcal{F}_1) =$

$$\inf\{\mathbb{E}(Y\,Z|\mathcal{F}_1) + \inf\{\mathbb{E}[h^*(Z-A)|\mathcal{F}_1]: A \lhd \mathcal{F}_1\}: \mathbb{E}(Z|\mathcal{F}_1) = 1\}.$$

For every $\delta > 0$, there are random variables $Y^{(1)}$ and $Y^{(2)}$ such that $Y^{(1)} \prec_{FSD} Y^{(2)}$, but $\mathbb{E} Y^{(1)} = \delta \mathbb{V}$ ar $Y^{(1)} > \mathbb{E} Y^{(2)} = \delta \mathbb{V}$ ar $Y^{(2)}$

Risk corrected expectation II

Primal form

$$\mathcal{A}(Y) = \mathbb{E}Y - \inf\{\mathbb{E}[h(Y - a)] : a \in \mathbb{R}\}.$$

Dual form

$$\mathcal{A}(Y) = \inf\{\mathbb{E}(Y|Z) + \mathbb{E}[h^*(1-Z)] : \mathbb{E}(Z) = 1\}$$

where
$$D_{h^*}(Z) = \inf\{\mathbb{E}[h^*(Z-a)] : a \in \mathbb{R}\}.$$

Conditional form

$$\mathcal{A}(Y|\mathcal{F}_1) = \mathbb{E}(Y|\mathcal{F}_1) - \inf\{\mathbb{E}[h(Y-A)|\mathcal{F}_1] : A \lhd \mathcal{F}_1\}.$$

Dual conditional form

$$\mathcal{A}(Y|\mathcal{F}_1) = \inf\{\mathbb{E}(Y|Z|\mathcal{F}_1) + \mathbb{E}[h^*(1-Z)|\mathcal{F}_1] : \mathbb{E}(Z|\mathcal{F}_1) = 1\}.$$

Orlicz-type functionals

The Minkowski gauge is defined as $M_h(Y) = \inf\{a \geq 0 : \mathbb{E}[h(\frac{Y}{a})] \leq h(1)\}.$

Primal form

$$\mathcal{A}(Y) = \mathbb{E}(Y) - M_h(Y - \mathbb{E}Y).$$

Dual form

$$\mathcal{A}(Y) = \inf\{\mathbb{E}(Y\,Z): \mathbb{E}(Z) = 1, \inf_{a}\{D^*_{h^*}(Z-a)\} \leq 1\}$$

where
$$D_{h^*}^*(Z) = \sup\{\mathbb{E}(Z|V) : \mathbb{E}[h^*(V)] \le h^*(1)\}.$$

▶ Dual conditional form A(Y) =

$$\inf_{\boldsymbol{a}} \{ \mathbb{E}(\boldsymbol{Y} \, \boldsymbol{Z} | \mathcal{F}_1) : \mathbb{E}(\boldsymbol{Z} | \mathcal{F}_1) = 1, \\ \inf_{\boldsymbol{a}} \{ \sup\{ \mathbb{E}[(\boldsymbol{Z} - \boldsymbol{a}) \, \boldsymbol{V} | \mathcal{F}_1] : \mathbb{E}[\boldsymbol{h}(\boldsymbol{V}) | \mathcal{F}_1] \le \boldsymbol{h}(1) \} \le 1 \}.$$

Distortion functionals

Distortion functionals were introduced independently as insurance pricing principles (Deneberg (1989), Wang (2000)) and by Yaari (1987) (Yaari's dual functionals).

Primal form

$$\mathcal{A}(Y) = \int_0^1 G_Y^{-1}(p) \, k(p) \, dp$$

where G_Y is the distribution function of Y.

Dual form

$$\mathcal{A}(Y) = \inf\{\mathbb{E}(Y|Z) : \mathbb{E}(\phi(Z)) \leq \int \phi(k(u)) du, \phi \text{ convex }, \phi(0) = 0\}$$

▶ Dual conditional form $A(Y|\mathcal{F}_1) =$

$$\inf\{\mathbb{E}(Y\,Z|\mathcal{F}_1):\mathbb{E}(\phi(Z)|\mathcal{F}_1)\leq \int \phi(k(u))\,du,\phi \text{ convex },\phi(0)=0\}.$$

Making a functional translation-equivariant

The *sup-convolution* of two functions f and g is defined as

$$f \stackrel{-}{*} g(y) = \sup\{f(x) + g(y-x) : x \in \mathbb{R}\}.$$

If f and g are concave, then so is $f \cdot g$.

Let $\pi(Y)$ a convex functional (an insurance premium principle), which is not necessarily translation-equivariant. The translation-equivariant extension (Filipovic) of $\pi([Y]_-)$ is

$$\mathcal{A}_{\pi}(Y) = \sup\{x - \pi([Y - x]_{-}) : x \in \mathbb{R}\}.$$

If π has the dual representation $\pi([Y]_-)=\sup\{\mathbb{E}(Y|Z)-p(Z):Z\in L_q\}$, then \mathcal{A}_π has the representation

$$\mathcal{A}_{\pi} = \inf\{\mathbb{E}(Y|Z) + p(-Z) : \mathbb{E}(Z) = 1, -Z \in L_q\}.$$

If π is monotonic, then \mathcal{A}_{π} is isotonic w.r.t. \prec_{FSD} . If π is positively homogeneous, then \mathcal{A}_{π} is also positively homogeneous. If π is compound concave, then \mathcal{A}_{π} is compound convex.

Examples of sup-convoluted acceptability functionals

- lacksquare $\pi(Y)=c\,\mathbb{E}(Y)$ for some c>1. Then $\mathcal{A}_{\pi}(Y)=\mathbb{A}$ V@ $\mathsf{R}_{1/c}$.
- Let h be a convex, strictly increasing non-negative function on \mathbb{R} with h(0)=0, h(1)=1 and $0< h(u)<\infty$ for $u\neq 0$. The Orlicz premium $\pi_{\alpha}(L)$ for $L\neq 0$ is given as the unique solution of

$$\mathbb{E}\Big[h\Big(\frac{L}{\pi_{\alpha}(L)}\Big)\Big] = 1 - \alpha.$$

The pertaining sup-convoluted acceptability functional is

$$\mathcal{A}_{\pi_{\alpha}}(Y) = \sup\{x - \pi_{\alpha}([Y - x]^{-}) : x \in \mathbb{R}\}.$$

The negative value

$$\rho_{\alpha}(Y) = -\mathcal{A}_{\pi_{\alpha}}(Y) = \inf\{u + \pi_{\alpha}([-Y - u]^{+}) : u \in \mathbb{R}\}\$$

is called Haezendonck-Goovaerts risk functional.

Utility type functional

Let U be a concave, strictly monotonic utility function.

$$\mathcal{A}(Y) = U^{-1}(\mathbb{E}[U(Y)]).$$

Then A is the *certainty equivalent* and

$$\mathcal{D}(Y) = \mathbb{E}Y - \mathcal{A}(Y),$$

is the *risk premium*, i.e. decision maker with utility function U is indifferent between Y and the deterministic value $\mathcal A$ in the sense that

$$\mathbb{E}[U(Y)] = U[\mathcal{A}(Y)].$$

This type of functionals is translation-equivariant iff $U(x) = -k \exp(-\gamma x) + d$; $k \ge 0$ or U(x) = kx + d. Up to affine transformations, these are the entropic functionals and the expectation itself.

Version-independent conditional functionals

Recall that we consider (Ω, \mathcal{F}, P) and a sub-sigma algebra \mathcal{F}_1 of \mathcal{F} .

Definition. The *nested distribution* of a random variable $Y \in L_p(\mathcal{F})$ given \mathcal{F}_1 is the distribution of the conditional distributions of Y given \mathcal{F}_1 . A conditional acceptability (or risk) functional $\mathcal{A}(\cdot|\mathcal{F}_1)$ is version independent, if its distribution depends only on the nested distribution of Y given \mathcal{F}_1 .

Examples. All presented conditional functionals are version independent.

Choquet representation

Definition. The version-independent functional A has a *Choquet representation*, if it is representable in the form

$$\mathcal{A}(Y) = \int_0^1 \mathbb{A} \mathsf{VeR}_{\alpha}(Y) \ \mathit{dm}(\alpha),$$

for some probability measure m on [0,1].

Proposition. The concave, version-independent positively homogeneous acceptability functional

 $\mathcal{A}(Y) = \inf\{\mathbb{E}(Y|Z): Z \in \mathcal{Z}\}$ has a Choquet representation if and only if it is comonotone additive: The $\mathbb{A}V@R$'s are the extremal elements of the (convex) family of all comonotone additive acceptability functionals.

Kusuoka representation

Theorem. (Kusuoka 2001, Fritelli and Rosazza Gianin, 2005). Let \mathcal{A} be concave version-independent acceptability-type functional on $L_p(\Omega, \mathcal{F}, P)$, $1 \leq p < \infty$, where (Ω, \mathcal{F}, P) is non-atomic.

- ► Condition C1: A is positively homogeneous;
- ► Condition C2: A is FSD monotonic;
- ► Condition C3: A is translation-equivariant.
- (i) If (C1), (C2) and (C3) are fulfilled, then ${\cal A}$ has the Kusuoka representation

$$\mathcal{A}(Y) = \inf\{\int_0^1 \mathbb{A} \mathsf{VeR}_{\alpha}(Y) \ dm_G(\alpha) : G \in \mathcal{G}\}$$

where $\{m_G:G\in\mathcal{G}\}$ is a family of prob. measures on (0,1].

(ii) If (C1) and (C2) are fulfilled, then ${\cal A}$ has the representation

$$\mathcal{A}(Y) = \inf\{\int_0^1 \mathbb{A} \mathsf{VeR}_{\alpha}(Y) \; dm_{\mathcal{G}}(\alpha) : \mathcal{G} \in \mathcal{G}\}$$

where $\{m_G: G \in \mathcal{G}\}$ are non-negative measures on (0,1].

(iii) If (C1) holds, then ${\cal A}$ has the representation

$$\begin{split} \mathcal{A}(Y) &= \inf\{\int_0^1 \mathbb{A} \mathsf{VeR}_\alpha(Y) \; dm_G^{(1)}(\alpha) \\ &- \int_0^1 \mathbb{A} \mathsf{VeR}_{1-\alpha}(-Y) \; dm_G^{(2)}(\alpha) : G \in \mathcal{G}\}, \end{split}$$

where $m_G^{(1)}, m_G^{(2)}, G \in \mathcal{G}$ are families of non-negative measures on (0,1].

(iv) In general, A has the representation

$$\begin{split} \mathcal{A}(Y) &= \inf \{ \int_0^1 \mathbb{A} \mathsf{VeR}_\alpha(Y) \; dm_G^{(1)}(\alpha) \\ &- \int_0^1 \mathbb{A} \mathsf{VeR}_\alpha(-Y) \; dm_G^{(2)}(\alpha) - \tilde{\mathcal{A}} \{G\} : G \in \mathcal{G} \} \end{split}$$

where $m_G^{(1)}, m_G^{(2)}$ are as before and $\tilde{A}\{G\}$ is some functional defined on G.

Remark. The Kusuoka representation is not unique. For instance,

$$\mathbb{A}\mathsf{VeR}_\beta = \int \mathbb{A}\mathsf{VeR}_\alpha \, d\delta_\beta(\alpha) = \inf\{\int \mathbb{A}\mathsf{VeR}_\alpha \, d\delta_{\beta+1/n}(\alpha): \quad n \geq 0\}.$$

If the underlying space has atoms, a Kusuoka representation does not hold in general. Let $\Omega = \{\omega_1, \omega_2\}$ with $P\{\omega_1\} = q$, $P\{\omega_2\} = 1 - q$. The functional $\mathcal{A}(Y) = Y(\omega_1)$ is version-independent, but has no Kusuoka representation.

Examples for Kusuoka representations

Example. The mean absolute deviation corrected mean.

$$\begin{split} &\mathbb{E}(Y) - \frac{1}{2}\mathbb{E}|Y - \mathbb{E}Y| \\ &= \inf\{\int_{(0,1]} \mathbb{A} \mathsf{VeR}_{\alpha}(Y) \, d\textit{m}(\alpha) : \textit{m} \in \mathcal{P}(0,1]; \int_{(0,1)} \frac{1}{\textit{v}} d\textit{m}(\textit{v}) \leq 1\}, \end{split}$$

where $\mathcal{P}(0,1]$ is the family of all probability measures on (0,1]. **Example. The lower-standard deviation corrected mean.**

$$\mathbb{E}(Y) - \mathbb{S}\mathsf{td}^-(Y) = \inf\{\int_{(0,1]} \mathbb{A} \mathsf{V@R}_\alpha(Y) dm(\alpha) : m \in \mathcal{M}\},$$

where

$$\mathcal{M} = \left\{ m \in \mathcal{P}(0,1] : \int_{(0,1)} \int_{(0,1)} \frac{\min(v,w)}{vw} \; dm(v) \, dm(w) = 1 \right\}.$$

Example. The standard deviation corrected mean.

$$\begin{split} \mathbb{E}(Y) - \mathbb{S} \mathsf{td}(Y) &= \inf \{ \int_{(0,u_0]} \mathbb{A} \mathsf{V@R}_{\alpha}(Y) \, dm^{(1)}(\alpha) \\ &- \int_{(u_0,1]} \mathbb{A} \mathsf{V@R}_{1-\alpha}(Y) \, dm^{(2)}(\alpha) : m^{(1)}, m^{(2)} \in \mathcal{M} \}, \end{split}$$

where ${\mathcal M}$ is the family of pairs of non-negative measures satisfying

$$\int_{(u,u_0]} dm^{(1)} + \int_{(u_0,1]} dm^{(2)} = 1$$

and

$$\int_{(0,u_0]} \int (0,u_0] \frac{\min(v,w)}{v \cdot w} dm^{(1)}(v) dm^{(2)}(w)$$
+
$$\int_{(u_0,1]} \int_{(u_0,1]} \frac{1 - \max(v,w)}{(1-v)(1-w)} dm^{(2)}(v) dm^{(2)}(w) \le 2.$$

for some u_0 .

Properties of acceptability-type functionals

(TE)	Translation-equivariant
(CV)	Concave
(FSD)	Isotonic w.r.t. first order stochastic dominance/pointwise monotonic
(SSD)	Isotonic w.r.t second order stochastic dominance
(PH)	Positive homogeneous
(CCX)	Compound convex
(CLI)	Compound linear

expectation $\mathbb{E}[Y]$	(TE)	(CV)	(SSD)	(PH)	(CLI)
(concave) utility-type $U^{-1}\mathbb{E}[U(Y)]$	-	-	(SSD)	-	(CCX)
distortion functionals $\int_0^1 G_Y^{-1}(p) \ dH(p)$	(TE)	(CV)	(SSD)	(PH)	(CCX)†
sup-convolutions $\mathcal{A}_{\pi}(Y)$	(TE)	(CV)	(SSD)‡	(PH)‡	(CCX)‡
average value-at-risk AV @ R	(TE)	(CV)	(SSD)	(A4)	(CCX)
value-at-risk V@R	(TE)	-	(FSD)	(PH)	-

 $\begin{tabular}{ll} $\dagger if H is a concave probability distribution function, \\ $$ $$ $\ddagger if π has the corresponding property \\ \end{tabular}$

Properties of translation-invariant functionals

Translation-invariant functionals ${\mathcal D}$ build risk functionals by

$$\mathcal{A}(Y) = \mathbb{E}(Y) - \mathcal{D}(Y)$$

Translation-invariant

(TI)

(FSD) (SSD) (PH) (CCC)	$\mathbb{E}-\mathcal{D}$ is Positive I	s isotonic w s isotonic w nomogeneou nd concave	r.t second			
$\mathbb{E}[h(Y -$	$\mathbb{E}Y)]$	(TI)	(CX)	-	-	-

	(11)	(CX)	-	-	-
$\ Y - \mathbb{E}Y\ _h$	(TI)	(CX)	-	(PH)	-
$\ [Y - \mathbb{E}Y]^-\ _h$	(TI)	(CX)	(SSD)	(PH)	-
$\mathbb{E}[h(Y-Y')]$	(TI)	(CX)	=	-	-
$\inf \{ \mathbb{E}[h(Y-a)] : a \in \mathbb{R} \}$	(TI)	(CX)	(SSD)	-	(CCC)

†If
$$h(u) > 0$$
 for $u \neq 0$.

The value-at-risk

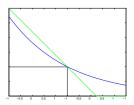
We define the value-at-risk as $\mathbb{V}@R_{\alpha}(Y) = G_Y^{-1}(\alpha)$ with $G_Y(u) = P\{Y \leq u\}$ Some people define it as $-G_Y^{-1}(\alpha)$. $\mathbb{V}@R$ is not concave, not compound convex, not isotonic w.r.t. SSD, but translation-equivariant, isotonic w.r.t. FSD, positively homogenous and comonotone additive. Since the $\mathbb{V}@R$ is the basic tool in the Basel II formulas, this leads to paradoxic situations.

Convexification of V@R

The level sets $\{Y : \mathbb{V}@R_{\alpha}(Y) \ge q\} = \{Y : \mathbb{E}[\mathbb{1}_{(-\infty,q]}(Y)] \le \alpha\}$ are not convex. Convex inner approximations are given by

$$\{Y : \mathbb{E}[k(Y)] \leq \alpha\}$$

where k is a convex majorant of $\mathbb{1}_{(-\infty,q]}$.



kinked linear functions $k_a(u)=\frac{1}{a-q}[u-a]^-$: AV@R (Rockafellar and Uryasev)

exponential functions $k_b(u) = e^{b(q-u)}$: Nemirovski and Shapiro