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Motivation

Goal is to characterize loss distribution in large portfolio

Current techniques focus on single point in time

Path dependent measures capture more of characteristics

Consider events: {∃t : L(t) > ζ(t)} or {∀t : L(t) < ξ(t)}
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Model and Notation

Model loss in portfolio consisting of n obligors

Companies identically and independently distributed

Separately model the default time τ and loss given default U

Assume τ and U are independent
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Model and Notation (2)

Loss process given by

Ln(t) =
n∑

i=1

UiZi (t)

Zi (t) = I{τi≤t}

Where Ui ∼ U and τi ∼ τ

Consider the loss process on time grid {1, 2, . . . ,N}.

The distribution of the default times given by

pi := P(τ = i)

Fi :=
i∑

j=1

pi
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Large Deviation Principle

Let (X , d) be a metric space

Let {µn} be a sequence of measures on Borel sets of X .

Study behavior of {µn} as n→∞.

Large Deviation Principle states exponential upper and lower

bounds

Definition (Rate Function)

A Rate Function is a lower semicontinuous mapping
I : X → [0,∞]. This means that for all α ∈ [0,∞) the
set {x | I (x) ≤ α} is a closed subset of X .
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Large Deviation Principle(2)

Definition (Large Deviation Principle)

We say that {µn} satisfies the Large Deviation Principle (LDP)
with rate function I (·) if

(i) (Upper bound) for all closed F ⊆ X

lim sup
n→∞

1

n
logµn(F ) ≤ − inf

x∈F
I (x)

(ii) (Lower bound) for all open G ⊆ X

lim sup
n→∞

1

n
logµn(G ) ≥ − inf

x∈G
I (x)
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Large Deviation Principle(3)

Definition (Large Deviation Principle (continued))

We say that a family of random variables X = {Xn}, with values in
X , satisfies a large deviation principle with rate function IX (·) iff
the laws

{
µX

n

}
satisfy a large deviation principle with rate function

IX (·).

Definition (Fenchel-Legendre Transform)

Let X be a random variable. The Fenchel-Legendre Transform is
given by

Λ?X (x) = sup
θ

(θx − ΛX (θ))

where ΛX is the logarithmic moment generating function of X

ΛX (θ) = log
(
EeθX

)
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Cramér’s Theorem

Theorem (Cramér)

Let {Xi} be i.i.d. sequence of random variables and let µn be the
law of the average Sn =

∑n
i=1 Xi/n. Then {µn} satisfies an LDP

with rate function Λ?X (·).

Example (Loss Process)

For any T > 0, the average loss process Ln(T )/n satisfies a Large
Deviation Principle, where the rate function is given by the
Legendre-Fenchel transform of the variable U Z (T ) = UI{τ≤T}, so

I (x) = Λ?UZ(T )(x)
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Additional Notation

Finite time grid TN = {t1 < t2 < · · · < tN}, or for simplicity

TN = {1, 2, . . . ,N}

Space of all nonnegative and nondecreasing functions on TN :

S =
{

f : TN → R+| 0 ≤ fi ≤ fi+1, for i < N
}

Topology on induced by supremum norm ||f || = maxi |fi |

Space of all probability measures on TN

Φ =

{
ϕ ∈ RN |

N∑
i=1

ϕi = 1, ϕi ≥ 0, i ≤ N

}
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Sample-Path Large Deviation Principle

Theorem

Let ΛU(θ) <∞ for all θ. Then the path of the average loss process
Ln(·)/n, on the points {1, 2, . . . ,N}, satisfies a Large Deviation
Principle with rate function IU,p. Here, for x ∈ S, IU,p is given by

IU,p = inf
ϕ∈Φ

N∑
i=1

ϕi

(
log

(
ϕi

pi

)
+ Λ?U

(
∆xi

ϕi

))
with ∆xi = xi − xi−1 and x0 = 0.

Remarks:

Decompose influence of default times and losses given default

Optimizing ϕ can be interpreted as most like loss distribution,

given path of Ln(·)/n is close to x
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Example 1

Example

Let the loss amount U have finite support on [0, u]. Then
ΛU(θ) <∞ for all θ as

ΛU(θ) = log
(
EeθU

)
≤ θu <∞

So the loss process Ln(·)/n satisfies the sample-path LDP.

In practice loss amounts are finite, thus any realistic model for the
loss distribution satisfies the sample path LDP.
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Example 2

Example

Assume loss amount U is measured in units u > 0, e.g. u, 2u, . . ..
Assume that U has Poisson-like distribution with parameter λ,
such that for i = 1, 2, . . .

P (U = (i + 1)u) = e−λ
λi

i !

Then then ΛU is given by

ΛU(θ) = θu + λ
(

eθu − 1
)

which is finite for all θ, showing that the sample-path LDP is
satisfied for a distribution with infinite support.
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Remarks and Extensions

Sample-path LDP is valid for wide range of distributions

Assumptions not realistic, e.g. independent and identical

distributions

In practice defaults clearly not independent

Different types of obligors can be distinguished

Finite grid might be too restrictive
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Dependent Defaults

Relax assumption that obligors are independent

Use so-called (factor) copula approach

Conditional on a factor Y , the default times and loss amounts

are independent

Apply theorem conditional on realization of Y , yielding

conditional decay rate ry

lim
n→∞

P
(

1

n
Ln(·) ∈ A

∣∣∣∣Y = y

)
= ry

When Y has finite outcomes, say in Y , the unconditional

decay rate r is given as r = max {ry |y ∈ Y}
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Different Types

Relax assumption that obligors are identically distributed

Assume that there are m different classes, default ratings for

example

Each class makes up fraction ai of portfolio

Split loss process Ln into m sub-loss processes, and condition

on realizations, which gives rate function

IU,p,m(x) = inf
ϕ∈Φm

inf
v∈Vx

m∑
j=1

N∑
i=1

aiϕ
j
i

(
log

(
ϕj

i

pj
i

)
+ Λ?U

(
v j
i

aiϕ
j
i

))

Vx =

v ∈ Rm×N
+

∣∣∣ m∑
j=1

v j
i = ∆xi for all i ≤ N


Φm = Φ× . . .× Φ, (m times)
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Extend Finite Grid

Extend current grid {1, 2, . . . ,N} to N

Expected rate function IU,p,∞:

IU,p,∞(x) = inf
ϕ∈Φ∞

∞∑
i=1

ϕi

(
log

(
ϕi

pi

)
+ Λ?U

(
∆xi

ϕi

))

Extend from grid {1, 2, . . . ,N} to interval [0,N]

Expected rate function IU,p,[0,N]:

IU,p,[0,N](x) := inf
ϕ∈M

∫ N

0
ϕ(t)

(
log

(
ϕ(t)

p(t)

)
+ Λ?U

(
x ′(t)

ϕ(t)

))
dt
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Exact Asymptotic Results

The sample-path LDP provides bounds for the exponential

decay rate

It does not provide exact expression for P
(

1
nLn(·) ∈ A

)
For certain events it is possible to obtain exact expression,

resulting in expressions like

P
(

1

n
Ln(·) ∈ A

)
=

C e−IL n

√
n

(
1 + O

(
1

n

))
For certain constants C and IL
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Bahadur-Rao Theorem

The exact asymptotic results depend on Bahadur-Rao theorem

Theorem (Bahadur-Rao)

Let Xi be an i.i.d. real valued sequence of random variables. Then
we have

P

(
1

n

n∑
i=1

Xi ≥ q

)
=

e−nΛ?
X (q)CX ,q√

n

(
1 + O

(
1

n

))
CX ,q =

1

σ
√

2πΛ′′X (σ)

Λ′X (σ) = q
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Crossing a Barrier

Work on the infinite time grid T = N

Consider the event that at some point in time t the loss is

above some threshold ζ(t){
∃t ∈ T

∣∣∣∣1n Ln(t) > ζ(t)

}

Need that ζ(t) > E [U] P (τ ≤ t)

Determine loss path quantiles
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Crossing a Barrier(2)

Theorem

Assume that there exists unique t? ∈ T such that

IUZ (t?) = min
t∈T

IUZ (t),

and assume that

lim inf
t→∞

IUZ (t)

log t
> 0,

where IUZ (t) = supθ
{
θζ(t)− ΛUZ(t)(θ)

}
= Λ?UZ(t) (ζ(t)). Then

P
(
∃t ∈ T s.t.

1

n
Ln(t) > ζ(t)

)
=

e−nIUZ (t?)C ?

√
n

(
1 + O

(
1

n

))
Where σ? is such that Λ′UZ(t?)(σ?) = ζ(t?). The constant C ?

follows from the Bahadur-Rao theorem, with C ? = CUZ(t?),ζ(t?).
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Remarks

Same type of decay rate as in Bahadur-Rao theorem

Clearly it holds that

P
(
∃t ∈ T s.t.

1

n
Ln(t) > ζ(t)

)
≥ sup

t∈T
P
(

1

n
Ln(t) > ζ(t)

)
.

The theorem shows that this bound is tight

The maximizing t? dominates the contributions. So given the

extreme event occurs, it will, with overwhelming probability,

happen at time t?

Relaxing the uniqueness requirements yields similar decay rate,

but we lack a clean expression for the proportionality constant

The second assumption makes sure that we can ignore the

’upper tail’
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Sufficient Conditions

Lemma

The condition

lim inf
t→∞

IUZ (t)

log t
> 0

is satisfied, when

Λ?U(x)/x → ∞
lim inf

t
ζ(t)/ log t > 0

Remarks

Condition only depends on distribution of losses, and not of

default times

First condition holds quite general
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Sufficient Conditions(2)

Second condition follows from

ΛUZ(t)(θ) = log P (τ ≤ t) E
[
eθU
]

+ P (τ > t)

≤ log E
[
eθU
]

IUZ (t) = Λ?UZ(t?)(ζ(t))

≥ Λ?U(ζ(t)) = sup
θ

(
θζ(t)− log E

[
eθU
])

lim inf
t→∞

Λ?U(ζ(t))

log t
= lim inf

t→∞

Λ?U(ζ(t))

ζ(t)

ζ(t)

log t
> 0
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Large Increments of Loss Process

Look at increments of the average loss process
1
n (Ln(t)− Ln(s)), for s < t, exceeding a threshold ξ(s, t)

Need that ξ(s, t) > E [U] (P (τ ≤ t)− P (τ ≤ s))

Assumptions

There is a unique s? < t? ∈ T such that

IUZ (s?, t?) = min
s<t

IUZ (s, t),

Write IUZ (s, t) = supθ
(
θξ(s, t)− ΛU(Z(t)−Z(s))(θ)

)
=

Λ?U(Z(t)−Z(s))(ξ(s, t)). and let

inf
s∈T

lim inf
t→∞

IUZ (s, t)

log t
> 0,
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Large Increments of Loss Process(2)

Theorem

Under these assumptions

P
(
∃s < t :

1

n
(Ln(t)− Ln(s)) > ξ(s, t)

)
=

e−nIUZ (s?,t?)C ?

√
n

(
1 + O

(
1

n

))
,

where σ? is such that Λ′U(Z(t?)−Z(s?))(σ?) = ξ(s?, t?). The
constant C ? follows from the Bahadur-Rao theorem, with
C ? = CU(Z(t?)−Z(s?)), ξ(s?,t?).
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Remarks

Result is very similar to result for crossing a barrier

Conditions look quite restrictive and difficult to check

However, the following is sufficient

lim inf
t→∞

ξ(s, t)

log t
> 0

For the latter assumption
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Conclusions

Established sample-path LDP for the average loss process

Ln(t)/n

Shown how results can be extended

Future research to formally prove the extensions

Established the exact asymptotic behavior of the probability of

ever crossing a barrier

Established the exact asymptotic behavior of probability that

loss increments cross a certain barrier
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