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Market impact: adverse feedback effect on the quoted price of a
stock caused by one’s own trading

Basic observation: liquidity costs of a large trade can be reduced
signficantly by splitting the trade into a sequence of smaller trades,
which are then spread out over a certain time interval.
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Questions:

• Why is it better to spread out orders?

• What is an appropriate model for market impact?

• When is a model ‘viable’? Can there be undesirable properties?

• What are the optimal trade execution strategies?

• Are strategies and models robust w.r.t. model parameters?
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Interesting because:

• Liquidity/market impact risk in its purest form

– development of realistic market impact models

– checking viability of these models

– building block for more complex problems

• Relevant in applications

– real-world tests of new models

• Interesting mathematics
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Overview:

I. Models based on order book dynamics

II. The qualitative effects of risk aversion

III. Multi-agent equilibrium
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Overview:

I. Models based on order book dynamics

Microscopic: Emphasis on single trades

II. The qualitative effects of risk aversion

Mesoscopic: Emphasis on trajectory of trades

III. Multi-agent equilibrium
Macroscopic: Emphasis on interaction

with competitors
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Overview:

I. Models based on order book dynamics

Classical maths

II. The qualitative effects of risk aversion

Calculus of variations, stochastic control, and PDEs

III. Multi-agent equilibrium
Computer-aided proofs based on
explicit computations
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I. Order book models

1. Linear impact, general resilience

2. Nonlinear impact,
exponential resilience

3. Gatheral’s model
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I. Order book models

1. Linear impact, general resilience
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Unaffected price process: martingale S0

Admissible trategy: predictable process X = (Xt) that describes
the number of shares held by the trader
• t → Xt is rightcontinuous with finite total variation
• the signed measure dXt has compact support
• w.l.o.g. Xt = 0 for large enough t.

For instance, when Xt = x for t ≤ t0 and Xt = 0 for t > t0, then X

describes a single trade of |x| shares, executed at time t0, which is a
sell trade for x > 0 and a buy trade for x < 0.

Note: These strategies are of bounded variation.
So there will be no liquidation costs in models such as
the Bank-Baum model, the Cetin-Jarrow-Protter model etc.
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Impacted price process:

St = S0
t +

∫

{s<t}
G(t− s) dXs,

where
G : (0,∞) → [0,∞)

is the decay kernel. It describes the resilience of price impact between
trades; see Bouchaud et al. (2004), Obizhaeva and Wang (2005),
Alfonsi et al. (2008, 2007), Gatheral (2008).

We first assume

G is bounded and G(0) := lim
t↓0

G(t) exists.(1)
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Costs of a strategy X:

When X is continuous at t, then the infinitesimal order dXt is
executed at price St, so St dXt is the cost increment.
Thus, the total costs of a continuous strategy are

∫
St dXt =

∫
S0

t dXt +
∫ ∫

{s<t}
G(t− s) dXs dXt.

When X has a jump ∆Xt, then the price is moved from St to

St+ = St + ∆XtG(0)

This linear price impact corresponds to a constant supply curve for
which G(0)−1 dy buy or sell orders are available at each price y. The
trade ∆Xt is thus carried out at the following cost,

∫ St+

St

yG(0)−1 dy =
1

2G(0)
(
S2

t+ − S2
t

)
=

G(0)
2

(∆Xt)2 + ∆XtSt.
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Hence, the total costs of an arbitrary admissible strategy X are given
by

∫
St dXt +

G(0)
2

∑
(∆Xt)2

=
∫

S0
t dXt +

∫ ∫

{s<t}
G(t− s) dXs dXt +

G(0)
2

∑
(∆Xt)2

=
∫

S0
t dXt +

1
2

∫ ∫
G(|t− s|) dXs dXt.

It therefore follows from the martingale property of S0 that the
expected costs of an admissible strategy are

E
[ ∫

S0
t dXt

]
+

1
2

E[ C(X) ],

where
C(X) :=

∫ ∫
G(|t− s|) dXs dXt.
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Next if, e.g., S0 is continuous and T is such that XT = 0, then
∫

S0
t dXt = X0S

0
0 −XT S0

T −
∫ T

0
Xt− dS0

t .

Hence,

E
[ ∫

S0
t dXt

]
= X0S

0
0 ,

and the expected costs are

X0S
0
0 +

1
2

E[ C(X) ].

20



A. Schied: Market impact models and optimal trade execution 9th Winter School on mathematical finance, Lunteren 2010

Remark: Instead of this simple market impact model, one can
consider more complicated models for (block-shaped) electronic limit
order books. In these models one can then show that

Expected costs ≥ S0
0X0 +

1
2

E[ C(X) ]

with equality for monotone strategies X.
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Limit order book model without large trader

unaffected best ask priceunaffected best bid price,
is martingale

buyers’ bid offers sellers’ ask offers



Limit order book model after large trades

actual best ask priceactual best bid price



Limit order book model at large trade
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sell order executed at average price
∫ Bt

Bt+

xq dx

similarly for buy orders

ψ : [0,∞[→ [0, 1], ψ(0) = 1, decreasing
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Limit order book model immediately after large trade



Resilience of the limit order book
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Remark: Instead of this simple market impact model, one can
consider more complicated models for (block-shaped) electronic limit
order books. In these models one can then show that

Expected costs ≥ S0
0X0 +

1
2

E[ C(X) ]

with equality for monotone strategies X.
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Two questions:

• Can there be model irregularities?

• Existence, uniqueness, and structure of strategies minimizing
the expected costs?

Definition 1 (Huberman and Stanzl (2004)). A round trip is
an admissible strategy with X0 = 0. A price manipulation strategy is
a round trip with strictly negative expected costs.

Clearly, there is no price manipulation when

C(X) ≥ 0 for all strategies X.
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Proposition 1 (Straightforward extension of Bochner’s thm).
C(X) ≥ 0 for all strategies X ⇐⇒ G(| · |) can be represented as the
Fourier transform of a positive finite Borel measure µ on R, i.e.,

G(|x|) =
∫

eixz µ(dz);

(G is positive definite). If, in addition, the support of µ is not
discrete, then C(X) > 0 for every nonzero admissible strategy X

(G is strictly positive definite).

Remark 1. Suppose that X is a step function with jumps at times
t0, . . . , tN , i.e.,

Xt = X0 −
∑

ti<t

ξi.

Then
C(X) =

∑
ξiξjG(|ti − tj |)
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Proof of Proposition 1: Suppose first that C(X) ≥ 0 for all
strategies X. When considering strategies with discrete support we
are in the context of Bochner’s theorem, and so G(| · |) must be the
Fourier transform of a positive finite Borel measure µ on R.

Conversely, suppose that G(|x|) =
∫

R eixz µ(dz). When X is an
admissible strategy, then

C(X) =
∫ ∫ ∫

eiz(t−s) µ(dz) dXs dXt

=
∫ ∫

eizt dXt

∫
eizs dXs µ(dz) =

∫
|X̂(z)|2 µ(dz) ≥ 0,

where X̂(z) =
∫

eitz dXt is the Fourier transform of X. It is
well-defined due to our assumption that X has compact support.
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Let us finally show that C is even positive definite when the support
of µ is not discrete. Since X has compact support, the function X̂(z)
has a continuation to an entire analytic function on the complex
plane. Indeed, one easily uses Lebesgue’s theorem to see that

X̂(z) =
∫

eitz dXt

is finite and differentiable as a function of z ∈ C.

Hence, for X )= 0, the zero set of X̂ must be a discrete set. Thus, for
the integral

C(X) =
∫

|X̂(z)|2 µ(dz)

to vanish, the measure µ needs to have discrete support.
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Optimal trade execution problem: Minimizing expected
costs,

S0
0y +

1
2

E[ C(X) ]

for strategies that liquidate a given long or short position of y shares
within a given time frame.

Time constraint: compact set T ⊂ [0,∞).

Boils down to minimizing C(·) over

X (y, T) :=
{
X

∣∣deterministic strategy with X0 = y and support in T
}
.
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Suppose first that T is discrete, i.e., T = {t0, . . . , tN}. Then the
problem is equivalent to

minimize
N∑

i,j=0

xixjG(|ti − tj |) over x ∈ R with x#1 = y

where
1 = (1, . . . , 1)#

Minimizers always exist when G is positive definite. When G is
strictly positive definite, the optimal x∗ is proportional to the
solution of

Mx = 1, i.e., to M−11

where
Mij = G(|ti − tj |)

Existence of minimizers not clear when T is not discrete.
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Proposition 2. When G is strictly positive definite there exists at
most one optimal strategy for given y and T.

Proof: Let

C(X,Y ) =
1
2

(
C(X + Y )− C(X)− C(Y )

)
=

∫ ∫
G(|t− s|) dXs dYt

First, X )= Y implies that

0 < C(X − Y ) = C(X) + C(Y )− 2C(X,Y ).

Therefore,

C
(1

2
X +

1
2
Y

)
=

1
4
C(X) +

1
4
C(Y ) +

1
2
C(X,Y ) <

1
2
C(X) +

1
2
C(Y ),

which implies the uniqueness of optimal execution strategies when
they exist.
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Proposition 3. Suppose that G is positive definite. Then
X∗ ∈ X (y, T) is optimal if and only if there is a constant λ such that
X∗ solves the generalized Fredholm integral equation

(2)
∫

G(|t− s|) dX∗
s = λ for all t ∈ T.

In this case, C(X∗) = λy. In particular, λ must be nonzero as soon
as G is strictly positive definite and y )= 0.

Proof: To prove that (2) is necessary for optimality, fix t0, t ∈ T,
and let Y be the round trip defined by dYu = δt0(ds)− δt(ds). Then,
for all α ∈ R,

C(X∗ + αY ) = C(X∗) + α2C(Y ) + 2αC(X∗, Y ).

By optimality, the righthand side must be ≥ C(X∗) for all α ∈ R.
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Taking the derivative with respect to α at α = 0 it follows that

0 = C(X∗, Y ) =
∫

G(|t0 − s|) dX∗
s −

∫
G(|t− s|) dX∗

s .

By varying t we see that (2) is necessary for optimality.

Conversely, suppose that X∗ ∈ X (y, T) is a strategy satisfying (2).
Let X̃ be any other strategy in X (y, T) and define Z := X̃ −X∗.
Then, for T := max T,

C(X∗, Z) =
∫ ∫

G(|t− s|) dX∗
s dZt =

λ

2
(ZT − Z0) = 0

and hence

C(X̃) = C(X∗+Z) = C(X∗)+C(Z)+2C(X∗, Z) = C(X∗)+C(Z) ≥ C(X∗).

Hence, X∗ is optimal.
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Examples

Example 1 (Exponential decay). For the exponential decay
kernel

G(t) = e−ρt,

G(| · |) is the Fourier transform of the positive measure

µ(dt) =
1
π

ρ

ρ2 + t2
dt

Hence, G is strictly positive definite.
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Optimal strategies for G(t) = e−ρt and discrete T:

!! " # $!
"

"%#

$

$%#

&'($"

!! " # $!
"

"%#

$

$%#

&'($#

!! " # $!
"

"%#

$

$%#

&'(!"

!! " # $!
"

"%#

$

$%#

&'(!#

32



A. Schied: Market impact models and optimal trade execution 9th Winter School on mathematical finance, Lunteren 2010

The optimal strategy can in fact be computed explicitly for any
discrete time grid T = {t0, t1, . . . , tN}

Let an := e−ρ(tn−tn−1) for n = 1, . . . , N . Then we can write

M =





1 a1 a1a2 · · · · · · a1a2 · · · aN

a1 1 a2 a2a3 · · · a2a3 · · · aN

a1a2 a2 1 a3 · · ·
...

...
. . . . . . . . .

...

a2 · · · aN aN−1 1 aN

a1a2 · · · aN · · · · · · aN−1aN aN 1





.
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The inverse of M can be computed as the tridiagonal matrix

M−1 =





1
1−a2

1

−a1
1−a2

1
0 · · · 0

−a1
1−a2

1

(
1

1−a2
1

+ a2
2

1−a2
2

)
−a2
1−a2

2
0 · · · 0

0
. . . . . . . . .

...
...

. . . −aN−1
1−a2

N−1

(
1

1−a2
N−1

+ a2
N

1−a2
N

)
−aN

1−a2
N

0 · · · 0 −aN

1−a2
N

1
1−a2

N
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From this formula, we get

M−11 =





1
1+a1

1
1+a1

− a2
1+a2

...
1

1+aN−1
− aN

1+aN

1
1+aN





And hence
x∗ = λ0M

−11

for
λ0 =

y

1#M−11
=

y
2

1+a1
+

∑N
n=2

1−an
1+an

.
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The initial market order of the optimal strategy is hence

x∗0 =
λ0

1 + a1
,

the intermediate market orders are given by

x∗n = λ0

( 1
1 + an

− an+1

1 + an+1

)
, n = 1, . . . , N − 1,

and the final market order is

x∗N =
λ0

1 + aN
.
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The initial market order of the optimal strategy is hence

x∗0 =
λ0

1 + a1
,

the intermediate market orders are given by

x∗n = λ0

( 1
1 + an

− an+1

1 + an+1

)
, n = 1, . . . , N − 1,

and the final market order is

x∗N =
λ0

1 + aN
.

It is clear that x∗0 and x∗N are strictly positive. For i = 1, . . . , N − 1
we have

x∗i = λ0 ·
(1− aiai+1)

(1 + ai)(1 + ai+1)
> 0.
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For the equidistant time grid tn = nT/N the solution simplifies:

x∗0 = x∗N =
y

(N − 1)(1− a) + 2

and
x∗1 = · · · = x∗N−1 = ξ∗0(1− a).
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For T = [0, T ]:

dX∗
s =

x

ρT + 2

(
δ0(ds) + ρ ds + δT (ds)

)
.

Exercise: This strategy solves the generalized Fredholm integral
equation.
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Example 2 (Capped linear decay). G(t) = (1− ρt)+

!! " ! # $ % & '
!!

"

!

#

$

%

&

()*+,-./+*(01

()
*
+
,-
.
/1
,2
0
1

()*+,-./1()*(0.3

ρ ≤ 1/T and arbitrary T

!! " ! # $ % &" &!
"

&

!

'

#

(

$

)

%

*

&"

+,-&"".-/,&"

ρ = N/T , T = [0, T ] or equisitant

Exercise: For T = [0, T ], these strategies satisfy the corresponding
Fredholm integral equations.
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Otherwise, for equistant grid T,

!! " ! # $ % &" &!
"

!

#

$

%

&"

&!

'()&""*)+($

!! " ! # $ % &" &!
"

!

#

$

%

&"

&!

'()&""*)+(&,

!! " ! # $ % &" &!
"

!

#

$

%

&"

&!

'()#,*)+($

!! " ! # $ % &" &!
"

!

#

$

%

&"

&!

'()#,*)+(&"

40



A. Schied: Market impact models and optimal trade execution 9th Winter School on mathematical finance, Lunteren 2010

More generally: Convex decay

Theorem [Carathéodory (1907), Toeplitz (1911), Young (1912)]
G is convex, decreasing, nonnegative, and nonconstant =⇒
G(| · |) is strictly positive definite.
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More generally: Convex decay

Theorem [Carathéodory (1907), Toeplitz (1911), Young (1912)]
G is convex, decreasing, nonnegative, and nonconstant =⇒
G(| · |) is strictly positive definite.

Proof: W.l.o.g.: G is continuous (exercise).
G′ = right-hand derivative.
G′′(dx) = second derivative (= Borel measure on [0,∞]).

For ε > 0 let Gε(x) := e−εxG(x) (is again convex and decreasing).
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The inverse Fourier transform of Gε(| · |) is proportional to
∫ ∞

−∞
Gε(|x|)e−ixz dx = 2

∫ ∞

0
Gε(x) cosxz dx

= −2
∫ ∞

0
G′

ε(x)
∫ x

0
cos zt dt dx

= 2
∫ ∞

0

∫ x

0

∫ t

0
cos sz ds dtG′′

ε (dx)

= 2
∫ ∞

0

1− cosxz

z2
G′′

ε (dx)

As a function of z, the right-hand side is the density of a positive
finite Borel measure µε. It follows that Gε, and hence G, are positive
definite functions.
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Since Gε → G pointwise, Lévy’s theorem entails that µε converges
weakly to the measure µ, the inverse Fourier transform of G modulo
a proportionality factor. By the portmanteau theorem:

µ([a, b]) ≥ lim sup
ε↓0

µε([a, b]) ≥ 2
∫ ∞

0

∫ b

a

1− cosxz

z2
dz G′′(dx) > 0

for all 0 < a < b. Hence, µ has full support, and so G is strictly
positive definite.
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Example 3 (Power law decay). G(t) = (1 + t)−α and
equidistant grid T,
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So everything looks nice for

G(t) =
1

(1 + t)2

Let’s look at:

Example 4 (Modified power-law decay). The decay kernel

G(t) =
1

1 + t2

is the Fourier transform of the function 1
2e−|x|. So it is strictly

positive definite.
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Modified power-law decay G(t) = 1/(1 + t2), N = 10
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Modified power-law decay G(t) = 1/(1 + t2), N = 25
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Modified power-law decay G(t) = 1/(1 + t2), N = 30
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Modified power-law decay G(t) = 1/(1 + t2), N = 120
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Example 4: Gaussian decay

The Gaussian decay function

G(t) = e−t2

is its own Fourier transform (modulo constants) and hence strictly
positive definite.
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Gaussian decay G(t) = e−t2 , N = 10
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Gaussian decay G(t) = e−t2 , N = 15
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Gaussian decay G(t) = e−t2 , N = 20
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Gaussian decay G(t) = e−t2 , N = 25
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Gaussian decay G(t) = e−t2 , N = 25
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⇒ absence of price manipulation strategies is not enough
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Definition [Hubermann & Stanzl (2004)]
A market impact model admits

price manipulation

if there is a round trip with negative expected liquidation costs.

Definition: [Alfonsi, A.S., & Slynko (2009)]
A market impact model admits

transaction-triggered price manipulation

if the expected liquidation costs of a sell (buy) program can be
decreased by intermediate buy (sell) trades.
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Situation for non-discrete T:
Theorem 1. Suppose that G(| · |) is the Fourier transform of a finite
Borel measure µ for which

(3)
∫

eεx µ(dx) <∞ for some ε > 0.

Suppose furthermore that the support of µ is not discrete. Then there
are no optimal strategies in X (y, T) when x )= 0 and T is not discrete.

Examples:

G(t) = e−t2 or G(t) :=
1

1 + t2

or G(t) = 2
1− cos t

t2
or G(t) = 1 +

sin t

t
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Sketch of proof: Suppose that X∗ would be an optimal strategy.
Due to the exponential moment condition,

h(t) :=
∫

G(|t−s|) dX∗
s =

∫ ∫
ei(s−t)y µ(dy) dX∗

s =
∫

e−ityX̂∗(y)µ(dy)

admits an holomorphic continuation to the strip

S :=
{
z ∈ C

∣∣ − ε < +(z) < ε
}

which is given by

h(z) =
∫

e−izyX̂∗(y)µ(dy), z ∈ S.

Next, h(−t) is the Fourier transform of the complex-valued measure
ν(dy) = X̂∗(y)µ(dy), which is nontrivial. Hence, h is not constant,
and so the zero set of h(t)− λ must be discrete for any λ ∈ R.
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Theorem 2. If G is nonconstant, nonincreasing, and convex, then
there exists a unique optimal strategy X∗ within each class X (y, T).
Moreover, X∗

t is a monotone function of t.
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Theorem 2. If G is nonconstant, nonincreasing, and convex, then
there exists a unique optimal strategy X∗ within each class X (y, T).
Moreover, X∗

t is a monotone function of t.

Proposition 4. Suppose that there are s, t > 0, s )= t, such that

(4) G(0)−G(s) < G(t)−G(t + s).

Then there is transaction-triggered price manipulation for the choice
T := {0, s, t + s}.

Condition (4) is satisfied, e.g., when G(t) is strictly concave in a
neighborhood of zero
and also implied by condition (3),
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For discrete T = {t0, . . . , tN}:

Question: When does the minimizer x∗ of
∑

i,j

xixjG(|ti − tj |) with
∑

i

xi = y

have only nonnegative components?

60



A. Schied: Market impact models and optimal trade execution 9th Winter School on mathematical finance, Lunteren 2010

For discrete T = {t0, . . . , tN}:

Question: When does the minimizer x∗ of
∑

i,j

xixjG(|ti − tj |) with
∑

i

xi = y

have only nonnegative components?

Related to the positive portfolio problem in finance:
When are there no short sales in a Markowitz portfolio?

I.e. when is the solution of the following problem nonnegative

x#Mx−m#x→ min for x#1 = y,

where M is a covariance matrix of assets and m is the returns vector?

Partial results, e.g., by Green (1986), Nielsen (1987)
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Theorem 3. [Alfonsi, A.S., Slynko (2009)]

• If G is convex then all components of x∗ are nonnegative.

• If G is strictly convex, then all components are strictly positive.
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Theorem 3. [Alfonsi, A.S., Slynko (2009)]

• If G is convex then all components of x∗ are nonnegative.

• If G is strictly convex, then all components are strictly positive.

Proof of first two assertions needs the following duality result:

Lemma 1. Let M be an symmetric invertible matrix. Then

M−11 ≥ 0 or M−11 ≤ 0

if and only if there is no vector z such that

z#1 = 0 and Mz > 0
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Proof of Lemma 1. First suppose that M−11 ≥ 0 or M−11 ≤ 0.
Assume by way of contradiction that there exists z with z#1 = 0
and Mz > 0. Since M−11 )= 0 we must have that 0 < (M−11)#Mz

or 0 < (M−11)#Mz. On the other hand

(M−11)#Mz = 1#M−1Mz = 1#z = 0,

which is a contradiction.

Conversely, suppose that neither M−11 ≥ 0 nor M−11 ≤ 0. Then the
vector x := M−11 has two components xi < 0 and xj > 0. Hence
there exists ε > 0 and a vector y with yi > 0, yj > 0, and yk = ε for
all other components such that y#x = 0. It follows that z := M−1y

satisfies Mz = y > 0, z )= 0, and z#1 = y#M−11 = y#x = 0.
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Proof of Theorem 3. Use induction on N to exclude the existence
of z = (z0, . . . , zN )# such that z#1 = 0 and Mz > 0 with
Mij = G(|ti − tj |). For N = 0 the result is evident.

Suppose now that the assertion has already been proved for N − 1.
Since z must satisfy z#1N = 0 as well as z )= 0, there must be some
k ∈ {0, 1, . . . , N − 1} such that zk > 0.

If k = N , then the fact that G is decreasing yields

G(|tN − tm|)zN ≤ G(|tN−1 − tm|)zN for m = 0, 1, . . . , N − 1.

Hence, the N -dimensional vector

z̃ := (z0, z1, . . . , zN−2, zN−1 + zN )#

satisfies both z̃#1 = 0 and M̃ z̃ > 0, with M̃ corresponding to the
time grid {t0, t1, . . . , tN−1}. But by induction hypothesis this is
impossible.
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Next, if k = 0, then

G(tm)z0 ≤ G(|tm − t1|)z0 for m = 1, 2, . . . , N.

Hence,
ẑ := (z0 + z1, z2, . . . , zN )

satisfies both ẑ#1 = 0 and M̂ ẑ > 0, with M̂ corresponding to the
time grid {t1 − t1, t2 − t1, . . . , tN − t1}, which is again impossible due
to the induction hypothesis.
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Finally, let us suppose that 1 ≤ k ≤ N − 1. Let α ∈ [0, 1] be such
that tk = αtk−1 + (1− α)tk+1. We then have

G(|tk − tl|)zk ≤ αG(|tk−1 − tl|)zk + (1− α)G(|tk+1 − tl|)zk for l )= k.

Hence, the vector

z̄ := (z0, z1, . . . , zk−2, zk−1 + αzk, zk+1 + (1− α)zk, zk+2, . . . , zN )

satisfies both z̄#1 = 0 and M̄ z̄ > 0, with M̄ corresponding to the
time grid

{t0, t1, . . . , tk−1, tk+1, tk+2, . . . , tN}.

This is again impossible due to the induction hypothesis
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Sketch of proof of Theorem 2: T admits a countable dense subset
{t0, t1, . . . }. For N ∈ N we define the finite set TN := {t0, t1, . . . , tN}.

It follows from Theorem 3 that for each N there exists a unique
optimal strategy XN within each class X (y, TN ), and XN

t is a
nondecreasing or nonincreasing function of t ∈ TN , depending on the
sign of x. It thus follows that 1

x dXN is a Borel probability measure
on T. Since the space of all Borel probability measures on T is
compact with respect to the weak topology, there is a subsequence
(XNk) that converges toward a strategy X∗ in the sense of weak
convergence of the associated probability measures.

Then show C(X(Nk)) → C(X∗) as k ↑ ∞ via continuity arguments.

Finally show that X∗ is indeed optimal by proving that it solves the
generalized Fredholm integral equation.
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Qualitative properties of optimal strategies

Remark 2. (Time reversal)
Suppose for simplicity that 0 = min T and let T := max T. The
time-reversed set Ť is defined by

Ť := {T − t | t ∈ T}

Similarly, the time reversal of a strategy X ∈ X (y, T) is defined as

X̌t :=





x−X(T−t)− for t < T

X̌t := 0 for t ≥ T .

Clearly, X̌ ∈ X (y, Ť) and C(X̌) = C(X). It follows that X̌∗ is optimal
in X (y, Ť) iff X∗ is optimal in X (y, T). When Ť = T (e.g. for
T = [0, T ]), then X̌∗ is again optimal. When in addition G is strictly
positive definite, Proposition 2 thus implies X̌∗ = X∗. ♦
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Theorem 4. Let G be nonconstant, nonincreasing, and convex and
suppose x )= 0. Then the optimal strategy X∗ in X (y, T) has impulse
trades at tmin := min T and tmax := max T, that is

∆X∗
tmin

)= 0 and ∆X∗
tmax

)= 0.

Proof: Remark 2: enough to prove the assertion for tmin. Moreover,
w.l.o.g. tmin = 0. Wewrite T := tmax.

We claim that suppX∗ must contain at least two points. Indeed, by
Remark 2 the unique optimal strategy X0 in X (y, {0, T}) is given by
dX0

t = x
2 (δ0 + δT )(dt), and so its cost is strictly smaller than the cost

of any strategy whose support consists of a single point. But since
{0, T} ⊂ T it follows that C(X∗) ≤ C(X0), which proves our claim.
Therefore

t0 := inf
{
t ∈ suppX | t > 0} ∈ T
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By Theorem 3 we have

(5)
∫

G(|t− s|) dX∗
s =

∫
G(|u− s|) dX∗

s for all t, u ∈ T

Let us first consider the case t0 > 0. When taking t := 0 and u := t0
in (5), we obtain

(6) (G(0)−G(t0))∆X∗
0 =

∫

{s≥t0}

[
G(|t0 − s|)−G(s)

]
dX∗

s

Since G is convex, nonincreasing, and nonconstant, we have
G(0)−G(t0) > 0. Moreover, there must be ε > 0 such that
G(|t0 − s|)−G(s) > 0 for all s ∈ [t0, t0 + ε]. Since by construction
[t0, t0 + ε] ∩ suppX )= ∅, we conclude that the righthand side of (6) is
nonzero. Thus, ∆X∗

0 )= 0.
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Now we consider the case t0 = 0. We take u > t and rewrite (6) as

0 =
∫

G(|u− s|)−G(|t− s|)
u− t

dX∗
s

=
∫

{s≤t}

G(u− s)−G(t− s)
u− t

dX∗
s

+
∫

{t<s≤u}

G(u− s)−G(s− t)
u− t

dX∗
s

+
∫

{s>u}

G(s− u)−G(s− t)
u− t

dX∗
s .

When sending u ↓ t, the convexity of G, monotone integration, and
Lebesgue’s theorem yield that each integral in the preceding sum
converges.
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More precisely,
∫

{s≤t}

G(u− s)−G(t− s)
u− t

dX∗
s −→

∫

{s≤t}
G′

+(t− s) dX∗
s ,

∫

{t<s≤u}

G(u− s)−G(s− t)
u− t

dX∗
s −→ 0,

∫

{s>u}

G(s− u)−G(s− t)
u− t

dX∗
s −→ −

∫

{s>t}
G′
−(s− t) dX∗

s ,

where G′
+ and G′

− are the respective right- and lefthand derivatives
of G.
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We thus arrive at
∫

{s≤t}
G′

+(t− s) dX∗
s =

∫

{s>t}
G′
−(s− t) dX∗

s .

Sending t ↓ 0 thus yields that

G′
+(0)∆X∗

0 =
∫

{s>0}
G′
−(s) dX∗

s .

As in the case t0 > 0 one argues that both the righthand side of this
equation and the coefficient G′

+(0) must be nonzero, so that
∆X∗

0 )= 0.
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Now we relax the boundedness of G and assume instead

G is nonconstant, nonincreasing, convex, and
∫ 1

0
G(t) dt <∞.

E.g.,

G(t) = t−γ for 0 < γ < 1, or

G(t) = log−(t).

Let

XG(y, T) :=
{
X ∈ X (y, T)

∣∣
∫ ∫

G(|t− s|) d|X|s d|X|t <∞
}

Note: XG(y, T) can be empty, e.g., for discrete T.

Theorem 5. When XG(y, T) )= ∅, there exists a unique optimal
strategy X∗ in XG(y, T). Moreover, X∗

t is a monotone function of t.
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Sketch of proof: Show first that there exists a positive Radon
measure η on (0,∞) such that

G(x) = G(∞−) +
∫

(0,∞)
(y − x)+ η(dy) for x > 0.

Moreover,

(7)
∫

(0,∞)
y ∧ y2 η(dy) <∞

When G(0+) =∞, G will not be the Fourier transform of a finite but
of an infinite Radon measure µ. When µ([−x, x]) grows at most
polynomially, µ gives rise to a continuous linear functional
f 2→

∫
f du defined on to the Schwartz space S(R). The Fourier

transform of µ is defined as the linear functional µ̂ on S(R) given by

µ̂(f) =
∫

f̂ dµ, f ∈ S(R).
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Show then that G is the Fourier transform of the positive Radon
measure

µ(dx) = G(∞−)δ0(dx) + ϕ(x) dx,

on R, where

ϕ(x) =
1
π

∫

(0,∞)

1− cosxy

x2
η(dy)

Then approximate G monotonically by the convex functions

Gn(x) := G(∞−) +
∫

(0,∞)
(y − x)+I

(1/n,∞)
(y) η(dy)

To conclude

C(X) =
∫

|X̂(z)|2 µ(dz).

Use this approximation also to obtain existence and monotonicity of
optimal strategies (as in the proof of Theorem 2).
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A set A ⊂ R will be called exceptional when there exists a Gδ-set
G ⊃ A that is a nullset for every finite Borel measure ν on R for
which

∫ ∫
G(|t− s|) ν(ds) ν(dt) <∞.

Clearly: XG(y, T) is empty for x )= 0 iff T is exceptional.

Theorem 6. A strategy X∗ ∈ XG(y, T) is optimal if and only if
there is a constant λ such that X∗ solves the generalized Fredholm
integral equation

(8)
∫

G(|t− s|) dX∗
s = λ for quasi every t ∈ T.

Moreover, λ must be nonzero as soon as x )= 0.
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Example 5 (Power-law decay kernel). G(t) = t−γ with
0 < γ < 1 ∫ 1

0

u(s)
|t− s|γ ds = 1 for 0 < t < 1,

is solved by
u∗(s) =

c

(s(1− s))
1−γ

2
,

where c is a suitable constant. Thus, the unique optimal strategy in
XG(y, [0, 1]) is

X∗
t = x

(
1− Γ(3− γ)

Γ
(3−γ

2

)2

∫ t

0

1

(s(1− s))
1−γ

2
ds

)
.
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Example 6 (Logarithmic decay kernel). G(t) = log−(t)
∫ 1

0
u(s)G(|t− s|) ds = −

∫ 1

0
u(s) log |t− s| ds = 1 for 0 < t < 1

solved by

u∗(s) =
ds

2π log 2
√

s(1− s)
.

This fact was discovered by Carleman (1922). The unique optimal
strategy in XG(y, [0, 1]) is thus given by

X∗
t = y

(
1− 1

π

∫ t

0

1√
s(1− s)

ds
)

=
2y
π

arccos
√

t.
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Conclusion:

• Transient market impact can create new types of irregularities:
price manipulation, transaction-triggered price manipulation

• The irregularities do not occut for convex decay of price impact

• Non-robustness with respect to G
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I. Order book models

1. Linear impact, general resilience

2. Nonlinear impact,
exponential resilience
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Limit order book model without large trader

buyers’ bid offers sellers’ ask offers

unaffected best ask priceunaffected best bid price,
is martingale



Limit order book model after large trades



Limit order book model at large trade



Limit order book model immediately after large trade



Limit order book model with resilience



A. Schied: Market impact models and optimal trade execution 9th Winter School on mathematical finance, Lunteren 2010

f(x) = shape function = densities of bids for x < 0, asks for x > 0

B0
t = ‘unaffected’ bid price at time t, is martingale

Bt = bid price after market orders before time t

DB
t = Bt −B0

t

If sell order of ξt ≥ 0 shares is placed at time t:

DB
t changes to DB

t+, where

∫ DB
t+

DB
t

f(x)dx = −ξt

and
Bt+ := Bt + DB

t+ −DB
t = B0

t + DB
t+,

=⇒ nonlinear price impact
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A0
t = ‘unaffected’ ask price at time t, satisfies B0

t ≤ A0
t

At = bid price after market orders before time t

DA
t = At −A0

t

If buy order of ξt ≤ 0 shares is placed at time t:

DA
t changes to DA

t+, where
∫ DA

t+

DA
t

f(x)dx = −ξt

and
At+ := At + DA

t+ −DA
t = A0

t + DA
t+,

For simplicity, we assume that the LOB has infinite depth, i.e.,
|F (x)|→∞ as |x|→∞, where

F (x) :=
∫ x

0
f(y) dy.

86



A. Schied: Market impact models and optimal trade execution 9th Winter School on mathematical finance, Lunteren 2010

If the large investor is inactive during the time interval [t, t + s[,
there are two possibilities:

• Exponential recovery of the extra spread

DB
t = e−

∫ t
s ρr drDB

s for s < t.

• Exponential recovery of the order book volume

EB
t = e−

∫ t
s ρr drEB

s for s < t,

where

EB
t =

∫ 0

DB
t

f(x) dx =: F (DB
t ).

In both cases: analogous dynamics for DA or EA
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Strategy:

N + 1 market orders: ξn shares placed at time τn s.th.

a) the (τn) are stopping times s.th. 0 = τ0 ≤ τ1 ≤ · · · ≤ τN = T

b) ξn is Fτn-measurable and bounded from below,

c) we have
N∑

n=0

ξn = X0

Will write
(τ , ξ)

and optimize jointly over τ and ξ.
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• When selling ξn > 0 shares, we sell f(x) dx shares at price B0
τn

+ x

with x ranging from DB
τn

to DB
τn+ < DB

τn
, i.e., the costs are negative:

cn(τ , ξ) :=
∫ DB

τn+

DB
τn

(B0
τn

+ x)f(x) dx = −ξnB0
τn

+
∫ DB

τn+

DB
τn

xf(x) dx

• When buying shares (ξn < 0), the costs are positive:

cn(τ , ξ) := −ξnA0
τn

+
∫ DA

τn+

DA
τn

xf(x) dx

• The expected costs for the strategy (τ , ξ) are

C(τ , ξ) = E
[ N∑

n=0

cn(τ , ξ)
]
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Instead of the τk, we will use

(9) αk :=
∫ τk

τk−1

ρsds, k = 1, . . . , N.

The condition 0 = τ0 ≤ τ1 ≤ · · · ≤ τN = T is equivalent to
α := (α1, . . . ,αN ) belonging to

A :=
{
α := (α1, . . . ,αN ) ∈ RN

+

∣∣∣
N∑

k=1

αk =
∫ T

0
ρs ds

}
.
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A simplified model without bid-ask spread
S0

t = unaffected price, is (continuous) martingale.

Stn = S0
tn

+ Dn

where D and E are defined as follows:

E0 = D0 = 0, En = F (Dn) and Dn = F−1(En).

For n = 0, . . . , N , regardless of the sign of ξn,

En+ = En − ξn and Dn+ = F−1(En+) = F−1 (F (Dn)− ξn) .

For k = 0, . . . , N − 1,

Ek+1 = e−αk+1Ek+ = e−αk+1(Ek − ξk)

The costs are

cn(τ , ξ) = −ξnS0
τn

+
∫ Dτn+

Dτn

xf(x) dx
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Lemma 2. Suppose that S0 = B0. Then, for any strategy ξ,

cn(ξ) ≤ cn(ξ) with equality if ξk ≥ 0 for all k.

Moreover,

C(τ , ξ) := E
[ N∑

n=0

cn(τ , ξ)
]

= E
[
C(α, ξ)

]
−X0S

0
0

where

C(α, ξ) :=
N∑

n=0

∫ Dn+

Dn

xf(x) dx

is a deterministic function of α ∈ A and ξ ∈ RN+1.

Implies that is is enough to minimize C(α, ξ) over α ∈ A and

ξ ∈
{
x = (x0, . . . , xN ) ∈ RN+1

∣∣
N∑

n=0

xn = X0

}
.
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Theorem 7. Suppose f is increasing on R− and decreasing on R+.
Then there is a unique optimal strategy (ξ∗, τ ∗) consisting of
homogeneously spaced trading times,

∫ τ∗i+1

τ∗i

ρr dr =
1
N

∫ T

0
ρr dr =: − log a,

and trades defined via

F−1 (X0 −Nξ∗0 (1− a)) =
F−1(ξ∗0)− aF−1(aξ∗0)

1− a
,

and
ξ∗1 = · · · = ξ∗N−1 = ξ∗0 (1− a) ,

as well as
ξ∗N = X0 − ξ∗0 − (N − 1)ξ∗0 (1− a) .

Moreover, ξ∗i > 0 for all i.
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Taking X0 ↓ 0 yields:

Corollary 1. Both the original and simplified models admit neither
ordinary nor transaction-triggered price manipulation strategies.
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f(x) =
1

1 + |x|

Figure 1: f , F , F−1, G and optimal strategy
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Strategy of proving Theorem 7:

(a) Show that there exists a (unique) minimizer x∗(α) for each α.
(Prove that C(α,x) →∞ for |x|→∞)

(b) Show that all components of x∗(α) are positive
(Use that x∗(α) must be a critical point of x→ C(α,x)− νx#1
for some Lagrange multiplier ν. Then compute gradient of
C(α, ·) and use explicit estimates....)

(c) By (a) and (b) we can restrict the optimization of C(α,x) to
(α,x) belonging to the compact simplex

A×
{
x ∈ RN+1

∣∣xi ≥ 0 and
N∑

n=0

xn = X0

}
.

Hence a minimizer (α∗,x∗) exists.

(d) Use again Lagrange multipliers to identify (α∗,x∗):
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Let us introduce the functions

F̃ (x) :=
∫ x

0
zf(z) dz and G = F̃ ◦ F−1.

Then, since Dn = F−1(En) and Dn+ = F−1(En+)

C(α,x) =
N∑

n=0

∫ Dn+

Dn

xf(x) dx =
N∑

n=0

[
F̃ (Dn+)− F̃ (Dn)

]

=
N∑

n=0

[
G(En+)−G(En)

]
=

N∑

n=0

[
G(En − xn)−G(En)

]

where

E0 = 0 and En = −
n−1∑

i=0

xie
−

∑n
k=i+1 αk , 1 ≤ n ≤ N.
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Lemma 3. For i = 0, . . . , N − 1, we have the following recursive
formula,

(10)
∂C

∂xi
= e−αi+1F−1(Ei+1)− F−1(Ei − xi) + e−αi+1

∂C

∂xi+1
.

Moreover, for i = 1, . . . , N ,

(11)
∂C

∂αi
= Ei

N∑

n=i

[
F−1(En − xn)− F−1(En)

]
e−

∑n
k=i+1 αk .

When (α,x) is a minimizer, then it is a critical point of

(β,y) 2−→ C(β,y)− νy#1− λβ#1.

Hence
∂C

∂xi
= ν and

∂C

∂αj
= λ for all i, j
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Plugging this into (10) yields ν = −F−1(EN − xN ) and

ν = e−αi+1F−1(Ei+1)− F−1(Ei − xi) + e−αi+1ν

or, since Ei+1 = e−αi+1(Ei − xi),

ν = −F−1(Ei − xi)− ai+1F−1(ai+1(Ei − xi))
1− ai+1

where ai+1 = e−αi+1 .
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Plugging this into (10) yields ν = −F−1(EN − xN ) and

ν = e−αi+1F−1(Ei+1)− F−1(Ei − xi) + e−αi+1ν

or, since Ei+1 = e−αi+1(Ei − xi),

ν = −F−1(Ei − xi)− ai+1F−1(ai+1(Ei − xi))
1− ai+1

where ai+1 = e−αi+1 .
Similarly,

λ

Ej
=

N∑

n=j

[
F−1(En − xn)− F−1(En)

]
e−

∑n
k=j+1 αk

= −F−1(Ej) +
[
F−1(Ej − xj)− F−1(Ej+1)e−αj+1

]
+ . . .

+
[
F−1(EN−1 − xN−1)− F−1(EN )e−αN

]
e−

∑N−1
k=j+1 αk

+F−1(EN − xN )e−
∑N

k=j+1 αk
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Plugging this into (10) yields ν = −F−1(EN − xN ) and

ν = e−αi+1F−1(Ei+1)− F−1(Ei − xi) + e−αi+1ν

or, since Ei+1 = e−αi+1(Ei − xi),

ν = −F−1(Ei − xi)− ai+1F−1(ai+1(Ei − xi))
1− ai+1

where ai+1 = e−αi+1 .
Similarly,

λ

Ej
=

N∑

n=j

[
F−1(En − xn)− F−1(En)

]
e−

∑n
k=j+1 αk

= −F−1(Ej) +
[
F−1(Ej − xj)− F−1(Ej+1)e−αj+1

]
+ . . .

+
[
F−1(EN−1 − xN−1)− F−1(EN )e−αN

]
e−

∑N−1
k=j+1 αk

+F−1(EN − xN )e−
∑N

k=j+1 αk
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= −F−1(Ej)− (1− e−αj+1)ν − · · ·− (1− e−αN )νe−
∑N−1

k=j+1 αk

−νe−
∑N

k=j+1 αk

= −F−1(Ej)− ν

Hence

λ = −Ej(F−1(Ej) + ν)

= Ej

[
F−1(Ej − xj)− aj+1F−1(aj+1(Ej − xj))

1− aj+1
− F−1(Ej)

]

Altogether:
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ν = −F−1(Ei−1 − xi−1)− e−αiF−1(e−αi(Ei−1 − xi−1))
1− e−αi

,

λ = e−αi(Ei−1 − xi−1)
F−1(Ei−1 − xi−1)− F−1(e−αi(Ei−1 − xi−1))

1− e−αi
,

for i = 1, . . . , N .
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ν = −F−1(Ei−1 − xi−1)− e−αiF−1(e−αi(Ei−1 − xi−1))
1− e−αi

,

λ = e−αi(Ei−1 − xi−1)
F−1(Ei−1 − xi−1)− F−1(e−αi(Ei−1 − xi−1))

1− e−αi
,

for i = 1, . . . , N .

Lemma 4. Given ν and λ, these equations uniquely determine αi

and Ei−1 − xi−1

It follows that

α1 = · · · = αN and − x0 = E1 − x1 = · · · = EN−1 − xN−1.

The theorem now follows easily.
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Robustness of the optimal strategy
[Plots by C. Lorenz (2009)]
First figure:

f(x) =
1

1 + |x|

Figure 2: f , F , F−1, G and optimal strategy
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Figure 3: f(x) = |x|
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Figure 4: f(x) = 1
8x2
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Figure 5: f(x) = exp(−(|x|− 1)2) + 0.1
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Figure 6: f(x) = 1
2 sin(π|x|) + 1
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Figure 7: f(x) = 1
2 cos(π|x|+ 1

2 )
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Figure 8: f random
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Figure 9: f random
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Figure 10: f random
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Figure 11: f piecewise constant
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Figure 12: f piecewise constant
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Figure 13: f piecewise constant
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Figure 14: f piecewise constant
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Continuous-time limit of the optimal strategy

• Initial block trade of size ξ∗0 , where

F−1
(
X0 − ξ∗0

∫ T

0
ρs ds

)
= F−1(ξ∗0) +

ξ∗0
f(F−1(ξ∗0))

• Continuous trading in ]0, T [ at rate

ξ∗t = ρtξ
∗
0

• Terminal block trade of size

ξ∗T = X0 − ξ∗0 − ξ∗0

∫ T

0
ρt dt
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I. Order book models

1. Linear impact, general resilience

2. Nonlinear impact,
exponential resilience

3. Gatheral’s model
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Liquidation time: T ≥ 0.

Strategy: X adapted with X0 > 0 fixed and XT = 0.
Admissible: Xt bounded, absolutely continuous in t.
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Liquidation time: T ≥ 0.

Strategy: X adapted with X0 > 0 fixed and XT = 0.
Admissible: Xt bounded, absolutely continuous in t.

Market impact model: S0 unaffected price, = martingale

St = S0
t +

∫ t

0
h(−Ẋt)G(t− s) ds

• For h(x) = λx continuous-time version of simplified model in I.1.

• For nonlinear h close to continuous-time version of simplified model
in I.2.

• G ≡ const corresponds to purely permanent impact

• G(t− s) = δ(t− s) corresponds to purely temporary impact

• Almgren-Chriss model: (studied in next lectures)

G(t− s) = λδ(t− s) + γ
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Costs:
Ẋt dt shares are sold at price St ⇒ infinitesimal costs = −ẊtSt dt

Total costs = −
∫ T

0
ẊtSt dt

= −
∫ T

0
ẊtS

0
t dt +

∫ T

0

∫ t

0
(−Ẋt)h(−Ẋs)G(t− s) ds dt

Letting ξt := −Ẋt, we get

Expected costs = −X0S
0
0 + E

[ ∫ T

0

∫ t

0
ξth(ξs)G(t− s) ds dt

]

Remark: Model formulation is not complete since optimal strategies
typically will not be absolutely continous (see continous-time limit in
preceding section)
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Are there price manipulation strategies?

Find ξ ∈ L2[0, T ] such that
∫ T

0

∫ t

0
ξth(ξs)G(t− s) ds dt < 0.

119



A. Schied: Market impact models and optimal trade execution 9th Winter School on mathematical finance, Lunteren 2010

Theorem 8. [Gatheral (2008)]
Suppose that

G(t) = e−ρt

and market impact is not linear. Then the model admits price
manipulation strategies in the strong sense.

120



A. Schied: Market impact models and optimal trade execution 9th Winter School on mathematical finance, Lunteren 2010

Theorem 8. [Gatheral (2008)]
Suppose that

G(t) = e−ρt

and market impact is not linear. Then the model admits price
manipulation strategies in the strong sense.

Very puzzling result in view of Corollary 1!
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Theorem 8. [Gatheral (2008)]
Suppose that

G(t) = e−ρt

and market impact is not linear. Then the model admits price
manipulation strategies in the strong sense.

Very puzzling result in view of Corollary 1!

Resolution of this paradox:

CostsGatheral =
∫ T

0

∫ t

0
ξth(ξs)G(t− s) ds dt

CostsAFS =
∫ T

0
ξtF

−1
(∫ t

0
ξsG(t− s) ds

)
dt
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Theorem 8. [Gatheral (2008)]
Suppose that

G(t) = e−ρt

and market impact is not linear. Then the model admits price
manipulation strategies in the strong sense.

Taking ρ ↓ 0 yields:

Corollary 2. [Huberman & Stanzl (2004)]
Suppose that market impact is permanent and nonlinear. Then the
model admits price manipulation strategies in the strong sense.
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Sketch of proof of Theorem 8: For simplicity assume

h(−x) = −h(x)

Consider a strategy of the form

ξt = v1 for 0 ≤ t ≤ T0 and ξt = −v2 for T0 < t ≤ T .

‘Round trip’ requires that

v1T0 = v2(T − T0)

A calculation yields that for this specific strategy
∫ T

0

∫ t

0
ξth(ξs)G(t− s) ds dt = · · ·
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· · · = v1h(v1)
(
e−

v2ρT
v1+v2 − 1 +

v2ρT

v1 + v2

)
+ v2h(v2)

(
e−

v1ρT
v1+v2 − 1 +

v1ρT

v1 + v2

)

−v2h(v1)
(
1 + e−ρT − e−

v2ρT
v1+v2 − e−

v1ρT
v1+v2

)
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· · · = v1h(v1)
(
e−

v2ρT
v1+v2 − 1 +

v2ρT

v1 + v2

)
+ v2h(v2)

(
e−

v1ρT
v1+v2 − 1 +

v1ρT

v1 + v2

)

−v2h(v1)
(
1 + e−ρT − e−

v2ρT
v1+v2 − e−

v1ρT
v1+v2

)

≈
v1v2

[
v1h(v2)− v2h(v1)

]
(ρT )2

2(v1 + v2)2
+ O((ρT )3) for ρT → 0
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· · · = v1h(v1)
(
e−

v2ρT
v1+v2 − 1 +

v2ρT

v1 + v2

)
+ v2h(v2)

(
e−

v1ρT
v1+v2 − 1 +

v1ρT

v1 + v2

)

−v2h(v1)
(
1 + e−ρT − e−

v2ρT
v1+v2 − e−

v1ρT
v1+v2

)

≈
v1v2

[
v1h(v2)− v2h(v1)

]
(ρT )2

2(v1 + v2)2
+ O((ρT )3) for ρT → 0

Can always choose v1, v2 such that [. . . ] < 0, then take T such that
ρT small enough.
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More econo-physics:

G(t) = t−γ , h(v) = vδ

Gatheral finds that

γ must be such that γ ≥ γ∗ := 2− log 3
log 2

≈ 0.415

δ + γ ≈ 1

Consistent with (some) empirical studies.
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Conclusion for Part I:

• Market impact should decay as a convex function of time

• Exponential or power law resilience leads to “bathtub solutions”
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which are extremely robust

• Many open problems

• Minimizing expected costs does not take into account volatility risk.
Must introduce risk aversion — see next part.
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II. The qualitative effects of
risk aversion

1. Exponential utility and mean-variance

2. General utility functions

3. Mean-variance optimization for model
from model from Section I.1
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II. The qualitative effects of
risk aversion

1. Exponential utility and mean-variance
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Liquidation time: T ∈ [0,∞].
Strategy: X adapted with X0 > 0 fixed and XT = 0.
Admissible: Xt bounded, absolutely continuous in t. Take

ξt := −Ẋt

as controll. Then

Xξ
t := X0 −

∫ t

0
ξs ds

Market impact model: Following Almgren (2003),

Sξ
t = S0 + σBt + γ(Xξ

t −X0) + h(ξt)

initial Brownian permanent temporary

price motion impact impact

Most common model in practice; drift, multiple assets, general Lévy
process, Gatheral-type impact possible.
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Assumption:
f(x) := xh(x)

is convex, C1, and satisfies f(x) = f(−x) and f(x)/x→∞ for
|x|→∞.
E.g., h(x) = α sign(x)

√
|x|+ βx.

Sales revenues:

RT (ξ) =
∫ T

0
(−Ẋt)Sξ

t dt = . . .

= S0X0 −
γ

2
X2

0 + σ

∫ T

0
Xξ

t dBt −
∫ T

0
f(ξt) dt.

Goal: maximize expected utility

E[u(RT (ξ)) ]

over admissible strategies for u(x) = −e−αx
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Setup as control problem

• controlled diffusion:

Rξ
t = R0 + σ

∫ t

0
Xξ

s dBs −
∫ t

0
f(ξs) ds

• value function

v(T,X0, R0) = sup
ξ∈X (T,X0)

E
[
u(Rξ

T )
]
,

where

X (T,X0) =
{

ξ |Xξ is bounded and
∫ T

0
ξt dt = X0

}
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Heuristic derivation of HJB equation

dv(T − t,Xξ
t , Rξ

t ) = σvRXξ
t dBt

+
(
− vt − ξtvX − vRf(ξt) +

σ2

2
(Xξ

t )2vRR

)
dt

Hence

vt =
σ2

2
X2vRR − inf

ξ

(
ξvX + vRf(ξ)

)
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Heuristic derivation of HJB equation

dv(T − t,Xξ
t , Rξ

t ) = σvRXξ
t dBt

+
(
− vt − ξtvX − vRf(ξt) +

σ2

2
(Xξ

t )2vRR

)
dt

Hence

vt =
σ2

2
X2vRR − inf

ξ

(
ξvX + vRf(ξ)

)

What about the constraint
∫ T
0 ξt dt = X0?
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Heuristic derivation of HJB equation

dv(T − t,Xξ
t , Rξ

t ) = σvRXξ
t dBt

+
(
− vt − ξtvX − vRf(ξt) +

σ2

2
(Xξ

t )2vRR

)
dt

Hence

vt =
σ2

2
X2vRR − inf

ξ

(
ξvX + vRf(ξ)

)

What about the constraint
∫ T
0 ξt dt = X0? It is in the initial

condition:

v(0,X,R) = lim
T↓0

v(T,X,R) =





u(R) if X = 0,

−∞ otherwise.
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−∞ otherwise.
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Theorem 9. [A.S. & Schöneborn (2008), A.S., Schöneborn &
Tehranchi (2009)]
If u(x) = −e−αx for some α > 0, then the unique optimal strategy ξ∗

is a deterministic function of t. Moreover, v is a classical solution of
the singular HJB equation.

The fact that optimal strategies for CARA investors are
deterministic is very robust. Is also true

• if Brownian motion is replaced by a Lévy process;

• for Gatheral-type impact

• other models with functionally dependent impact
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Sketch of proof: For simplicity: σ = 1. We have

E
[
u(Rξ

T )
]

= −e−αR0E
[
e−α

∫ T
0 Xξ

t dBt+α
∫ T
0 f(ξt) dt

]

= −e−αR0Eξ
[
e

α2
2

∫ T
0 (Xξ

t )2 dt+α
∫ T
0 f(ξt) dt

]

where
dPξ

dP = e−α
∫ T
0 Xξ

t dBt−α2
2

∫ T
0 (Xξ

t )2 dt
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Sketch of proof: For simplicity: σ = 1. We have

E
[
u(Rξ

T )
]

= −e−αR0E
[
e−α

∫ T
0 Xξ

t dBt+α
∫ T
0 f(ξt) dt

]

= −e−αR0Eξ
[
e

α2
2

∫ T
0 (Xξ

t )2 dt+α
∫ T
0 f(ξt) dt

]

where
dPξ

dP = e−α
∫ T
0 Xξ

t dBt−α2
2

∫ T
0 (Xξ

t )2 dt

Now we can minimize inside the expectation w.r.t. Pξ:

Eξ
[
e

α2
2

∫ T
0 (Xξ

t )2 dt+α
∫ T
0 f(ξt) dt

]
≥ Eξ

[
e

α2
2

∫ T
0 (Xξ∗

t )2 dt+α
∫ T
0 f(ξ∗t ) dt

]

= e
α2
2

∫ T
0 (Xξ∗

t )2 dt+α
∫ T
0 f(ξ∗t ) dt

where ξ∗ is the deterministic minimizer of

ξ 2−→ α

2

∫ T

0
(Xξ

t )2 dt +
∫ T

0
f(ξt) dt.
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Hence, the value function is

v(T,X0, R0) = sup
ξ∈X (T,X0)

E
[
u(Rξ

T )
]

= sup
ξ∈Xdet(T,X0)

E
[
u(Rξ

T )
]

= − exp
(
− αR0 + α inf

ξ∈Xdet(T,X0)

∫ T

0
L(Xξ

t , ξt) dt
)

where Xdet(T,X0) are the deterministic strategies in X (T,X0) and L

is the Lagrangian

L(q, p) =
α

2
q2 + f(−p) =

α

2
q2 + f(p)
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Classical mechanics: the action function

S(T,X) := inf
ξ∈Xdet(T,X)

∫ T

0
L(Xξ

t , ξt) dt = inf
ξ∈Xdet(T,X)

∫ T

0
L(Xξ

t , Ẋξ
t ) dt

is a classical solution of the Hamilton-Jacobi equation

ST (T,X) + H(X,SX(T,X)) = 0 T > 0, X ∈ R

where H is the Hamiltonian

H(q, p) = −α

2
q2 + f∗(p)

Boundary conditions:

S(0, 0) = 0 and S(0,X) =∞ for X )= 0.

[Side remark: this fact is classical when f ∈ C2 but more subtle when
f ∈ C1 as for h(x) =

√
|x|]
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Plugging the Hamilton-Jacobi equation into

v(T,X0, R0) = − exp
(
− αR0 + α inf

ξ∈Xdet(T,X0)

∫ T

0
L(Xξ

t , ξt) dt
)

= − exp
(
− αR0 + αS(T,X0)

)

yields the singular HJB-equation for v.
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Alternative proof: Define the function

w(T,X0, R0) := − exp
(
− αR0 + αS(T,X0)

)

so that it’s a classical solution of the singular HJB-equation. Then
use a verification argument to show that w = v (subtle).

Then there is ξ∗ ∈ Xdet(T,X0) such that

S(T,X0) =
∫ T

0
L(Xξ∗

t , ξ∗t ) dt

and this ξ∗ must hence be optimal.
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The relation with mean-variance optimization

For ξ ∈ Xdet(T,X0),

Rξ
t = R0 + σ

∫ t

0
Xξ

s dBs −
∫ t

0
f(ξs) ds

is Gaussian, and so

E
[
u(Rξ

T )
]

= − exp
(
− αE[Rξ

T ] +
α2

2
var(Rξ

T )
)

Hence, exponential-utility maximization is equivalent to the
maximization of the mean-variance functional

E[Rξ
T ]− α

2
var(Rξ

T )

for deterministic strategies [Markowitz,. . . , Almgren & Chriss (2000)].
Different for adaptive strategies [Almgren & Lorenz (2008)].
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Computation of the optimal strategy

Classical mechanics: Xξ∗ is solution of the Euler-Lagrange equation

αX = f ′′(Ẋt)Ẍt with X0 = initial portfolio and XT = 0
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Computation of the optimal strategy

Classical mechanics: Xξ∗ is solution of the Euler-Lagrange equation

αX = f ′′(Ẋt)Ẍt with X0 = initial portfolio and XT = 0

Not clear when f /∈ C2 as for h(x) =
√
|x|

Theorem 10. [A.S. & Schöneborn (2008)]
The optimal Xξ∗ is C1 and uniquely solves the Hamilton equations

Ẋt = Hp(Xt, p(t)) = −(f∗)′(−p(t))

ṗ(t) = −Hq(Xt, p(t)) = αXt

with initial conditions Xξ∗

0 = X0 and p(0) = −(f∗)′(ξ∗0).
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Example: For linear temporary impact, f(x) = λx2, the optimal
strategy is

ξ∗t = X0

√
ασ2

2λ
·
cosh

(
(T − t)

√
ασ2

2λ

)

sinh
(
T

√
ασ2

2λ

)

Xξ∗

t = X0 ·
cosh

(
t
√

ασ2

2λ

)
sinh

(
T

√
ασ2

2λ

)
− cosh

(
T

√
ασ2

2λ

)
sinh

(
t
√

ασ2

2λ

)

sinh
(
T

√
ασ2

2λ

)

The value function is

v(T,R0,X0) = − exp
[
−α(R0+S0X0−

γ

2
X2

0 )+X2
0

√
λα3σ2

2
coth

(
T

√
ασ2

2λ

)]
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II. The qualitative effects of
risk aversion

1. Exponential utility and mean-variance

2. General utility functions
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Problem with T <∞ difficult because of singular initial condition of
HJB equation.

=⇒ Consider infinite time horizon instead

- Assume also linear temporary impact (for simplicity only)

f(x) = λx2

- Utility function u ∈ C6(R) such that the absolute risk aversion,

A(R) := −u′′(R)
u′(R)

(= constant for exponential utility),

satisfies
0 < Amin ≤ A(R) ≤ Amax <∞.

Entire section based on A.S. & Schöneborn (2009)
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Recall

Rξ
t = R0 + σ

∫ t

0
Xξ

s dBs − λ

∫ t

0
ξ2
s ds.

• Optimal liquidation:

maximize E[u(Rξ
∞) ]

• Maximization of asymptotic portfolio value:

maximize lim
t↑∞

E[u(Rξ
t ) ]

Note: Liquidation enforced by the fact that a risk-averse investor
does not want to hold a stock whose price process is a martingale.
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HJB equation for finite time horizon:

vt =
σ2

2
X2vRR − inf

c

(
cvX + λvRc2

)

Guess for infinite time horizon:

0 =
σ2

2
X2vRR − inf

c

(
cvX + λvRc2

)

Initial condition:
v(0, R) = u(R).
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HJB equation for finite time horizon:

vt =
σ2

2
X2vRR − inf

c

(
cvX + λvRc2

)

Guess for infinite time horizon:

0 =
σ2

2
X2vRR − inf

c

(
cvX + λvRc2

)

Initial condition:
v(0, R) = u(R).

Corresponding reduced-form equation:

v2
X = −2λσ2X2vR · vRR

Not a straightforward PDE either......
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Way out: consider optimal Markov control in HJB equation

ĉ(X,R) = − vX(X,R)
2λvR(X,R)

and let

c̃(Y,R) =
ĉ(
√

Y ,R)√
Y

.

If v solves the HJB equation, then c̃ solves

(∗)






c̃Y =
σ2

4c̃
c̃RR −

3
2
λc̃c̃R

c̃(0, R) =
√

σ2A(R)
2λ
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Way out: consider optimal Markov control in HJB equation

ĉ(X,R) = − vX(X,R)
2λvR(X,R)

and let

c̃(Y,R) =
ĉ(
√

Y ,R)√
Y

.

If v solves the HJB equation, then c̃ solves

(∗)






c̃Y =
σ2

4c̃
c̃RR −

3
2
λc̃c̃R

c̃(0, R) =
√

σ2A(R)
2λ

Theorem 11. (∗) admits a unique classical solution c̃ ∈ C2,4 s.th.
√

σ2Amin

2λ
≤ c̃(Y,R) ≤

√
σ2Amax

2λ
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Follows from:

Theorem 12. [Ladyzhenskaya, Solonnikov & Uraltseva
(1968)] There is a classical C2,4-solution for the parabolic partial
differential equation

ft −
∂

∂x

[
a(x, t, f, fx)

]
+ b(x, t, f, fx) = 0

with initial value condition f(0, x) = ψ0(x) if all of the following
conditions are satisfied:

• ψ0(x) is smooth (C4) and bounded

• a and b are smooth (C3 respectively C2)

• There are constants b1 and b2 ≥ 0 such that for all x and u:
(

b(x, t, u, 0)− ∂a

∂x
(x, t, u, 0)

)
u ≥ −b1u

2 − b2.
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• For all M > 0, there are constants µM ≥ νM > 0 such that for
all x, t, u and p that are bounded in modulus by M :

(12) νM ≤ ∂a

∂p
(x, t, u, p) ≤ µM

and

(13)
(
|a|+

∣∣∣∣
∂a

∂u

∣∣∣∣

)
(1 + |p|) +

∣∣∣∣
∂a

∂x

∣∣∣∣ + |b| ≤ µM (1 + |p|)2.

Proof: Obtained from original existence theorem by cutting off the
coefficients of the PDE.

147



A. Schied: Market impact models and optimal trade execution 9th Winter School on mathematical finance, Lunteren 2010

Next, consider the transport equation




w̃Y = −λc̃w̃R

w̃(0, R) = u(R).

Proposition 5. The transport equation admits a C2,4-solution w̃.
Moreover, w(X,R) := w̃(X2, R) is a classical solution of the HJB
equation

0 =
σ2

2
X2wRR − inf

c

(
cwX + wRc2

)
, w(0, R) = u(R)

The unique minimum above is attained at

c(X,R) := c̃(X2, R)X.
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Sketch of proof: Existence and uniqueness of solutions follws by
method of characteristics. Assume for the moment that

c̃2 = −σ2w̃RR

2λw̃R
.

Then with Y = X2:

0 = −λX2w̃R

(
σ2w̃RR

2λw̃R
+ c̃2

)

= −λX2w̃R

(
σ2w̃RR

2λw̃R
+

w̃2
Y

λ2w̃2
R

)

= −1
2
σ2X2wRR −

w2
X

4λwR

= inf
c

[
−1

2
σ2X2wRR + λwRc2 + wXc

]
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We now show that

c̃2 = −σ2w̃RR

2λw̃R
.

First, observe that it holds for Y = 0. For general Y , consider

d

dY
c̃2 = −3λc̃2c̃R +

σ2

2
c̃RR

− d

dY

σ2w̃RR

2λw̃R
= σ2c̃

d

dR

w̃RR

2w̃R
+ σ2c̃R

w̃RR

2w̃R
+

σ2

2
c̃RR

The first holds by PDE for c̃, the second by transport eqn. for w̃.
Next,

d

dY

(
c̃2 +

σ2w̃RR

2λw̃R

)
= −3λc̃2c̃R +

σ2

2
c̃RR − σ2c̃

d

dR

w̃RR

2w̃R
− σ2c̃R

w̃RR

2w̃R
− σ2

2
c̃RR

= −λc̃
d

dR

(
c̃2 +

σ2w̃RR

2λw̃R

)
− λc̃R

(
c̃2 +

σ2w̃RR

2λw̃R

)
.
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We now show that

c̃2 = −σ2w̃RR

2λw̃R
.

First, observe that it holds for Y = 0. For general Y , consider

d

dY
c̃2 = −3λc̃2c̃R +

σ2

2
c̃RR

− d

dY

σ2w̃RR

2λw̃R
= σ2c̃

d

dR

w̃RR

2w̃R
+ σ2c̃R

w̃RR

2w̃R
+

σ2

2
c̃RR

The first holds by PDE for c̃, the second by transport eqn. for w̃.
Next,

d

dY

(
c̃2 +

σ2w̃RR

2λw̃R

)
= −3λc̃2c̃R +

σ2

2
c̃RR − σ2c̃

d

dR

w̃RR

2w̃R
− σ2c̃R

w̃RR

2w̃R
− σ2

2
c̃RR

= −λc̃
d

dR

(
c̃2 +

σ2w̃RR

2λw̃R

)
− λc̃R

(
c̃2 +

σ2w̃RR

2λw̃R

)
.

Therefore need u ∈ C6!
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Hence,

f(Y,R) := c̃2 +
σ2w̃RR

2λw̃R

satisfies the linear PDE

fY = −λc̃fR − λc̃Rf

with initial value condition f(0, R) = 0. One obvious solution to this
PDE is f(Y,R) ≡ 0. By the method of characteristics this is the
unique solution to the PDE, since c̃ and c̃R are smooth and hence
locally Lipschitz.
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A (rather technical) verification argument yields:

Theorem 13. The value functions for optimal liquidation and for
maximization of asymptotic portfolio value are equal and are classical
solutions of the HJB equation

−1
2
σ2X2vRR + inf

c

[
λvRc2 + vXc

]
= 0

with boundary condition v(0, R) = u(R). The a.s. unique optimal
control ξ̂t is Markovian and given in feedback form by

(14) ξ̂t = c(X ξ̂
t , Rξ̂

t ) = − vX

2λvR
(X ξ̂

t , Rξ̂
t ).

For the value functions, we have convergence:

(15) v(X0, R0) = lim
t→∞

E[u(Rξ̂
t )] = E[u(Rξ̂

∞)]
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Corollary 3. If u(R) = −e−AR, then

Xξ∗

t = X0 exp
(
− t

√
σ2A

2λ

)
.
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Corollary 3. If u(R) = −e−AR, then

Xξ∗

t = X0 exp
(
− t

√
σ2A

2λ

)
.

General result:

Theorem 14. The optimal strategy c(X,R) is increasing
(decreasing) in R iff A(R) is increasing (decreasing). I.e.,

Utility function Optimal trading strategy

DARA ⇐⇒ Passive in the money

CARA ⇐⇒ Neutral in the money

IARA ⇐⇒ Aggresive in the money
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Theorem 15. If u1 and u0 are such that A1 ≥ A0 then c1 ≥ c0.

Idea of Proof: g := c̃1 − c̃0 solves

gY =
1
2
agRR + bgR + V g,

where

a =
σ2

2c̃0
, b = −3

2
λc̃1, and V = −σ2c̃1

RR

4c̃0c̃1
− 3

2
λc̃0

R.

The boundary condition of g is

g(0, R) =

√
σ2A1(R)

2λ
−

√
σ2A0(R)

2λ
≥ 0

Now maximum principle or Feynman-Kac argument....
(plus localization)
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Relation to forward utilities

Theorem 16.
For every X > 0, the value function v(X,R) is again a utility
function in R. Moreover,

(16) c̃(Y,R) =

√
σ2A(

√
Y ,R)

2λ
.

where

A(X,R) := −vRR(X,R)
vR(X,R)
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What about other monotonicity relations?

• Monotonicity in λ: intuitively, an increase in liquidaton costs
should lead to a decrease of liquidation speed.
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Dependence of the transformed optimal strategy c̃ on λ for the
DARA utility function with A(R) = 2(1.2− tanh(15R))2.
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R
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4
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The shape of the absolute risk aversion

A(R) = 2(1.2− tanh(15R))2
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! " # $ %&

&'!

&'"

&'#

&'$

%'&

p
c̃

λ

Dependence of the transformed optimal strategy c̃ on λ for the
DARA utility function with A(R) = 2(1.2− tanh(15R))2.

Theorem 17. IARA =⇒ c is decreasing in λ.

Proof similiar to Theorem 15.
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What about other monotonicity relations?

• Monotonicity in λ: intuitively, an increase in liquidaton costs
should lead to a decrease of liquidation speed.

• Monotonicity in X: intuitively, larger asset position should lead to
an increased liquidation speed.
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IARA utility function with A(R) = 2(1.5 + tanh(R− 100))2 and
parameter λ = σ = 1.
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What about other monotonicity relations?

• Monotonicity in λ: intuitively, an increase in liquidaton costs
should lead to a decrease of liquidation speed.

• Monotonicity in X: intuitively, larger asset position should lead to
an increased liquidation speed.
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What about other monotonicity relations?

• Monotonicity in λ: intuitively, an increase in liquidaton costs
should lead to a decrease of liquidation speed.

• Monotonicity in X: intuitively, larger asset position should lead to
an increased liquidation speed.

• Monotonicity in σ: intuitively, an increase in volatility should lead
to an increase in the liquidation speed.
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What about other monotonicity relations?

• Monotonicity in λ: intuitively, an increase in liquidaton costs
should lead to a decrease of liquidation speed.

• Monotonicity in X: intuitively, larger asset position should lead to
an increased liquidation speed.

• Monotonicity in σ: intuitively, an increase in volatility should lead
to an increase in the liquidation speed.

?
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The multi-asset case

Initial portfolio of d assets

X0 = (X1
0 , . . . ,Xd

0 )

Strategy

Xξ
t = X0 −

∫ t

0
ξs ds

Price process:

St = S0
0 + σBt + γ#(Xξ

t −X0)− h(ξt)

for d-dim Brownian motion B and covariance matrix Σ := σσ#.
Letting

f(ξ) := ξ#h(ξ),
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The revenues are

Rξ
t = R0 +

∫ t

0
(Xξ

2 )#σ dBs −
∫ t

0
f(ξs) ds.

Guess for HJB equation

0 =
1
2
X#ΣXvRR − inf

c

(
c#∇Xv + vRf(c)

)

with initial condition
v(0, R) = u(R).
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The revenues are

Rξ
t = R0 +

∫ t

0
(Xξ

2 )#σ dBs −
∫ t

0
f(ξs) ds.

Guess for HJB equation

0 =
1
2
X#ΣXvRR − inf

c

(
c#∇Xv + vRf(c)

)

with initial condition
v(0, R) = u(R).

Formally: Nonlinear PDE of ”parabolic” type with d time
parameters
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The revenues are

Rξ
t = R0 +

∫ t

0
(Xξ

2 )#σ dBs −
∫ t

0
f(ξs) ds.

Guess for HJB equation

0 =
1
2
X#ΣXvRR − inf

c

(
c#∇Xv + vRf(c)

)

with initial condition
v(0, R) = u(R).

Formally: Nonlinear PDE of ”parabolic” type with d time
parameters

Solvability completely unclear, a priori:

∇Xv = g

typically not solvable (Poincaré lemma)
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Theorem 18. [Schöneborn (2008)]
Under analogous conditions as in the onedimensional case and f

having the scaling property

f(aξ) = aα+1f(ξ), a ≥ 0,

the value function is a classical solution of the HJB equation

0 =
1
2
X#ΣXvRR − inf

c

(
c#∇Xv + vRf(c)

)

with initial condition
v(0, R) = u(R).

The minimizer ĉ determines the optimal strategy....
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Theorem 18. [Schöneborn (2008)]
Under analogous conditions as in the onedimensional case and f

having the scaling property

f(aξ) = aα+1f(ξ), a ≥ 0,

the value function is a classical solution of the HJB equation

0 =
1
2
X#ΣXvRR − inf

c

(
c#∇Xv + vRf(c)

)

with initial condition
v(0, R) = u(R).

The minimizer ĉ determines the optimal strategy....

How can this be proved??
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Theorem 19. [Schöneborn (2008)]
The optimal control is

ĉ(X, R) = c̃
(
v(X), R)c(X),

where v(X) is the cost and c(X) is the vector field (optimal strategy)
for mean-variance optimal liquidation of X, and c̃(Y,R) is the
unique solution of the nonlinear PDE

c̃Y = −2α + 1
α + 1

c̃αc̃R +
α(α− 1)

α + 1

( c̃R

c̃

)2
+

α

α + 1
c̃RR

c̃

with initial condition

c̃(0, R) = A(R)
1

α+1
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Trajectories for mean-variance optimal strategies for various initial
portfolios X0 and two correlated assets.
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II. The qualitative effects of
risk aversion

1. Exponential utility and mean-variance

2. General utility functions

3. Mean-variance optimization for model
from model from Section I.1
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Consider return R(X) = −costs instead of costs in model from
Section I.1.

Theorem 20. Suppose that G is strictly positive definite and that
the unaffected price process S0 satisfies dS0

t = σt dWt for a Brownian
motion W and a bounded and deterministic volatility function σs.
Then the following conditions are equivalent for any strategy X∗.

(a) X∗ maximizes the expected utility E[−e−γR(X) ] in the class of all
strategies X.

(b) X∗ is deterministic and maximizes

E[R(X) ]− γ

2
var(R(X)),

in the class of deterministic strategies X.
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Mean-variance optimal strategy for power-law decay
G(t) = (1 + t)−0.4, covariance function ϕ(t) = σ2t1/5 with volatility
σ = 0.3, risk aversion γ = 5, and N = 25.
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Theorem 21. Suppose that G(t) is convex, T is discrete, and the
variance of S0

t increases as a convex function of t. Then any
mean-variance optimal deterministic strategy X∗ is monotone.
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Mean-variance optimal strategies for power-law decay
G(t) = (1 + t)−0.4, linear covariance ϕ(t) = σ2t with volatility
σ = 0.3, and various risk aversion parameters γ.

173



A. Schied: Market impact models and optimal trade execution 9th Winter School on mathematical finance, Lunteren 2010

III. Multi-agent equilibrium
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Information leakage creates multi-player situations

• One trader (‘the seller’) must liquidate large portfolio by T1

• Informed traders (‘the predators’) can exploit the resulting drift:
- first short the asset
- buy back shortly before T1 at lower price

“predatory trading”

• Suggests ‘stealth trading strategy’ for seller
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Information leakage creates multi-player situations

• One trader (‘the seller’) must liquidate large portfolio by T1

• Informed traders (‘the predators’) can exploit the resulting drift:
- first short the asset
- buy back shortly before T1 at lower price

“predatory trading”

• Suggests ‘stealth trading strategy’ for seller

• But why, then, do some sellers practice ‘sunshine trading’?
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• n + 1 traders with positions X0(t), X1(t), ..., Xn(t)

• Trades at time t are executed at the price

S(t) = S(0) + σB(t) + γ
n∑

i=0

(Xi(t)−Xi(0)) + λ
n∑

i=0

Ẋi(t)

• Player 0 (the seller) has X0(0) > 0, X0(t) = 0 for t ≥ T1

• Players 1, . . . , n have Xi(0) = 0, Xi(T1) = arbitrary, Xi(T2) = 0

• Strategies are deterministic

• Players are risk-neutral and aim to maximize expected return

Goal: Find Nash equilibrium
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Situation in a one-stage framework

Theorem 1. [Carlin, Lobo, Viswanathan]
If T1 = T2, then the unique optimal strategies for these n + 1 players
are given by:

Ẋi(t) = ae−
n

n+2
γ
λ t + bie

γ
λ t

with

a =
n

n + 2
γ

λ

(
1− e−

n
n+2

γ
λ T1

)−1
∑n

i=0(Xi(T1)−Xi(0))
n + 1

bi =
γ

λ

(
e

γ
λ T1 − 1

)−1
(

Xi(T1)−Xi(0)−
∑n

j=0(Xj(T1)−Xj(0))
n + 1

)
.
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0.2 0.4 0.6 0.8 1

-0.2

0.2

0.4

0.6

0.8

1
Asset positions Xi(t)

Time

Solid line ∼ seller, dashed line ∼ predator

• Predation occurs irrespective of the market parameters

• Predators always decrease the seller’s return

• Predation becomes fiercer when the number of predators
increases

=⇒ Model cannot explain sunshine trading or liquidity provision
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Theorem 2.
In the two-stage framework, T2 > T1, there is a unique Nash
equilibrium, in which all predators acquire the same asset positions,
and these are determined by their value at T1:

Xi(T1) =
A2n2 + A1n + A0

B3n3 + B2n2 + B1n + B0
X0.

The coefficients Ai and Bi are functions of n that converge in the
limit n ↑ ∞.

Idea of Proof: Use result from Carlin et al., optimize over Xi(T1).
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Coefficients in theorem can be computed exlicitly, e.g.,

A0 = 2

(
− e

γ(−T1+(2+n)T2)
(1+n)λ − e

γ(n(3+2n)T1+(2+n)T2)(
2+3n+n2

)
λ +

e

γ

((
2+2n+n2

)
T1+n(2+n)T2

)
(
2+3n+n2

)
λ + e

γ

((
−2+n2

)
T1+(2+n)2T2

)
(
2+3n+n2

)
λ +

e
γ(−nT1+(1+2n)T2)

(1+n)λ − e

γ

(
−nT1+

(
2+5n+2n2

)
T2

)
(
2+3n+n2

)
λ + e

nγT1+γT2
λ+nλ −

e
γT1+nγT2

λ+nλ

)
.
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Are there new effects in the two-stage model?

• Plastic market:

temporary impact λ ; permanent impact γ

• Elastic market:

temporary impact λ < permanent impact γ

• Intermediate market:

temporary impact λ ∼ permanent impact γ
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Plastic market (large perm. impact) one predator
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Asset positions Xi(t)

Time

Solid line ∼ seller, dashed line ∼ predator
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Plastic market (large perm. impact)
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Asset positions Xi(t)

Time

Solid lines ∼ seller, dashed lines ∼ n predators
Black ∼ n = 2, dark grey ∼ n = 10, light grey ∼ n = 100

184



A. Schied: Market impact models and optimal trade execution 9th Winter School on mathematical finance, Lunteren 2010

Plastic market (large perm. impact)

5 10 15 20

-0.08

-0.06

-0.04

-0.02
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0.04

Joint asset position
∑n

i=1 Xi(T1) of all predators

1 predators

Upper grey line = limn→∞
∑n

i=1 Xi(T1)
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Plastic market (large perm. impact)

5 10 15 20

6.9

7

7.1

7.2

7.3

7.4

Expected return R0 for the seller
# predators

The grey line represents the limit n →∞. The return for the seller
without predators is at the intersection of x- and y-axis.
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Plastic market (large perm. impact)

0.5 1 1.5 2
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6.75

7.25

7.5
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8

Expected price P̄ (t)

Time

Black ∼ n = 2, dark grey ∼ n = 10, light grey ∼ n = 100
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Elastic market (large temp. impact) with one predator

0.5 1 1.5 2

0.2

0.4

0.6

0.8
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Asset positions Xi(t)

Time

Solid line ∼ seller, dashed line ∼ predator
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Elastic market (large temp. impact) without predators

0.5 1 1.5 2

6

7

9

10

Expected price P̄ (t)

Time
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Elastic market market (large temp. impact)

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

Asset positions Xi(t)

Time

Solid lines ∼ seller, dashed lines ∼ n predators

Black ∼ n = 2, dark grey ∼ n = 10, light grey ∼ n = 100
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Elastic market (large temp. impact)

5 10 15 20

0.25

0.3

0.35

0.4

Joint asset position
∑n

i=1 Xi(T1) of all predators

# predators

The grey line represents the limit lim
n→∞

∑n
i=1 Xi(T1)
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Elastic market (large temp. impact)
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Black ≈ n = 2, dark grey ≈ n = 10, light grey ≈ n = 100
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Elastic market (large temp. impact)
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Expected return R0 for the seller

# predators

The grey line represents the limit n →∞.
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Moderate market (λ ≈ γ)

5 10 15 20

8.02

8.04

8.06

8.08

8.12

8.14

Expected return R0 for the seller

# predators

The grey line represents the limit n →∞. The return for the seller
without predators is at the intersection of x- and y-axis.
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Theorem 3.

• For all n, the asset position of the combined asset positions of the
competitors is decreasing in γT1/λ

• As n ↑ ∞, it converges to

lim
n→∞

n∑

i=1

Xi(T1) = lim
n→∞

nX1(T1) =
e

γ(T2−T1)
λ − 1

e
γT2

λ − 1
X0 > 0

• For all n,

lim
γT1/λ↓0

Xi(T1) =
T2 − T1

(n + 1)T2
X0 > 0 lim

γT1/λ↑∞
Xi(T1) =

−2X0

n3 + 4n2 + n− 2
< 0

• For all n, Ẋi(t) is increasing in t and decreasing in γT1/λ with

Ẋi(0) =
T2 − T1

(n + 1)T1T2
X0 > 0 for γT1/λ = 0
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Corollary 4.
There are L ≤ P ∈]0,∞] such that

• For 0 ≤ γT1/λ ≤ L, the competitors are pure liquidity providers,
i.e., Xi(t) ≥ 0 for 0 ≤ t ≤ T

• For L ≤ γT1/λ ≤ P , there is first predatory trading, then
liquidity provision, i.e., Ẋi(0) ≤ 0 and Xi(T1) ≥ 0

• For P < γT1/λ, there is pure predation, i.e., Xi(T1) < 0
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Theorem 4.
In competitive markets (i.e. in the limit n ↑ ∞), the competitors are
pure liquidity providers, i.e.,

lim
n↑∞

n∑

i=1

Xi(t) > 0 for 0 < t ≤ T1

if and only if
T2

T1
> − log(2− eγT1/λ)+

γ
λT1

Otherwise, they engage in intra-stage predatory trading (i.e.,∑
i Ẋi(0) < 0)
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Pure cooperation

Intra-stage predation

T2/T1

γ
λT1
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Stealth trading: no predators, expected return

X0(P0 − γX0/2− λX0/T1).

Sunshine trading: large number of predators, expected return

X0

(
P0 −

γX0

1− e−γT2/λ

)

Proposition 6. For n ↑ ∞, sunshine trading is superior to steath
trading if

1
2

+
λ

γT1
>

1
1− e−

γ
λ T2

.

For T2 ↑ ∞, a stealth algorithm is beneficial if
γ

λ
T1 < 2

Predatory trading vs. liquidity provision: anecdotal evidence
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Conclusion

Have studied optimal execution problems on three different levels

• Microscopic: Order book models

• Mesoscopic: Expected utility maximization in stylized model

• Macroscopic: Multi-agent situation; stealth vs. sunshine trading,
predation vs. liquidity provision
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Thank you
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