Sample-Path Large Deviations in Credit Risk

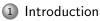
Vincent Leijdekker

Universiteit van Amsterdam ABN Amro

18 January 2010

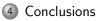
9th Winterschool on Mathematical Finance 18-20 January, Lunteren Introduction

Outline



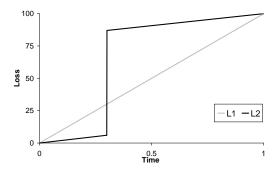
2 Sample Path Large Deviation Principle

Exact Asymptotic Results



Motivation

- Goal is to characterize loss distribution in large portfolio
- Current techniques focus on single point in time
- Path dependent measures capture more of characteristics
- Consider events: $\{\exists t : L(t) > \zeta(t)\}$ or $\{\forall t : L(t) < \xi(t)\}$



Model and Notation

• Model loss in portfolio consisting of *n* obligors

• Companies identically and independently distributed

 ${\, \bullet \,}$ Separately model the default time τ and loss given default U

• Assume τ and U are independent

Introduction

Model and Notation (2)

• Loss process given by

$$L_n(t) = \sum_{i=1}^n U_i Z_i(t)$$

 $Z_i(t) = \mathbb{I}_{\{ au_i \leq t\}}$

Where $U_i \sim U$ and $\tau_i \sim \tau$

- Consider the loss process on time grid $\{1, 2, \dots, N\}$.
- The distribution of the default times given by

$$p_i := \mathbb{P}(\tau = i)$$

 $F_i := \sum_{j=1}^i p_i$

Large Deviation Principle

- Let (\mathcal{X}, d) be a metric space
- Let $\{\mu_n\}$ be a sequence of measures on Borel sets of \mathcal{X} .
- Study behavior of $\{\mu_n\}$ as $n \to \infty$.
- Large Deviation Principle states exponential upper and lower bounds

Definition (Rate Function)

A Rate Function is a lower semicontinuous mapping $I : \mathcal{X} \to [0, \infty]$. This means that for all $\alpha \in [0, \infty)$ the set $\{x \mid I(x) \le \alpha\}$ is a closed subset of \mathcal{X} .

Large Deviation Principle(2)

Definition (Large Deviation Principle)

We say that $\{\mu_n\}$ satisfies the Large Deviation Principle (LDP) with rate function $I(\cdot)$ if

(i) (Upper bound) for all closed $F\subseteq \mathcal{X}$

$$\limsup_{n\to\infty}\frac{1}{n}\log\mu_n(F)\leq -\inf_{x\in F}I(x)$$

(ii) (Lower bound) for all open
$$G \subseteq \mathcal{X}$$

$$\limsup_{n \to \infty} \frac{1}{n} \log \mu_n(G) \ge -\inf_{x \in G} I(x)$$

Large Deviation Principle(3)

Definition (Large Deviation Principle (continued))

We say that a family of random variables $X = \{X_n\}$, with values in \mathcal{X} , satisfies a large deviation principle with rate function $I_X(\cdot)$ iff the laws $\{\mu_n^X\}$ satisfy a large deviation principle with rate function $I_X(\cdot)$.

Definition (Fenchel-Legendre Transform)

Let X be a random variable. The Fenchel-Legendre Transform is given by

$$\Lambda_X^{\star}(x) = \sup_{\theta} \left(\theta x - \Lambda_X(\theta) \right)$$

where Λ_X is the logarithmic moment generating function of X

$$\Lambda_X(heta) = \log\left(\mathbb{E}e^{ heta X}
ight)$$

Cramér's Theorem

Theorem (Cramér)

Let $\{X_i\}$ be i.i.d. sequence of random variables and let μ_n be the law of the average $S_n = \sum_{i=1}^n X_i/n$. Then $\{\mu_n\}$ satisfies an LDP with rate function $\Lambda^*_X(\cdot)$.

Example (Loss Process)

For any T > 0, the average loss process $L_n(T)/n$ satisfies a Large Deviation Principle, where the rate function is given by the Legendre-Fenchel transform of the variable $U Z(T) = U \mathbb{I}_{\{\tau \leq T\}}$, so

 $I(x) = \Lambda^*_{UZ(T)}(x)$

Additional Notation

- Finite time grid $T_N = \{t_1 < t_2 < \cdots < t_N\}$, or for simplicity $T_N = \{1, 2, \dots, N\}$
- Space of all nonnegative and nondecreasing functions on T_N :

$$\mathcal{S} = \left\{ f : T_N \to \mathbb{R}^+ | \ 0 \le f_i \le f_{i+1}, \text{ for } i < N \right\}$$

- Topology on induced by supremum norm $||f|| = \max_i |f_i|$
- Space of all probability measures on T_N

$$\Phi = \left\{ \varphi \in \mathbb{R}^N | \sum_{i=1}^N \varphi_i = 1, \ \varphi_i \ge 0, \ i \le N \right\}$$

Sample-Path Large Deviation Principle

Theorem

Let $\Lambda_U(\theta) < \infty$ for all θ . Then the path of the average loss process $L_n(\cdot)/n$, on the points $\{1, 2, ..., N\}$, satisfies a Large Deviation Principle with rate function $I_{U,p}$. Here, for $x \in S$, $I_{U,p}$ is given by

$$I_{U,p} = \inf_{\varphi \in \Phi} \sum_{i=1}^{N} \varphi_i \left(\log \left(\frac{\varphi_i}{p_i} \right) + \Lambda_U^{\star} \left(\frac{\Delta x_i}{\varphi_i} \right) \right)$$

with $\Delta x_i = x_i - x_{i-1}$ and $x_0 = 0$.

Remarks:

- Decompose influence of default times and losses given default
- Optimizing φ can be interpreted as most like loss distribution, given path of L_n(·)/n is close to x

Example 1

Example

Let the loss amount U have finite support on [0, u]. Then $\Lambda_U(\theta) < \infty$ for all θ as

$$\Lambda_U(heta) = \log\left(\mathbb{E}e^{ heta U}
ight) \leq heta u < \infty$$

So the loss process $L_n(\cdot)/n$ satisfies the sample-path LDP.

In practice loss amounts are finite, thus any realistic model for the loss distribution satisfies the sample path LDP.

Example 2

Example

Assume loss amount U is measured in units u > 0, e.g. $u, 2u, \ldots$. Assume that U has Poisson-like distribution with parameter λ , such that for $i = 1, 2, \ldots$

$$\mathbb{P}\left(U=(i+1)u
ight)=e^{-\lambda}rac{\lambda^{i}}{i!}$$

Then then Λ_U is given by

$$\Lambda_U(\theta) = \theta u + \lambda \left(e^{\theta u} - 1 \right)$$

which is finite for all θ , showing that the sample-path LDP is satisfied for a distribution with infinite support.

Remarks and Extensions

- Sample-path LDP is valid for wide range of distributions
- Assumptions not realistic, e.g. independent and identical distributions
- In practice defaults clearly not independent
- Different types of obligors can be distinguished
- Finite grid might be too restrictive

Dependent Defaults

- Relax assumption that obligors are independent
- Use so-called (factor) copula approach
- Conditional on a factor Y, the default times and loss amounts are independent
- Apply theorem conditional on realization of Y, yielding conditional decay rate ry

$$\lim_{n\to\infty} \mathbb{P}\left(\left.\frac{1}{n}L_n(\cdot)\in A\right|\,Y=y\right)=r_y$$

When Y has finite outcomes, say in 𝒱, the unconditional decay rate r is given as r = max {r_y|y ∈ 𝒱}

Different Types

- Relax assumption that obligors are identically distributed
- Assume that there are *m* different classes, default ratings for example
- Each class makes up fraction a_i of portfolio
- Split loss process L_n into m sub-loss processes, and condition on realizations, which gives rate function

$$\begin{split} \mathcal{U}_{U,p,m}(x) &= \inf_{\varphi \in \Phi^m} \inf_{v \in V_x} \sum_{j=1}^m \sum_{i=1}^N a_i \varphi_i^j \left(\log \left(\frac{\varphi_i^j}{p_i^j} \right) + \Lambda_U^* \left(\frac{v_i^j}{a_i \varphi_i^j} \right) \right) \\ V_x &= \left\{ \left. v \in \mathbb{R}_+^{m \times N} \right| \left. \sum_{j=1}^m v_i^j = \Delta x_i \text{ for all } i \le N \right\} \\ \Phi^m &= \Phi \times \ldots \times \Phi, \text{ (m times)} \end{split}$$

Extend Finite Grid

- Extend current grid $\{1,2,\ldots,\textit{N}\}$ to $\mathbb N$
- Expected rate function $I_{U,p,\infty}$:

$$I_{U,p,\infty}(x) = \inf_{\varphi \in \varPhi_{\infty}} \sum_{i=1}^{\infty} \varphi_i \left(\log \left(\frac{\varphi_i}{p_i} \right) + \Lambda_U^{\star} \left(\frac{\Delta x_i}{\varphi_i} \right) \right)$$

- Extend from grid $\{1, 2, \dots, N\}$ to interval [0, N]
- Expected rate function $I_{U,p,[0,N]}$:

$$I_{U,p,[0,N]}(x) := \inf_{\varphi \in \mathcal{M}} \int_0^N \varphi(t) \left(\log \left(\frac{\varphi(t)}{p(t)} \right) + \Lambda_U^* \left(\frac{x'(t)}{\varphi(t)} \right) \right) \mathrm{d}t$$

Exact Asymptotic Results

- The sample-path LDP provides bounds for the exponential decay rate
- It does not provide exact expression for $\mathbb{P}\left(\frac{1}{n}L_{n}(\cdot)\in A\right)$
- For certain events it is possible to obtain exact expression, resulting in expressions like

$$\mathbb{P}\left(\frac{1}{n}L_n(\cdot)\in A\right)=\frac{C\ e^{-l_L\ n}}{\sqrt{n}}\left(1+O\left(\frac{1}{n}\right)\right)$$

For certain constants C and I_L

Bahadur-Rao Theorem

• The exact asymptotic results depend on Bahadur-Rao theorem

Theorem (Bahadur-Rao)

Let X_i be an i.i.d. real valued sequence of random variables. Then we have

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i} \geq q\right) = \frac{e^{-n\Lambda_{X}^{\star}(q)}C_{X,q}}{\sqrt{n}}\left(1+O\left(\frac{1}{n}\right)\right)$$

$$C_{X,q} = \frac{1}{\sigma\sqrt{2\pi\Lambda_{X}^{\prime\prime}(\sigma)}}$$

$$\Lambda_{X}^{\prime}(\sigma) = q$$

Crossing a Barrier

- Work on the infinite time grid $T = \mathbb{N}$
- Consider the event that at some point in time t the loss is above some threshold ζ(t)

$$\left\{ \exists t \in T \left| \frac{1}{n} L_n(t) > \zeta(t) \right. \right\}$$

- Need that $\zeta(t) > \mathbb{E}\left[U\right] \mathbb{P}\left(\tau \leq t\right)$
- Determine loss path quantiles

Introduction

Crossing a Barrier(2)

Theorem

Assume that there exists unique $t^{\star} \in T$ such that

$$I_{UZ}(t^{\star}) = \min_{t \in T} I_{UZ}(t),$$

and assume that

$$\liminf_{t\to\infty}\frac{I_{UZ}(t)}{\log t}>0,$$

where $I_{UZ}(t) = \sup_{\theta} \left\{ \theta \zeta(t) - \Lambda_{UZ(t)}(\theta) \right\} = \Lambda^{\star}_{UZ(t)}(\zeta(t))$. Then

$$\mathbb{P}\left(\exists t \in T \text{ s.t. } \frac{1}{n}L_n(t) > \zeta(t)\right) = \frac{e^{-nI_{UZ}(t^*)}C^*}{\sqrt{n}}\left(1 + O\left(\frac{1}{n}\right)\right)$$

Where σ^* is such that $\Lambda'_{UZ(t^*)}(\sigma^*) = \zeta(t^*)$. The constant C^* follows from the Bahadur-Rao theorem, with $C^* = C_{UZ(t^*),\zeta(t^*)}$.

Remarks

- Same type of decay rate as in Bahadur-Rao theorem
- Clearly it holds that

$$\mathbb{P}\left(\exists t\in T \ s.t. \ \frac{1}{n}L_n(t) > \zeta(t)\right) \geq \sup_{t\in T} \mathbb{P}\left(\frac{1}{n}L_n(t) > \zeta(t)\right).$$

- The theorem shows that this bound is tight
- The maximizing t* dominates the contributions. So given the extreme event occurs, it will, with overwhelming probability, happen at time t*
- Relaxing the uniqueness requirements yields similar decay rate, but we lack a clean expression for the proportionality constant
- The second assumption makes sure that we can ignore the 'upper tail'

Sufficient Conditions

Lemma The condition $\liminf_{t \to \infty} \frac{I_{UZ}(t)}{\log t} > 0$ is satisfied, when $\Lambda_U^*(x)/x \to \infty$ $\liminf_t \zeta(t)/\log t > 0$

Remarks

- Condition only depends on distribution of losses, and not of default times
- First condition holds quite general

Sufficient Conditions(2)

Second condition follows from

$$\begin{array}{lll} \Lambda_{UZ(t)}(\theta) &=& \log \mathbb{P}\left(\tau \leq t\right) \mathbb{E}\left[e^{\theta U}\right] + \mathbb{P}\left(\tau > t\right) \\ &\leq& \log \mathbb{E}\left[e^{\theta U}\right] \\ I_{UZ}(t) &=& \Lambda^{\star}_{UZ(t^{\star})}(\zeta(t)) \\ &\geq& \Lambda^{\star}_{U}(\zeta(t)) = \sup_{\theta} \left(\theta \zeta(t) - \log \mathbb{E}\left[e^{\theta U}\right]\right) \\ \liminf_{t \to \infty} \frac{\Lambda^{\star}_{U}(\zeta(t))}{\log t} &=& \liminf_{t \to \infty} \frac{\Lambda^{\star}_{U}(\zeta(t))}{\zeta(t)} \frac{\zeta(t)}{\log t} > 0 \end{array}$$

Large Increments of Loss Process

Look at increments of the average loss process

$$rac{1}{n}\left(L_n(t) - L_n(s)
ight)$$
, for $s < t$, exceeding a threshold $\xi(s,t)$

• Need that $\xi(s,t) > \mathbb{E}\left[U\right] \left(\mathbb{P}\left(\tau \leq t\right) - \mathbb{P}\left(\tau \leq s\right)\right)$

Assumptions

• There is a unique $s^{\star} < t^{\star} \in \mathcal{T}$ such that

$$I_{UZ}(s^{\star},t^{\star}) = \min_{s < t} I_{UZ}(s,t),$$

• Write $I_{UZ}(s,t) = \sup_{\theta} \left(\theta \xi(s,t) - \Lambda_{U(Z(t)-Z(s))}(\theta) \right) = \Lambda^*_{U(Z(t)-Z(s))}(\xi(s,t))$. and let

$$\inf_{s\in T} \liminf_{t\to\infty} \frac{I_{UZ}(s,t)}{\log t} > 0,$$

Large Increments of Loss Process(2)

Theorem

Under these assumptions

$$\mathbb{P}\left(\exists s < t: \ rac{1}{n}(L_n(t) - L_n(s)) > \xi(s,t)
ight) \ = rac{e^{-nl_{UZ}(s^\star,t^\star)}C^\star}{\sqrt{n}}\left(1 + O\left(rac{1}{n}
ight)
ight),$$

where σ^* is such that $\Lambda'_{U(Z(t^*)-Z(s^*))}(\sigma^*) = \xi(s^*, t^*)$. The constant C^* follows from the Bahadur-Rao theorem, with $C^* = C_{U(Z(t^*)-Z(s^*))}, \xi(s^*, t^*)$.

Remarks

- Result is very similar to result for crossing a barrier
- Conditions look quite restrictive and difficult to check
- However, the following is sufficient

$$\liminf_{t\to\infty}\frac{\xi(s,t)}{\log t}>0$$

For the latter assumption

Conclusions

- Established sample-path LDP for the average loss process $L_n(t)/n$
- Shown how results can be extended
- Future research to formally prove the extensions
- Established the exact asymptotic behavior of the probability of ever crossing a barrier
- Established the exact asymptotic behavior of probability that loss increments cross a certain barrier