Part III: Time Consistency

Georg Ch. Pflug

Winter School on Mathematical Finance, Lunteren 2009

Time consistency for final processes

We consider a probability space (Ω, \mathcal{F}, P) and a filtration $\mathcal{F} \in \mathcal{F}$. Let

$$\mathcal{A}_{2}(\cdot | \mathcal{F}_{1}) : L_{p}\left(\Omega, \mathcal{F}, P\right) \rightarrow L_{p'}\left(\Omega, \mathcal{F}_{1}, P\right)$$

a conditional acceptability-type mapping and let

 $\mathcal{A}_1(\cdot)$

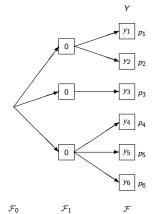
be an unconditional acceptability measure. Typically, but not necessarily, A_1 is the unconditional counterpart of $A_2(\cdot|\mathcal{F}_1)$. Notice that we consider now just one final profit&loss variable Y and not a full profit&loss process.

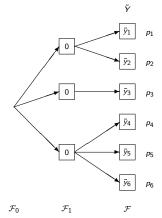
Definition. (Artzner at al. 2007). The pair $A_1(\cdot)$, $A_2(\cdot|\mathcal{F}_1)$ is called *time consistent*, if for all $X, Y \in L_p(\Omega, \mathcal{F}, P)$ the implication

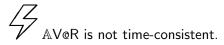
$$\mathcal{A}_2(Y|\mathcal{F}_1) \leq \mathcal{A}_2(ilde{Y}|\mathcal{F}_1) ext{ a.s. } \Longrightarrow \mathcal{A}_1(Y) \leq \mathcal{A}_1(ilde{Y})$$

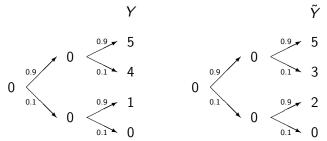
holds.

Illustration









 $\mathbb{A} \mathsf{VoR}_{0.1}(Y|\mathcal{F}_1) = (4;0) \geq (3;0) = \mathbb{A} \mathsf{VoR}_{0.1}(\widetilde{Y}|\mathcal{F}_1)$

while

$$\mathbb{A} \mathsf{VoR}_{0.1}(Y) = 0.9 < 1.8 = \mathbb{A} \mathsf{VoR}_{0.1}(\tilde{Y}).$$

Definition. A pair $\mathcal{A}_1(\cdot)$, $\mathcal{A}_2(\cdot|\mathcal{F}_1)$ is called *acceptance consistent*, if for all $Y \in L_p(\Omega, \mathcal{F}, \mu)$ the implication

 $\mathrm{ess}\inf\mathcal{A}_2(Y|\mathcal{F}_1)\leq\mathcal{A}_1(Y)$

holds. It is called rejection consistent, if

 $\mathrm{ess} \sup \mathcal{A}_2(Y|\mathcal{F}_1) \geq \mathcal{A}_1(Y).$

(see e.g. Weber, 2006).

Remark. Acceptance consistency is equivalent to: For all q

$$\mathcal{A}_2(Y|\mathcal{F}_1) \geq q$$
 a.s. $\Longrightarrow \mathcal{A}_1(Y) \geq q$

(if each conditional $Y|\mathcal{F}_1$ is accepted, then also Y is accepted). Rejection consistency is equivalent to: for all q

$$\mathcal{A}_2(Y|\mathcal{F}_1) \leq q$$
 a.s. $\Longrightarrow \mathcal{A}_1(Y) \leq q$

(if each conditional $Y|\mathcal{F}_1$ is rejected, then also Y is rejected). **Proposition.** If $\mathcal{A}_1(0) = 0$ and $\mathcal{A}_2(0|\mathcal{F}_1) = 0$ a.s. and $\mathcal{A}_1(\cdot)$, $\mathcal{A}_2(\cdot|\mathcal{F}_1)$ are translation equivariant then time consistency implies acceptance and rejection consistency. **Definition.** A pair $A_1(\cdot)$, $A_2(\cdot|\mathcal{F}_1)$ is called (i) *compound convex*, if for all $Y \in dom\mathcal{A}$

 $\mathcal{A}_1(Y) \leq \mathbb{E}\left(\mathcal{A}_2(Y|\mathcal{F}_1)\right).$

(ii) compound concave, if for all $Y \in domA$

$$\mathcal{A}_1(Y) \geq \mathbb{E}\left(\mathcal{A}_2(Y|\mathcal{F}_1)\right).$$

If both properties hold, we call the pair compound linear.

Remark.

For version-independent conditional functionals, the definition is modified as follows:

Definition.

(i) A is called *compound convex*, if for all $K(\cdot|v)$, G(v)

$$\mathcal{A}\left\{K\circ G
ight\}\leq\int\mathcal{A}\left\{K\left(\cdot|v
ight)
ight\}\,\mathrm{d}G\left(v
ight).$$

(ii) \mathcal{A} is called *compound concave*, if for all $K(\cdot|v)$, G(v)

$$\mathcal{A}\left\{\mathcal{K}\circ\mathcal{G}
ight\}\geq\int\mathcal{A}\left\{\mathcal{K}\left(\cdot|v
ight)
ight\}\,\mathrm{d}\mathcal{G}\left(v
ight).$$

Here $K \circ G = \int K(\cdot | v) \, \mathrm{d}G(v)$.

Theorem.

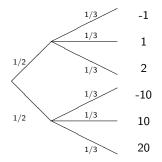
(i) compound convexity implies rejection consistency.

(ii) compound concavity implies acceptance consistency.

Theorem. Let $\mathcal{F} = (\mathcal{F}_0, \dots, \mathcal{F}_T)$ be a filtration.

- (i) $\mathcal{A}(\cdot|\cdot)$ is compound convex, iff $Y_t = \mathcal{A}(Y|\mathcal{F}_t)$ is a submartingale.
- (ii) $\mathcal{A}(\cdot|\cdot)$ is compound concave, iff $Y_t = \mathcal{A}(Y|\mathcal{F}_t)$ is a supermartingale.

The $\mathbb{A}V@R$ is compound convex, hence rejection consistent. $\mathbb{A}V@R$ is not acceptance consistent.



 $\mathbb{A}\mathrm{VeR}_{2/3}(Y|\mathcal{F}_1)=0,\qquad \mathbb{A}\mathrm{VeR}_{2/3}(Y)=-2.$

Definition. (Artzner (2008), Kupper (2008), Jobert (2000)) A pair $\mathcal{A}_1(\cdot)$, $\mathcal{A}_2(\cdot|\mathcal{F}_1)$ is called *recursive*, if for all $Y \in L_p(\Omega, \mathcal{F}, \mu)$ the equation

$$\mathcal{A}_1(Y) = \mathcal{A}_1\left(\mathcal{A}_2(Y|\mathcal{F}_1)\right)$$

holds.

Of special interest are version-independent conditional functionals, which are auto-recursive (i.e. for which $\mathcal{A}_1(\cdot) = \mathcal{A}_2(\cdot | \mathcal{F}_0)$). **Examples.**

- ► EC-functionals (i.e. functionals of the form E[A(Y|F₁)]) are recursive.
- ► The entropic functional is auto-recursive.

$$\begin{aligned} &-\frac{1}{\gamma}\log\mathbb{E}[\exp(-\gamma[-\frac{1}{\gamma}\log\mathbb{E}[\exp(-\gamma Y)|\mathcal{F}_{1})])]\\ &= &-\frac{1}{\gamma}\log\mathbb{E}[\mathbb{E}[\exp(-\gamma)|\mathcal{F}_{1}]] = -\frac{1}{\gamma}\log\mathbb{E}[\exp(-\gamma Y)]\end{aligned}$$

► The AV@R is not auto-recursive.

Theorem. (Artzner et. al., 2007) A pair $\mathcal{A}_1(\cdot)$, $\mathcal{A}_2(\cdot|\mathcal{F}_1)$ with translation equivariant $\mathcal{A}(\cdot|\mathcal{F}_1)$, the property $\mathcal{A}(0|\mathcal{F}_1) = 0$ and monotonic $\mathcal{A}(\cdot)$ is time consistent if and only if it is recursive. **Proof.** Let the pair be recursive and let $\mathcal{A}_2(Y|\mathcal{F}_1) \leq \mathcal{A}_2(\tilde{Y}|\mathcal{F}_1)$. Then, by monotonicity, $\mathcal{A}_1(Y) = \mathcal{A}_1(\mathcal{A}_2(Y|\mathcal{F}_1)) < \mathcal{A}_1(\mathcal{A}_2(\tilde{Y}|\mathcal{F}_1)) = \mathcal{A}_1(\tilde{Y})$.

Conversely, let the pair be time consistent. By assumption,

$$\mathcal{A}_2(\mathcal{A}_2(Y|\mathcal{F}_1)|\mathcal{F}_1) = \mathcal{A}_2(\mathcal{A}_2(Y|\mathcal{F}_1) + 0|\mathcal{F}_1) = \mathcal{A}_2(Y|\mathcal{F}_1) + 0.$$

Setting $ilde{Y} = \mathcal{A}_2(Y|\mathcal{F}_1)$ and using the time consistency, leads to

$$\mathcal{A}_1(\tilde{Y}) = \mathcal{A}_1(\mathcal{A}_2(Y|\mathcal{F}_1)) = \mathcal{A}_1(Y),$$

which is the equation of recursivity.

Theorem. (Kupper and Schachermayer, 2008) Suppose that the pair $\mathcal{A}_1(\cdot)$ and $\mathcal{A}(\cdot|\mathcal{F}_t)$ is recursive for a sequence $\mathcal{F}_t, t = 1, 2, \ldots$ of σ -algebras, such that \mathcal{A}_1 is strictly monotonic, version independent and satisfies $\mathcal{A}_1(c) = c$. If moreover all \mathcal{F}_t 's are atomless and one may construct a sequence of independent Bernoulli random variables adapted to (\mathcal{F}_t) , then $\mathcal{A}_0(Y)$ must be of the form $U^{-1}[\mathbb{E}(U(Y))]$ for some utility function U. If \mathcal{A} is translation-equivariant, it must be the entropic functional.

Theorem. For a time consistent pair $\mathcal{A}_1(\cdot)$, $\mathcal{A}_2(\cdot|\mathcal{F}_1)$ with translation equivariant $\mathcal{A}_2(\cdot|\mathcal{F}_1)$ and monotonic $\mathcal{A}_1(\cdot)$, strictness (i.e. $\mathcal{A}_2(X) \leq \mathbb{E}(X)$) implies compound convexity.

Theorem. Compound-linearity (i.e. compound convexity and compound concavity together) implies time consistency.

Enforcing time consistency by composition (nesting)

Let a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a filtration $\mathcal{F} = (\mathcal{F}_0, \dots, \mathcal{F}_T)$ of σ -fields \mathcal{F}_t , $t = 0, \dots, T$, with $\mathcal{F}_T = \mathcal{F}$ be given. Let $\mathcal{Y}_t := L_p(\mathcal{F}_t)$ for $t = 1, \dots, T$ and some $p \in [1, +\infty)$. Let, for each $t = 1, \dots, T$, conditional acceptability mappings $\mathcal{A}_{t-1} := \mathcal{A}(\cdot | \mathcal{F}_{t-1})$ from \mathcal{Y}_T to \mathcal{Y}_{t-1} be given. Introduce a multi-period probability functional \mathcal{A} on $\mathcal{Y} := \times_{t=1}^T \mathcal{Y}_t$ by compositions of the conditional acceptability mappings \mathcal{A}_{t-1} , $t = 1, \dots, T$, namely,

$$\begin{aligned} \mathcal{A}(Y;\mathcal{F}) &:= & \mathcal{A}_0[Y_1 + \dots + \mathcal{A}_{T-2}[Y_{T-1} + \mathcal{A}_{T-1}(Y_T)] \cdot] \\ &= & \mathcal{A}_0 \circ \mathcal{A}_1 \circ \dots \circ \mathcal{A}_{T-1}(\sum_{t=1}^T Y_t) \end{aligned}$$

for every $Y_t \in \mathcal{Y}_t$. (Ruszczynski and Shapiro, 2006). Notice that these functionals are recursive in a trivial way.

Example. Consider the conditional Average Value-at-Risk (of level $\alpha \in (0, 1]$) as conditional acceptability mapping

$$\mathcal{A}_{t-1}(Y_t) := \mathbb{A}\mathsf{VeR}_{lpha}(\cdot | \mathcal{F}_{t-1})$$

for every t = 1, ..., T. Then the multi-period probability functional

$$n \mathbb{A} \mathsf{V} @ \mathsf{R}_{\alpha}(Y; \mathcal{F}) = \mathbb{A} \mathsf{V} @ \mathsf{R}_{\alpha}(\cdot | \mathcal{F}_{0}) \circ \cdots \circ \mathbb{A} \mathsf{V} @ \mathsf{R}_{\alpha}(\cdot | \mathcal{F}_{T-1})(\sum_{t=1}^{T} Y_{t})$$

satisfies (MA0), (MA1'), (MA2), (MA3). It is called the *nested* Average Value-at-Risk.

Proposition. Suppose that for every *t* the conditional acceptability functional $A_t(\cdot|\mathcal{F}_t)$ maps $L_p(\mathcal{F}_t)$ to $L_p(\mathcal{F}_{t-1})$ and is defined by

$$\begin{split} \mathcal{A}_t(Y|\mathcal{F}_t) &= \inf\{\mathbb{E}(Y|\mathcal{Z}|\mathcal{F}_t) - \mathcal{A}_t^+(Z|\mathcal{F}_t) : Z \geq 0, \\ \mathbb{E}(Z|\mathcal{F}_t) &= 1, Z \in \mathcal{Z}_t(\mathcal{F}_t)\}. \end{split}$$

Then the nested acceptability functional $\mathcal{A}(Y; \mathcal{F}) = \mathcal{A}_0 \circ \mathcal{A}_1 \circ \cdots \circ \mathcal{A}_{T-1}(\sum_{t=1}^T Y_t)$ has the dual representation

$$\mathcal{A}(Y; \mathcal{F}) = \inf \{ \mathbb{E}[(Y_1 + \dots + Y_T)M_T] - \sum_{t=1}^T \mathbb{E}[\mathcal{A}_t^+(Z_t|\mathcal{F}_t)M_{t-1}] : \mathbb{E}(Z_t|\mathcal{F}_t) = 1, Z_t \ge 0, Z_t \in \mathcal{Z}_t(\mathcal{F}_t) \}$$

where $M_t = \prod_{s=1}^t Z_t$ and $M_0 = 1$. Notice that the supergradients (M_t) must be martingales w.r.t. \mathcal{F} with $\mathbb{E}(|M_t|^q) < \infty$.

The entropic functional

The nested entropic acceptability functional is $\mathcal{A}_0 \circ \mathcal{A}_1 \circ \cdots \circ \mathcal{A}_{T-1}(Y)$ with $\mathcal{A}_t(Y) = -\frac{1}{\gamma} \log \mathbb{E}[\exp(-\gamma Y)|\mathcal{F}_t]$, for Y nonnegative and nonvanishing. Recall that the dual representation of \mathcal{A}_t is

$$\mathcal{A}_t(Y|\mathcal{F}_1) = \inf \{ \mathbb{E}(YZ|\mathcal{F}_t) + \frac{1}{\gamma} \mathbb{E}(Z\log Z|\mathcal{F}_t) : \mathbb{E}(Z|\mathcal{F}_t) = 1, Z \ge 0 \}.$$

Here $0 \log 0$ is defined as 0. The nested entropic acceptability functional has the representation $\mathcal{A}(Y; \mathcal{F}) =$

$$\inf\{\mathbb{E}[(\sum_{t=1}^{T} Y_t) \prod_{s=1}^{T} Z_s] + \sum_{t=1}^{T} \mathbb{E}[\mathbb{E}(Z_t \log Z_t | \mathcal{F}_t) \prod_{s=1}^{t-1} Z_s] : \mathbb{E}(Z_t | \mathcal{F}_t) = 1, Z_t >$$
$$= \inf\{\mathbb{E}[(\sum_{t=1}^{T} Y_t)M] + \mathbb{E}[M \log M] : \mathbb{E}(M) = 1, M > 0\}.$$

The nested entropic functional collapses to the unconditional entropic functional.

Example. The nested AV@R has the following dual representation:

$$n\mathbb{A} \mathsf{V} \otimes \mathsf{R}_{\alpha}(Y; \mathcal{F}) = \inf \{ \mathbb{E}[(Y_1 + \dots + Y_T)M_T] : 0 \le M_t \le \frac{1}{\alpha}M_{t-1}, \\ \mathbb{E}(M_t | \mathcal{F}_{t-1}) = M_{t-1}, M_0 = 1, t = 1, \dots, T \}.$$

-1

The nested average value-at-risk $n \mathbb{A} V \otimes \mathbb{R}$ is given by a linear stochastic optimization problem containing functional constraints.

A comparison

► **Composition**. $\mathcal{A}(Y; \mathcal{F}) = \mathcal{A}_0 \circ \mathcal{A}_1 \circ \cdots \circ \mathcal{A}_{T-1}(\sum_{t=1}^T Y_t)$ has the dual representation

$$\mathcal{A}(Y; \mathcal{F}) = \inf \{ \mathbb{E}[(\sum_{t=1}^{T} Y_t) M_T] - \sum_{t=1}^{T} \mathbb{E}[\mathcal{A}_t^+(Z_t|\mathcal{F}_t) M_{t-1}] :$$

 $\mathbb{E}(Z_t|\mathcal{F}_t) = 1, Z_t \ge 0, Z_t \in \mathcal{Z}_t(\mathcal{F}_t) \}$

where $M_t = \prod_{s=1}^t Z_t$ and $M_0 = 1$. Notice that the supergradients (M_t) must be martingales w.r.t. \mathcal{F} with $\mathbb{E}(|M_t|^q) < \infty$.

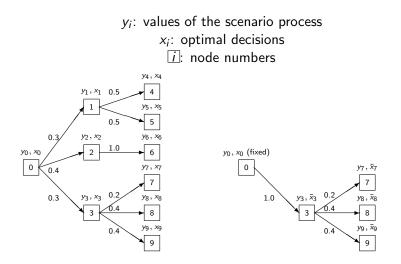
• Separable EC. $\sum_{t=1}^{T} \mathbb{E}[\mathcal{A}_t(Y_t | \mathcal{F}_{t-1})] =$

$$\inf\{\sum_{t=1}^{T} \mathbb{E}[Y_t Z_t] - \sum_{t=1}^{T} \mathbb{E}[\mathcal{A}_t^+(Z_t | \mathcal{F}_t)] : Z_t \triangleleft \mathcal{F}_t, Z_t \ge 0, \mathbb{E}(Z_t | \mathcal{F}_{t-1}) = 1\}$$
$$= \sum_{t=1}^{T} \inf\{\mathbb{E}[Y_t Z_t] - \mathbb{E}[\mathcal{A}_t^+(Z_t | \mathcal{F}_t)] : Z_t \triangleleft \mathcal{F}_t, Z_t \ge 0, \mathbb{E}(Z_t | \mathcal{F}_{t-1}) = 1\}$$

Let a stochastic multistage decision problem be given, which is defined on the basis of a tree process $\nu = (\nu_1, \ldots, \nu_T)$. Let \mathbb{P} be the probability governing the tree process. Let $\mathbb{P}^{\nu_t=z}$ be the conditional distribution of the tree process, given that the value of ν_t is z. The solution is called time-consistent, if the solutions of the original problem and the conditional problems (when the decisions at times $1, \ldots, t-1$ are kept fixed) coincide on the subtree of $\nu_t = z$.

Proposition. If the objective is a nested acceptability functional (and no other constraints are present), then the decision problem leads to time consistent decisions.

Theorem. (Kreps and Porteus, 1978). Under some consistency axioms, including a condition on "linearity of decisions w.r.t. probabilities, time consistent decision problem are those for which the objective is the expected utility.

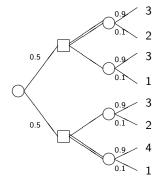


A full problem and the conditional problem "given node 3". The decision problem is time-consistent, if $x_i = \bar{x}_i$, for all nodes, which are in the subtree of the conditioning node.

 \checkmark Time inconsistency appears in a natural way in optimality problems. We want to find

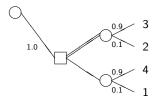
 $\max\{\mathbb{E}(Y) : \mathbb{A} \mathsf{VeR}_{0.05}(Y) \ge 2\}$ or $\max\mathbb{E}(Y)$

$$\max \mathbb{E}(Y) + \mathbb{A} \mathsf{V} @ \mathsf{R}_{0.05}(Y).$$



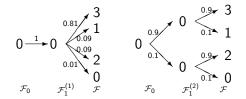
double line = optimal decision

The conditional problem given the first node:



The paradoxon disappears, if the objective is a nested functional, e.g. the nested $\mathbb{A}V@R$ or the entropic functional.

Time consistency contradicts information monotonicity.



In both examples, the final income Y is the same, but in the right example, the filtration is finer. One calculates

$$\begin{split} & \mathbb{A} \mathsf{V} @\mathsf{R}_{0.1}[\mathbb{A} \mathsf{V} @\mathsf{R}_{0.1}(Y | \mathcal{F}_1^{(1)})] = 0.9 > 0 = \mathbb{A} \mathsf{V} @\mathsf{R}_{0.1}[\mathbb{A} \mathsf{V} @\mathsf{R}_{0.1}(Y | \mathcal{F}_1^{(2)})]. \end{split}$$
 Notice that

$$\mathbb{E}[\mathbb{A}\mathsf{V}\texttt{e}\mathsf{R}_{0.1}(\textbf{\textit{Y}}|\mathcal{F}_1^{(1)})] = \mathbb{E}[\mathbb{A}\mathsf{V}\texttt{e}\mathsf{R}_{0.1}(\textbf{\textit{Y}}|\mathcal{F}_1^{(2)})] = 0.9.$$