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Time consistency for final processes

We consider a probability space (Ω,F , P) and a filtration FF ∈ F .
Let

A2(·|F1) : Lp (Ω,F ,P) → Lp′ (Ω,F1, P)

a conditional acceptability-type mapping and let

A1(·)

be an unconditional acceptability measure. Typically, but not
necessarily, A1 is the unconditional counterpart of A2(·|F1).
Notice that we consider now just one final profit&loss variable Y
and not a full profit&loss process.
Definition. (Artzner at al. 2007). The pair A1(·), A2(·|F1) is
called time consistent, if for all X , Y ∈ Lp (Ω,F , P) the implication

A2(Y |F1) ≤ A2(Ỹ |F1) a.s. =⇒ A1(Y ) ≤ A1(Ỹ )

holds.
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Illustration
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¡¡
¢¢¡¡ AV@R is not time-consistent.
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AV@R0.1(Y |F1) = (4; 0) ≥ (3; 0) = AV@R0.1(Ỹ |F1)

while
AV@R0.1(Y ) = 0.9 < 1.8 = AV@R0.1(Ỹ ).
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Definition. A pair A1(·), A2(·|F1) is called acceptance consistent,
if for all Y ∈ Lp (Ω,F , µ) the implication

ess infA2(Y |F1) ≤ A1(Y )

holds. It is called rejection consistent, if

ess supA2(Y |F1) ≥ A1(Y ).

(see e.g. Weber, 2006).
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Remark. Acceptance consistency is equivalent to:
For all q

A2(Y |F1) ≥ q a.s. =⇒ A1(Y ) ≥ q

(if each conditional Y |F1 is accepted, then also Y is accepted).

Rejection consistency is equivalent to: for all q

A2(Y |F1) ≤ q a.s. =⇒ A1(Y ) ≤ q

(if each conditional Y |F1 is rejected, then also Y is rejected).
Proposition. If A1(0) = 0 and A2(0|F1) = 0 a.s. and A1(·),
A2(·|F1) are translation equivariant then time consistency implies
acceptance and rejection consistency.
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Definition. A pair A1(·), A2(·|F1) is called

(i) compound convex , if for all Y ∈ domA

A1(Y ) ≤ E (A2(Y |F1)) .

(ii) compound concave, if for all Y ∈ domA

A1(Y ) ≥ E (A2(Y |F1)) .

If both properties hold, we call the pair compound linear.
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Remark.
For version-independent conditional functionals, the definition is
modified as follows:
Definition.

(i) A is called compound convex, if for all K (·|v), G (v)

A{K ◦ G} ≤
∫
A{K (·|v)} dG (v) .

(ii) A is called compound concave, if for all K (·|v), G (v)

A{K ◦ G} ≥
∫
A{K (·|v)} dG (v) .

Here K ◦ G =
∫

K (·|v) dG (v).
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Theorem.

(i) compound convexity implies rejection consistency.

(ii) compound concavity implies acceptance consistency.

Theorem. Let FF = (F0, . . . ,FT ) be a filtration.

(i) A(·|·) is compound convex, iff Yt = A(Y |Ft) is a
submartingale.

(ii) A(·|·) is compound concave, iff Yt = A(Y |Ft) is a
supermartingale.
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The AV@R is compound convex, hence rejection consistent.

¡¡
¢¢¡¡ AV@R is not acceptance consistent.
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AV@R2/3(Y |F1) = 0, AV@R2/3(Y ) = −2.
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Definition. (Artzner (2008), Kupper (2008), Jobert (2000)) A
pair A1(·), A2(·|F1) is called recursive, if for all Y ∈ Lp (Ω,F , µ)
the equation

A1(Y ) = A1 (A2(Y |F1))

holds.
Of special interest are version-independent conditional functionals,
which are auto-recursive (i.e. for which A1(·) = A2(·|F0)).
Examples.

I EC-functionals (i.e. functionals of the form E[A(Y |F1)]) are
recursive.

I The entropic functional is auto-recursive.

−1

γ
logE[exp(−γ[−1

γ
logE[exp(−γY )|F1)])]

= −1

γ
logE[E[exp(−γ)|F1]] = −1

γ
logE[exp(−γY )]

I The AV@R is not auto-recursive.
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The relation between time consistency and recursivity

Theorem. (Artzner et. al., 2007) A pair A1(·), A2(·|F1) with
translation equivariant A(·|F1), the property A(0|F1) = 0 and
monotonic A(·) is time consistent if and only if it is recursive.
Proof. Let the pair be recursive and let A2(Y |F1) ≤ A2(Ỹ |F1).
Then, by monotonicity,
A1(Y ) = A1(A2(Y |F1)) ≤ A1(A2(Ỹ |F1)) = A1(Ỹ ).
Conversely, let the pair be time consistent. By assumption,

A2(A2(Y |F1)|F1) = A2(A2(Y |F1) + 0|F1) = A2(Y |F1) + 0.

Setting Ỹ = A2(Y |F1) and using the time consistency, leads to

A1(Ỹ ) = A1(A2(Y |F1)) = A1(Y ),

which is the equation of recursivity.
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Theorem. (Kupper and Schachermayer, 2008) Suppose that the
pair A1(·) and A(·|Ft) is recursive for a sequence Ft , t = 1, 2, . . .
of σ-algebras, such that A1 is strictly monotonic, version
independent and satisfies A1(c) = c . If moreover all Ft ’s are
atomless and one may construct a sequence of independent
Bernoulli random variables adapted to (Ft), then A0(Y ) must be
of the form U−1[E(U(Y ))] for some utility function U. If A is
translation-equivariant, it must be the entropic functional.
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Theorem. For a time consistent pair A1(·), A2(·|F1) with
translation equivariant A2(·|F1) and monotonic A1(·), strictness
(i.e. A2(X ) ≤ E (X )) implies compound convexity.

Theorem. Compound-linearity (i.e. compound convexity and
compound concavity together) implies time consistency.
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Enforcing time consistency by composition (nesting)

Let a probability space (Ω,F ,P) and a filtration
FF = (F0, . . . ,FT ) of σ-fields Ft , t = 0, ...,T , with FT = F be
given. Let Yt := Lp(Ft) for t = 1, . . . , T and some p ∈ [1, +∞).
Let, for each t = 1, . . . ,T , conditional acceptability mappings
At−1 := A(· |Ft−1) from YT to Yt−1 be given. Introduce a
multi-period probability functional A on Y := ×T

t=1Yt by
compositions of the conditional acceptability mappings At−1,
t = 1, . . . ,T , namely,

A(Y ;FF) := A0[Y1 + · · ·+AT−2[YT−1 +AT−1(YT )]·]

= A0 ◦ A1 ◦ · · · ◦ AT−1(
T∑

t=1

Yt)

for every Yt ∈ Yt . (Ruszczynski and Shapiro, 2006). Notice that
these functionals are recursive in a trivial way.
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The nested AV@R

Example. Consider the conditional Average Value-at-Risk (of level
α ∈ (0, 1]) as conditional acceptability mapping

At−1(Yt) := AV@Rα(· |Ft−1)

for every t = 1, . . . ,T . Then the multi-period probability
functional

nAV@Rα(Y ;FF)=AV@Rα(· |F0) ◦ · · · ◦AV@Rα(· |FT−1)(
∑T

t=1
Yt)

satisfies (MA0), (MA1’), (MA2), (MA3). It is called the nested
Average Value-at-Risk.
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Proposition. Suppose that for every t the conditional acceptability
functional At(·|Ft) maps Lp(Ft) to Lp(Ft−1) and is defined by

At(Y |Ft) = inf{E(Y Z |Ft)−A+
t (Z |Ft) : Z ≥ 0,

E(Z |Ft) = 1, Z ∈ Zt(Ft)}.

Then the nested acceptability functional
A(Y ;FF) = A0 ◦ A1 ◦ · · · ◦ AT−1(

∑T
t=1 Yt) has the dual

representation

A(Y ;FF) = inf{E[(Y1 + · · ·+ YT )MT ]−
T∑

t=1

E[A+
t (Zt |Ft)Mt−1] :

E(Zt |Ft) = 1, Zt ≥ 0, Zt ∈ Zt(Ft)}

where Mt =
∏t

s=1 Zt and M0 = 1. Notice that the supergradients
(Mt) must be martingales w.r.t. FF with E(|Mt |q) < ∞.
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The entropic functional

The nested entropic acceptability functional is
A0 ◦ A1 ◦ · · · ◦ AT−1(Y ) with At(Y ) = − 1

γ logE[exp(−γY )|Ft ],
for Y nonnegative and nonvanishing. Recall that the dual
representation of At is

At(Y |F1) = inf{E(Y Z |Ft)+
1

γ
E(Z log Z |Ft) : E(Z |Ft) = 1, Z ≥ 0}.

Here 0 log 0 is defined as 0. The nested entropic acceptability
functional has the representation A(Y ;FF) =

inf{E[(
T∑

t=1

Yt)
T∏

s=1

Zs ]+
T∑

t=1

E[E(Zt log Zt |Ft)
t−1∏

s=1

Zs ] : E(Zt |Ft) = 1, Zt > 0}

= inf{E[(
T∑

t=1

Yt)M] + E[M log M] : E(M) = 1,M > 0}.

The nested entropic functional collapses to the unconditional
entropic functional.
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The nested AV@R

Example. The nested AV@R has the following dual representation:

nAV@Rα(Y ;FF) = inf{E[(Y1 + · · ·+ YT )MT ] : 0 ≤ Mt ≤ 1

α
Mt−1,

E(Mt |Ft−1) = Mt−1, M0 = 1, t = 1, . . . ,T}.

The nested average value-at-risk nAV@R is given by a linear
stochastic optimization problem containing functional constraints.
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A comparison

I Composition. A(Y ;FF) = A0 ◦ A1 ◦ · · · ◦ AT−1(
∑T

t=1 Yt)
has the dual representation

A(Y ;FF) = inf{E[(
T∑

t=1

Yt)MT ]−
T∑

t=1

E[A+
t (Zt |Ft)Mt−1] :

E(Zt |Ft) = 1, Zt ≥ 0,Zt ∈ Zt(Ft)}
where Mt =

∏t
s=1 Zt and M0 = 1. Notice that the

supergradients (Mt) must be martingales w.r.t. FF with
E(|Mt |q) < ∞.

I Separable EC.
∑T

t=1 E[At(Yt |Ft−1)] =

inf{
T∑

t=1

E[YtZt ]−
T∑

t=1

E[A+
t (Zt |Ft)] : Zt¢Ft ,Zt ≥ 0,E(Zt |Ft−1) = 1}

=
T∑

t=1

inf{E[YtZt ]−E[A+
t (Zt |Ft)] : Zt¢Ft , Zt ≥ 0,E(Zt |Ft−1) = 1}
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Time consistent decisions ?

Let a stochastic multistage decision problem be given, which is
defined on the basis of a tree process ν = (ν1, . . . , νT ). Let P be
the probability governing the tree process. Let Pνt=z be the
conditional distribution of the tree process, given that the value of
νt is z . The solution is called time-consistent, if the solutions of
the original problem and the conditional problems (when the
decisions at times 1, . . . , t − 1 are kept fixed) coincide on the
subtree of νt = z .
Proposition. If the objective is a nested acceptability functional
(and no other constraints are present), then the decision problem
leads to time consistent decisions.

Theorem. (Kreps and Porteus, 1978). Under some consistency
axioms, including a condition on ”linearity of decisions w.r.t.
probabilities, time consistent decision problem are those for which
the objective is the expected utility.
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yi : values of the scenario process
xi : optimal decisions

i : node numbers
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A full problem and the conditional problem ”given node 3”. The
decision problem is time-consistent, if xi = x̄i , for all nodes, which

are in the subtree of the conditioning node.
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¡¡
¢¢¡¡ Time inconsistency appears in a natural way in optimality

problems. We want to find

max{E(Y ) : AV@R0.05(Y ) ≥ 2} or maxE(Y )+AV@R0.05(Y ).
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The conditional problem given the first node:
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The paradoxon disappears, if the objective is a nested functional,
e.g. the nested AV@R or the entropic functional.
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¡¡
¢¢¡¡ Time consistency contradicts information monotonicity.
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In both examples, the final income Y is the same, but in the right
example, the filtration is finer. One calculates

AV@R0.1[AV@R0.1(Y |F (1)
1 )] = 0.9 > 0 = AV@R0.1[AV@R0.1(Y |F (2)

1 )].

Notice that

E[AV@R0.1(Y |F (1)
1 )] = E[AV@R0.1(Y |F (2)

1 )] = 0.9.
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