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Financial problem

Basic problem: valuation of non-attainable contingent claims
in incomplete financial markets.
Basic idea: value by utility indifference, i.e., define time t
seller value bt of time T payoff B implicitly via

ess sup
π

E

[
U

(
xt +

T∫
t

πr dSr

)∣∣∣∣Ft

]
= ess sup

π
E

[
U

(
xt + bt +

T∫
t

πr dSr − B

)∣∣∣∣Ft

]
.

Exponential utility indifference valuation: U(x) = −e−αx .
Why exponential?

For expected utility, problem seems intractable for other U.
With exponential U, can even obtain fairly explicit results.
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Mathematical problem

So: need to understand in detail dynamic value process for
problem of maximising expected utility from terminal wealth
with random endowment, i.e., the process

V B
t := V B

t (0) := ess sup
π

E

[
U

(
T∫
t

πr dSr − B

)∣∣∣∣Ft

]
.

Then exponential utility indifference seller value is

bt =
1

α
log

V B
t

V 0
t

.

Many references . . .
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Markovian setting and PDEs
Generalisations

A simple Markovian example

Discounted price S and factor/nontraded asset Y given by

dSt = µSt dt + σSt dWt ,

dYt = b(t,Yt) dt + a(t,Yt) dW t ;

correlated Brownian motions W ,W with d
〈
W ,W

〉
t
= ρ dt.

Payoff is B = g(YT ).

Intuition: Payoff depends on “asset” Y , but can only use
correlated asset S for trading and hedging.

Typical examples:

valuation of executive stock options (ESOs)
valuation of weather derivatives
. . .
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Generalisations

PDE approach

All is Markovian; hence, writing Xt = Xπ
t for wealth from

self-financing strategy π, expect, for some function v(t, x , y),

V B
t = v(t,Xt ,Yt).

Exponential utility is multiplicative; so guess separable form

v(t, x , y) = U(x)F (t, y).

Formal derivation of HJB equation gives

0 = Ft+maxπ

(
1
2σ2π2α2F + π(−ρσaαFy − µαF )

)
+1

2a2Fyy+bFy

with boundary condition F (T , y) = g(y).
Formal maximisation gives nonlinear PDE

0 = Ft + 1
2a2Fyy + bFy − 1

2
(ρσaFy+µF )2

σ2F
: how to solve?
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PDE transformation

Using clever power transformation

F (t, y) = f (t, y)1/(1−ρ2)

magically reduces nonlinear PDE to linear, solvable PDE; find

V B
t = F (t,Yt) = −

(
EbP
[(

eαB− 1
2

µ2

σ2 (T−t)
)1/δ

∣∣∣∣Yt

])δ

(1)

with minimal martingale measure P̂ and distortion power

δ = 1
1−ρ2 ←− remember this!

Why does this work? PDE techniques give no insight (to us).

References: Henderson/Hobson, Musiela/Zariphopoulou, . . .
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A first generalisation

PDEs are not needed: consider dSt = µtSt dt + σtSt dWt ;
correlated Brownian motions W ,W with d

〈
W ,W

〉
t
= ρ dt.

Tehranchi: no explicit factor Y ;

µ, σ are IFW -predictable;

B is FW
T -measurable.

Then again, with δ = 1
1−ρ2 ,

V B
t = −

EbP
( exp

(
αB − 1

2

T∫
t

µ2
r

σ2
r
dr

))1/δ
∣∣∣∣∣∣FW

t

δ

. (2)

Correlation ρ is still constant.
Technique: clever Hölder-type inequality; again gives no
genuine insight (to us).
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Further generalisations

Frei/S: S and Y both Itô processes;

Sharpe ratio µ/σ is IFW -predictable;

payoff B is FW
T -measurable;

stochastic correlation ρ is IFW -predictable.

Then, compare (2),

V B
t = −

EbP
( exp

(
αB − 1

2

T∫
t

µ2
r

σ2
r
dr

))1/δ
∣∣∣∣∣∣FW

t

δ
∣∣∣∣∣∣∣
δ=δt(ω)

(3)

for some random Ft-measurable δt satisfying

inf
s∈[t,T ]

1
‖1−ρ2

s‖L∞
≤ δt ≤ sup

s∈[t,T ]

∥∥∥ 1
1−ρ2

s

∥∥∥
L∞

←− note: δ ≈ 1
1−ρ2
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Markovian setting and PDEs
Generalisations

Proofs via martingale arguments, which seem (to us) more
transparent; but still no full understanding; in particular, why
measurability conditions?

Extends to multidimensional Itô process setting; then role of
bounds on ρ is played by bounds on minimal and maximal
(random) eigenvalues of instantaneous correlation matrix.

Extensions to sharper inequalities via BSDE techniques
are recent work (with C. Frei and S. Malamud).

Completely general semimartingale S ; gives (at last)
understanding.

Key is good expression for

V B
t := V B

t (0) := ess sup
π

E

[
U

(
T∫
t

πr dSr − B

)∣∣∣∣Ft

]
.
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The static case
Random endowment
Static solution

General ideas
for static case
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The static case (t = 0) with B ≡ 0

Basic problem: for exponential utility U(x) = −e−αx , solve

E [U (Xπ
T )] = E

[
U

(
T∫
0

πr dSr

)]
= max

π
!

Equivalently: EP

[
exp

(
− α

T∫
0

πr dSr

)]
= min

π
!

Simplest case: if S is a P-martingale, then by Jensen

EP

[
exp

(
− α

T∫
0

πr dSr

)]
≥ exp

(
− αEP

[
T∫
0

πr dSr

])
= 1;

equality holds for π ≡ 0, and value is 1.
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The static case
Random endowment
Static solution

In general, take an EMM Q for S and write

EP

[
exp

(
−α

T∫
0

πr dSr

)]
= EQ

[
dP

dQ
exp

(
−α

T∫
0

πr dSr

)]
= min

π
!

Can use same trick as above if EMM Q has special form

dQ∗

dP
= exp

(
c∗ +

T∫
0

ζ∗r dSr

)
. (4)

Then optimal strategy is π = − 1
αζ∗ and optimal value is

V 0
0 = − exp(−c∗) ←− note: still for B ≡ 0

Key point: Requirement (4) on density of Q∗ already
identifies Q∗ as minimal entropy martingale measure for S .
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The static case with random endowment

Next (intermediate) problem: for claim B and exponential
utility U(x) = −e−αx , solve

E [U (Xπ
T − B)] = max

π
!

Equivalently: reduce to above problem structure via

EP

[
exp

(
− α

T∫
0

πr dSr + αB

)]
= C EPB

[
exp

(
− α

T∫
0

πr dSr

)]
= min

π
!,

where we exploit multiplicative structure of exponential utility
to introduce

dPB

dP
= C−1 eαB .
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Static solution

Solution for static case

So earlier solution recipe changes as follows:

1) find MEMM Q∗
B for S under PB , i.e., Q∗

B = argmin
Q

H(Q|PB).

2) find constant c∗,B and integrand ζ∗,B in representation

dQ∗
B

dP
= exp

(
c∗,B +

T∫
0

ζ∗,Br dSr

)
.

3) optimal strategy is π = − 1
αζ∗,B ; optimal value is

V B
0 = − exp

(
−c∗,B + log EP [eαB ]

)
.
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Conditional formulation
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The conditional problem

Dynamic problem: for exponential utility U(x) = −e−αx ,
solve at time t

E
[
U
(
Xπ

t,T − B
) ∣∣Ft

]
= max

π
!

As before, use change of measure to Q with density process
ZQ = E(NQ) to rewrite problem as

EP

[
exp

(
− α

T∫
t

πr dSr + αB

) ∣∣∣∣Ft

]
= EQ

[
E(NQ)t
E(NQ)T

exp

(
− α

T∫
t

πr dSr + αB

) ∣∣∣∣∣Ft

]
= min

π
!
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The conditional problem
Motivation
The fundamental entropy representation

Repeating the idea

Since we can take out Ft-measurable factors, we want, for
easy solution

eαB E(NQ)t
E(NQ)T

= something Ft-measurable

× exp(a stochastic integral of S from t to T ),

i.e.,

eαB =
E(NQ)T
E(NQ)t

× exp

(
T∫
t

ζr dSr

)
× κt .

Take log and simplify a little to get . . .
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The fundamental entropy representation

The fundamental entropy representation

. . . the fundamental representation we want, namely

B =
1

α
log
E(NB)T
E(NB)t

+
T∫
t

ηB
r dSr + kB

t (5)

=
1

α
log E(NB)T +

T∫
0

ηB
r dSr + kB

0 (6)

+kB
t − kB

0 −
t∫
0

ηB
r dSr −

1

α
log E(NB)t . (7)

(5) is a non-standard BSDE.

(6) shows the FER(B).

(7) shows how to express kB in terms of triple (NB , ηB , kB
0 ).
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Motivation
The fundamental entropy representation

The general dynamic solution

Additional requirements on FER(B):

NB is local P-martingale null at 0;
E(NB) is positive P-martingale;
S is under P(NB) local martingale, i.e., P(NB) is EMM for S .

In above terms, solution is straightforward:

the optimal strategy is π = ηB ;
the optimal value at time t is

V B
t = V B

t (0) = −eαkB
t ;

the utility indifference seller value is bt = kB
t − k0

t .

So: key is understanding structure of process kB .
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Theory: Main results
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Precise model

S is general semimartingale (need not be locally bounded).

Claim B satisfies EP

[
eαB

]
<∞.

There exist loss variables (in the sense of Biagini/Frittelli
2005) for B and for 0 (i.e., under PB and under P = P0):

W ≥ 1;
ER

[
ecW

]
<∞ for all c > 0 and R ∈ {PB ,P};

there are βi ∈ L(S i ), never 0, with
∣∣∫ βi dS i

∣∣ ≤W .

IPe,f
B , assumed 6= ∅, denotes the set of all Q ≈ P such that

H(Q|PB) <∞ and S is a σ-martingale under Q.
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Precise model
FER(B)
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First main result
Second main result

FER(B)

By definition, fundamental entropy representation
FER(B) exists if

B =
1

α
log E(NB)T +

T∫
0

ηB
r dSr + kB

0

where

NB is a local P-martingale null at 0; E(NB) is a positive
P-martingale; and S is under P(NB) a σ-martingale;

ηB is in L(S) with
T∫
0

ηB
r dSr in L1

(
P(NB)

)
;

kB
0 is a constant.
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Precise model
FER(B)
FER∗(B)
First main result
Second main result

FER∗(B)

An FER(B),

B =
1

α
log E(NB)T +

T∫
0

ηB
r dSr + kB

0 ,

is called an FER∗(B) if in addition

T∫
0

ηB
r dSr is Q-integrable with Q-expectation ≤ 0 for every

Q ∈ IPa,f
B ;∫

ηB dS is a martingale under P(NB).

Idea: good representation with good integrability
properties.
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FER(B)
FER∗(B)
First main result
Second main result

First main result

Theorem 1:
FER(B) exists ⇐⇒ FER∗(B) exists ⇐⇒ IPe,f

B 6= ∅.
Comments:

not surprising; but very general and neat.
can be viewed as existence result for non-standard BSDE.

Proposition 2:
Necessary and sufficient conditions for a given FER(B) to be
the (unique) FER∗(B).

Comments:

happens iff P(NB) equals the MEMM Q∗
B for S and PB , and∫

ηB dS is a P(NB)-martingale.
example shows that multiple FER(B) may exist.
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First main result
Second main result

Second main result

Theorem 3:
Optimal value for conditional problem at time t is given by

V B
t = ess sup

π
EP

[
−exp

(
−α

T∫
t

πr dSr +αB

) ∣∣∣∣Ft

]
= −eαkB

t .

Comments:

not surprising, but again very general and neat.
gives indifference value at time t as bt = kB

t − k0
t .

gives non-standard BSDE for process kB as

kB
t = B −

T∫
t

ηB
r dSr −

1

α
log
E(NB)T
E(NB)t

. (8)

Equation (8) is key to understanding distortion formulas!
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Computations help

understanding
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Rewriting . . .
. . . estimating . . .
. . . and pause for thought

Rewriting the dynamic value process

−V B
t = eαkB

t
(8)
=
↑

exp

(
αB − α

T∫
t

ηB
r dSr + log E(NB)t,T

)

=

exp

(
αB +

T∫
t

ϕr dSr

)
ZQ

t,T

ZQ
t,T

E(NB)t,T
exp

(
−

T∫
t
(αηB

r + ϕr ) dSr

)

=: ΨB
t

ZQ
t,T

E(NB)t,T
exp

(
−

T∫
t
(αηB

r + ϕr ) dSr

)
Now estimate in two ways:

e−αkB
t EQ [ΨB

t |Ft ] = . . . ←− log outside cond. exp.

αkB
t = EQ [log(−V B

t )|Ft ] = . . . ←− log inside
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Rewriting . . .
. . . estimating . . .
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First estimation

First estimate:

e−αkB
t EQ [ΨB

t |Ft ]

= EQ

[
E(NB)t,T

ZQ
t,T

exp

(
−

T∫
t
(αηB

r + ϕr ) dSr

) ∣∣∣∣∣Ft

]

= EQ∗B

[
exp

(
−

T∫
t
(αηB

r + ϕr ) dSr

) ∣∣∣∣Ft

]
≥ 1

by Bayes and Jensen, if both stochastic integrals are
Q∗

B -martingales.

So: αkB
t ≤ log EQ [ΨB

t |Ft ].
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Second estimation

Second estimate:

αkB
t = EQ

[
log ΨB

t −
T∫
t
(αηB

r + ϕr ) dSr − log
E(NB)t,T

ZQ
t,T

∣∣∣∣∣Ft

]

= EQ [log ΨB
t |Ft ]− 0 + EQ

[
− log

E(NB)t,T

ZQ
t,T

∣∣∣∣∣Ft

]
,

if both stochastic integrals are Q-martingales; and last term is
≥ 0 by Bayes and Jensen since E(NB) is P-martingale.

So: αkB
t ≥ EQ [log ΨB

t |Ft ].
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Rewriting . . .
. . . estimating . . .
. . . and pause for thought

A simple general fact

General fact:

EQ [log R|G] ≤ Y ≤ log EQ [R|G]

implies that

Y = log
(
EQ

[
R

1
δ

∣∣G])δ ∣∣∣
δ=δR(ω)

for some random G-measurable δR .

Indeed: (ω, δ) 7→ f (ω, δ) := log
(
EQ

[
R

1
δ

∣∣G](ω)
)δ

is P-a.s.
continuous and decreasing in δ on [1,∞), with P-a.s.

lim
δ→1

f (ω, δ) = log EQ [R|G], lim
δ→∞

f (ω, δ) = EQ [log R|G].

So can interpolate to get result.
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Third main result
Is this any good?
Continuous S
δ versus ρ
The end

Explaining the distortions
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Third main result

Theorem 4: Interpolation expression:

kB
t (ω) =

1

α
log
(
EQ

[
|ΨB

t |1/δ
∣∣∣Ft

]
(ω)
)δ
∣∣∣∣
δ=δB

t (ω)

(9)

for some Ft-measurable δB
t , provided that

ΨB
t :=

exp

(
αB +

T∫
t

ϕr dSr

)
ZQ

T /ZQ
t

is bounded away from 0 and ∞ for some Q ∈ IPe,f
B and some

ϕ ∈ L(S) such that
∫

ϕ dS is both a Q- and a Q∗
B -martingale.
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Third main result
Is this any good?
Continuous S
δ versus ρ
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Is this any good?

Comments on Theorem 4:

general version of PDE distortion power transformation!
explains distortion via interpolation.
compare (1), (2), (3).

Question: how to find some Q ∈ IPe,f
B and some ϕ ∈ L(S)

such that

ΨB
t :=

exp

(
αB +

T∫
t

ϕr dSr

)
ZQ

T /ZQ
t

is bounded away from 0 and ∞ and
∫

ϕ dS is both a Q- and a
Q∗

B -martingale? Hopeless?

Answer: No! Can find Q and ϕ explicitly if S is continuous.
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Third main result
Is this any good?
Continuous S
δ versus ρ
The end

The case of continuous S

Suppose S is continuous; so S = S0 + M +
∫

λ d〈M〉.
Take ZQ := E

(
−
∫

λ dM
)

= exp
(
−
∫

λ dM − 1
2

∫
λ2 d〈M〉

)
,

the density process of the minimal martingale measure.

Choose ϕ = −λ; so exp(
∫

ϕ dS) = ZQ exp
(
−1

2

∫
λ2 d〈M〉

)
.

Then

ΨB
t :=

exp

(
αB +

T∫
t

ϕr dSr

)
ZQ

T /ZQ
t

= exp

(
αB − 1

2

T∫
t

λ2
r d〈M〉r

)
.

Example: in Itô process model,
T∫
t

λ2
r d〈M〉r =

T∫
t

µ2
r

σ2
r
dr :

recovers with (9) earlier results in (1), (2) and (3).
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Getting back to correlation

Note: in general, δ is not further specified (lies between 1 and
∞).

On the other hand: often δ ≈ 1
1−ρ2 .

Brownian setting:

can derive FER(B) in (6) from predictable representation

property in filtration IFW of W ;
this needs measurability conditions on µ

σ , B and ρ;
allows to estimate kB in terms of ρ;
hence can interpolate in concrete ρ instead of abstract δ;
hence get distortion formula in terms of (bounds on)
correlation.

More details in Frei/S (2008a,b).
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The end (for now . . . )

Thank you for your attention !

http://www.math.ethz.ch/∼mschweiz

http://www.math.ethz.ch/∼frei
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