New insights into exponential utility indifference valuation

Martin Schweizer
Department of Mathematics
ETH Zürich

8th Winter School on Mathematical Finance January 19-21, 2009
Lunteren, The Netherlands 21.01.2009
based on joint work with Christoph Frei (ETH Zürich)

Original problem

Original problem

Financial problem

- Basic problem: valuation of non-attainable contingent claims in incomplete financial markets.
- Basic idea: value by utility indifference, i.e., define time t seller value b_{t} of time T payoff B implicitly via

$$
\begin{aligned}
& \underset{\pi}{\operatorname{ess} \sup } E\left[U\left(x_{t}+\int_{t}^{T} \pi_{r} d S_{r}\right) \mid \mathcal{F}_{t}\right] \\
& =\underset{\pi}{\operatorname{ess} \sup } E\left[U\left(x_{t}+b_{t}+\int_{t}^{T} \pi_{r} d S_{r}-B\right) \mid \mathcal{F}_{t}\right] .
\end{aligned}
$$

- Exponential utility indifference valuation: $U(x)=-e^{-\alpha x}$.
- Why exponential?
- For expected utility, problem seems intractable for other U.
- With exponential U, can even obtain fairly explicit results.

Mathematical problem

- So: need to understand in detail dynamic value process for problem of maximising expected utility from terminal wealth with random endowment, i.e., the process

$$
V_{t}^{B}:=V_{t}^{B}(0):=\underset{\pi}{\operatorname{ess} \sup } E\left[U\left(\int_{t}^{T} \pi_{r} d S_{r}-B\right) \mid \mathcal{F}_{t}\right] .
$$

- Then exponential utility indifference seller value is

$$
b_{t}=\frac{1}{\alpha} \log \frac{V_{t}^{B}}{V_{t}^{0}}
$$

- Many references...

References

- Becherer $(2003,2006)$
- Biagini/Frittelli (2005)
- Biagini/Frittelli/Grasselli/Hurd (2008)
- Delbaen/Grandits/Rheinländer/Samperi/S/Stricker (2002)
- Frei/S (2008a,b)
- Grasselli (2007)
- Grasselli/Hurd (2007)
- Henderson (2002)
- Hobson (1994)
- Henderson/Hobson $(2002,2004)$

references . . .

- Hu/Imkeller/Müller (2005)
- Kabanov/Stricker (2002)
- Leung/Sircar (2008)
- Mania/S (2005)
- Monoyios (2006)
- Morlais (2007)
- Musiela/Zariphopoulou (2004)
- Rouge/El Karoui (2000)
- Tehranchi (2004)
- Zariphopoulou (2001)

Original problem
Examples and motivation
General theory
Conditional problem
Main theoretical results
Computations

Distortions explained

. . . references

- (other missing links)
- . . .

Markovian setting and PDEs
 Generalisations

Examples and motivation

A simple Markovian example

- Discounted price S and factor/nontraded asset Y given by

$$
\begin{aligned}
d S_{t} & =\mu S_{t} d t+\sigma S_{t} d W_{t} \\
d Y_{t} & =b\left(t, Y_{t}\right) d t+a\left(t, Y_{t}\right) d \bar{W}_{t}
\end{aligned}
$$

correlated Brownian motions W, \bar{W} with $d\langle W, \bar{W}\rangle_{t}=\rho d t$.

- Payoff is $B=g\left(Y_{T}\right)$.
- Intuition: Payoff depends on "asset" Y, but can only use correlated asset S for trading and hedging.
- Typical examples:
- valuation of executive stock options (ESOs)
- valuation of weather derivatives
- . . .

PDE approach

- All is Markovian; hence, writing $X_{t}=X_{t}^{\pi}$ for wealth from self-financing strategy π, expect, for some function $v(t, x, y)$,

$$
V_{t}^{B}=v\left(t, X_{t}, Y_{t}\right)
$$

- Exponential utility is multiplicative; so guess separable form

$$
v(t, x, y)=U(x) F(t, y)
$$

- Formal derivation of HJB equation gives

$$
0=F_{t}+\max _{\pi}\left(\frac{1}{2} \sigma^{2} \pi^{2} \alpha^{2} F+\pi\left(-\rho \sigma a \alpha F_{y}-\mu \alpha F\right)\right)+\frac{1}{2} a^{2} F_{y y}+b F_{y}
$$

with boundary condition $F(T, y)=g(y)$.

- Formal maximisation gives nonlinear PDE

$$
0=F_{t}+\frac{1}{2} a^{2} F_{y y}+b F_{y}-\frac{1}{2} \frac{\left(\rho \sigma a F_{y}+\mu F\right)^{2}}{\sigma^{2} F}: \quad \text { how to solve? }
$$

PDE transformation

- Using clever power transformation

$$
F(t, y)=f(t, y)^{1 /\left(1-\rho^{2}\right)}
$$

magically reduces nonlinear PDE to linear, solvable PDE; find

$$
\begin{equation*}
V_{t}^{B}=F\left(t, Y_{t}\right)=-\left(E_{\widehat{P}}\left[\left.\left(e^{\alpha B-\frac{1}{2} \frac{\mu^{2}}{\sigma^{2}}(T-t)}\right)^{1 / \delta} \right\rvert\, Y_{t}\right]\right)^{\delta} \tag{1}
\end{equation*}
$$

with minimal martingale measure \widehat{P} and distortion power

$$
\delta=\frac{1}{1-\rho^{2}} \quad \longleftarrow \text { remember this! }
$$

- Why does this work? PDE techniques give no insight (to us).
- References: Henderson/Hobson, Musiela/Zariphopoulou, ...

A first generalisation

- PDEs are not needed: consider $d S_{t}=\mu_{t} S_{t} d t+\sigma_{t} S_{t} d W_{t}$; correlated Brownian motions W, \bar{W} with $d\langle W, \bar{W}\rangle_{t}=\rho d t$.
- Tehranchi: no explicit factor Y;
- μ, σ are $\Vdash^{\bar{W}}$-predictable;
- B is $\mathcal{F}_{T}^{\bar{W}}$-measurable.
- Then again, with $\delta=\frac{1}{1-\rho^{2}}$,

$$
\begin{equation*}
V_{t}^{B}=-\left(E_{\widehat{P}}\left[\left.\left(\exp \left(\alpha B-\frac{1}{2} \int_{t}^{T} \frac{\mu_{r}^{2}}{\sigma_{r}^{2}} d r\right)\right)^{1 / \delta} \right\rvert\, \mathcal{F}_{t}^{\bar{W}}\right]\right)^{\delta} \tag{2}
\end{equation*}
$$

- Correlation ρ is still constant.
- Technique: clever Hölder-type inequality; again gives no genuine insight (to us).

Further generalisations

- Frei/S: S and Y both Itô processes;
- Sharpe ratio μ / σ is $\Psi^{\bar{W}}$-predictable;
- payoff B is $\mathcal{F}_{T}^{\bar{W}}$-measurable;
- stochastic correlation ρ is $\mathbb{F}^{\bar{W}}$-predictable.
- Then, compare (2),

$$
\begin{equation*}
V_{t}^{B}=-\left.\left(E_{\widehat{P}}\left[\left.\left(\exp \left(\alpha B-\frac{1}{2} \int_{t}^{T} \frac{\mu_{r}^{2}}{\sigma_{r}^{2}} d r\right)\right)^{1 / \delta} \right\rvert\, \mathcal{F}_{t}^{\bar{W}}\right]\right)^{\delta}\right|_{\delta=\delta_{t}(\omega)} \tag{3}
\end{equation*}
$$

for some random \mathcal{F}_{t}-measurable δ_{t} satisfying
$\inf _{s \in[t, T]} \frac{1}{\left\|1-\rho_{s}^{2}\right\|_{L^{\infty}}} \leq \delta_{t} \leq \sup _{s \in[t, T]}\left\|\frac{1}{1-\rho_{s}^{2}}\right\|_{L^{\infty}} \longleftarrow$ note: $\delta \approx \frac{1}{1-\rho^{2}}$

- Proofs via martingale arguments, which seem (to us) more transparent; but still no full understanding; in particular, why measurability conditions?
- Extends to multidimensional ltô process setting; then role of bounds on ρ is played by bounds on minimal and maximal (random) eigenvalues of instantaneous correlation matrix.
- Extensions to sharper inequalities via BSDE techniques are recent work (with C. Frei and S. Malamud).
- Completely general semimartingale S; gives (at last) understanding.
- Key is good expression for

$$
V_{t}^{B}:=V_{t}^{B}(0):=\underset{\pi}{\operatorname{ess} \sup } E\left[U\left(\int_{t}^{T} \pi_{r} d S_{r}-B\right) \mid \mathcal{F}_{t}\right]
$$

General ideas for static case

The static case $(t=0)$ with $B \equiv 0$

- Basic problem: for exponential utility $U(x)=-e^{-\alpha x}$, solve

$$
E\left[U\left(X_{T}^{\pi}\right)\right]=E\left[U\left(\int_{0}^{T} \pi_{r} d S_{r}\right)\right]=\max _{\pi}!
$$

- Equivalently: $E_{P}\left[\exp \left(-\alpha \int_{0}^{T} \pi_{r} d S_{r}\right)\right]=\min _{\pi}$!
- Simplest case: if S is a P-martingale, then by Jensen

$$
E_{P}\left[\exp \left(-\alpha \int_{0}^{T} \pi_{r} d S_{r}\right)\right] \geq \exp \left(-\alpha E_{P}\left[\int_{0}^{T} \pi_{r} d S_{r}\right]\right)=1 ;
$$

equality holds for $\pi \equiv 0$, and value is 1 .

- In general, take an EMM Q for S and write

$$
E_{P}\left[\exp \left(-\alpha \int_{0}^{T} \pi_{r} d S_{r}\right)\right]=E_{Q}\left[\frac{d P}{d Q} \exp \left(-\alpha \int_{0}^{T} \pi_{r} d S_{r}\right)\right]=\min _{\pi}!
$$

- Can use same trick as above if EMM Q has special form

$$
\begin{equation*}
\frac{d Q^{*}}{d P}=\exp \left(c^{*}+\int_{0}^{T} \zeta_{r}^{*} d S_{r}\right) . \tag{4}
\end{equation*}
$$

- Then optimal strategy is $\pi=-\frac{1}{\alpha} \zeta^{*}$ and optimal value is

$$
V_{0}^{0}=-\exp \left(-c^{*}\right) \quad \longleftarrow \text { note: still for } B \equiv 0
$$

- Key point: Requirement (4) on density of Q^{*} already identifies Q^{*} as minimal entropy martingale measure for S.

The static case with random endowment

- Next (intermediate) problem: for claim B and exponential utility $U(x)=-e^{-\alpha x}$, solve

$$
E\left[U\left(X_{T}^{\pi}-B\right)\right]=\max _{\pi}!
$$

- Equivalently: reduce to above problem structure via

$$
\begin{aligned}
E_{P}\left[\exp \left(-\alpha \int_{0}^{T} \pi_{r} d S_{r}+\alpha B\right)\right] & =C E_{P_{B}}\left[\exp \left(-\alpha \int_{0}^{T} \pi_{r} d S_{r}\right)\right] \\
& =\min _{\pi}!
\end{aligned}
$$

where we exploit multiplicative structure of exponential utility to introduce

$$
\frac{d P_{B}}{d P}=C^{-1} e^{\alpha B}
$$

Solution for static case

- So earlier solution recipe changes as follows:

1) find MEMM Q_{B}^{*} for S under P_{B}, i.e., $Q_{B}^{*}=\underset{Q}{\operatorname{argmin}} H\left(Q \mid P_{B}\right)$. Q
2) find constant $c^{*, B}$ and integrand $\zeta^{*, B}$ in representation

$$
\frac{d Q_{B}^{*}}{d P}=\exp \left(c^{*, B}+\int_{0}^{T} \zeta_{r}^{*, B} d S_{r}\right)
$$

3) optimal strategy is $\pi=-\frac{1}{\alpha} \zeta^{*, B}$; optimal value is

$$
V_{0}^{B}=-\exp \left(-c^{*, B}+\log E_{P}\left[e^{\alpha B}\right]\right) .
$$

Conditional formulation

The conditional problem

- Dynamic problem: for exponential utility $U(x)=-e^{-\alpha x}$, solve at time t

$$
E\left[U\left(X_{t, T}^{\pi}-B\right) \mid \mathcal{F}_{t}\right]=\max _{\pi}!
$$

- As before, use change of measure to Q with density process $Z^{Q}=\mathcal{E}\left(N^{Q}\right)$ to rewrite problem as

$$
\begin{aligned}
& E_{P}\left[\exp \left(-\alpha \int_{t}^{T} \pi_{r} d S_{r}+\alpha B\right) \mid \mathcal{F}_{t}\right] \\
& =E_{Q}\left[\left.\frac{\mathcal{E}\left(N^{Q}\right)_{t}}{\mathcal{E}\left(N^{Q}\right)_{T}} \exp \left(-\alpha \int_{t}^{T} \pi_{r} d S_{r}+\alpha B\right) \right\rvert\, \mathcal{F}_{t}\right]=\min _{\pi}!
\end{aligned}
$$

Repeating the idea

- Since we can take out \mathcal{F}_{t}-measurable factors, we want, for easy solution
$e^{\alpha B} \frac{\mathcal{E}\left(N^{Q}\right)_{t}}{\mathcal{E}\left(N^{Q}\right)_{T}}=$ something $\mathcal{F}_{t^{-}}$-measurable
$\times \exp ($ a stochastic integral of S from t to $T)$,
i.e.,

$$
e^{\alpha B}=\frac{\mathcal{E}\left(N^{Q}\right)_{T}}{\mathcal{E}\left(N^{Q}\right)_{t}} \times \exp \left(\int_{t}^{T} \zeta_{r} d S_{r}\right) \times \kappa_{t}
$$

- Take log and simplify a little to get...

The fundamental entropy representation

- ... the fundamental representation we want, namely

$$
\begin{align*}
B= & \frac{1}{\alpha} \log \frac{\mathcal{E}\left(N^{B}\right)_{T}}{\mathcal{E}\left(N^{B}\right)_{t}}+\int_{t}^{T} \eta_{r}^{B} d S_{r}+k_{t}^{B} \tag{5}\\
= & \frac{1}{\alpha} \log \mathcal{E}\left(N^{B}\right)_{T}+\int_{0}^{T} \eta_{r}^{B} d S_{r}+k_{0}^{B} \tag{6}\\
& +k_{t}^{B}-k_{0}^{B}-\int_{0}^{t} \eta_{r}^{B} d S_{r}-\frac{1}{\alpha} \log \mathcal{E}\left(N^{B}\right)_{t} . \tag{7}
\end{align*}
$$

- (5) is a non-standard BSDE.
- (6) shows the $\operatorname{FER}(B)$.
- (7) shows how to express k^{B} in terms of triple $\left(N^{B}, \eta^{B}, k_{0}^{B}\right)$.

The general dynamic solution

- Additional requirements on $\operatorname{FER}(B)$:
- N^{B} is local P-martingale null at 0 ;
- $\mathcal{E}\left(N^{B}\right)$ is positive P-martingale;
- S is under $P\left(N^{B}\right)$ local martingale, i.e., $P\left(N^{B}\right)$ is EMM for S.
- In above terms, solution is straightforward:
- the optimal strategy is $\pi=\eta^{B}$;
- the optimal value at time t is

$$
V_{t}^{B}=V_{t}^{B}(0)=-e^{\alpha k_{t}^{B}} ;
$$

- the utility indifference seller value is $b_{t}=k_{t}^{B}-k_{t}^{0}$.
- So: key is understanding structure of process k^{B}.

Theory: Main results

Precise model

- S is general semimartingale (need not be locally bounded).
- Claim B satisfies $E_{P}\left[e^{\alpha B}\right]<\infty$.
- There exist loss variables (in the sense of Biagini/Frittelli 2005) for B and for 0 (i.e., under P_{B} and under $P=P_{0}$):
- $W \geq 1$;
- $E_{R}\left[e^{c W}\right]<\infty$ for all $c>0$ and $R \in\left\{P_{B}, P\right\}$;
- there are $\beta^{i} \in L\left(S^{i}\right)$, never 0 , with $\left|\int \beta^{i} d S^{i}\right| \leq W$.
- $\mathbb{P}_{B}^{e, f}$, assumed $\neq \emptyset$, denotes the set of all $Q \approx P$ such that $H\left(Q \mid P_{B}\right)<\infty$ and S is a σ-martingale under Q.

FER(B)

- By definition, fundamental entropy representation $F E R(B)$ exists if

$$
B=\frac{1}{\alpha} \log \mathcal{E}\left(N^{B}\right)_{T}+\int_{0}^{T} \eta_{r}^{B} d S_{r}+k_{0}^{B}
$$

where

- N^{B} is a local P-martingale null at $0 ; \mathcal{E}\left(N^{B}\right)$ is a positive P-martingale; and S is under $P\left(N^{B}\right)$ a σ-martingale;
- η^{B} is in $L(S)$ with $\int_{0}^{T} \eta_{r}^{B} d S_{r}$ in $L^{1}\left(P\left(N^{B}\right)\right)$;
- k_{0}^{B} is a constant.

$F^{*}{ }^{*}(B)$

- An $\operatorname{FER}(B)$,

$$
B=\frac{1}{\alpha} \log \mathcal{E}\left(N^{B}\right)_{T}+\int_{0}^{T} \eta_{r}^{B} d S_{r}+k_{0}^{B}
$$

is called an $F E R^{*}(B)$ if in addition

- $\int_{0}^{T} \eta_{r}^{B} d S_{r}$ is Q-integrable with Q-expectation ≤ 0 for every
$Q \in \mathbb{P}_{B}^{a, f} ;$
- $\int \eta^{B} d S$ is a martingale under $P\left(N^{B}\right)$.
- Idea: good representation with good integrability properties.

First main result

- Theorem 1:
$F E R(B)$ exists $\Longleftrightarrow F E R^{*}(B)$ exists $\Longleftrightarrow \mathbb{P}_{B}^{e, f} \neq \emptyset$.
- Comments:
- not surprising; but very general and neat.
- can be viewed as existence result for non-standard BSDE.
- Proposition 2:

Necessary and sufficient conditions for a given $\operatorname{FER}(B)$ to be the (unique) $F E R^{*}(B)$.

- Comments:
- happens iff $P\left(N^{B}\right)$ equals the MEMM Q_{B}^{*} for S and P_{B}, and $\int \eta^{B} d S$ is a $P\left(N^{B}\right)$-martingale.
- example shows that multiple $F E R(B)$ may exist.

Second main result

- Theorem 3:

Optimal value for conditional problem at time t is given by

$$
V_{t}^{B}=\underset{\pi}{\operatorname{ess} \sup } E_{P}\left[-\exp \left(-\alpha \int_{t}^{T} \pi_{r} d S_{r}+\alpha B\right) \mid \mathcal{F}_{t}\right]=-e^{\alpha k_{t}^{B}} .
$$

- Comments:
- not surprising, but again very general and neat.
- gives indifference value at time t as $b_{t}=k_{t}^{B}-k_{t}^{0}$.
- gives non-standard BSDE for process k^{B} as

$$
\begin{equation*}
k_{t}^{B}=B-\int_{t}^{T} \eta_{r}^{B} d S_{r}-\frac{1}{\alpha} \log \frac{\mathcal{E}\left(N^{B}\right)_{T}}{\mathcal{E}\left(N^{B}\right)_{t}} . \tag{8}
\end{equation*}
$$

- Equation (8) is key to understanding distortion formulas!

Computations help understanding

Rewriting the dynamic value process

$$
\begin{aligned}
-V_{t}^{B} & =e^{\alpha k_{t}^{B}} \stackrel{(8)}{\uparrow} \exp \left(\alpha B-\alpha \int_{t}^{T} \eta_{r}^{B} d S_{r}+\log \mathcal{E}\left(N^{B}\right)_{t, T}\right) \\
& =\frac{\exp \left(\alpha B+\int_{t}^{T} \varphi_{r} d S_{r}\right)}{Z_{t, T}^{Q}} \frac{Z_{t, T}^{Q}}{\mathcal{E}\left(N^{B}\right)_{t, T}} \exp \left(-\int_{t}^{T}\left(\alpha \eta_{r}^{B}+\varphi_{r}\right) d S_{r}\right) \\
& =\psi_{t}^{B} \frac{Z_{t, T}^{Q}}{\mathcal{E}\left(N^{B}\right)_{t, T}} \exp \left(-\int_{t}^{T}\left(\alpha \eta_{r}^{B}+\varphi_{r}\right) d S_{r}\right)
\end{aligned}
$$

- Now estimate in two ways:
- $e^{-\alpha k_{t}^{B}} E_{Q}\left[\Psi_{t}^{B} \mid \mathcal{F}_{t}\right]=\ldots \longleftarrow \log$ outside cond. exp.
- $\alpha k_{t}^{B}=E_{Q}\left[\log \left(-V_{t}^{B}\right) \mid \mathcal{F}_{t}\right]=\ldots \longleftarrow \log$ inside

First estimation

- First estimate:

$$
\begin{aligned}
& e^{-\alpha k_{t}^{B}} E_{Q}\left[\Psi_{t}^{B} \mid \mathcal{F}_{t}\right] \\
& =E_{Q}\left[\left.\frac{\mathcal{E}\left(N^{B}\right)_{t, T}}{Z_{t, T}^{Q}} \exp \left(-\int_{t}^{T}\left(\alpha \eta_{r}^{B}+\varphi_{r}\right) d S_{r}\right) \right\rvert\, \mathcal{F}_{t}\right] \\
& =E_{Q_{B}^{*}}\left[\exp \left(-\int_{t}^{T}\left(\alpha \eta_{r}^{B}+\varphi_{r}\right) d S_{r}\right) \mid \mathcal{F}_{t}\right] \geq 1
\end{aligned}
$$

by Bayes and Jensen, if both stochastic integrals are Q_{B}^{*}-martingales.

- So:

$$
\alpha k_{t}^{B} \leq \log E_{Q}\left[\Psi_{t}^{B} \mid \mathcal{F}_{t}\right]
$$

Second estimation

- Second estimate:

$$
\begin{aligned}
\alpha k_{t}^{B} & =E_{Q}\left[\left.\log \Psi_{t}^{B}-\int_{t}^{T}\left(\alpha \eta_{r}^{B}+\varphi_{r}\right) d S_{r}-\log \frac{\mathcal{E}\left(N^{B}\right)_{t, T}}{Z_{t, T}^{Q}} \right\rvert\, \mathcal{F}_{t}\right] \\
& =E_{Q}\left[\log \Psi_{t}^{B} \mid \mathcal{F}_{t}\right]-0+E_{Q}\left[\left.-\log \frac{\mathcal{E}\left(N^{B}\right)_{t, T}}{Z_{t, T}^{Q}} \right\rvert\, \mathcal{F}_{t}\right]
\end{aligned}
$$

if both stochastic integrals are Q-martingales; and last term is ≥ 0 by Bayes and Jensen since $\mathcal{E}\left(N^{B}\right)$ is P-martingale.

- So:

$$
\alpha k_{t}^{B} \geq E_{Q}\left[\log \Psi_{t}^{B} \mid \mathcal{F}_{t}\right]
$$

A simple general fact

- General fact:

$$
E_{Q}[\log R \mid \mathcal{G}] \leq Y \leq \log E_{Q}[R \mid \mathcal{G}]
$$

implies that

$$
Y=\left.\log \left(E_{Q}\left[\left.R^{\frac{1}{\delta}} \right\rvert\, \mathcal{G}\right]\right)^{\delta}\right|_{\delta=\delta^{R}(\omega)}
$$

for some random \mathcal{G}-measurable δ^{R}.

- Indeed: $(\omega, \delta) \mapsto f(\omega, \delta):=\log \left(E_{Q}\left[\left.R^{\frac{1}{\delta}} \right\rvert\, \mathcal{G}\right](\omega)\right)^{\delta}$ is P-a.s. continuous and decreasing in δ on $[1, \infty)$, with P-a.s.

$$
\lim _{\delta \rightarrow 1} f(\omega, \delta)=\log E_{Q}[R \mid \mathcal{G}], \quad \lim _{\delta \rightarrow \infty} f(\omega, \delta)=E_{Q}[\log R \mid \mathcal{G}] .
$$

So can interpolate to get result.

Original problem

Explaining the distortions

Third main result

- Theorem 4: Interpolation expression:

$$
\begin{equation*}
k_{t}^{B}(\omega)=\left.\frac{1}{\alpha} \log \left(E_{Q}\left[\left|\Psi_{t}^{B}\right|^{1 / \delta} \mid \mathcal{F}_{t}\right](\omega)\right)^{\delta}\right|_{\delta=\delta_{t}^{B}(\omega)} \tag{9}
\end{equation*}
$$

for some \mathcal{F}_{t}-measurable δ_{t}^{B}, provided that

$$
\Psi_{t}^{B}:=\frac{\exp \left(\alpha B+\int_{t}^{T} \varphi_{r} d S_{r}\right)}{Z_{T}^{Q} / Z_{t}^{Q}}
$$

is bounded away from 0 and ∞ for some $Q \in \mathbb{P}_{B}^{e, f}$ and some $\varphi \in L(S)$ such that $\int \varphi d S$ is both a Q - and a Q_{B}^{*}-martingale.

Is this any good?

- Comments on Theorem 4:
- general version of PDE distortion power transformation!
- explains distortion via interpolation.
- compare (1), (2), (3).
- Question: how to find some $Q \in \mathbb{P}_{B}^{e, f}$ and some $\varphi \in L(S)$ such that

$$
\Psi_{t}^{B}:=\frac{\exp \left(\alpha B+\int_{t}^{T} \varphi_{r} d S_{r}\right)}{Z_{T}^{Q} / Z_{t}^{Q}}
$$

is bounded away from 0 and ∞ and $\int \varphi d S$ is both a Q - and a Q_{B}^{*}-martingale? Hopeless?

- Answer: No! Can find Q and φ explicitly if S is continuous.

The case of continuous S

- Suppose S is continuous; so $S=S_{0}+M+\int \lambda d\langle M\rangle$.
- Take $Z^{Q}:=\mathcal{E}\left(-\int \lambda d M\right)=\exp \left(-\int \lambda d M-\frac{1}{2} \int \lambda^{2} d\langle M\rangle\right)$, the density process of the minimal martingale measure.
- Choose $\varphi=-\lambda$; so $\exp \left(\int \varphi d S\right)=Z^{Q} \exp \left(-\frac{1}{2} \int \lambda^{2} d\langle M\rangle\right)$.
- Then

$$
\Psi_{t}^{B}:=\frac{\exp \left(\alpha B+\int_{t}^{T} \varphi_{r} d S_{r}\right)}{Z_{T}^{Q} / Z_{t}^{Q}}=\exp \left(\alpha B-\frac{1}{2} \int_{t}^{T} \lambda_{r}^{2} d\langle M\rangle_{r}\right) .
$$

- Example: in Itô process model, $\int_{t}^{T} \lambda_{r}^{2} d\langle M\rangle_{r}=\int_{t}^{T} \frac{\mu_{r}^{2}}{\sigma_{r}^{2}} d r$: recovers with (9) earlier results in (1), (2) and (3).

Getting back to correlation

- Note: in general, δ is not further specified (lies between 1 and $\infty)$.
- On the other hand: often $\delta \approx \frac{1}{1-\rho^{2}}$.
- Brownian setting:
- can derive $F E R(B)$ in (6) from predictable representation property in filtration $\mathscr{F}^{\bar{W}}$ of \bar{W};
- this needs measurability conditions on $\frac{\mu}{\sigma}, B$ and ρ;
- allows to estimate k^{B} in terms of ρ;
- hence can interpolate in concrete ρ instead of abstract δ;
- hence get distortion formula in terms of (bounds on) correlation.
- More details in Frei/S (2008a,b).

The end (for now . ..)

Thank you for your attention !

http://www.math.ethz.ch/~mschweiz http://www.math.ethz.ch/~frei

