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Lecture 1

Overview

Many problems in finance can be viewed as some form of optimal
stochastic control (Survey article, see (Pham, 2005)).

↪→ These problems often involve modelling realistic market effects,
and/or complex decision making.

Continuous time mean-variance portfolio optimization

Optimal trade execution, hedging with liquidity effects (i.e.
price impact) and transaction costs

Investments in endowments and pension plans

Optimal operation of gas storage facilities

Variable annuity products with market guarantees (GMWB,
GMDB)

These problems give rise to non-linear Hamilton Jacobi Bellman
(HJB) Partial Differential Equations (PDEs), or HJB Partial
Integro Differential Equations (PIDEs).
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Lecture 1

Uncertain Volatility

Uncertain Volatility model proposed in (Avellenada et al (1995),
Lyons (1995)).

Suppose that an asset price S follows the risk neutral process

dS = rS dt + σS dZ

r = interest rate

σ = volatility

dZ = increment of a Weiner process

where volatility is stochastic, but we only know that

σ ∈ [σmin, σmax ]

What is the fair price to charge for a contingent claim?
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Lecture 1

Uncertain Volatility cont’d

Let V (S , τ = T − t) be the value of a contingent claim, then

Short Position: Vτ = sup
Q∈Q̂

{
Q2S2

2
VSS + SVS − rV

}
Long Position: Vτ = inf

Q∈Q̂

{
Q2S2

2
VSS + SVS − rV

}
Q̂ = [σmin, σmax ]

[σmin, σmax ] is the admissible control set

Q is the control for this HJB equation
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Lecture 1

Worst Case Hedge

Suppose we are short the option
Consider a strategy where we value the option (solve the HJB
equation)
We delta hedge, using delta values from our HJB solution
No matter what happens, as long as

σmin ≤ σ ≤ σmax,

we will always end up with a non-negative balance in the hedging
portfolio
So the HJB equation solution is an upper bound to the cost of
constructing a self-financing hedge
This is the least upper bound, i.e. there exists at least one asset
path, volatility scenario where our hedging portfolio is worth
exactly zero at expiry
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Lecture 1

Bid-Ask Prices
If buyers sellers priced options based on worst case hedging (from their
own perspectives)

Long/short prices would correspond to bid-ask prices
Similar HJB PDE for other cases

Uncertain dividends
Hedging with transaction costs
Different interest rates for lending/borrowing
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Lecture 1

Stock Borrowing Fees, Unequal Borrowing Lending Rates

Assume that risky asset S follows GBM (under the risk neutral
measure)

dS = rS dt + σS dZ

Contingent claims are hedged using delta hedging, usual Black
Scholes assumptions with the exceptions

Hedger can borrow at rate rb.

Hedger can receive rl < rb for cash on deposit.

Stock borrowing fee rf charged for shorting stock.

Effectively, the hedger receives interest at rate rl − rf , on the
proceeds of a short sale.
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Lecture 1

HJB Equation: Short Position on Contingent Claim

Let the no-arbitrage value of a contingent claim be
V = V (S , τ = T − t).

Vτ = sup
Q∈Q̂

{
σ2S2

2
VSS + q3q1(SVS − V )

+(1− q3)[(rl − rf )SVS − q2V ]

}
Q = (q1, q2, q3)

Q̂ = ({rl , rb}, {rl , rb}, {0, 1}) (1)

For Long position on claim, replace sup by inf in (1).
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Lecture 1

Continuous Time Mean Variance Asset Allocation
Suppose an investor saves for retirement by contributing to a
pension account at a rate π per year.

She can divide her wealth W in the pension account into

A fraction p invested in a risky asset X which follows

dX = (r + ξσ)X dt + σX dZ

ξ = the market price of risk

A fraction (1− p) in a riskless asset B which follows

dB

dt
= rB

The process followed by W = B + X is

dW = (r + pξσ)W dt + π dt + pσW dZ .
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Lecture 1

Optimal Strategy

Define

p(W , t) = dynamic fraction invested in the risky asset

WT = terminal wealth

Let

E t=0
p(·) [WT ] = Expected gain under strategy p(·)

Vart=0
p(·) [WT ] = Variance under strategy p(·)

So that

Vart=0
p(·) [WT ] = E t=0

p(·) [(WT )2]−
(

E t=0
p(·) [WT ]

)2
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Lecture 1

Minimum Variance

The objective is to determine the strategy p(·) such that

min Var t=0
p(·) [WT ] = E t=0

p(·) [(WT )2]− d2

subject to

{
E t=0

p(·) [WT ] = d

p(·) ∈ Z

Z = set of admissible controls

Given an expected return d = E t=0
p(·) [Wt ], strategy p(·) produces

the smallest possible variance.

Varying the parameter d traces out a curve in the expected value -
standard deviation plane.
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Lecture 1

Figure: Typical Efficient Frontiers
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Lecture 1

Efficient Frontier

Each point on the frontier
is optimal in the sense
that no other strategy
gives smaller risk for given
expected gain.

Any rational investor will
choose points on this
curve.

Different investors will
choose different points
depending on her risk
preferences.
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Lecture 1

Eliminate Constraint

Original problem is convex optimization, use Lagrange multiplier γ
to eliminate constraint.

max
γ

min
p(·)∈Z

E t=0
p(·)

[
(WT )2 − d2 − γ(E t=0

p(·) [WT ]− d)

]
. (2)

Suppose somehow we know the γ which solves (2), for fixed d .

Then the optimal strategy p∗(·) which solves (2) is given by (for
fixed γ)

min
p(·)∈Z

E t=0
p(·) [(WT −

γ

2
)2] . (3)

Note d has disappeared from (3).
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Lecture 1

Construction of Efficient Frontier
We can alternatively regard γ as a parameter, and determine the
optimal strategy p∗(·) which solves

min
p(·)∈Z

E t=0
p(·) [(WT −

γ

2
)2] .

Once p∗(·) is known, we can easily determine E t=0
p∗(·)[WT ],

E t=0
p∗(·)[(WT )2].

Varying γ traces out the efficient frontier.

Let V (W , τ) = E t=T−τ [(WT − γ/2)2], then p∗(·) is determined
from solution of HJB equation

Vτ = sup
p∈z

{
[(pµ+ (1− p)r)W + π]VW + (pσ)2W 2VWW

}
V (W , τ = 0) = (W − γ

2
)2
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Lecture 1

Guaranteed Minimum Withdrawal Benefit (GMWB)

Popular variable annuity product sold in Canada/US.

Designed for holders of defined contribution pension plans.

Investor hands over lump sum to an insurance company,
insurance company invests sum in risky assets.

The investor can withdraw up to a contract amount each
year, up to total amount of lump sum, regardless of actual
amount in investment account.

At end of contract, investor gets amount remaining in the
investment account (net of withdrawals).

The investor can participate in market gains, but still has a
guaranteed cash flow, in the case of market losses.

This insulates pensioners from losses in the early years of
retirement.
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Lecture 1

Some more details

Denote the amount in the risky investment by W .

The investor also has a virtual guarantee account A.

The investor can choose to withdraw up to the specified
contract rate Gr without penalty.

Usually, a penalty (κ > 0) is charged for any withdrawal above
rate Gr (instantaneous withdrawal allowed).
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Lecture 1

The risk neutral process followed by W is then (including
withdrawals dA).

dW = (r − α)Wdt + σWdZ + dA, if W > 0

dW = 0, if W = 0

α = fee paid for guarantee ; A = guarantee account

Let the value of the guarantee be V = V (W ,A, τ = T − t). Define

LV =
1

2
σ2W 2VWW + (r − α)WVW − rV .
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Lecture 1

Impulse Control (HJB Variational Inequality)

Optimal strategy: withdraw at finite rate (≤ Gr ) or
instantaneously withdraw a finite amount (infinite rate).

min

{
Vτ − LV − max

γ̂∈[0,Gr ]

(
γ̂ − γ̂VW − γ̂VA

)
,

V − sup
γ∈(0,A]

[
V (max(W − γ, 0),A− γ, τ) + (1− κ)γ − c

]}
= 0

c is a small fixed cost which ensures that the Impulse Control
problem is well-posed.
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Lecture 1

Figure: Optimal withdrawal strategy: GMWB
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Lecture 1

GMWB: Singular Control Formulation

This problem can also be posed as a singular control

min

[
Vτ − LV − G max(FV , 0), κ−FV

]
= 0

LV =
1

2
σ2W 2VWW + (r − α)WVW − rV

FV = 1− VW − VA

This singular control formulation can be solved numerically using a
penalty method (Dai, Kwok, Zong: Mathematical Finance (2008)).

The penalty method can viewed as a particular type of control,
hence the methods described in these lectures can be used.
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Lecture 1

HJB Equations: A General Form
Many of the HJB equations we have seen can be written as

LQV ≡ a(x , τ,Q)Vxx + b(x , τ,Q)Vx − c(x , τ,Q)V

Q = control

c(x , τ,Q) ≥ 0

Vτ = sup
Q∈Q̂

{
LQV + d(x , τ,Q)

}
Q̂ = set of admissible controls .

↪→ Standard approach: determine optimal Q(t) by differentiating
{LQV + d(Q)} w.r.t. Q and setting to zero.

From a computational perspective: this is a bad idea. We will see
why later!
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Lecture 1

Viscosity Solution

In general, the HJB equation may not have smooth solutions.

What does it mean to solve a differential equation when the
solution is not differentiable?

We can write our general HJB equation in the form

g(Vxx ,Vx ,Vτ ,V , x , τ) = Vτ − sup
Q∈Q̂

{
LQV + d(x , τ,Q)

}
= 0

Suppose we have a C 2,1 test function φ such that φ ≥ V , and φ
touches V at a single point (x0, τ0).
For simplicity, assume that V is continuous. Otherwise, φ should
touch the upper semi-continuous envelope of V .
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Lecture 1

Subsolution

Figure: If, for any point (x0, τ0), for any test function φ ≥ V , where φ
touches V at the single point (x0, τ0), g(φxx , φx , φτ , φ, x0, τ0) ≤ 0, then
V is a viscosity subsolution.
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Lecture 1

Supersolution

Figure: If, for any point (x0, τ0), for any test function φ ≤ V , where φ
touches V at the single point (x0, τ0), g(φxx , φx , φτ , φ, x0, τ0) ≥ 0, then
V is a viscosity supersolution.
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Lecture 1

Viscosity Solution

Any solution which is both a subsolution and a supersolution is a
viscosity solution

Note that we never evaluate g(Vxx ,Vx ,Vτ , ...) but only
g(φxx , φx , φτ , ...), → no problems with non-differentiable V .

Numerical issues:

We want to ensure that our numerical scheme converges to
the viscosity solution

For examples of cases where seemingly reasonable
discretizations converge to non-viscosity solutions, see Pooley,
Forsyth, Vetzal, IMA J. Num. Anal. (2003)

Sufficient conditions known which ensure that a numerical
scheme converges to the viscosity solution (Barles, Souganidis
(1991))
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Technical Point I

Remark
There may also be some points where a smooth C 2,1 test function
cannot touch the solution from either above or below. As a
pathological example, consider the function

f (x) =

{√
x x ≥ 0,

−
√
−x x < 0.

(4)

This function cannot be touched at the origin from below (or
above) by any smooth function with bounded derivatives. Note
that the definition of a viscosity solution only specifies what
happens when the test function touches the viscosity solution at a
single point (from either above or below). The definition is silent
about cases where this cannot happen.
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Technical Point II

From now on, we make the following Assumption

Assumption (Strong Comparison)

We assume that any HJB PDE we will examine, along with
appropriate boundary conditions, satisfies the strong comparison
property, which then implies that there exists a unique, continuous
viscosity solution to the HJB equation.

This has been proven for many cases, but not precisely all the
problems we will look at.
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Summary

Many problems in finance can be formulated in terms of
optimal stochastic control → nonlinear HJB
equation/variational inequality.

Solutions are in general non-differentiable→ viscosity solution.

There are precise rules to follow which will guarantee
convergence of a numerical scheme to the viscosity solution

It is a bad idea (numerically) to analytically determine the
optimal control (i.e. by differentiating and setting equal to
zero), and then to discretize the PDE

A better approach: first discretize and then optimize the
discrete equations.
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Lecture 2

A cautionary tale
Recall the uncertain volatility model

Vτ = max
q∈Q̂

{
q2S2

2
VSS + SVS − rV

}
Q̂ = [σmin, σmax]

Suppose we solve this equation using a standard finite difference
method with Crank-Nicolson timestepping.

Parameter Value

Sinit 100
σmax .25
σmin .15
r .10
T .25
Payoff Butterfly
Position Short

Table: Data used for the uncertain volatility model.
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Lecture 2

Convergence Study

Solve this problem on a sequence of grids/timesteps

At each refinement level we add new fine grid nodes and
double timesteps

Nodes Timesteps Option value

61 50 2.13890
121 100 2.12377
241 200 2.08726
481 400 2.05960

Table: Value of the uncertain volatility claim at S = 100, Crank-Nicolson
timestepping.

Appears to converge to about $2.05

4 / 36



Lecture 2

Crank-Nicolson Solution: Base Initial Grid
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Figure: Option value, uncertain volatility model, Crank-Nicolson
timestepping, base initial grid.
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Lecture 2

Add Nodes to Base Grid

Convergence was a bit slow, let’s add more nodes near the strike
on the base grid, and repeat the convergence study.

Nodes Timesteps Option value

65 50 1.06626
129 100 0.97531
257 200 0.91380
513 400 0.87161

Table: Convergence data, uncertain volatility, Crank-Nicolson
timestepping, S = 100, different initial grid.

Appears to converge to about $0.85, compare with $2.05 before!
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Crank-Nicolson Solution: Initial grid with more nodes near
the strike
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Figure: Option value, uncertain volatility model, Crank-Nicolson
timestepping, more nodes near the strike. 7 / 36



Lecture 2

What Happened?

For a linear PDE

Crank-Nicolson is unconditionally stable, and converges to the
exact solution, regardless of the initial grid/timesteps

For this nonlinear HJB equation

It appears that we can converge to different solutions
depending on our starting grid!

↪→ We need to be careful to converge to the correct, i.e. viscosity
solution
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Lecture 2

Definitions
Define a solution domain Ω = Ωin ∪ Ωbnd .

Ωin = Interior points

Ωbnd = Boundary points

Let

x = (x , τ) ; V = solution

D2V = Vxx ; DV = (Vx ,Vτ )

We can write the general form for the HJB equation in a way that
includes boundary conditions

g(D2V (x),DV (x),V (x), x) = gin(D2V (x),DV (x),V (x), x)

x ∈ Ωin

g(D2V (x),DV (x),V (x), x) = gbnd(D2V (x),DV (x),V (x), x)

x ∈ Ωbnd
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Lecture 2

Definitions cont’d

where

gin(D2V ,DV ,V , x) = Vτ − sup
Q∈Q̂

{
LQV + d(x , τ,Q)

}
= 0

gbnd(D2V ,DV ,V , x) = specified boundary condition

Suppose we define a grid {x0, x1, ..., xi , ...} and a set of timesteps
{τ0, τ1, ..., τn, ...}.

Let the discretization parameter h be given by (C1,C2 = const.)

max
n

(τn+1 − τn) = C1h

max
i

(xi+1 − xi ) = C2h
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Lecture 2

Discretization: General Form

Let V n
i be the approximate value of the solution, i.e.

V n
i ' V (xi , τ

n) = V (xn
i ).

Then we can write a general discretization of the HJB equation
g(D2V ,DV ,V , x) at node xn+1

i = (xi , τ
n+1)

Gn+1
i (h,V n+1

i ,V n+1
i+1 ,V

n+1
i−1 ,V

n
i ,V

n
i+1,V

n
i−1, ...)

= Gn+1
i (h,V n+1

i ,
{

V p
m

}
p 6=n+1
or m 6=i

)

= 0{
V p

m

}
p 6=n+1
or m 6=i

refers to the discrete solution values at nodes

neighbouring (in space and time) node (xi , τ
n+1).
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Lecture 2

Example: Linear Heat Equation
Discretize

Vt = Vxx

V (x = 0, t) = V (x = 1, t) = 1

using a mesh xi = i∆x , i = 0, .., imax , tn = n∆t, V (xi , t
n) ' V n

i .

V n+1
i − V n

i

∆t
=

V n+1
i−1 − 2V n+1

i + V n+1
i+1

(∆x)2

∆t = h ; ∆x = h

Gn+1
i=0 = V n+1

i=0 − 1

Gn+1
i =

V n+1
i − V n

i

h
−

(
V n+1

i−1 − 2V n+1
i + V n+1

i+1

h2

)
; i 6= 0, imax

Gn+1
i=imax

= V n+1
i=imax

− 1
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Sufficient Conditions: Convergence

We use the results from (Barles, Sougandinis, 1991).

Theorem (Convergence)

Any numerical scheme which is consistent, l∞ stable, and
monotone, converges to the viscosity solution.

Stability

Usual requirement (discrete solution bounded in l∞ as mesh,
timestep → 0)

Can prove using maximum analysis

Usually, only fully implicit timestepping is unconditionally l∞
stable (but not always, e.g. jump diffusions).
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Lecture 2

Monotonicity

Definition (Monotonicity)

The discretization

Gn+1
i (h,V n+1

i ,
{

V p
m

}
p 6=n+1
or m 6=i

)

is monotone if

Gn+1
i (h,V n+1

i ,
{

X p
m

}
p 6=n+1
or m 6=i

) ≤ Gn+1
i (h,V n+1

i ,
{

Y p
m

}
p 6=n+1
or m 6=i

)

∀ X p
m ≥ Y p

m, ∀m, p
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Lecture 2

Monotonicity cont’d

A discretization which is a positive coefficient method is
monotone (usually)

For 1-d problems, multi-dimensional problems with diffusion
only in one direction, forward/backward/central differencing
generate a positive coefficient scheme

Often results in low order schemes (first order)

Has nice financial interpretation: enforces discrete
no-arbitrage inequalities. i.e. if payoff from contingent claim
A is greater than claim B (on the same underlying) then the
value of Claim A must always be greater than Claim B at all
earlier times.

More later
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Monotonicity: Heat equation
Recall that

Gn+1
i =

V n+1
i − V n

i

h
−

(
V n+1

i−1 − 2V n+1
i + V n+1

i+1

h2

)
; i 6= 0, imax

We have to show that Gn+1
i is a nonincreasing function of

(V n+1
i+1 ,V

n+1
i−1 ,V

n
i ).

First step, consider

G n+1
i (h,V n+1

i ,V n+1
i+1 + ε,V n+1

i−1 ,V
n
i )− G n+1

i (h,V n+1
i ,V n+1

i+1 ,V
n+1
i−1 ,V

n
i )

= −
(

V n+1
i−1 − 2V n+1

i + V n+1
i+1 + ε

h2

)
+

(
V n+1

i−1 − 2V n+1
i + V n+1

i+1

h2

)
= − ε

h2
< 0 ; ε > 0

Similar result if we perturb V n
i ,V

n+1
i−1
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Consistency

Consistency in the viscosity sense defined a technical way. I include
this for completeness.

Definition (Semi-continuous envelopes)

If C is a closed set, and f (x) is a function defined on C , then the
upper semi-continuous envelope f ∗(x) and the lower
semi-continuous envelope f∗(x), x ∈ C , is defined by

f ∗(x) = lim sup
y→x
y∈C

f (y) ; f∗(x) = lim inf
y→x
y∈C

f (y)

Remark
Note that C is closed here, which means that we consider the
neighbours of x and x itself.
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Lecture 2

Consistency

The scheme Gn+1
i (h,V n+1

i ,
{

X p
m

}
p 6=n+1
m 6=i

) is consistent if, for all

x̂ = (x̂ , τ̂) in the computational domain, and for all smooth,
bounded test functions φ(x), we have

lim sup
h→0

xn+1
i →x̂
ξ→0

Gn+1
i

(
h, φ(xn+1

i ) + ξ,
{
φ(xp

m) + ξ
}

p 6=n+1
or m 6=i

)

≤ g∗
(
D2φ(x̂),Dφ(x̂), φ(x̂), x̂

)
,

lim inf
h→0

xn+1
i →x̂
ξ→0

Gn+1
i

(
h, φ(xn+1

i ) + ξ,
{
φ(xp

m) + ξ
}

p 6=n+1
or m 6=i

)

≥ g∗
(
D2φ(x̂),Dφ(x̂), φ(x̂), x̂

)
,

(1)
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Lecture 2

Why do we ever need this complex definition of
consistency?

At points near the boundary, the viscosity definition of consistency
is more relaxed than the classical definition of consistency.

Sometimes, a scheme (i.e. a semi-Lagrangian method) may
never be consistent (in the classical sense) near the boundary.

But the scheme is consistent in the viscosity sense!

Consistency in the viscosity sense can be very useful in such
situations.

In fact, if you do anything reasonable in a complex situation,
you usually find that everything is fine in the viscosity sense.

The whole idea of viscosity solutions allows you to do what
you were going to do anyway, except now you know it is OK.
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Discretization

Recall that we can write our HJB equation as

g(Vxx ,Vx ,Vτ ,V , x , τ) = Vτ − sup
Q∈Q̂

{
LQV + d(x , τ,Q)

}
= 0 (2)

where

LQV ≡ a(x , τ,Q)Vxx + b(x , τ,Q)Vx − c(x , τ,Q)V

Discretize (2)

Fully implicit timestepping

Forward/backward/central differencing
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Fully Implicit Timestepping

Define a grid [x0, x1, .., ximax ], and let V n = [V n
0 ,V

n
1 , ...,V

n
imax

]′.

Let LQ
h be the discrete form of the operator LQ , so that

(LQ
h V n+1)i = αn+1

i (Q)V n+1
i−1 + βn+1

i (Q)V n+1
i+1

−(αn+1
i (Q) + βn+1

i (Q) + cn+1
i (Q))V n+1

i .

The discrete form of the HJB equation is then

V n+1
i − V n

i

∆τ
= sup

Qn+1∈Q̂

{
(LQn+1

h V n+1)i + dn+1
i

}
.
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General Form

We can write the discretized PDE in our general form

Gn+1
i (h,V n+1

i ,V n+1
i+1 ,V

n+1
i−1 ,V

n
i )

=
V n+1

i − V n
i

∆τ

+ inf
Q∈Q̂

{
(αn+1

i (Q) + βn+1
i (Q) + cn+1

i (Q))V n+1
i

− αn+1
i (Q)V n+1

i−1 − β
n+1
i (Q)V n+1

i+1 − dn+1
i (Q)

}
= 0 (3)
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Assume cn+1
i ≥ 0, and that the following condition holds (using

central/forward/backward differencing)

Condition (Positive Coefficient)

αn+1
i (Q) ≥ 0, βn+1

i (Q) ≥ 0, cn+1
i (Q) ≥ 0 ; ∀Q ∈ Q̂ .

(4)

It is now easy to show that this discretization is monotone.

We have to show that Gn+1
i (·) is a nonincreasing function of the

neighbour nodes V p
m, (m 6= i or p 6= n + 1).
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Discretized equations

Recall that the discretized equations are

Gn+1
i (h,V n+1

i ,V n+1
i+1 ,V

n+1
i−1 ,V

n
i )

=
V n+1

i − V n
i

∆τ
+ inf

Q∈Q̂

{
(αn+1

i (Q) + βn+1
i (Q) + cn+1

i (Q))V n+1
i

− αn+1
i (Q)V n+1

i−1 − β
n+1
i (Q)V n+1

i+1 − dn+1
i (Q)

}

24 / 36



Lecture 2

Monotonicity

Consider the case where we perturb V n+1
i+1 by ε > 0, we need to

show

Gn+1
i (h,V n+1

i ,V n+1
i+1 + ε,V n+1

i−1 ,V
n
i )

−Gn+1
i (h,V n+1

i ,V n+1
i+1 ,V

n+1
i−1 ,V

n
i )

≤ 0

Given two functions S(z),T (z), z ∈ D, then a useful fact is that

inf
x∈D

S(x)− inf
y∈D

T (y) ≤ sup
z∈D

(
S(z)− T (z)

)
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G n+1
i (h,V n+1

i ,V n+1
i+1 + ε,V n+1

i−1 ,V
n
i )− G n+1

i (h,V n+1
i ,V n+1

i+1 ,V
n+1
i−1 ,V

n
i )

= inf
Q∈Q̂

{
(αn+1

i (Q) + βn+1
i (Q) + cn+1

i (Q))V n+1
i

−αn+1
i (Q)V n+1

i−1 − β
n+1
i (Q)V n+1

i+1 − β
n+1
i (Q)ε− dn+1

i (Q)

}
− inf

Q∗∈Q̂

{
(αn+1

i (Q∗) + βn+1
i (Q∗) + cn+1

i (Q∗))V n+1
i

−αn+1
i (Q∗)V n+1

i−1 − β
n+1
i (Q∗)V n+1

i+1 − dn+1
i (Q∗)

}
≤ sup

Q∈Q̂

{
−βn+1

i (Q)ε

}
= −ε inf

Q∈Q̂

{
βn+1

i (Q)

}
≤ 0

which follows from βn+1
i (Q) ≥ 0 and we have used

(inf S − inf T ) ≤ sup(S − T ).
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Similarly, we can show that a positive perturbation of any of
{V n+1

i−1 ,V
n
i } causes a decrease in the value of Gn+1

i (·).

We can now state the following result.

Proposition (Monotonicity)

If the positive coefficient condition (4) is satisfied, then (3) is a
monotone discretization, as defined in Definition 1.

Note: In order to ensure a positive coefficient discretization

our choice of central/forward/backward differencing will
depend, in general, on the control Q.

more about this later
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What about Consistency? How do we show this?

According to the definition of lim sup, there exist sequences
hk , ik , nk , ξk , such that

hk → 0, ξk → 0, xnk+1
ik

→ x̂ as k →∞

and

lim
k0→∞

sup
k>k0

Gnk+1
ik

(
hk , φ(xnk+1

ik
) + ξk ,

{
φ(xp

m) + ξk
}

p 6=nk+1
or m 6=ik

)
= lim sup

h→0
xn+1
i →x̂
ξ→0

Gn+1
i

(
h, φ(xn+1

i ) + ξ,
{
φ(xp

m) + ξ
}

p 6=n+1
or m 6=i

)
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At interior points, it is usually easy to show (using Taylor series)
that (recall that φ is infinitely differentiable)

Gnk+1
ik

(
hk , φ(xnk+1

ik
) + ξk ,

{
φ(xp

m) + ξk
}

p 6=nk+1
or m 6=ik

)
= gin

(
D2φ(xnk+1

ik
),Dφ(xnk+1

ik
), φ(xnk+1

ik
), xnk+1

ik

)
+ O(hk) + O(ξk)

Since usually gin(·) is continuous, then at interior points
g∗ = g∗ = gin, and we are done.

Note: Usually, the complex definition of consistency boils down to
a classic definition of consistency, which is easily proved using
Taylor series.
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Matrix Form of the Discrete Equations

Let the value of the optimal control at node i , timestep n be Qn
i ,

and define

Qn = [Qn
0 ,Q

n
i , ..,Q

n
imax

]

Define the matrix A(Qn), so that

[A(Qn)V n]i = (LQn

h V n+1)i

and the vector D(Qn+1)n+1 = [dn
0 , d

n
1 , ..., d

n
imax

] so that fully
implicit timestepping can be written as

V n+1 = V n + ∆τ sup
Qn+1∈Q̂

{
An+1(Qn+1)V n+1 + Dn+1(Qn+1)

}
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Matrix Form of the Discrete Equations II

If Q̂ is compact, and the objective function is continuous, then we
can write the discretized equations as

[I −∆τAn+1(Qn+1)]V n+1 = V n + ∆τDn+1(Qn+1)

where Qn+1
i ∈ arg max

Qn+1
i ∈Q̂

{[
An+1(Qn+1)V n+1 + Dn+1(Qn+1)

]
i

}

From the positive coefficient condition, [I −∆τAn+1(Qn+1)] is an
M matrix, hence

[I −∆τAn+1(Qn+1)]−1 ≥ 0
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Nonlinear Algebraic Equations

V n+1 = V n + ∆τ sup
Qn+1∈Q̂

{
An+1(Qn+1)V n+1 + Dn+1(Qn+1)

}
(5)

Note that this is a set of nonlinear algebraic equations

But, fromM matrix property, the solution exists and is unique

Arbitrage Inequality

Suppose we have two different initial vectors W n,Un, so that

W n+1 = W n + ∆τ sup
Qn+1∈Q̂

{
An+1(Qn+1)W n+1 + Dn+1(Qn+1)

}
(6)

Un+1 = Un + ∆τ sup
Qn+1∈Q̂

{
An+1(Qn+1)Un+1 + Dn+1(Qn+1)

}
(7)
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Arbitrage Inequality

Proposition (Discrete Comparison)

If a positive coefficient discretization is used to discretize the HJB
PDE, then if W n, Un are discrete solutions to (6)-(7), with
W n ≥ Un, then W n+1 ≥ Un+1.

Proof.
Manipulate (6)-(7), use the M matrix property of
[I −∆τAn+1(Qn+1)].

Remark (Monotonicity)

We can see here that monotonicity → arbitrage inequality, i.e.
inequality of payoffs translates into inequality of value at all earlier
times. Note that this holds regardless of timestep or mesh size.
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Back to Our Uncertain Volatility Equation

Recall that, with C-N timestepping, using different initial grids, we
appeared to converge to two different values

Grid1 → $2.05

Grid2 → $0.85

What went wrong here? C-N timestepping does not satisfy two of
the conditions we need

C-N is not monotone (for timesteps > explicit timestep size)

C-N is not l∞ stable.

However, fully implicit timestepping, positive coefficient
discretization is

Unconditionally monotone, l∞ stable

Consistent
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Fully Implicit Timestepping

Nodes Time Option
steps value

61 50 2.3211
121 100 2.3107
241 200 2.3045
481 400 2.3012

50 60 70 80 90 100 110 120 130 140 150
0

1

2

3

4

5

6

7

8

9

10

Asset Price
O

pt
io

n 
V

al
ue

Short Position European Butterfly Option Value

Payoff 

We now know for sure that $2.30 is the correct solution!
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Summary: Lecture II

Convergence to the viscosity solution ensured if discretization
is Consistent, l∞ stable and monotone.

Consistency: most of the time, this is just classical
consistency, applied to infinitely differentiable test functions

→ Consistency in the viscosity sense is very
forgiving, when it comes to points near the
boundaries

l∞ Stability: standard maximum analysis can be used to prove
this

Monotonicity: most interesting condition: preserves discrete
arbitrage inequalities

→ Positive coefficient discretization guarantees this
property

Seemingly reasonable discretizations can converge to wrong
values if these conditions are not satisfied!
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Outline For Lecture 3
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Lecture 3

Example I: Passport Options

Option on a trading account

Holder is allowed to go long/short underlying asset S at any
time during [0,T ]

Assume S follows Geometric Brownian Motion

Holder can hold q shares at any time, where |q| < C

Let W be the accumulated gain in the portfolio

At maturity, holder’s position is

max(W , 0)
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Lecture 3

Passport Options

Option Value V (S ,W , t) = Su(x = W /S , t)

uτ = −γu + sup
|q|≤1

[
((r − γ − rc)q − (r − γ − rt)x)ux

+
σ2

2
(x − q)2uxx

]
,

x = W /S ; τ = T − t ; r = risk-free rate ,

γ = dividend rate ; rc = cost of carry ,

rt = interest rate on trading account
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Asset Allocation: Pension Plan

Cairns et al , JEDC, 2006 “Stochastic Lifestyling: Optimal
Dynamic Asset Allocation for Defined Contribution Pension
Plans”

Holder of defined contribution pension plan has annual salary
Y (t) (stochastic), contributes π Y per year to pension plan

Invests a fraction p of accumulated wealth W in risky asset S ,
(1− p) in riskfree asset

Desires to maximize expected utility of wealth/income ratio at
retirement T

Power Law Utility = U(x ,T ) =
xγ

γ
; γ < 0

x =
W

Y
; Wealth/Income ratio
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Pension Plan II
Bond process:

dB = rB dt

B = Bond price ; r = risk free rate

Underlying risky asset process:

dS = (r + ξ1σ1)S dt + σ1S dZ1 ,

S = risky asset ; ξ1 = market price of risk

σ1 = volatility; dZ1 = increment Wiener process

Wealth process:

dW = (r + pξ1σ1)W dt + pσ1W dZ1 + πYdt .

W = accumulated wealth; πY = contribution rate,

p = fraction invested in S; (1− p) = fraction in bond
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Stochastic Salary

Assume that yearly salary is also stochastic:

dY = (r + µY )Y dt + σY0Y dZ0 + σY1Y dZ1 ,

Y = yearly salary; r + µY = salary drift rate,

σY1 = random salary component

correlated with market.

σY0 = random salary component uncorrelated with market

Z0,Z1 are uncorrelated, i.e.

dZ0 dZ1 = 0 .
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Maximize expected utility V (x , τ)

Studies show: we are happy if our wealth W at retirement is large
compared to our pre-retirement yearly salary Y .

Let x = W /Y , and maximize expected terminal utility by
determining V (x , τ) such that

V (x , τ) = sup
p∈P̂

E [U(x(T ))|x(T − τ) = x ]

τ = T − t

p(t) = fraction of W in risky asset

P̂ = set of admissible allocation strategies

U(x) = U(W /Y ) = utility

T = retirement date
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HJB Equation: Pension plan

x =
Wealth

Yearly income

Standard dynamic programming arguments:

Vτ = sup
p∈P̂

{
µp

X Vx +
1

2
(σp

X )2Vxx

}
; x ∈ [0,∞) ,

where

V (x , τ = 0) = γ−1xγ ; γ < 0 ,

µp
X = π + x(−µY + pσ1(ξ1 − σY1) + σ2

Y0
+ σ2

Y1
) ,

(σp
X )2 = x2(σ2

Y0
+ (pσ1 − σY1)2) .
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No-bankruptcy

Note that the salary process is always non-negative.

In order to ensure that W ≥ 0, which implies that x ≥ 0

Vτ = πVx ; x → 0

As we shall see, this means that (px)→ 0 as x → 0.

The amount invested in the risky asset tends to zero as the
(wealth-income ratio → 0).

But, the ratio of wealth invested in S becomes infinite.
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General Form (Passport and Pension Allocation)

Both of these PDEs can be be written in the general form

LQV ≡ a(x , τ,Q)Vxx + b(x , τ,Q)Vx − c(x , τ,Q)V

Q = control

Vτ = sup
Q∈Q̂

{
LQV + d(x , τ,Q)

}
Q̂ = set of admissible controls .

Textbook approach: determine optimal Q(t) by differentiating
{LQV + d(Q)} w.r.t. Q and setting to zero.

Typical method used to get analytic solutions.
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Standard Approach
Apply this idea (differentiating w.r.t. p and setting to zero) to
Pension Plan example

Vτ = (π + δx)Vx +
σ2

Y 0x2

2
Vxx −

(ξ1 − σY 1)2

2

(
V 2

x

Vxx

)
δ = −µY + σ2

Y 0 + σY 1ξ1 (1)

Now, we have taken a nice HJB equation, and made a mess of it!

It will be very difficult to construct a monotone, consistent, stable
method for (1).

Moral of story:

First discretize

Then, optimize

Find max/min of discrete equations not analytic approximations to
discrete equations.
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Discretization

Fully implicit discretization: Let (LQ
h V n)i denote the discrete form

of the differential operator LQV at node (xi , τ
n). Use central,

forward, backward differencing to obtain

(LQ
h V n+1)i = α(Q)n+1

i V n+1
i−1 + β(Q)n+1

i V n+1
i+1

−(α(Q)n+1
i + β(Q)n+1

i + c(Q)n+1
i )V n+1

i

The discrete form of the HJB equation is then

V n+1
i − V n

i

∆τ
= sup

Qn+1∈Q̂

{
(LQn+1

h V n+1)i + dn+1
i

}
.
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Central, Forward, Backward
Recall our positive coefficient condition (which ensures
monotonicity)

α(Q)n+1
i ≥ 0 ; β(Q)n+1

i ≥ 0 ; c(Q)n+1
i ≥ 0 (2)

In order to ensure this condition, we have to be careful how we
discretize the term

b(x , τ,Q)Vx

in the PDE.

A simple-minded idea is to use either forward or backward
differencing depending on the sign of b(x , τ,Q).

However, this is only first order correct, and is not always necessary.

We would like to use central differencing as much as possible, and
yet still have a positive coefficient scheme.
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Convergence

Lemma (Stability)

The fully implicit, positive coefficient scheme is unconditionally
stable.

Proof.
Follows from a straightforward maximum analysis.

Lemma (Consistency)

The fully implicit positive coefficient scheme is consistent.

Proof.
Taylor series applied to smooth test functions.

Lemma (Monotonicity)

The fully implicit positive coefficient scheme is monotone .

Proof.
Follows from lecture 2.
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Nonlinear discretized equations

Recall the matrix form of the discretization of LQ :

(LQ
h V n)i = [An(Qn)V n]i

so that the discretized equations are[
I −∆τAn+1(Qn+1)n+1

]
V n+1 = V n + ∆τDn+1(Qn+1)n+1

where

Qn+1
i = arg max

Qn+1
i ∈Q̂

{[
An+1(Qn+1)V n+1 + Dn+1(Qn+1)

]
i

}
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Policy Iteration
We use the following iterative scheme to solve the nonlinear
equations.

Let (V n+1)0 = V n

Let V̂ k = (V n+1)k

For k = 0, 1, 2, . . . until convergence

Solve[
I −∆τAn+1(Qk)

]
V̂ k+1 = V n + ∆τDn+1(Qk)

Qk
i = arg max

Qk
i ∈Q̂

{
Fi (Qk

i )

}
Fi (Qk

i ) =
[
An+1(Qk)V̂ k + Dn+1(Qk)

]
i

EndFor
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Central Differencing as Much as Possible

Given a control Qn
i at node i , the following algorithm is used to

determine the differencing method

diff = central

IF αi < 0 or βi < 0 THEN

diff = backward

IF αi < 0 or βi < 0 THEN

diff = forward

ENDIF

ENDIF
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Local Objective Function, Passport Option, Central
Differencing as much as possible

Q

F
(Q

)

-1 -0.5 0 0.5 1
-0.004

-0.003

-0.002

-0.001

0

0.001

Central

Forward

Change Point, nonsmooth

Backward

Central

Local objective function is a discontinuous function of the control. 19 / 33
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Local Objective Function, Passport Option,
Forward/Backward only

Q

F
(Q

)

-1 -0.5 0 0.5 1
-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

0

0.001

Forward

Change point, nonsmooth

Backward

Local objective function is a continuous function of the control. 20 / 33
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Policy Iteration

In view of the fact that the local objective function can be a
discontinuous function of the control

At points of discontinuity, we want the limiting value of the
objective function which produces the supremum

At points of discontinuity, we can specify the supremum by
specifying the control and the differencing method which gives
this limiting value (abuse of notation: arg sup(·))

A subtle point which may cause non-convergence if ignored

[
I −∆τAn+1(Qk)

]
V̂ k+1 = V n + ∆τDn+1(Qk)

Qk
i ∈ arg sup

Qk
i ∈Q̂

{[
An+1(Qk)V̂ k + Dn+1(Qk)

]
i

}
(3)
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Convergence of Policy Iteration

Manipulation of algorithm (3) gives[
I −∆τAn+1(Qk)

]
(V̂ k+1 − V̂ k)

= ∆τ

[(
An+1(Qk)V̂ k + Dn+1(Qk)

)
−
(
An+1(Qk−1)V̂ k + Dn+1(Qk−1)

)]

Positive coefficient discretization → LHS is an M matrix

RHS is non-negative (Why?)

Easy to show that V̂ k+1 is bounded independent of k

Iterates form a bounded non-decreasing sequence

If V̂ k+1 = V̂ k , residual is zero
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Theorem (Convergence of Policy Iteration)

If a positive coefficient discretization is used, then the Policy
iteration algorithm converges to the unique solution of the
nonlinear discretized equations for any initial iterate V̂ 0.

Note: We do not require that the local objective function be a
continuous function of the control.

Using central differencing as much as possible should be more
accurate.

But we have no guarantee on how many iterations required to
solve the nonlinear equations.

We have no guarantee on the order of convergence as the
mesh is refined

Forward/backward differencing only, can be at most first order
Central weighting as much as possible may be second order

Is central differencing as much as possible useful in practice?

23 / 33



Lecture 3

Pension Allocation Example

Table: Data from Cairns et al (2006)

µy 0.0 ξ1 0.2
σ1 0.2 σY 1 0.05
σY 0 0.05 π 0.1
T 20 years γ -5

Convergence study:

Sequence of tests, on each grid refinement, add new node
between each coarse grid node

Divide timestep by four (not required for stability, but fully
implicit method is only first order)

If we are getting benefit from central weighting as much as
possible, then ratio of changes → 4
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Computational Issues

Original domain x ∈ [0,∞).
↪→ Computational domain [0, 80].
↪→ Dirichlet boundary condition at x = xmax.

Utility function undefined at x = 0.

V (x , τ = 0) = γ−1(max(x , ε))γ

ε = 10−3 ; γ < 0

Relative convergence tolerance for Policy Iteration.
↪→ 10−7.

Modifying these parameters made no change in the solution to 7
digits.
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Convergence Study: Pension Allocation Example

Nodes Timesteps Nonlinear CPU Time Utility Ratio
iterations (Sec)

Central Differencing as much as possible, x = 0
87 160 331 0.04 −4.06482× 10−3

173 640 1280 0.36 −3.65131× 10−3

345 2560 5120 2.75 −3.58063× 10−3 5.851
689 10240 20480 21.31 −3.56354× 10−3 4.134

1377 40960 81920 168.07 −3.55922× 10−3 3.961
Forward/backward differencing only, x = 0

87 160 399 0.03 −6.73472× 10−3

173 640 1296 0.22 −4.68055× 10−3

345 2560 5135 1.68 −4.04828× 10−3 3.249
689 10240 20480 13.06 −3.79150× 10−3 2.462

1377 40960 81920 103.09 −3.67543× 10−3 2.213

Similar results for Passport Options
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Pension Allocation: Optimal Equity fraction p

Wealth-income Ratio, X(0) = x

O
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• Years to retirement T = 20

• fraction of salary per year
invested 0.10

• p →∞ as wealth/income
ratio → 0
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Pension Allocation: Optimal Equity Amount (px)

Wealth-income Ratio, X(0) = x

O
pt

im
al

Eq
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ty
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nt

0 0.025 0.05 0.075 0.10

0.1

0.2

0.3

• p →∞, px → 0, when
x → 0

Recall x = wealth in units of
yearly income
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How do we solve the local optimization problem?
Recall that we need to determine (at each node)

Qk
i ∈ arg sup

Qk
i ∈Q̂

{[
An+1(Qk)V̂ k + Dn+1(Qk)

]
i

}
For Passport options, Pension Allocation problem, we can form an
analytic expression for the local objective function, as a function of
the control and differencing method

Determine the subintervals of control values where central,
forward, backward give a positive coefficient discretization
(central has priority)

On each subinterval, objective function is smooth, use
standard methods to find maximum.

Global maximum found by comparing the maxima on each
subinterval

But, this approach may not always be possible, if the objective
function is complex
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Discretization of the Control

Suppose that q ∈ Q̂, where Q̂ = [qmin, qmax], qmin, qmax bounded.

Discretize control, i.e. replace Q̂ by Q̂ ′

Q̂ ′ = [q0, q1, q2, ..., qk ]

Let maxi (qi+1 − qi ) = h, then we have the following

Proposition

If the coefficients of the HJB equation are continuous, bounded
functions of the control, then the discretized control problem

Vτ = sup
Q∈Q̂′

{
LQV + d(S , τ,Q)

}
(4)

is consistent with the original control problem (Q̂ = [qmin, qmax]),
as h→ 0.
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Discretized Control II

So, if the local objective function is too complex to analytically
determine the maximum, we can

Discretize the control with parameter h

Solve the local optimization problem by linear search

Let h→ 0 as the mesh, timesteps → 0

This will converge to the viscosity solution

Advantage:
↪→ Trivial implementation, can be applied to PDE with complex
coefficients.

Disadvantage:
↪→ Increase of computational complexity, effectively we increase
the dimensionality of the problem by one.
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Convergence Study: Discretized Control, Pension
Allocation

x-Nodes p-Nodes Timesteps CPU Utility Ratio
(Sec)

x = 0
173 113 640 1.9 −3.65307× 10−3

345 225 2560 29.4 −3.58083× 10−3

689 449 10240 457 −3.56358× 10−3 4.19
1377 897 40960 7240 −3.55923× 10−3 3.97

x = 1.0
173 113 640 1.9 −4.31662× 10−4

345 225 2560 29.4 −4.26845× 10−4

689 449 10240 457 −4.25619× 10−4 3.93
1377 897 40960 7240 −4.25306× 10−4 3.92

Note: we replace admissible set p ∈ [0,∞] by p ∈ [0, 200].

On finest grid, solution same to 5 digits compared to continuous
control.
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Lecture 3: Summary

Discretize first, then maximize (NOT the other way around)

Maximize the discrete equations directly → ensures
monotonicity, constraints on control easily handled

Positive Coefficient Discretization

Guarantees convergence to viscosity solution
Guarantees convergence of policy iteration

Central weighting as much as possible

Not usually done
Higher convergence rate at little cost

HJB PDEs with complex coefficients

Discretize control, solve optimization problem by linear search
Guaranteed to converge, easy to implement
But more expensive
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Lecture 4

Motivation
Variable annuity products: sold by insurance companies to retail
investors.

These products are guarantees on investments in pension plans.

From a paper we wrote in 2002 (segregated funds are a Canadian
version of Variable Annuities)

“If one adopts the no-arbitrage perspective...in many
cases these contracts appear to be significantly
underpriced, in the sense that the current deferred fees
being charged are insufficient to establish a dynamic
hedge for providing the guarantee. This is particularly
true for cases where the underlying asset has relatively
high volatility. This finding might raise concerns at
institutions writing such contracts.” Windcliff, Forsyth,
LeRoux, Vetzal, North American Actuarial J., 6 (2002)
107-125
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What Happened?

As described in a Globe and Mail article (Report on Business,
December 2, 2008, “Manulife, in red, raises new equity,”), one of
the large Canadian insurance companies, Manulife, posted a large
mark-to-market writedown to account for losses associated with
these segregated fund guarantees. From the Globe and Mail
Streetwise Blog, November 7, 2008

“Concerns that the market selloff will translate into
massive future losses at Canada’s largest insurer sent
Manulife shares reeling last month. Those concerns were
a result of Manulife’s strategy of not fully hedging
products such as annuities and segregated funds, which
promise investors income no matter what markets do.”
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Why did this happen?
These products contain embedded options which allow the
investors many opportunities to optimize the value of the
guarantee.

Pricing of these products requires solution of an optimal stochastic
control problem (an HJB PDE).

This was beyond the technical abilities of most insurance
companies

Insurance companies used simplistic models which
underestimated the risk involved.

These models showed that there was no need to hedge these
products, (Quote from actuary: ) “Over any ten year period,
the market never goes down.”

Insurance company executives were able to boast of large
(apparent) profits, which then triggered rich bonus payments
to traders and executives.
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Retirement Risk Zone

Consider an investor with a retirement account, which is invested
in the stock market
Over the long run (before retirement), it does not matter if

the market first drops by 10% per year over several years and then
goes up by 20% per year for several years; or

the market first goes up by 20% per year and then drops by 10%
per year

(.9)(.9)...(1.2)(1.2)... = (1.2)(1.2)...(.9)(.9)...
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The Retirement Risk Zone II

This is not the case once the investor retires, and begins to make
withdrawals from the retirement account
The outcomes will be very different in the cases:

in the first few years after retirement, the market has losses,
and the account is further depleted by withdrawals, followed
by some years of good market returns; compared to

a few years of good market returns, after retirement (including
withdrawals), followed by some years of losses

Losses in the early years of retirement can be devastating in the
long run! Early bad returns can cause complete depletion of the
account.
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A Typical GMWB Example

Investor pays $100 to an insurance company, which is invested in a
risky asset.

Denote amount in risky asset sub-account by W = 100.

The investor also has a virtual guarantee account A = 100.

Suppose that the contract runs for 10 years, and the guaranteed
withdrawal rate is $10 per year.
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A Typical GMWB Example II

At the end of each year, the investor can choose to withdraw up to
$10 from the account. If $γ ∈ [0, 10] is withdrawn, then

Wnew = max(Wold − γ, 0) ; Actual investment

Anew = Aold − γ ; Virtual account

This continues for 10 years. At the end of 10 years, the investor
can withdraw anything left, i.e. max(Wnew ,Anew ).

Note: the investor can continue to withdraw cash as long as
A > 0, even if W = 0 (recall that W is invested in a risky asset).
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Example: Order of Random Returns

Good Returns at Start

Time Return (%) Balance ($) Withdrawal ($)
1 41.65 141.65 10
2 31.12 172.62 10
3 20.15 195.39 10
4 -30.25 129.31 10
5 18.05 140.85 10
6 16.82 152.86 10
7 20.12 171.60 10
8 7.44 173.62 10
9 -40.90 96.70 10

10 -7.5 80.20 10
Total Withdrawal Amount ($) 170.20
Ten year balance if no withdrawal ($) 151.37
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Same Random Returns: Different Order

No GMWB: poor returns at start

Time Return (%) Balance ($) Withdrawal ($)
1 -30.25 69.75 10
2 -40.90 35.31 10
3 16.82 29.57 10
4 7.44 21.03 10
5 41.65 15.62 10
6 20.12 6.75 6.75
7 31.12 0 0
8 18.05 0 0
9 20.15 0 0

10 -7.5 0 0
Total Withdrawal Amount ($) 56.75
Ten year balance if no withdrawal ($) 151.37
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Unlucky Order of Returns: With GMWB

GMWB Protection

Time Return (%) Balance ($) Withdrawal ($)
1 -30.25 69.75 10
2 -40.90 35.31 10
3 16.82 29.57 10
4 7.44 21.03 10
5 41.65 15.62 10
6 20.12 6.75 10
7 31.12 0 10
8 18.05 0 10
9 20.15 0 10

10 -7.5 0 10
Total Withdrawal Amount ($) 100
Ten year balance if no withdrawal ($) 151.37
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Why is this useful?

The investor can participate in market gains, but still has a
guaranteed cash flow, in the case of market losses.

This insulates pensioners from losses in the early years of
retirement.

This protection is paid for by deducting a yearly fee α from the
amount in the risky account W each year.

The simple form of GMWB described has many variants in
practice: Guaranteed Lifetime Withdrawal Benefit (GLWB),
ratchet increase of virtual account A if no withdrawals, etc.

We will keep things simple here, and look at the basic GMWB.

Most variable annuities sold in North America have some type of
market guarantee.
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Some More Details

The investor can choose to withdraw up to the specified contract
rate Gr without penalty.

Usually, a penalty (κ > 0) is charged for withdrawals above Gr .

Let γ̂ be the rate of withdrawal selected by the holder.

Then, the rate of actual cash received by the holder of the GMWB
is

f̂ (γ̂) =

{
γ̂ if 0 ≤ γ̂ ≤ Gr ,
γ̂ − κ(γ̂ − Gr ) if γ̂ > Gr .
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Stochastic Process

Let S denote the value of the risky asset, we assume that the risk
neutral process followed by S is

dS = rSdt + σSdZ

r = risk free rate; σ = volatility

dZ = φ
√

dt ; φ ∼ N (0, 1)

The risk neutral process followed by W is then (including
withdrawals dA).

dW = (r − α)Wdt + σWdZ + dA, if W > 0

dW = 0, if W = 0

α = fee paid for guarantee ; A = guarantee account
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No-arbitrage Value

Let V (W ,A, τ) (τ = T − t, T is contract expiry) be the
no-arbitrage value of the GMWB contract (i.e. the cost of
hedging).

At contract expiry (τ = 0) we have (payoff = withdrawal)

V (W ,A, τ = 0) = max(W ,A(1− κ))

It turns out that it is optimal to withdraw at a rate γ̂

γ̂ ∈ [0,Gr ], or

γ̂ =∞ (instantaneously withdraw a finite amount)
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Impulse Control

Let

LV =
1

2
σ2W 2VWW + (r − α)WVW − rV .

Since we have the option of withdrawing at a finite rate at each
point in (W ,A, τ), Ito’s Lemma and no-arbitrage arguments give

Vτ − LV − max
γ̂∈[0,Gr ]

(
γ̂ − γ̂VW − γ̂VA

)
≥ 0

Note that γ̂ is a finite withdrawal rate. Withdrawals only allowed if
A > 0.
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Impulse Control II

We also have the option of withdrawing a finite amount
instantaneously (withdrawing at an infinite rate) at each point in
(W ,A, τ)

V (W ,A, τ)− sup
γ∈(0,A]

[
V (max(W − γ, 0),A− γ, τ) + (1− κ)γ − c

]
≥ 0 .

where γ is a finite withdrawal amount.

c > 0 is a fixed cost (which can be very small). This is required to
make the Impulse Control problem well-posed.

Note that this equation specifies that any amount in the remaining
guarantee account can be withdrawn instantaneously (i.e.
γ ∈ (0,A]) with a penalty.

18 / 41



Lecture 4

HJB Variational Inequality

Since it must be optimal to either withdraw at a finite rate or
withdraw a finite amount at each point, then this can all be written
compactly as a Hamilton Jacobi Bellman Variational Inequality

min

{
Vτ − LV − max

γ̂∈[0,Gr ]

(
γ̂ − γ̂VW − γ̂VA

)
,

V − sup
γ∈(0,A]

[
V (max(W − γ, 0),A− γ, τ) + (1− κ)γ − c

]}
= 0
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Previous Work

Milevsky, Salisbury, (2006, Insurance: Mathematics and
Economics), pose GMWB pricing problem as a singular
control.

Dai, Kwok, Zong, (Mathematical Finance, 2008), solve
singular control formulation using a penalty method.

Zakamouline (Mathematical Methods Operations Research,
2005) argues that in general one can pose singular control
problems as impulse control with negligible difference
(infinitesimal fixed cost)

Claims that impulse control is more general

Chen, Forsyth (Numerische Mathematik, 2008), solve impulse
control formulation (this lecture)
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Alternative Approach: Discrete Withdrawal Times

Rather than attempt to solve the HJB Impulse Control problem
directly, let’s replace this problem by a discrete withdrawal problem

Assume that the holder can only withdraw at discrete
withdrawal times τ1, ..., τN , with τi+1 − τi = ∆tw

Use dynamic programming idea, work backwards from
t = T (τ = 0), so that V (W ,A, 0) = max(W ,A(1− κ))

During the interval from τ = 0 to τ = τ1 (the first withdrawal
time going backwards) we solve

Vτ − LV = 0 ; LV =
1

2
σ2W 2VWW + (r − α)WVW − rV .
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Optimum Strategy: Discrete Withdrawals

At τ1, we assume that the holder withdraws the optimum amount γ

V (W ,A, τ+
1 ) =

max
γ∈[0,A]

[
V
(
max(W − γ, 0),A− γ, τ1

)
+ f (γ)

]
,

where now the cash flow term is

f (γ) =

{
γ if 0 ≤ γ ≤ G ,
γ − κ(γ − G )− c if γ > G .

G = Gr ∆tw
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Discrete Withdrawals

Then, from τ+
1 to τ2, we solve

Vτ − LV = 0 ; No A dependence in LV

Then, we determine the optimum withdrawal at τ+
2 , and so on,

back down to τ = T (t = 0) today.

This would appear to be a reasonable approximation to reality.

In fact, most real contracts allow only discrete withdrawals.
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Discrete Withdrawal: A Numerical Scheme

Define nodes in the W direction [W0,W1, . . . ,Wimax ], and in the A
direction [A0,A1, . . . ,Ajmax ].

Let V n
i ,j ' V (Wi ,Aj , τ

n). [V n]i ,j = V n
i ,j .

Let (LhV )n
i ,j be a discrete form of the operator LV .

Away from withdrawal times, we solve

V n+1
i ,j − V n

i ,j

∆τ
= (LhV )n+1

i ,j
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A Numerical Scheme II

At withdrawal time τn, we then solve the local optimization
problem at each node

V n+
i ,j = max

γn
i,j∈[0,Aj ]

[
Ii ,j(γn

i ,j)V n + f
(
γn

i ,j

)]
,

where I is an interpolation operator

Ii ,j(γ)V n = V n(max(Wi − γ, 0),Aj − γ)

+ interpolation error

We use a linear interpolant of V n
i ,j to determine the optimum

withdrawal at each node γn
i ,j .
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Numerical Scheme III

• Away from withdrawal times, we
solve a decoupled set of 1-d PDEs.

• At withdrawal times, we solve a
set of decoupled optimization
problems.

W

A

Aj-1

Aj

Aj+1

(Vj-1)τ = L (V j-1)

(Vj)τ = L (V j )

(Vj+1)τ = L (V j+1)

Vast majority of CPU time spent solving the local optimization
problem at each node:

V n+
i ,j = max

γn
i,j∈[0,Aj ]

[
Ii ,j(γn

i ,j)V n + f
(
γn

i ,j

)]
,

• This is embarrassingly parallel, but requires access to global data.
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Obvious Question

If we let ∆τw → 0, does this discrete withdrawal approximation
converge to the solution of the Impulse Control HJB equation?

If we allow discrete withdrawals every timestep, then our numerical
method is

V n+1
i ,j − max

γn
i,j∈[0,Aj ]

[
Ii ,j(γn

i ,j)V n + f
(
γn

i ,j

)]
−∆τ

(
LhV

)n+1

i ,j
= 0 .

where the cash flow term f
(
γn

i ,j

)
is

f (γ) =

{
γ if 0 ≤ γ ≤ G ,
γ − κ(γ − G )− c if γ > G .

G = Gr ∆τ

and I is a linear interpolation operator
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Does it Converge?

We want to show that this scheme converges as ∆τ , ∆A, ∆W
→ 0 to the viscosity solution of

min

{
Vτ − LV − max

γ̂∈[0,Gr ]

(
γ̂ − γ̂VW − γ̂VA

)
,

V − sup
γ∈(0,A]

[
V (max(W − γ, 0),A− γ, τ) + (1− κ)γ − c

]}
= 0

This seems intuitively obvious, but there are some subtle points.
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Monotonicity, Stability and Consistency

Lemma (Monotonicity and Stability)
Provided (LhV n+1) is discretized using a positive coefficient method and
linear interpolation is used when solving the local optimization problem at
each node, then the scheme is unconditionally l∞ stable and monotone.

Proof.
Straightforward

Lemma (Consistency)
Provided the discrete operator (LhV n+1) is consistent in the classical
sense, and linear interpolation is used to solve the local optimization
problem at each node, then the numerical scheme is consistent as defined
in (Barles, Souganidis (1991)).

Proof.
Not so straightforward (lim inf, lim sup form needed for boundary
conditions)
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Convergence

Theorem (Strong Comparison Result)
The GMWB Impulse Control problem satisfies the Strong Comparison
Result, i.e. there is a unique, continuous viscosity solution to the Impulse
Control Problem. (Seydel, 2008)

Theorem (Convergence to the Viscosity Solution)
The discrete withdrawal numerical method, with withdrawal interval
∆tw → 0 converges to the unique viscosity solution of the Impulse
Control problem.

Proof.
This scheme is consistent, stable, and monotone, hence converges to the
viscosity solution (Barles, Souganidis (1991)).
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One scheme for all problems

So, we now have a single scheme which

Can be used to price GMWB contracts with finite withdrawal
intervals (the usual case in real contracts, i.e. withdrawals
only allowed once or twice a year)

We can also price GMWB contracts in the limit as the
withdrawal interval → 0

Convergence to the Impulse Control problem guaranteed

No need for different method for these two cases!

Scheme is simple and intuitive to implement → might be
actually used by practitioners.
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Local Optimization

Recall that at each node, at each timestep, we have to solve

V n+1
i ,j − max

γn
i,j∈[0,Aj ]

[
V n

î ,̂j
+ f
(
γn

i ,j

)]
−∆τ

(
LhV

)n+1

i ,j
= 0 .

where V n
î ,̂j

is a linear interpolation of

V n
(
max(Wi − γn

i ,j , 0),Aj − γn
i ,j

)
.

Obvious method: use one-d optimization method at each node

But, these methods are not guaranteed to get the global max of
the objective function.

We have seen some problems where only a local max was found,
→ convergence to the wrong solution of the PDE.
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Local Optimization

In order to maximize

max
γn

i,j∈[0,Aj ]

[
V n

î ,̂j
+ f
(
γn

i ,j

)]
−∆τ

(
LhV

)n+1

i ,j

We discretize the control values γn
i ,j in [0,Aj ], and find the

maximum value by evaluating the objective function at all the
discrete control values.

Provided the discretization step in [0,Aj ], → 0 as ∆τ → 0, then
this is a consistent (hence convergent) method.
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Examples

Recall that the investor pays no extra up-front fee for the
guarantee (only the initial premium w0).

The insurance company deducts an annual fee α from the balance
in the sub-account W .

Problem: let V (α,W ,A, τ) be the value of the GMWB contract,
for given yearly guarantee fee α.

Assume that the investor pays an initial premium w0 at t = 0
(τ = T ).

Find the no-arbitrage fee α such that V (α,w0,w0,T ) = w0 (we do
this by a Newton iteration).
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Data

Parameter Value

Expiry time T 10.0 years
Interest rate r .05
Maximum withdrawal rate Gr 10/year
Withdrawal penalty κ .10
Volatility σ .30
Initial Lump-sum premium w0 100
Initial guarantee account bal-
ance

100

Initial sub-account value 100
Continuous Withdrawal Yes
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The No-arbitrage Fee (t = 0, A = 100)
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Optimal Withdrawal Strategy

t = 0, fair fee charged for w0 = 100. Indeterminate region: appears to

converge to optimal withdrawal rate γ̂ = 0 ?
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Indeterminate Region?

In the continuous withdrawal region, we have

Vτ = LV + max
γ̂∈[0,Gr ]

[
γ̂(1− VW − VA)

]
(1)

In the indeterminate region, we observe that (mesh, timestep → 0)[
1− VW (Wi ,Aj ,∆τ)− VA(Wi ,Aj ,∆τ)

]
i ,j

→ 0−

If (1− VW − VA)→ 0, then any withdrawal rate in [0,Gr ] is
optimal.

Control may not be unique (but value is unique).
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No-arbitrage Fee

σ = .15→ α = .007 (70 bps)

σ = .20→ α = .014 (140 bps)

σ = .30→ α = .031 (310 bps)

Current volatility of S&P ' .25

Typical fees charged: α = .005 (50 bps) too low for current
market conditions.

Insurance companies seem to be charging fees based on
marketing considerations, not hedging costs.

Fee should be even higher if other (typical) contract options
considered
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Other Issues

Can easily use the same method if we assume underlying process is
a jump diffusion (Chen, Forsyth, SIAM J. Scientific Computing
(2007)).

Effect of discrete withdrawals, volatility, non-optimal withdrawals,
etc. (Chen, Vetzal, Forsyth, Insurance: Mathematics and
Economics (2008)).

A penalty method for singular control formulation of a GMWB
(Dai et al, Mathematical Finance (2008)), (Huang, Forsyth,
Working paper (2009)).

Impulse control for a Guaranteed Minimum Death Benefit
(Belanger, Forsyth, Labahn, Applied Mathematical Finance
(forthcoming)).
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Summary

We have developed a single scheme which can be used to
price GMWB contracts with finite withdrawal intervals, and
the limiting case of infinitesimal withdrawal intervals

In the case of infinitesimal withdrawal intervals, we have
proven convergence to the viscosity solution of the Impulse
Control problem

For an infinitesimal fixed cost, solutions agree with a singular
control formulation

Insurance companies seem to be charging fees which are too
low to cover hedging costs. Another subprime problem?
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Lecture 5

Introduction

Natural gas prices show seasonality effects (higher in winter, lower
in summer).

Natural gas storage facilities are constructed to provide a
cushion of available gas

Gas is released during periods of high demand

Gas is stored in seasons of low demand

Underground caverns are used for long term storage

Objective: determine the no-arbitrage value of leasing a
storage facility for a fixed term

A by-product of this valuation is the optimal operating
strategy (i.e. when to inject, produce or do nothing)

This injection strategy is the control in this case
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An Underground Storage Facility
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Variable Definitions

P = Current Spot Price of Gas

I = Current amount of working gas inventory

I ∈ [0, Imax]

c = Rate of gas production from storage

c ∈ C (I ) = [cmin(I ), cmax(I )]

c > 0→ production

c < 0→ injection

Gas inventory satisfies

dI

dt
= −(c + a(I , c))

a(I , c) = production/injection losses
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More Definitions

Max/min production rates are nonlinear functions of inventory I ,
e.g.

cmax(I ) = k1

√
I ; k1 = const. (ideal gas law)

Revenue obtained from selling gas

Revenue = (c − b(c)) P

b(c) = gas loss during transportation

Revenue > 0→ gas released and sold

Revenue < 0→ gas purchased and stored

Let V (P, I , τ = T − t) be the value of leasing the facility for T
years.
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Risk neutral stochastic process for spot price

dP = α(K (t)− P)dt + σPdZ

K (t) = K0 + βSA sin(4π(t − tSA)),

where

α > 0 is the mean-reverting rate,

K (t) ≥ 0 is the long-term equilibrium price that incorporates
seasonality,

σ is the volatility,

dZ is an increment of the standard Gauss-Wiener process,

K0 ≥ 0 is the equilibrium price without seasonality effect,

βSA is the semiannual seasonality parameter,

tSA is the seasonality centering parameters, representing the
time of semiannual peak of equilibrium price in summer and
winter.
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Is this a good model for gas prices?
Actually, this simple model does not fit gas prices very well.

A better model

Regime switching

Stochastic process switches between a number of regimes

E.g. a low demand regime where the gas price is mean
reverting towards a low price

A high demand regime where the gas price is mean reverting
to a high price, with a high volatility

A simple two regime model can fit gas forward curves
reasonably well with a small number of parameters (Chen and
Forsyth, Quantitative Finance (forthcoming))

However, basic numerical techniques can be illustrated with
simple stochastic model

These methods can be easily generalized to regime switching,
other jump processes, etc.
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Lecture 5

HJB PDE

The value of leasing the facility is the risk neutral discounted cash
flows from buying/selling gas in [0,T ]

V (P, I , τ) = sup
c(s)∈C(I (s))

EQ
[∫ T

t
e−r(s−t)[c(s)− b(c(s))]P(s) ds

+e−r(T−t)V (P(T ), I (T ),T )

]
Following the usual steps we get the HJB PDE for V (P, I , τ)

Vτ = LV + max
c∈C(I )

{
(c − b(c))P − (c + a(c))VI

}
LV ≡ 1

2
(σP)2VPP + α(K (t)− P)VP − rV
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Lecture 5

Value at t = T

We use the following terminal value

V (P, I , τ = 0) = −2P max(I ∗ − I , 0)

The financial meaning behind this value at t = T is as follows

The gas storage is leased to you with an initial inventory of
gas I ∗

You must return the facility to the owner with I ≥ I ∗,
otherwise severe penalties are charged (double prevailing spot
price)

Familiar concept, this is what happens when you return a
rental car.
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Lecture 5

Semi-Lagrangian form

Let

DV

Dτ
=
∂V

∂τ
+
∂V

∂I
(c + a(c))

be the Lagrangian derivative along the trajectory

dI

dτ
= c + a(c) .

We can then write the HJB PDE as

min
c∈C(I )

{
DV

Dτ
− (c − a(c))P − LV

}
= 0.
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Lecture 5

Discretization

Define a set of nodes

[P1,P2, ...,Pimax ] ; [I1, I2, ..., Ijmax ]

and a set of discrete times [τ0, τ1, ..., τN ].

Let V n
i ,j be a discrete approximation to V (Pi , Ij , τ

n), with

[V n]i ,j = V n
i ,j

Recall that

LV ≡ 1

2
(σP)2VPP + α(K (t)− P)VP − rV
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Lecture 5

Discretization: Operator L

Then, we discretize L in the P direction using forward, backward,
central differencing:

(LhV n)i ,j = αn
i V n

i−1,j + βn
i V n

i+1,j − (αn
i + βn

i + r)V n
i ,j ,

As usual, we require that the positive coefficient condition holds

αn
i ≥ 0 ; βn

i ≥ 0 i = 1, . . . , imax ; j = 1, . . . , jmax ; n = 1, . . . ,N.
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Lecture 5

Semi-Lagrangian Discretization
Recall the Lagrangian trajectory equation

dI

dτ
= c + a(c) . (1)

Let cn+1
i ,j be the optimal control at node (Pi , Ij , τ

n+1).

Using a first order method, we integrate (1) backwards from τn+1

to τn, starting from node (Pi , Ij).

I n
j(i ,n+1) = Ij −∆τn(cn+1

i ,j + a(cn+1
i ,j ))

∆τn = τn+1 − τn

The Lagrangian derivative is approximated (to first order) by(
DV

Dτ

)n+1

i ,j

'
V n+1

i ,j − V (Pi , I
n
j(i ,n+1), τ

n)

∆τn
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Lecture 5

Semi-Lagrangian Derivative

τn+1

τn

I

Vi,
n
j-1

Vi,
n
j

Vi,
n+1

j
Vi,

n+1
j-1

dI/dτ = c + a(c)

Departure
Point

Arrival
Point

Vd
n

(
DV

Dτ

)n+1

ij

'
V n+1

i ,j − V n
d

∆τ

V n
d = V (Pi , Id , τ

n)

Id = Ij −∆τn(cn+1
i ,j + a(cn+1

i ,j ))

Id = I n
j(i ,n+1)
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Lecture 5

Interpolation

Denote the approximate value of V (Pi , Ij(i ,n+1), τ
n) by

V (Pi , Ij(i ,n+1), τ
n) ' V n

i ,j(i ,n+1)

Since Ij(i ,n+1) will not in general coincide with a grid point Ij , we
use an interpolation operator Φn+1 to determine V n

i ,j(i ,n+1),

[ΦV n]i ,j = V n
i ,j(i ,n+1) + interpolation error

So that the final form for the Lagrangian derivative is

(
DV

Dτ

)n+1

i ,j

'
V n+1

i ,j − [Φn+1V n]i ,j

∆τn
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Lecture 5

Admissible Controls

Note that

cn+1
i ,j ∈ C (Ij)

However, for any finite size timestep, it may be the case that

I n
j(i ,n+1) = Ij −∆τn(cn+1

i ,j + a(cn+1
i ,j ))

is outside the boundaries [0, Imax]. This could happen near the
boundaries.

Let

Cn+1
i ,j ⊆ C (Ij)

denote the set of values of cn+1
i ,j such that the resulting

In
j(i ,n+1) ∈ [0, Imax]
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Lecture 5

Final Discretization
The final form for the discretization is then

V n+1
i ,j = max

cn+1
i,j ∈Cn+1

i,j

{
[Φn+1V n]i ,j + ∆τn

(
cn+1
i ,j − a

(
cn+1
i ,j

))
Pi

}
+ ∆τn(LhV )n+1

i ,j , (2)

Define:

Γn
i ,j = max

cn+1
i,j ∈Cn+1

i,j

{
[Φn+1V n]i ,j + ∆τn

(
cn+1
i ,j − a

(
cn+1
i ,j

))
Pi

}
(3)

so that (2) becomes

V n+1
i ,j = Γn

i ,j + ∆τn(LhV )n+1
i ,j (4)

This means that the discretization can be broken down into an
interpolation/optimization step (3) and a time advance step (4).
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Lecture 5

Viscosity Solution

Assumption (Strong Comparison)

We make the assumption that the HJB PDE (with the boundary
conditions) satisfies the strong comparison property, i.e. a unique,
continuous viscosity solution exists.

Remark
The main problem is that the PDE is degenerate in the I direction
(i.e. no diffusion in the I direction). However, the characteristics
are outgoing (or zero) on these boundaries, independent of the
control. Hence, no boundary data is required at these nodes.
The gas storage PDE almost meets almost all assumptions
required to prove strong comparison in (Barles, Rouy: Comm.
Partial Differential Equations (1998)), but not quite.
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Lecture 5

Convergence of the Scheme

Lemma (Stability)

Provided that a positive coefficient method is used to discretize
the operator LV , and linear interpolation is used for Φn+1, then
the scheme (2) is unconditionally l∞ stable.

Proof.
Straightforward maximum analysis.

Lemma (Monotonicity)

Provided that a positive coefficient method is used to discretize
the operator LV , and linear interpolation is used for Φn+1, then
the scheme (2) is unconditionally monotone.

Proof.
Positive coefficient → monotonicity.
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Lecture 5

Lemma (Consistency)

The discretization scheme (2) is consistent (in the viscosity sense)
with the HJB PDE and boundary conditions.

Proof.
The main problem is near the boundaries, since the numerical
admissible set cn+1

i ,j ∈ Cn+1
i ,j ⊆ C (Ij). does not agree with the

actual admissible set at that node.
However, the relaxed form of viscosity consistency comes to our
rescue here, and everything works.

Theorem (Convergence)

Provided all the conditions required for the above Lemmas are
satisfied, then scheme (2) converges to the viscosity solution.

Proof.
Consistent, stable, monotone → convergence.
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Lecture 5

Computational Details

From (Thompson, Rasmussen, Davison (2008)), we know that

Exact optimal controls are of the bang-bang type

i.e. the optimal strategy is one of:

Produce at rate cmax(I )
Inject at rate cmin(I )
Do nothing

Solution of local optimization problem at each node

bang-bang method → search only for optimal controls within
the finite set of possible controls in the exact solution

no bang-bang method → solve the discrete optimization
problem

Both methods must converge to the bang-bang control solution
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Lecture 5

Computational Details II
Assume

∆τmax

C1
=

∆Pmax

C2
=

∆Imax

C3
= h

Since the maximum of a piecewise linear interpolant is at the
nodes, no bang-bang examines a fixed number of nodes
independent of h.

Both bang-bang and no bang-bang methods have the same
complexity as h→ 0.

Why bother with no bang-bang? We will see later.

Note that the time advance step

V n+1
i ,j = Γn

i ,j + ∆τn(LhV )n+1
i ,j

results in a set of decoupled 1− d problems.

Hence the complexity of the semi-Lagrangian method is the same
as an explicit method, yet is unconditionally stable.
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Lecture 5

Numerical Example

Case 1: No seasonality

dP = 2.38(6− P)dt + 0.59PdZ .

Parameter Value

r 0.1
T 3 years

Imax 2000 MMcf

24 / 34



Lecture 5

Control Surface: t = 0
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Lecture 5

Case 2: Seasonality

Figure: Control Surface: fixed I = Imax/2
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Lecture 5

Adding Jumps

Assume:

dP = [α(K (t)− P)− λκP]dt + σPdZ + (η − 1)Pdq

where

dq is the independent Poisson process ={
0 with probability 1− λdt,
1 with probability λdt,

λ is the jump intensity

When dq = 1, price jumps from P to Pη.

We assume that η follows a probability density function g(η),
which is log-normal.

κ is E [η − 1], where E [ · ] is the expectation operator.
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Lecture 5

HJB PIDE

Vτ =
1

2
σ2P2VPP + [α(K (t)− P)− λκP]VP

+ max
c∈C(I )

{(c − a(c))P − (c + a(c))VI}

− rV +
(
λ

∫ ∞
0

V (Pη)g(η)dη − λV
)
.

(5)

No control in the integral term

Use Semi-Lagrangian method, and PIDE techniques in
(d’Halluin, Forsyth, Vetzal: IMA J. Numerical Analysis
(2005)).
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Bang-Bang vs. No Bang-Bang

P grid I grid No. of Bang-bang method No-bang-bang method
nodes nodes timesteps Value Ratio Value Ratio

79 61 500 7995143 n.a. 8070698 n.a.
157 121 1000 7962386 n.a. 7999775 n.a.
313 241 2000 7951062 2.89 7971737 2.53
625 481 4000 7951032 377 7961554 2.75

1249 961 8000 7951976 -0.03 7957509 2.52

Table: Value of a natural gas storage facility at P = 6 $/mmBtu and
I = 1000 MMcf, t = 0. Mean-reverting plus jumps. Ratio is the ratio of
successive changes as the mesh is refined.

• No bang-bang → optimize discrete equations → smoother
convergence.
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Regime Switching

State of system characterized by a finite number of regimes

Each regime has its own mean-reverting drift, volatility

Poisson switching process between regimes

Reasonable fit to market data

Control surface now a function of what regime we are in

(Chen, Forsyth: Quantitative Finance (forthcoming))
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Lecture 5

Control Surface: fixed I = Imax/2
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Figure: Control Surface: regime 0
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Figure: Control Surface: regime 1

• Regime 0: low mean reversion level .
• Regime 1: high mean reversion level.
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Lecture 5

Summary: Gas Storage

Semi-Lagrangian method, unconditionally stable, same
work/timestep as an explicit method

Guaranteed to converge to the viscosity solution

Easily generalized to other stochastic processes: jumps,
regime switching

Solve discrete optimization problem → smoother convergence
than using knowledge of exact solution (bang-bang controls)
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Lecture 5

Summary of Lectures

Seemingly reasonable discretizations may not converge to the
viscosity solution

Must ensure that discretization is stable, consistent,
monotone → positive coefficient discretization

Fully implicit timestepping, use central differencing as much
as possible (but still positive coefficient)
↪→ Policy iteration guaranteed to converge
↪→ Better accuracy at small additional cost.

Combined bounded control, impulse control, easily handled

Singular control → penalty method

For problems where control appears in first order terms →
semi-Lagrangian method is effective
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Open Problems

Impulse control, local optimization problem
↪→ 1− d optimization unreliable
↪→ Discretize control, use linear search → expensive
↪→ Better method?

For multi-factor stochastic process, if non-zero correlation,
this generates a cross derivative term in the PDE
↪→ How do we generate a positive coefficient discretization?
↪→ Current methods not completely satisfactory (equally
spaced grids)

Jump processes: control in jump integral term?
↪→ Possible solution: discretize control, use piecewise constant
timestepping → expensive
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