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Why to measure risk/acceptability

We aim at assigning a numerical value to the ”risk” of a random
variable Y , or -more generally- to a stochastic process
(Y1, . . . , YT ) for the following purposes

I to define acceptable profit&loss distributions or profit&loss
processes (from the standpoint of regulators or supervisors);

I to make possible a comparison between alternatives w.r.t.
riskiness (for decision makers);

I to define objectives or constraints in financial optimization
problems, which are meaningful and lead to low complexity
algorithms.
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Example: static portfolio management
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Example: dynamic portfolio management
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Notations

I Let (Yγ)γ∈Γ be a family of functions in
Lp(Ω,F ,P), 1 ≤ p ≤ ∞, which is bounded from below. Since
the Lp spaces are order complete Banach lattices, there exists
a function Y = inf{Yγ : γ ∈ Γ}, called the infimum (or
sometimes the essential infimum), with the properties

I Y ≤ Yγ a.s. for all γ ∈ Γ
I if Z ≤ Yγ a.s. for all γ ∈ Γ, then Z ≤ Y a.s.

I Y ¢ F stands for: Y is measurable w.r.t. the σ-algebra F ,
(Y1, . . . ,YT ) ¢ FF stands for: The process (Y1, . . . ,YT ) is
adapted to the filtration FF = (F1, . . . ,FT ).

I
¡¡
¢¢¡¡ denotes a counterintuitive fact or a counterexample
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What is a risk/acceptability measure?

Let (Ω,F ,P) be a probability space. A mapping
A : Y = Lp(Ω,F ,P) → R is called acceptability functional
(negative risk functional) if it satisfies the following conditions for
all Y , Ỹ ∈ Y, c ∈ R, λ ∈ [0, 1]:

(A1) A(Y + c) = A(Y ) + c (translation-equivariance,
cash-invariance), or more generally

(A1’) There is a linear subspace W ⊆ Lp and a function
Z ∗ ∈ Lq(F) (1/p + 1/q = 1) such that for W ∈ W

A(Y +W ) = A(Y )+E(W Z ∗), (the (W, Z ∗) translation property).

(A2) A(λY + (1− λ)Ỹ ) ≥ λA(Y ) + (1− λ)A(Ỹ ) (concavity),

(A3) Y ≤ Ỹ implies A(Y ) ≤ A(Ỹ ) (monotonicity).
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An acceptability functional A is called

I positively homogeneous if

A(λY ) = λA(Y ), ∀λ ≥ 0, Y ∈ Y
I version-independent (law-invariant) if

A(Y ) depends only on the distribution function GY (u) = P{Y ≤ u} of Y .

Y -GY

@@R ?A(Y ) = A{GY }

Given an acceptability functional A, the mappings

ρ := −A and D := E−A

are called risk functional and deviation risk functional, respectively.
Coherent risk functionals are negative acceptability functionals
which are positively homogeneous in addition. (Artzner et al.,
1999).
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By the Fenchel-Moreau Theorem, every concave upper
semicontinuous (u.s.c.) functional A on Y has a representation of
the form

A(Y ) = inf{E(Y Z )−A+(Z ) : Z ∈ Lq}, (1)

where A+(Z ) = inf{E(Y Z )−A(Y ) : Y ∈ Y} is the conjugate of
A. We call (1) a dual representation and
dom(A+) = {Z : A+(Z ) > −∞} the set of supergradients. Notice
that if Z is a supergradient,

A(Y ) ≤ E(Y Z )−A+(Z ),

i.e. the affine-linear functional Y 7→ E(Y Z )−A+(Z ) is a
majorant of A. The Fenchel-Moreau inequality

E(Y Z ) ≥ A(Y ) +A+(Z ) (2)

follows.
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The supergradient of A at Y0 ∈ dom(A) is

∂A(Y0) = {Z ∈ Lq : E(Y0 Z ) = A(Y0) +A+(Z )}
i.e. the Z , which fulfill the Fenchel-Moreau inequality (2) as
equality. For Z ∈ ∂A(Y0),

A(Y ) ≤ E(Y Z )− E(Y0 Z ) +A(Y0) = A(Y0) + E[(Y − Y0)Z ].

Remark. If Y ∈ L∞, the dual representation looks like

A(Y ) = inf{EQ(Y )− f (Q) : Q ∈ Q}.
Properties of A follow from the dual representation

I A is monotonic, iff dom(A+) ⊆ L+
q

I A is positively homogeneous, iff A+ takes only the values 0
and −∞

I A has the (W, Z ∗) translation property (A1’), iff
dom(A+) ⊆ W⊥ + Z ∗

I In particular, A is translation-equivariant, iff all Z ∈ dom(A+)
satisfy E(Z ) = 1.
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We prove here the last assertion, i.e. the fact that
the (W, Z ∗)-translation property is equivalent to the property, that
for W ∈ W, A(W ) = E(WZ ∗).
Suppose that Z ∈ dom(A+), where A+ is the conjugate functional
on Lq

A+(Z ) = inf{E(Z , Y )−A(Y ) : Y ∈ Lp}.
This means that Z is a supergradient of A

A(Y ) ≤ E(YZ )−A+(Z ).

For W ∈ W, this implies that
E(WZ ∗) = A(W ) ≤ E(WZ )−A+(Z ). This inequality can hold
for all W ∈ W only if E(WZ ) = E(WZ ∗) for all Z ∈ dom(A+),
i.e. dom(A+) ⊆ W⊥ + Z ∗. Then

A(Y + W ) = inf{E[(Y + W )Z ]−A+(Z ) : Z ∈ Lq}
= inf{E[YZ ] + E[WZ ∗]−A+(Z ) : Z ∈ Lq}
= A(Y ) + E(WZ ∗).
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Examples for supergradients

I
∂[−‖Y ‖p] = −sgn (Y )|Y |p−1‖Y ‖p−1

p .

I
∂[−‖Y ‖p

p] = −sgn (Y )p|Y |p−1.

I
∂[−‖[Y ]−‖p] = 1l{Y <0}|Y |p−1‖Y ‖p−1

p .

I
∂[−‖[Y ]−‖p

p] = 1l{Y <0}p|Y |p−1.

Here [Y ]− = −min(Y , 0).
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Order relations

Definition: Orderings (Fishburn (1980).
Let Y (1),Y (2) be profit&loss variables, not necessarily defined on
the same probability space.

(i) Y (2) dominates Y (1) in the first order sense (in symbol
Y (1) ≺FSD Y (2), if

E[U(Y (1))] ≤ E[U(Y (2))]

for all nondecreasing utility functions U, for which both
integrals exist.

(ii) Y (2) dominates Y (1) in the second order sense (in symbol
Y (1) ≺SSD Y (2), if

E[U(Y (1))] ≤ E[U(Y (2))]

for all nondecreasing concave U, for which both integrals exist.

Trivially

Y (1) ≺FSD Y (2) implies that Y (1) ≺SSD Y (2).
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Figure: Left: the distribution functions G1 of Y (1) (solid) and G2 of Y (2)

(dashed) Right:the integrated distribution functions G1(x) =
∫ x

∞ G1(t) dt

of Y (1) (solid) and G2 of Y (2) (dashed); The relation Y (1) ≺FSD Y (2)

holds.
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Figure: Y (1) ≺SSD Y (3) holds, but Y (1) ≺FSD Y (3) does not hold.
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Coupling

(i) The FSD-coupling: If Y (1) ≺FSD Y (2), then one may
construct a pair Ỹ (1), Ỹ (2) of random variables with the same
marginal distributions as Y (1), Y (2), such that

Ỹ (1) ≤ Ỹ (2) a.s.

(iii) The SSD-coupling. If Y (1) ≺SSD Y (2), then one may
construct a pair Ỹ (1), Ỹ (2) of random variables with the same
marginal distributions as Y (1), Y (2), such that

Ỹ (2) ≥ E(Ỹ (1)|Ỹ (2)) a.s.

(Strassen 1965, Stoyan and Mueller 2002).
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Definition. The version-independent functional A is called
monotonic w.r.t. to FSD, if

Y (1) ≺FSD Y (2) implies that A(Y (1)) ≤ A(Y (2)).

It is called monotonic w.r.t to SSD, if

Y (1) ≺SSD Y (2) implies that A(Y (1)) ≤ A(Y (2))

Remark. SSD-monotonicity implies FSD-monotonicity.
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Comonotone coupling and compounding

Y (1) and Y (2) are comonotone coupled, if

P{Y (1) ≤ u, Y (2) ≤ v} = min(G1(u), G2(v)).

(the copula is the upper Fréchet bound).
The compound of Y (1) and Y (2) is

C(Y (1), Y (2), λ) =

{
Y (1) w.pr. λ

Y (2) w.pr. 1− λ

The distribution function of C(Y (1), Y (2), λ) is

λG1(u) + (1− λ)G2(u).

More generally, let K (·|u) be a Markov kernel (d.f.) and G (u) be a
further distribution function. The compound distribution function
K ◦ G is defined as

(K ◦ G )(v) =

∫
K (v |u) dG (u).
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Notice the difference: The compound variable C(Y (1), Y (2), 1/2)
has distribution

1

2
G1(u) +

1

2
G2(u).

The comonotone average of Y (1) and Y (2), has quantile function

1

2
G−1

1 (p) +
1

2
G−1

1 (p),

Definition. The functional A is comonotone additive, if

A(Y (1) + Y (2)) = A(Y (1)) +A(Y (2))

for comonotone Y (1),Y (2).

Definition. The version-independent functional A is compound
convex, if

A(K ◦ G ) ≤
∫
A(K (v |u)) dG (u).
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Conditional risk functionals

Let F1 be a σ-field contained in F . A mapping
AF1 : Lp(F) → Lp′(F1) is called conditional acceptability mapping
(with observable information F1) if the following conditions are
satisfied for all Y , λ ∈ [0, 1]:

(CA1) AF1(Y + Y (1)) = AF1(Y ) + Y (1) (predictable
translation-equivariance),

(CA2) AF1(λY + (1− λ)Ỹ ) ≥ λAF1(Y ) + (1− λ)AF1(Ỹ )
(concavity),

(CA3) Y ≤ Ỹ implies AF1(Y ) ≤ AF1(Ỹ ) (monotonicity).

We write AF1(·) or A(·|F1), whatever is more convenient.
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Theorem. A mapping AF1 is a conditional acceptability mapping
if and only if for all B ∈ F1 the functional Y 7→ E(AF1(Y )1lB) is
an acceptability functional, which has the (Lp(F1), 1lB) translation
property, that is

E(AF1(Y + Y (1))1lB) = E(AF1(Y )1lB) + E(Y (1)1lB)

for all Y (1) ∈ Lp(F1).
One may apply the Theory of concave mappings with values in
Banach lattices. The extension of the Fenchel Moreau Theorem to
Lp′-valued functionals leads to a representation of the form

AF1(Y ) = inf{E(Y Z |F1)−A+
F1

(Z ) : Z ∈ Z},

(PhD Thesis of R. Kovacevic).
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Example: The entropic functional

I Primal form

A(Y ) = −1

γ
logE[exp(−γY )].

I Dual form

A(Y ) = inf{E(Y Z ) +
1

γ
E(Z log Z ) : E(Z ) = 1, Z ≥ 0}.

I Conditional form

A(Y |F1) = −1

γ
logE[exp(−γY )|F1].

I Dual conditional form

A(Y |F1) = inf{E(Y Z |F1)+
1

γ
E(Z log Z |F1) : E(Z |F1) = 1, Z ≥ 0}.
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Example: The average value-at-risk

I Primal form. AV@Rα(Y ) = 1
α

∫ α
0 G−1

Y (p) dp

AV@R0(Y ) = ess− inf(Y ).

I Dual form

AV@Rα(Y ) = inf{E(Y Z ) : E(Z ) = 1, 0 ≤ Z ≤ 1/α}.
I Conditional form

AV@Rα(Y |F1) = sup{X − 1

α
E([Y − X ]−) : X ¢ F1}.

I Dual conditional form

AV@Rα(Y |F1) = inf{E(Y Z |F1) : E(Z |F1) = 1, 0 ≤ Z ≤ 1/α}.
Other names for this functional: conditional value-at-risk
(Rockefellar and Uryasev (2002)), expected shortfall (Acerbi and
Tasche (2002)) and tail value-at-risk (Artzner et al. (1999)). The
name average value-at-risk is due to Föllmer and Schied (2004).
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More about the conditional average value-at-risk

The conditional AV@Rα(Y |F1) has the following properties:

(i) It is version-independent and maps L1(F) to L1(F1).

(ii) It is concave in the following sense: For any F1 measurable Λ,
0 ≤ Λ ≤ 1,

AV@Rα(ΛY (1) + (1− Λ)Y (2)|F1)

≥ ΛAV@Rα(Y (1)|F1) + (1− Λ)AV@Rα(Y (2)|F1).

(iii) For any non-negative, bounded F1-measurable Λ

AV@Rα(ΛY |F1) = ΛAV@Rα(Y |F1).

(iv) If Y (1) ≤ Y (2), then AV@Rα(Y (1)|F1) ≤ AV@Rα(Y (2)|F1).
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(v) If Y ¢ F1, then AV@Rα(Y |F1) = Y .

(vi) If F0 = (Ω, ∅), then AV@Rα(Y |F0) = AV@Rα(Y ).

(vii) If α1 ≤ α2, then

AV@Rα1(Y |F1) ≤ AV@Rα2(Y |F1).

(viii)
AV@R1(Y |F1) = E(Y |F1).

(ix) If F1 ⊆ F2, then

AV@Rα(Y |F1) ≤ E[AV@Rα(Y |F2)|F1] ≤ AV@Rα(E(Y |F2)|F1).
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Risk corrected expectation I

A(Y ) = E(Y )−D(Y ), where D is a convex, translation-invariant
functional.
Let h be a nonnegative convex function on R with h(0) = 0 and
h∗(u) = sup{uv − h(v) : v ∈ R} be its Fenchel conjugate.

I Primal form. A(Y ) = EY − E[h(Y − EY )].
I Dual form. A(Y ) = inf{E(Y Z ) + Dh∗(Z ) : EZ = 1}, where

Dh∗(Z ) = inf{E[h∗(Z − a)] : a ∈ R}.
I Conditional form

A(Y |F1) = E(Y |F1)− E[h(Y − E(Y |F1))|F1].

I Dual conditional form A(Y |F1) =

inf{E(Y Z |F1)+inf{E[h∗(Z−A)|F1] : A¢F1} : E(Z |F1) = 1}.

¡¡
¢¢¡¡ For every δ > 0, there are random variables Y (1) and Y (2)

such that Y (1) ≺FSD Y (2), but
EY (1) − δVarY (1) > EY (2) − δVarY (2).
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Risk corrected expectation II

I Primal form

A(Y ) = EY − inf{E[h(Y − a)] : a ∈ R}.

I Dual form

A(Y ) = inf{E(Y Z ) + E[h∗(1− Z )] : E(Z ) = 1}

where Dh∗(Z ) = inf{E[h∗(Z − a)] : a ∈ R}.
I Conditional form

A(Y |F1) = E(Y |F1)− inf{E[h(Y − A)|F1] : A ¢ F1}.

I Dual conditional form

A(Y |F1) = inf{E(Y Z |F1)+E[h∗(1−Z )|F1] : E(Z |F1) = 1}.
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Orlicz-type functionals

The Minkowski gauge is defined as
Mh(Y ) = inf{a ≥ 0 : E[h(Y

a )] ≤ h(1)}.
I Primal form

A(Y ) = E(Y )−Mh(Y − EY ).

I Dual form

A(Y ) = inf{E(Y Z ) : E(Z ) = 1, inf
a
{D∗

h∗(Z − a)} ≤ 1}

where D∗
h∗(Z ) = sup{E(Z V ) : E[h∗(V )] ≤ h∗(1)}.

I Dual conditional form A(Y ) =

inf{E(Y Z |F1) : E(Z |F1) = 1,

inf
a
{sup{E[(Z − a) V |F1] : E[h(V )|F1] ≤ h(1)} ≤ 1}.
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Distortion functionals

Distortion functionals were introduced independently as insurance
pricing principles (Deneberg (1989), Wang (2000)) and by Yaari
(1987) (Yaari’s dual functionals).

I Primal form

A(Y ) =

∫ 1

0
G−1

Y (p) k(p) dp

where GY is the distribution function of Y .

I Dual form

A(Y ) = inf{E(Y Z ) : E(φ(Z )) ≤
∫

φ(k(u)) du, φ convex , φ(0) = 0}.

I Dual conditional form A(Y |F1) =

inf{E(Y Z |F1) : E(φ(Z )|F1) ≤
∫

φ(k(u)) du, φ convex , φ(0) = 0}.
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Making a functional translation-equivariant

The sup-convolution of two functions f and g is defined as

f
−∗ g(y) = sup{f (x) + g(y − x) : x ∈ R}.

If f and g are concave, then so is f
−∗ g .

Let π(Y ) a convex functional (an insurance premium principle),
which is not necessarily translation-equivariant. The
translation-equivariant extension (Filipovic) of π([Y ]−) is

Aπ(Y ) = sup{x − π([Y − x ]−) : x ∈ R}.
If π has the dual representation
π([Y ]−) = sup{E(Y Z )− p(Z ) : Z ∈ Lq}, then Aπ has the
representation

Aπ = inf{E(Y Z ) + p(−Z ) : E(Z ) = 1,−Z ∈ Lq}.
If π is monotonic, then Aπ is isotonic w.r.t. ≺FSD . If π is
positively homogeneous, then Aπ is also positively homogeneous.
If π is compound concave, then Aπ is compound convex.
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Examples of sup-convoluted acceptability functionals

I π(Y ) = c E(Y ) for some c > 1. Then Aπ(Y ) = AV@R1/c .

I Let h be a convex, strictly increasing non-negative function on
R with h(0) = 0, h(1) = 1 and 0 < h(u) < ∞ for u 6= 0. The
Orlicz premium πα(L) for L 6= 0 is given as the unique
solution of

E
[
h
( L

πα(L)

)]
= 1− α.

The pertaining sup-convoluted acceptability functional is

Aπα(Y ) = sup{x − πα([Y − x ]−) : x ∈ R}.

The negative value

ρα(Y ) = −Aπα(Y ) = inf{u + πα([−Y − u]+) : u ∈ R}

is called Haezendonck-Goovaerts risk functional.
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Utility type functional

Let U be a concave, strictly monotonic utility function.

A(Y ) = U−1(E[U(Y )]).

Then A is the certainty equivalent and

D(Y ) = EY −A(Y ),

is the risk premium, i.e. decision maker with utility function U is
indifferent between Y and the deterministic value A in the sense
that

E[U(Y )] = U[A(Y )].

This type of functionals is translation-equivariant iff
U(x) = −k exp(−γx) + d ; k ≥ 0 or U(x) = kx + d . Up to affine
transformations, these are the entropic functionals and the
expectation itself.
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Version-independent conditional functionals

Recall that we consider (Ω,F , P) and a sub-sigma algebra F1 of F .

Definition. The nested distribution of a random variable
Y ∈ Lp(F) given F1 is the distribution of the conditional
distributions of Y given F1. A conditional acceptability (or risk)
functional A(·|F1) is version independent, if its distribution
depends only on the nested distribution of Y given F1.

Examples. All presented conditional functionals are version
independent.
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Choquet representation

Definition. The version-independent functional A has a Choquet
representation, if it is representable in the form

A(Y ) =

∫ 1

0
AV@Rα(Y ) dm(α),

for some probability measure m on [0, 1].
Proposition. The concave, version-independent positively
homogeneous acceptability functional
A(Y ) = inf{E(Y Z ) : Z ∈ Z} has a Choquet representation if and
only if it is comonotone additive: The AV@R’s are the extremal
elements of the (convex) family of all comonotone additive
acceptability functionals.
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Kusuoka representation

Theorem.(Kusuoka 2001, Fritelli and Rosazza Gianin, 2005). Let
A be concave version-independent acceptability-type functional on
Lp(Ω,F , P), 1 ≤ p < ∞, where (Ω,F ,P) is non-atomic.

I Condition C1: A is positively homogeneous;
I Condition C2: A is FSD monotonic;
I Condition C3: A is translation-equivariant.

(i) If (C1), (C2) and (C3) are fulfilled, then A has the Kusuoka
representation

A(Y ) = inf{
∫ 1

0
AV@Rα(Y ) dmG (α) : G ∈ G}

where {mG : G ∈ G} is a family of prob. measures on (0,1].
(ii) If (C1) and (C2) are fulfilled, then A has the representation

A(Y ) = inf{
∫ 1

0
AV@Rα(Y ) dmG (α) : G ∈ G}

where {mG : G ∈ G} are non-negative measures on (0,1].
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(iii) If (C1) holds, then A has the representation

A(Y ) = inf{
∫ 1

0
AV@Rα(Y ) dm

(1)
G (α)

−
∫ 1

0
AV@R1−α(−Y ) dm

(2)
G (α) : G ∈ G},

where m
(1)
G ,m

(2)
G , G ∈ G are families of non-negative measures

on (0,1].

(iv) In general, A has the representation

A(Y ) = inf{
∫ 1

0
AV@Rα(Y ) dm

(1)
G (α)

−
∫ 1

0
AV@Rα(−Y ) dm

(2)
G (α)− Ã{G} : G ∈ G}

where m
(1)
G ,m

(2)
G are as before and Ã{G} is some functional

defined on G.
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Remark. The Kusuoka representation is not unique. For instance,

AV@Rβ =

∫
AV@Rα dδβ(α) = inf{

∫
AV@Rα dδβ+1/n(α) : n ≥ 0}.

¡¡
¢¢¡¡ If the underlying space has atoms, a Kusuoka representation

does not hold in general. Let Ω = {ω1, ω2} with P{ω1) = q,
P{ω2} = 1− q. The functional A(Y ) = Y (ω1) is
version-independent, but has no Kusuoka representation.
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Examples for Kusuoka representations

Example. The mean absolute deviation corrected mean.

E(Y )− 1

2
E|Y − EY |

= inf{
∫

(0,1]
AV@Rα(Y ) dm(α) : m ∈ P(0, 1];

∫

(0,1)

1

v
dm(v) ≤ 1},

where P(0, 1] is the family of all probability measures on (0, 1].
Example. The lower-standard deviation corrected mean.

E(Y )− Std−(Y ) = inf{
∫

(0,1]
AV@Rα(Y )dm(α) : m ∈M},

where

M =

{
m ∈ P(0, 1] :

∫

(0,1)

∫

(0,1)

min(v , w)

vw
dm(v) dm(w) = 1

}
.
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Example. The standard deviation corrected mean.

E(Y )− Std(Y ) = inf{
∫

(0,u0]
AV@Rα(Y ) dm(1)(α)

−
∫

(u0,1]
AV@R1−α(Y ) dm(2)(α) : m(1), m(2) ∈M},

where M is the family of pairs of non-negative measures satisfying

∫

(u,u0]
dm(1) +

∫

(u0,1]
dm(2) = 1

and
∫

(0,u0]

∫
(0, u0]

min(v , w)

v · w dm(1)(v) dm(2)(w)

+

∫

(u0,1]

∫

(u0,1]

1−max(v , w)

(1− v)(1− w)
dm(2)(v) dm(2)(w) ≤ 2.

for some u0.
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Properties of acceptability-type functionals

(TE) Translation-equivariant
(CV) Concave
(FSD) Isotonic w.r.t. first order stochastic dominance/pointwise monotonic
(SSD) Isotonic w.r.t second order stochastic dominance
(PH) Positive homogeneous
(CCX) Compound convex
(CLI) Compound linear

expectation
E[Y ] (TE) (CV) (SSD) (PH) (CLI)

(concave) utility-type

U−1E[U(Y )]
- - (SSD) - (CCX)

distortion functionals∫ 1
0 G−1

Y
(p) dH(p)

(TE) (CV) (SSD) (PH) (CCX)†

sup-convolutions
Aπ(Y )

(TE) (CV) (SSD)‡ (PH)‡ (CCX)‡

average value-at-risk
AV@R

(TE) (CV) (SSD) (A4) (CCX)

value-at-risk
V@R

(TE) - (FSD) (PH) -

†if H is a concave probability distribution function,
‡if π has the corresponding property
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Properties of translation-invariant functionals

Translation-invariant functionals D build risk functionals by

A(Y ) = E(Y )−D(Y )

(TI) Translation-invariant
(CX) Convex
(FSD) E−D is isotonic w.r.t. first order stochastic dominance
(SSD) E−D is isotonic w.r.t second order stochastic dominance
(PH) Positive homogeneous
(CCC) Compound concave

E[h(Y − EY )]
(TI) (CX) - - -

‖Y − EY‖h
(TI) (CX) - (PH) -

‖[Y − EY ]−‖h (TI) (CX) (SSD) (PH) -

E[h(Y − Y ′)]
(TI) (CX) - - -

inf{E[h(Y − a)] : a ∈ R}
(TI) (CX) (SSD) - (CCC)

†If h(u) > 0 for u 6= 0.

Georg Ch. Pflug Part I: Unconditional and Conditional Risk Functionals



The value-at-risk

We define the value-at-risk as V@Rα(Y ) = G−1
Y (α) with

GY (u) = P{Y ≤ u} Some people define it as −G−1
Y (α).

¡¡
¢¢¡¡ V@R is not concave, not compound convex, not isotonic

w.r.t. SSD, but translation-equivariant, isotonic w.r.t. FSD,
positively homogenous and comonotone additive.
Since the V@R is the basic tool in the Basel II formulas, this leads
to paradoxic situations.
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Convexification of V@R

The level sets {Y : V@Rα(Y ) ≥ q} = {Y : E[1l(−∞,q](Y )] ≤ α}
are not convex. Convex inner approximations are given by

{Y : E[k(Y )] ≤ α}

where k is a convex majorant of 1l(−∞,q].

−1  −0.5 0   0.5 1   −1  −0.5 0   0.5 1   −1  

kinked linear functions ka(u) = 1
a−q [u − a]−: AV@R (Rockafellar

and Uryasev)
exponential functions kb(u) = eb(q−u): Nemirovski and Shapiro
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