New insights into exponential utility indifference valuation

Martin Schweizer

Department of Mathematics ETH Zürich

8th Winter School on Mathematical Finance

January 19-21, 2009 Lunteren, The Netherlands 21.01.2009

based on joint work with Christoph Frei (ETH Zürich)

Original problem

Martin Schweizer New insights into exponential utility indifference valuation

(日) (同) (三) (三)

-

Financial problem

- **Basic problem:** valuation of non-attainable contingent claims in incomplete financial markets.
- Basic idea: value by utility indifference, i.e., define time t seller value b_t of time T payoff B implicitly via

$$\operatorname{ess\,sup}_{\pi} E\left[U\left(x_{t}+\int_{t}^{T}\pi_{r}\,dS_{r}\right)\Big|\mathcal{F}_{t}\right]$$
$$=\operatorname{ess\,sup}_{\pi} E\left[U\left(x_{t}+b_{t}+\int_{t}^{T}\pi_{r}\,dS_{r}-B\right)\Big|\mathcal{F}_{t}\right].$$

- **Exponential** utility indifference valuation: $U(x) = -e^{-\alpha x}$.
- Why exponential?
 - For expected utility, problem seems intractable for other U.
 - With exponential U, can even obtain fairly explicit results.

Mathematical problem

 So: need to understand in detail dynamic value process for problem of maximising expected utility from terminal wealth with random endowment, i.e., the process

$$V_t^B := V_t^B(0) := \operatorname{ess\,sup}_{\pi} E\left[U\left(\int_t^T \pi_r \, dS_r - B\right) \middle| \mathcal{F}_t\right].$$

• Then exponential utility indifference seller value is

$$b_t = rac{1}{lpha} \log rac{V_t^B}{V_t^0}.$$

• Many references . . .

・ 同 ト ・ ヨ ト ・ ヨ ト

References ...

- Becherer (2003, 2006)
- Biagini/Frittelli (2005)
- Biagini/Frittelli/Grasselli/Hurd (2008)
- Delbaen/Grandits/Rheinländer/Samperi/S/Stricker (2002)
- Frei/S (2008a,b)
- Grasselli (2007)
- Grasselli/Hurd (2007)
- Henderson (2002)
- Hobson (1994)
- Henderson/Hobson (2002, 2004)

・ 同 ト ・ ヨ ト ・ ヨ ト

... references ...

- Hu/Imkeller/Müller (2005)
- Kabanov/Stricker (2002)
- Leung/Sircar (2008)
- Mania/S (2005)
- Monoyios (2006)
- Morlais (2007)
- Musiela/Zariphopoulou (2004)
- Rouge/El Karoui (2000)
- Tehranchi (2004)
- Zariphopoulou (2001)

.. references

• (other missing links)

• . . .

Martin Schweizer New insights into exponential utility indifference valuation

- 4 同 6 4 日 6 4 日 6

3

Markovian setting and PDEs Generalisations

Examples and motivation

Martin Schweizer New insights into exponential utility indifference valuation

(日) (同) (三) (三)

Markovian setting and PDEs Generalisations

A simple Markovian example

• Discounted price S and factor/nontraded asset Y given by

$$dS_t = \mu S_t dt + \sigma S_t dW_t, dY_t = b(t, Y_t) dt + a(t, Y_t) d\overline{W}_t;$$

correlated Brownian motions W, \overline{W} with $d \langle W, \overline{W} \rangle_t = \rho dt$.

- Payoff is $B = g(Y_T)$.
- Intuition: Payoff depends on "asset" Y, but can only use correlated asset S for trading and hedging.
- Typical examples:
 - valuation of executive stock options (ESOs)
 - valuation of weather derivatives

• . . .

(日)

Markovian setting and PDEs Generalisations

PDE approach

• All is Markovian; hence, writing $X_t = X_t^{\pi}$ for wealth from self-financing strategy π , expect, for some function v(t, x, y),

$$V_t^B = v(t, X_t, Y_t).$$

• Exponential utility is multiplicative; so guess separable form

$$v(t,x,y)=U(x)F(t,y).$$

• Formal derivation of HJB equation gives

$$0 = F_t + \max_{\pi} \left(\frac{1}{2} \sigma^2 \pi^2 \alpha^2 F + \pi (-\rho \sigma a \alpha F_y - \mu \alpha F) \right) + \frac{1}{2} a^2 F_{yy} + b F_y$$

with boundary condition F(T, y) = g(y).

• Formal maximisation gives nonlinear PDE

$$0 = F_t + \frac{1}{2}a^2F_{yy} + bF_y - \frac{1}{2}\frac{(\rho\sigma aF_y + \mu F)^2}{\sigma^2 F}: \text{ how to solve?}$$

Markovian setting and PDEs Generalisations

PDE transformation

• Using clever power transformation

$$F(t,y) = f(t,y)^{1/(1-\rho^2)}$$

magically reduces nonlinear PDE to linear, solvable PDE; find

$$V_t^B = F(t, Y_t) = -\left(E_{\widehat{P}}\left[\left(e^{\alpha B - \frac{1}{2}\frac{\mu^2}{\sigma^2}(T-t)}\right)^{1/\delta} \middle| Y_t\right]\right)^{\delta} \quad (1)$$

with minimal martingale measure \hat{P} and distortion power

- Why does this work? PDE techniques give no insight (to us).
- References: Henderson/Hobson, Musiela/Zariphopoulou, ...

Markovian setting and PDEs Generalisations

A first generalisation

- PDEs are not needed: consider dS_t = μ_tS_t dt + σ_tS_t dW_t; correlated Brownian motions W, W with d (W, W)_t = ρ dt.
 Tobranchia as available factor Vi
- Tehranchi: no explicit factor Y;
 - μ , σ are $\mathbf{F}^{\overline{W}}$ -predictable;
 - *B* is $\mathcal{F}_T^{\overline{W}}$ -measurable.
- Then again, with $\delta = \frac{1}{1-\rho^2}$,

$$V_t^B = -\left(E_{\widehat{P}}\left[\left.\left(\exp\left(\alpha B - \frac{1}{2}\int_t^T \frac{\mu_r^2}{\sigma_r^2}\,dr\right)\right)^{1/\delta}\right|\mathcal{F}_t^{\overline{W}}\right]\right)^{\delta}.$$
 (2)

- Correlation ρ is still **constant**.
- Technique: clever Hölder-type inequality; again gives no genuine insight (to us).

Markovian setting and PDEs Generalisations

Further generalisations

- Frei/S: S and Y both Itô processes;
 - Sharpe ratio μ/σ is $\mathbf{F}^{\overline{W}}$ -predictable;
 - payoff *B* is $\mathcal{F}_T^{\overline{W}}$ -measurable;
 - stochastic correlation ρ is $\mathbb{F}^{\overline{W}}$ -predictable.
- Then, compare (2),

$$V_{t}^{B} = -\left(E_{\widehat{P}}\left[\left(\exp\left(\alpha B - \frac{1}{2}\int_{t}^{T}\frac{\mu_{r}^{2}}{\sigma_{r}^{2}}dr\right)\right)^{1/\delta}\middle|\mathcal{F}_{t}^{\overline{W}}\right]\right)^{\delta}\middle|_{\delta=\delta_{t}(\omega)}(3)$$

for some random \mathcal{F}_t -measurable δ_t satisfying

$$\inf_{s \in [t,T]} \frac{1}{\|1-\rho_s^2\|_{L^{\infty}}} \le \delta_t \le \sup_{s \in [t,T]} \left\| \frac{1}{1-\rho_s^2} \right\|_{L^{\infty}} \quad \longleftarrow \text{ note: } \delta \approx \frac{1}{1-\rho^2}$$

Markovian setting and PDEs Generalisations

- Proofs via martingale arguments, which seem (to us) more transparent; but still no full understanding; in particular, why measurability conditions?
- Extends to multidimensional Itô process setting; then role of bounds on ρ is played by bounds on minimal and maximal (random) eigenvalues of instantaneous correlation matrix.
- Extensions to **sharper inequalities via BSDE techniques** are recent work (with **C. Frei** and **S. Malamud**).
- **Completely general semimartingale** *S*; gives (at last) understanding.
- Key is good expression for

$$V_t^B := V_t^B(0) := \operatorname{ess\,sup}_{\pi} E\left[U\left(\int_t^T \pi_r \, dS_r - B\right) \middle| \mathcal{F}_t\right].$$

The static case Random endowment Static solution

General ideas for static case

Martin Schweizer New insights into exponential utility indifference valuation

(日) (同) (三) (三)

The static case Random endowment Static solution

The static case (t = 0) with $B \equiv 0$

• **Basic problem:** for exponential utility $U(x) = -e^{-\alpha x}$, solve

$$E\left[U\left(X_{T}^{\pi}\right)\right] = E\left[U\left(\int_{0}^{T} \pi_{r} \, dS_{r}\right)\right] = \max_{\pi}!$$

- Equivalently: $E_P\left[\exp\left(-\alpha \int_0^T \pi_r \, dS_r\right)\right] = \min_{\pi}!$
- Simplest case: if S is a P-martingale, then by Jensen

$$E_{P}\left[\exp\left(-\alpha\int_{0}^{T}\pi_{r}\,dS_{r}\right)\right]\geq\exp\left(-\alpha E_{P}\left[\int_{0}^{T}\pi_{r}\,dS_{r}\right]\right)=1;$$

equality holds for $\pi \equiv 0$, and value is 1.

イロト イポト イヨト イヨト

The static case Random endowment Static solution

• In general, take an EMM Q for S and write

$$E_P\left[\exp\left(-\alpha\int_0^T \pi_r \, dS_r\right)\right] = E_Q\left[\frac{dP}{dQ}\exp\left(-\alpha\int_0^T \pi_r \, dS_r\right)\right] = \min_{\pi}!$$

• Can use same trick as above if EMM Q has special form

$$\frac{dQ^*}{dP} = \exp\left(c^* + \int_0^T \zeta_r^* \, dS_r\right). \tag{4}$$

• Then optimal strategy is $\pi = -\frac{1}{\alpha}\zeta^*$ and optimal value is

 $V_0^0 = -\exp(-c^*)$ ext{ \leftarrow note: still for } $B \equiv 0$

• Key point: Requirement (4) on density of Q^* already identifies Q^* as minimal entropy martingale measure for S.

The static case Random endowment Static solution

The static case with random endowment

• Next (intermediate) problem: for claim *B* and exponential utility $U(x) = -e^{-\alpha x}$, solve

$$E\left[U\left(X_T^{\pi}-B\right)\right] = \max_{\pi}!$$

• Equivalently: reduce to above problem structure via

$$E_{P}\left[\exp\left(-\alpha\int_{0}^{T}\pi_{r}\,dS_{r}+\alpha B\right)\right] = C E_{P_{B}}\left[\exp\left(-\alpha\int_{0}^{T}\pi_{r}\,dS_{r}\right)\right]$$
$$= \min_{\pi}!,$$

where we exploit multiplicative structure of exponential utility to introduce

$$\frac{dP_B}{dP} = C^{-1} e^{\alpha B}$$

The static case Random endowment Static solution

Solution for static case

- So earlier solution recipe changes as follows:
 - 1) find MEMM Q_B^* for S under P_B , i.e., $Q_B^* = \underset{Q}{\operatorname{argmin}} H(Q|P_B)$.
 - 2) find constant $c^{*,B}$ and integrand $\zeta^{*,B}$ in representation

$$\frac{dQ_B^*}{dP} = \exp\left(c^{*,B} + \int_0^T \zeta_r^{*,B} \, dS_r\right).$$

3) optimal strategy is $\pi = -\frac{1}{\alpha} \zeta^{*,B}$; optimal value is

$$V^B_0 = -\exp\left(-c^{*,B} + \log E_P[e^{lpha B}]
ight).$$

イロト イポト イヨト イヨト 三日

The conditional problem Motivation The fundamental entropy representation

Conditional formulation

Martin Schweizer New insights into exponential utility indifference valuation

The conditional problem Motivation The fundamental entropy representation

The conditional problem

• Dynamic problem: for exponential utility $U(x) = -e^{-\alpha x}$, solve at time t

$$E\left[U\left(X_{t,T}^{\pi}-B\right) \mid \mathcal{F}_{t}\right] = \max_{\pi}!$$

• As before, use change of measure to Q with density process $Z^Q = \mathcal{E}(N^Q)$ to rewrite problem as

$$E_P\left[\exp\left(-\alpha \int_t^T \pi_r \, dS_r + \alpha B\right) \middle| \mathcal{F}_t\right]$$

= $E_Q\left[\frac{\mathcal{E}(N^Q)_t}{\mathcal{E}(N^Q)_T} \exp\left(-\alpha \int_t^T \pi_r \, dS_r + \alpha B\right) \middle| \mathcal{F}_t\right] = \min_{\pi} !$

The conditional problem Motivation The fundamental entropy representation

Repeating the idea

• Since we can take out \mathcal{F}_t -measurable factors, we want, for easy solution

$$e^{\alpha B} \frac{\mathcal{E}(N^Q)_t}{\mathcal{E}(N^Q)_T} = \text{something } \mathcal{F}_t \text{-measurable} \\ \times \exp(\text{a stochastic integral of } S \text{ from } t \text{ to } T),$$

i.e.,

$$e^{lpha B} = rac{\mathcal{E}(N^Q)_T}{\mathcal{E}(N^Q)_t} imes \exp\left(\int\limits_t^T \zeta_r \, dS_r\right) imes \kappa_t.$$

• Take log and simplify a little to get ...

(日) (同) (三) (三)

The conditional problem Motivation The fundamental entropy representation

The fundamental entropy representation

• ... the fundamental representation we want, namely

$$B = \frac{1}{\alpha} \log \frac{\mathcal{E}(N^B)_T}{\mathcal{E}(N^B)_t} + \int_t^T \eta_r^B \, dS_r + k_t^B \tag{5}$$

$$= \frac{1}{\alpha} \log \mathcal{E}(N^B)_T + \int_0^T \eta_r^B \, dS_r + k_0^B \tag{6}$$

$$+k_t^B - k_0^B - \int_0^t \eta_r^B \, dS_r - \frac{1}{\alpha} \log \mathcal{E}(N^B)_t.$$
 (7)

- (5) is a non-standard BSDE.
- (6) shows the FER(B).
- (7) shows how to express k^B in terms of triple (N^B, η^B, k_0^B) .

The conditional problem Motivation The fundamental entropy representation

The general dynamic solution

- Additional **requirements** on *FER*(*B*):
 - N^B is local *P*-martingale null at 0;
 - $\mathcal{E}(N^B)$ is positive *P*-martingale;
 - S is under $P(N^B)$ local martingale, i.e., $P(N^B)$ is EMM for S.
- In above terms, **solution** is straightforward:
 - the optimal strategy is $\pi = \eta^B$;
 - the optimal value at time t is

$$V_t^B = V_t^B(0) = -e^{lpha k_t^B};$$

- the utility indifference seller value is $b_t = k_t^B k_t^0$.
- So: key is understanding structure of process k^B .

- 4 同 6 4 日 6 4 日 6

Precise model FER(B) FER^{*}(B) First main result Second main result

Theory: Main results

Martin Schweizer New insights into exponential utility indifference valuation

3

Precise model FER(B) FER*(B) First main result Second main result

Precise model

- S is general semimartingale (need **not** be locally bounded).
- Claim *B* satisfies $E_P[e^{\alpha B}] < \infty$.
- There exist loss variables (in the sense of Biagini/Frittelli 2005) for *B* and for 0 (i.e., under P_B and under $P = P_0$):
 - $W \ge 1$; • $E_R \left[e^{cW} \right] < \infty$ for all c > 0 and $R \in \{P_B, P\}$; • there are $\beta^i \in L(S^i)$, never 0, with $\left| \int \beta^i dS^i \right| < W$.
- $\mathbb{P}_B^{e,f}$, assumed $\neq \emptyset$, denotes the set of all $Q \approx P$ such that $H(Q|P_B) < \infty$ and S is a σ -martingale under Q.

(日)

Precise model FER(B) FER^{*}(B) First main result Second main result

FER(B)

• By **definition**, **fundamental entropy representation** *FER*(*B*) exists if

$$B = \frac{1}{\alpha} \log \mathcal{E}(N^B)_T + \int_0^T \eta_r^B \, dS_r + k_0^B$$

where

- N^B is a local *P*-martingale null at 0; $\mathcal{E}(N^B)$ is a positive *P*-martingale; and *S* is under $P(N^B)$ a σ -martingale;
- η^B is in L(S) with $\int_{0}^{T} \eta^B_r dS_r$ in $L^1(P(N^B))$;
- k_0^B is a constant.

・ロト ・同ト ・ヨト ・ヨト

Precise model FER(B) FER*(B) First main result Second main result

$FER^*(B)$

• An *FER*(*B*),

$$\mathcal{B} = rac{1}{lpha} \log \mathcal{E}(\mathcal{N}^{\mathcal{B}})_{\mathcal{T}} + \int\limits_{0}^{\mathcal{T}} \eta_{r}^{\mathcal{B}} \, dS_{r} + k_{0}^{\mathcal{B}},$$

is called an $FER^*(B)$ if in addition

- $\int_{0}^{T} \eta_{r}^{B} dS_{r}$ is *Q*-integrable with *Q*-expectation ≤ 0 for every $Q \in \mathbb{P}_{B}^{a,f}$; • $\int \eta^{B} dS$ is a martingale under $P(N^{B})$.
- Idea: good representation with good integrability properties.

・ロト ・同ト ・ヨト ・ヨト

Precise model FER(B) FER^{*}(B) First main result Second main result

First main result

• Theorem 1:

FER(B) exists $\iff FER^*(B)$ exists $\iff \mathbb{P}_B^{e,f} \neq \emptyset$.

- Comments:
 - not surprising; but very general and neat.
 - can be viewed as existence result for non-standard BSDE.

• Proposition 2:

Necessary and sufficient conditions for a given FER(B) to be the (unique) $FER^*(B)$.

Comments:

- happens iff $P(N^B)$ equals the MEMM Q_B^* for S and P_B , and $\int \eta^B dS$ is a $P(N^B)$ -martingale.
- example shows that multiple *FER*(*B*) may exist.

(E)

Precise model FER(B) FER^{*}(B) First main result Second main result

Second main result

• Theorem 3:

Optimal value for conditional problem at time *t* is given by

$$V_t^B = \operatorname{ess\,sup}_{\pi} E_P \left[-\exp\left(-\alpha \int_t^T \pi_r \, dS_r + \alpha B \right) \, \middle| \, \mathcal{F}_t \right] = -e^{\alpha k_t^B}.$$

Comments:

- not surprising, but again very general and neat.
- gives indifference value at time t as $b_t = k_t^B k_t^0$.
- gives **non-standard BSDE** for process k^B as

$$k_t^B = B - \int_t^T \eta_r^B \, dS_r - \frac{1}{\alpha} \log \frac{\mathcal{E}(N^B)_T}{\mathcal{E}(N^B)_t}.$$
 (8)

• Equation (8) is key to understanding distortion formulas!

Rewriting estimating and pause for thought

Computations help understanding

Martin Schweizer New insights into exponential utility indifference valuation

Rewriting estimating and pause for thought

Rewriting the dynamic value process

$$-V_t^B = e^{\alpha k_t^B} \stackrel{(8)}{=} \exp\left(\alpha B - \alpha \int_t^T \eta_r^B dS_r + \log \mathcal{E}(N^B)_{t,T}\right)$$
$$= \frac{\exp\left(\alpha B + \int_t^T \varphi_r dS_r\right)}{Z_{t,T}^Q} \frac{Z_{t,T}^Q}{\mathcal{E}(N^B)_{t,T}} \exp\left(-\int_t^T (\alpha \eta_r^B + \varphi_r) dS_r\right)$$
$$=: \Psi_t^B \frac{Z_{t,T}^Q}{\mathcal{E}(N^B)_{t,T}} \exp\left(-\int_t^T (\alpha \eta_r^B + \varphi_r) dS_r\right)$$

- Now estimate in two ways:
 - $e^{-\alpha k_t^B} E_Q[\Psi_t^B | \mathcal{F}_t] = \dots \quad \longleftarrow \text{ log outside cond. exp.}$

•
$$\alpha k_t^B = E_Q[\log(-V_t^B)|\mathcal{F}_t] = \dots$$
 $\leftarrow \log$ inside

Rewriting estimating and pause for thought

First estimation

• First estimate:

$$e^{-\alpha k_t^B} E_Q[\Psi_t^B | \mathcal{F}_t]$$

$$= E_Q \left[\frac{\mathcal{E}(N^B)_{t,T}}{Z_{t,T}^Q} \exp\left(-\int_t^T (\alpha \eta_r^B + \varphi_r) \, dS_r\right) \, \middle| \, \mathcal{F}_t \right]$$

$$= E_{Q_B^*} \left[\exp\left(-\int_t^T (\alpha \eta_r^B + \varphi_r) \, dS_r\right) \, \middle| \, \mathcal{F}_t \right] \ge 1$$

by Bayes and Jensen, if both stochastic integrals are Q_B^* -martingales.

• So:
$$\alpha k_t^B \leq \log E_Q[\Psi_t^B | \mathcal{F}_t].$$

(日) (同) (三) (三)

-

Rewriting estimating and pause for thought

Second estimation

Second estimate:

$$\begin{aligned} \alpha k_t^B &= E_Q \left[\log \Psi_t^B - \int_t^T (\alpha \eta_r^B + \varphi_r) \, dS_r - \log \frac{\mathcal{E}(N^B)_{t,T}}{Z_{t,T}^Q} \, \middle| \, \mathcal{F}_t \right] \\ &= E_Q [\log \Psi_t^B | \mathcal{F}_t] - 0 + E_Q \left[-\log \frac{\mathcal{E}(N^B)_{t,T}}{Z_{t,T}^Q} \, \middle| \, \mathcal{F}_t \right], \end{aligned}$$

if both stochastic integrals are Q-martingales; and last term is ≥ 0 by Bayes and Jensen since $\mathcal{E}(N^B)$ is P-martingale.

• So:
$$\alpha k_t^B \geq E_Q[\log \Psi_t^B | \mathcal{F}_t].$$

(日) (同) (三) (三)

Rewriting estimating and pause for thought

A simple general fact

• General fact:

$$E_Q[\log R|\mathcal{G}] \leq Y \leq \log E_Q[R|\mathcal{G}]$$

implies that

$$Y = \log \left(E_Q \left[R^{rac{1}{\delta}} \big| \mathcal{G}
ight]
ight)^{\delta} \Big|_{\delta = \delta^R(\omega)}$$

for some random \mathcal{G} -measurable δ^R .

• Indeed: $(\omega, \delta) \mapsto f(\omega, \delta) := \log \left(E_Q \left[R^{\frac{1}{\delta}} | \mathcal{G} \right](\omega) \right)^{\delta}$ is *P*-a.s. continuous and decreasing in δ on $[1, \infty)$, with *P*-a.s.

$$\lim_{\delta \to 1} f(\omega, \delta) = \log E_Q[R|\mathcal{G}], \quad \lim_{\delta \to \infty} f(\omega, \delta) = E_Q[\log R|\mathcal{G}].$$

So can interpolate to get result.

Third main result ls this any good? Continuous S δ versus ρ The end

Explaining the distortions

Martin Schweizer New insights into exponential utility indifference valuation

(日) (同) (三) (三)

Third main result Is this any good? Continuous S δ versus ρ The end

Third main result

• Theorem 4: Interpolation expression:

$$k_t^B(\omega) = \frac{1}{\alpha} \log \left(E_Q \left[|\Psi_t^B|^{1/\delta} \, \Big| \, \mathcal{F}_t \right](\omega) \right)^{\delta} \Big|_{\delta = \delta_t^B(\omega)} \tag{9}$$

for some $\mathcal{F}_t\text{-measurable }\delta^B_t,$ provided that

$$\Psi_t^B := \frac{\exp\left(\alpha B + \int_t^T \varphi_r \, dS_r\right)}{Z_T^Q / Z_t^Q}$$

is bounded away from 0 and ∞ for some $Q \in \mathbb{P}_B^{e,f}$ and some $\varphi \in L(S)$ such that $\int \varphi \, dS$ is both a Q- and a Q_B^* -martingale.

Third main result Is this any good? Continuous S δ versus ρ The end

Is this any good?

- Comments on Theorem 4:
 - general version of PDE distortion power transformation!
 - explains distortion via interpolation.
 - compare (1), (2), (3).
- Question: how to find some $Q \in \mathbb{P}_B^{e,f}$ and some $\varphi \in L(S)$ such that

$$\Psi_t^B := \frac{\exp\left(\alpha B + \int\limits_t^T \varphi_r \, dS_r\right)}{Z_T^Q / Z_t^Q}$$

is bounded away from 0 and ∞ and $\int \varphi \, dS$ is both a Q- and a Q_B^* -martingale? Hopeless?

• Answer: No! Can find Q and φ explicitly if S is continuous.

Third main result Is this any good? Continuous S δ versus ρ The end

The case of continuous S

- Suppose *S* is **continuous**; so $S = S_0 + M + \int \lambda d\langle M \rangle$.
- Take $Z^Q := \mathcal{E}\left(-\int \lambda \, dM\right) = \exp\left(-\int \lambda \, dM \frac{1}{2}\int \lambda^2 \, d\langle M \rangle\right)$, the density process of the minimal martingale measure.
- Choose $\varphi = -\lambda$; so $\exp(\int \varphi \, dS) = Z^Q \exp\left(-\frac{1}{2} \int \lambda^2 \, d\langle M \rangle\right)$.

Then

$$\Psi_t^B := \frac{\exp\left(\alpha B + \int_t^T \varphi_r \, dS_r\right)}{Z_T^Q/Z_t^Q} = \exp\left(\alpha B - \frac{1}{2}\int_t^T \lambda_r^2 \, d\langle M \rangle_r\right).$$

• **Example:** in Itô process model, $\int_{t}^{T} \lambda_{r}^{2} d\langle M \rangle_{r} = \int_{t}^{t} \frac{\mu_{r}^{2}}{\sigma_{r}^{2}} dr:$ recovers with (9) earlier results in (1), (2) and (3).

Third main result Is this any good? Continuous S δ versus ρ The end

Getting back to correlation

- Note: in general, δ is not further specified (lies between 1 and $\infty).$
- On the other hand: often $\delta \approx \frac{1}{1-\rho^2}$.
- Brownian setting:
 - can derive FER(B) in (6) from predictable representation property in filtration #^W of W;
 - this needs measurability conditions on $\frac{\mu}{\sigma}$, B and ρ ;
 - allows to estimate k^B in terms of ρ ;
 - hence can interpolate in concrete ρ instead of abstract $\delta;$
 - hence get distortion formula in terms of (bounds on) correlation.
- More details in Frei/S (2008a,b).

イロト イポト イヨト イヨト

Third main result Is this any good? Continuous S δ versus ρ **The end**

The end (for now ...)

Thank you for your attention !

http://www.math.ethz.ch/~mschweiz

http://www.math.ethz.ch/~frei

イロト イポト イヨト イヨト