Extending Time-consistent Convex Risk Measures from Discrete to Continuous Time: a Convergence Approach

Mitja Stadje

9th Winter School on Mathematical Finance

January 19th, 2010

• How to measure risk?

- Convex risk measures in a one-period setting (static)
- Dynamic convex risk measures
 - in a multiperiod setting
 - in a continuous time setting
- Convex risk measures in continuous time may be interpreted as limits of certain compound one-period convex risk measures.
- Extending discrete-time risk measures like AV@R, the semi-deviation and the Gini risk measure to continuous time

· < E > < E >

• How to measure risk?

- Convex risk measures in a one-period setting (static)
- Dynamic convex risk measures
 - in a multiperiod setting
 - in a continuous time setting
- Convex risk measures in continuous time may be interpreted as limits of certain compound one-period convex risk measures.
- Extending discrete-time risk measures like AV@R, the semi-deviation and the Gini risk measure to continuous time

A B > A B >

- How to measure risk?
 - Convex risk measures in a one-period setting (static)
 - Dynamic convex risk measures
 - in a multiperiod setting
 - in a continuous time setting
- Convex risk measures in continuous time may be interpreted as limits of certain compound one-period convex risk measures.
- Extending discrete-time risk measures like AV@R, the semi-deviation and the Gini risk measure to continuous time

- How to measure risk?
 - Convex risk measures in a one-period setting (static)
 - Dynamic convex risk measures
 - in a multiperiod setting
 - in a continuous time setting
- Convex risk measures in continuous time may be interpreted as limits of certain compound one-period convex risk measures.
- Extending discrete-time risk measures like AV@R, the semi-deviation and the Gini risk measure to continuous time

- How to measure risk?
 - Convex risk measures in a one-period setting (static)
 - Dynamic convex risk measures
 - in a multiperiod setting
 - in a continuous time setting
- Convex risk measures in continuous time may be interpreted as limits of certain compound one-period convex risk measures.
- Extending discrete-time risk measures like AV@R, the semi-deviation and the Gini risk measure to continuous time

Let Ω be a fixed set of scenarios. A financial position is described by a mapping $X : \Omega \to \mathbb{R}$ where $X(\omega)$ is the discounted net worth of the position at the end of the trading period if the scenario $\omega \in \Omega$ is realized. What is the risk of X? One notion of risk used by banks and insurances is Value at Risk (V@R). For the cdf F_X of the random variable X define

$$q_X^+(s) = \inf\{x \in \mathbb{R} | F_X(x) > s\}.$$

Then for fixed $\alpha \in (0,1]$ the Value at Risk of X to a level α is defined by

$$Risk(X) = V @R_{\alpha}(X) = -q_X^+(\alpha) = \inf\{m \in \mathbb{R} | P(X+m < 0] \le \alpha\}.$$

In other words $V@R_{\alpha}(X)$ is the minimal amount of money I have to add to my position X such that with a probability greater than $1 - \alpha$ I will not encounter any losses.

伺い イラト イラト

One notion of risk used by banks and insurances is Value at Risk (V@R). For the cdf F_X of the random variable X define

$$q_X^+(s) = \inf\{x \in \mathbb{R} | F_X(x) > s\}.$$

Then for fixed $\alpha \in (0,1]$ the Value at Risk of X to a level α is defined by

$$\mathsf{Risk}(X) = V @ \mathsf{R}_{\alpha}(X) = -q_X^+(\alpha) = \inf\{m \in \mathbb{R} | \mathsf{P}(X+m < 0] \le \alpha\}.$$

In other words $V@R_{\alpha}(X)$ is the minimal amount of money I have to add to my position X such that with a probability greater than $1 - \alpha$ I will not encounter any losses.

One notion of risk used by banks and insurances is Value at Risk (V@R). For the cdf F_X of the random variable X define

$$q_X^+(s) = \inf\{x \in \mathbb{R} | F_X(x) > s\}.$$

Then for fixed $\alpha \in (0,1]$ the Value at Risk of X to a level α is defined by

$$\mathsf{Risk}(X) = V @ \mathsf{R}_{\alpha}(X) = -q_X^+(\alpha) = \inf\{m \in \mathbb{R} | \mathsf{P}(X+m < 0] \le \alpha\}.$$

In other words $V@R_{\alpha}(X)$ is the minimal amount of money I have to add to my position X such that with a probability greater than $1 - \alpha$ I will not encounter any losses.

Axiomatic approach: static (one-period) convex risk measure (Artzner, Delbaen, Heath (1999), Föllmer, Schied/Frittelli, Rosazza Gianin (2002))

Let (Ω, \mathcal{F}, P) be a probability space and suppose that the set of all possible payoffs is given by $L^{\infty}(\Omega, \mathcal{F}, P)$. A mapping $\rho : L^{\infty}(\Omega, \mathcal{F}, P) \to \mathbb{R}$, is a *convex risk measure* if it has the following properties:

- Normalization: $\rho(0) = 0$
- Translation Invariance: ho(X+m)=
 ho(X)-m for all $m\in\mathbb{R}$
- Monotonicity: If $X \leq Y$ a.s., then $\rho(X) \geq \rho(Y)$
- Convexity: $\rho(\lambda X + (1 \lambda)Y) \le \lambda \rho(X) + (1 \lambda)\rho(Y)$ for $0 \le \lambda \le 1$
- Lower-Semicontinuity: If (X_n) is a bounded sequence which converges to X a.s. then

$$\rho(X) \leq \liminf_{n} \rho(X_n).$$

同 と く ヨ と く ヨ と

Examples

Typical examples for one-period risk measures are

• Average Value at Risk:

$$AV@R^{lpha}(X)=rac{1}{lpha}\int_{0}^{lpha}V@R^{\lambda}(X)d\lambda, \ \ lpha\in(0,1].$$

If the distribution of X is continuous $AV@R^{\alpha}(X) = \mathbb{E}[-X|X \leq q_X^+(\alpha)].$

• Semi-deviation risk measure:

$$S_{t_i}^{\lambda,p}(X) = \mathbb{E}[-X] + \lambda ||(X - \mathbb{E}[X])_-||_p, \ \lambda \in [0,1], \ p \in [1,\infty).$$

Gini risk measure:

$$V^{\theta}(X) = \sup_{Q < 0$$

where

$$\mathcal{C}(\mathcal{Q}|\mathcal{P}) = \mathbb{E}\Big[\Big(rac{dQ}{d\mathcal{P}}-1\Big)^2\Big],$$

Dynamic risk measures

Given $(\Omega, \mathcal{F}, (\mathcal{F}_t), P)$. Let I be the set of time instances in which the agent is allowed to udate his risk. We call a family of mappings $\rho_{s,t} : L^{\infty}(\mathcal{F}_t) \to L^{\infty}(\mathcal{F}_s)$, $s, t \in I$ and $s \leq t$, a dynamic risk measure if it has the following properties for $X, Y \in L^{\infty}(\mathcal{F}_t)$:

- Normalization: $\rho_{s,t}(0) = 0$
- Monotonicity: If $X \leq Y$, then $\rho_{s,t}(X) \geq \rho_{s,t}(Y)$ a.s.
- *F_s*-Translation Invariance: ρ_{s,t}(X + m) = ρ_{s,t}(X) − m for all m ∈ L[∞](*F_s*)
- \mathcal{F}_{s} -Convexity: $\rho_{s,t}(\lambda X + (1 - \lambda)Y) \leq \lambda \rho_{s,t}(X) + (1 - \lambda)\rho_{t}(Y)$ for all $\lambda \in L^{\infty}(\mathcal{F}_{s})$ such that $0 \leq \lambda \leq 1$
- *F_s*-Lower-Semicontinuity: For any *F_t*-adapted bounded sequences *X_n* converging a.s. to *X* we have *ρ_{s,t}(X)* ≤ lim inf_n *ρ_{s,t}(X_n)* a.s.

・吊り イラト イラト

If T is the time horizon of our model, $\rho_{s,T}$ is often denoted by ρ_s .

Time-consistency: for X, Y ∈ L[∞](F_t) ρ_{s',t}(X) ≤ ρ_{s',t}(Y) a.s. for some s' with t ≥ s' ≥ s, implies ρ_{s,t}(X) ≤ ρ_{s,t}(Y) a.s. see for instance Delbaen (2003) or Barrieu and El Karoui (2005). Using time-consistency you can show that for every bounded F_t-measurable X

$$\rho_{s,t}(X) = \rho_{s,T}(X) = \rho_s(X),$$

i.e., $\rho_{s,t} = \rho_s | L^{\infty}(\mathcal{F}_t)$ and thus the whole family $(\rho_{s,t})_{s,t \in I}$ is uniquely determined by $(\rho_s)_{s \in I}$.

If T is the time horizon of our model, $\rho_{s,T}$ is often denoted by ρ_s .

Time-consistency: for X, Y ∈ L[∞](F_t) ρ_{s',t}(X) ≤ ρ_{s',t}(Y) a.s. for some s' with t ≥ s' ≥ s, implies ρ_{s,t}(X) ≤ ρ_{s,t}(Y) a.s. see for instance Delbaen (2003) or Barrieu and El Karoui (2005). Using time-consistency you can show that for every bounded F_t-measurable X

$$\rho_{s,t}(X) = \rho_{s,T}(X) = \rho_s(X),$$

i.e., $\rho_{s,t} = \rho_s | L^{\infty}(\mathcal{F}_t)$ and thus the whole family $(\rho_{s,t})_{s,t \in I}$ is uniquely determined by $(\rho_s)_{s \in I}$.

Suppose that we are in a multiperiod discrete setting, i.e., $I = \{t_0, t_1, \dots, t_k\}$ where $0 = t_0 < t_1 < \dots < t_k = T$. For $i = 0, \dots, k - 1$ define the set of one-step transition densities

$$\mathcal{D}_{t_i} = \{\xi_{t_{i+1}} \in \mathcal{L}^1_+(\mathcal{F}_{t_{i+1}}) \mid \mathbb{E}[\xi_{t_{i+1}} | \mathcal{F}_{t_i}] = 1 \text{ a.s.}\}$$

We identify a probability measure Q with its density $\xi_{t_{i+1}} \in D_{t_i}$. Suppose that $\rho_{t_i,t_{i+1}} : L^{\infty}(\mathcal{F}_{t_{i+1}}) \to L^{\infty}(\mathcal{F}_{t_i})$ is a one-period risk measure.

Define the *penalty function* on D_{t_i} of a one-period risk measure $\rho_{t_i, t_{i+1}}$ as

$$\phi_{t_i}^{
ho_{t_i,t_{i+1}}}(Q) = \mathrm{ess\,sup}_{X \in L^{\infty}(\mathcal{F}_{t_{i+1}})} \{ \mathbb{E}_Q[-X|\mathcal{F}_{t_i}] -
ho_{t_i,t_{i+1}}(X) \}.$$

Every sequence $\xi \in D_{t_i} \times D_{t_{i+1}} \times \ldots \times D_{t_{k-1}}$ induces a *P*-martingale

$$M_{t_r}^{\xi} = \begin{cases} \prod_{j=i+1}^{r} \xi_{t_j} & \text{if } r \ge i+1\\ 1 & \text{if } r \le i \end{cases}$$

and a probability measure Q^{ξ} by $\frac{dQ^{\xi}}{dP} = M_{T}^{\xi}$. Set $D = D_{t_0} \times D_{t_1} \times \ldots \times D_{t_{k-1}}$. For $\xi \in D$ define $\phi_{t_i}^{\rho_{t_i,t_{i+1}}}(Q^{\xi}) = \phi_{t_i}^{\rho_{t_i,t_{i+1}}}(\xi_{t_{i+1}})$. Then from Cheridito and Kupper (2006), we obtain the following representation.

Proposition

Suppose that $(\rho_s)_{s \in I}$ is a discrete-time risk measure. Then

$$\rho_{t_i}(X) = \operatorname{ess\,sup}_{Q \in D} \mathbb{E}_Q \Big[-X - \sum_{j=i}^{k-1} \phi_{t_j}^{\rho_{t_j,t_{j+1}}}(Q) \Big| \mathcal{F}_{t_i} \Big].$$

Dynamic risk measures in continuous time

Now suppose that I = [0, T], i.e., the risk manager is allowed to update his information at *any* time. Risk Modelling can then be done using Backward Stochastic Differential Equations (Barrieu and El Karoui (2005)).

 $\mathsf{BSDE} = \mathsf{backward} \ \mathsf{stochastic} \ \mathsf{differential} \ \mathsf{equation}$

Definition of a BSDE

o . . .

Assume that we have a *d*-dimensional Brownian Motion (W_t^1, \ldots, W_t^d) on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t), P)$ where (\mathcal{F}_t) is the standard filtration. Let $g : [0, T] \times \Omega \times \mathbb{R}^d \to \mathbb{R}$ be a function such that

- $z \mapsto g(t, \omega, z)$ is convex for every fixed $(t, \omega) \in [0, T] imes \Omega$
- for every fixed $z \in \mathbb{R}^d$, $(t, \omega) \to g(t, \omega, z)$ is progressively measurable
- there exists a K>0 with $|g(t,\omega,z)| \leq K(1+|z|^2)$ a.s.

伺い イラン イラン

The solution of a BSDE with driver $g(t, \omega, z)$ and terminal condition $X \in L^{\infty}(\mathcal{F}_{\mathcal{T}})$ is a pair of (suitably integrable) progressively measurable processes (Y_t, Z_t) with values in $\mathbb{R} \times \mathbb{R}^d$, which satisfy

$$Y_t = X + \int_t^T g(s, Z_s) ds - \int_t^T Z_s dW_s, \ t \in [0, T].$$

Let $Y^g(-X)$ be the solution (Y_t) of the BSDE with driver g and terminal condition -X. Define

$$\rho_t^g(X) = Y_t^g(-X).$$

Then ρ^{g} is a dynamic risk measure!

Framework: Risk measures in discrete time

Setting: For fixed N let $B_{N,l}^j$ be independent Bernoulli random variable with $P[B_{N,l}^j = 1] = P[B_{N,l}^j = -1] = \frac{1}{2}; j = 1, ..., d, N \in \mathbb{N}, l = 1, ..., N$. Let

$$R^{N,j}(t_i) = \sqrt{\frac{T}{N}} \sum_{l=1}^{i} B^{j}_{N,l}, \quad t_i = iT/N, \ i = 1, .., N, \ j = 1, .., d$$

and constant on the intervals $[t_i, t_{i+1})$. Let

$$R^{N}(t_{i}) = (R^{N,1}(t_{i}), \ldots, R^{N,d}(t_{i})).$$

Denote by $\mathcal{F}^N = (\mathcal{F}^N_t)_{0 \le t \le T}$ the filtration generated by the random walk.

Assume that there exists a standard Brownian motion W_t such that

$$\sup_{0\leq s\leq T}|R^N(s)-W_s|\to 0 \text{ in } L^2.$$

A robust way of measuring risk in discrete time

Definition

For a collection of one-period risk measures $(F_{t_i}^N)_{i=0,...,k-1}$ with penalty functions $(\phi_{t_i}^{F_{t_i}^N})_{i=0,...,k-1}$ we define its (tilted) robust extension as

$$\rho_{t_i}^N(X) = \sup_{\mu^N} \hat{\mathbb{E}}^{\mu^N} [-X - \sum_{j=i}^{N-1} \phi_{t_j}^{F_{t_j}^N} \left(1 + \mu_{t_i}^N B_{i+1}^N\right) \Delta t_{j+1} |\mathcal{F}_{t_i}]$$

where for every bounded, \mathcal{F}^{N} -adapted process μ^{N} , $\hat{\mathcal{P}}^{\mu^{N}}$ is the measure under which $R_{t}^{N} - \sum_{t_{i} \leq t} \mu_{t_{j}}^{N} \Delta t_{j+1}$ is a martingale.

Goal: Start with one-period risk measures $F_{t_i}^N$ like AV@R, semi-deviation etc.

- \rightarrow Define the robust extension in discrete time.
- \rightarrow Extend it to continuous time by convergence.

Proposition

Suppose we are given a collection of one-period risk measures $(F_{t_i}^N)_{i=0,...,k-1}$. For $z \in \mathbb{R}^d$, $M \in \mathbb{R}$ let

$$g^{N}(t_{i}, z, M) = F_{t_{i}}^{N}(-zB_{t_{i+1}}^{N} - M).$$

Then for every $X^N \in L^{\infty}(\mathcal{F}_T^N)$ there exists a process Z^N and a martingale M^N orthogonal to \mathbb{R}^N such that

$$egin{aligned} &
ho_{t_i}^{N}(X^N) = -X^N + \sum_{t_i \leq t_j < T} g^N(t_j, Z_{t_j}^N, M_{t_{j+1}}^N)(t_{j+1} - t_j) \ & - \sum_{t_i \leq t_j < T} Z_{t_j}^N(R_{t_{j+1}}^N - R_{t_j}^N) - (M_T^N - M_{t_i}^N). \end{aligned}$$

Convergence Theorem for discrete-time risk measures to continuous-time risk measures

Theorem

Let g be a driver function such that for every $z \in \mathbb{R}^d$:

$$\mathbb{E}\Big[\sup_{0\leq t\leq T}\left|g^{N}(t,z,0)-g(t,z)\right|^{2}\Big]\overset{N\to\infty}{\to} 0.$$

Then there exists a continuous-time dynamic risk measure $(\rho_s)_{s \in [0,T]}$ such that for every sequence of discrete payoffs X^N which converge in L^2 to a continuous-time payoff X we have

$$\sup_{t} |\rho_t^N(X^N) - \rho_t(X)| \stackrel{N \to \infty}{\to} 0 \quad in \ L^2$$

Moreover, ρ is the solution of a continuous-time BSDE with terminal condition -X and driver g.

Examples of discrete-time risk measures extended to continuous time: semi-deviation

Suppose that the one-period risk measures are given by the **semi-deviation**:

The robust extension of semi-deviation converges to ρ_t , where for any terminal condition X, $(\rho_t(X), Z_t)$ is the solution of

$$\rho_t(X) = -X + \int_t^T g(Z_s) ds - \int_t^T Z_s dW_s$$

with g(z) defined by

$$g(z) = \lambda \left(\frac{1}{2^d} \left(\sum_{l=1,\dots,d, k_l \in \{1,2\}} (-1)^{k_l} z^l \right)_{-}^p \right)^{1/p}, \ z = (z^1,\dots,z^d) \in \mathbb{R}^d.$$

Examples of discrete-time risk measures extended to continuous time: Average Value at Risk

Suppose that the one-period risk measures are given by Average Value at Risk: Let

 $egin{aligned} x_i(z) &= i ext{-th} ext{ largest element of the set} \ &\{(-1)^{k_1}z^1+\ldots+(-1)^{k_d}z^d|k_l\in\{1,2\}, l=1,\ldots,d\}. \end{aligned}$

The robust extension of AV@R converges to ρ_t , where $(\rho_t(X), Z_t)$ is the solution of the BSDE with terminal condition -X and driver

$$g(z) = -\frac{1}{\alpha} \Big(x_{2^d - \lceil 2^d \alpha \rceil + 1} \Big(\alpha - \frac{\lceil 2^d \alpha \rceil - 1}{2^d} \Big) + \frac{1}{2^d} \sum_{j=1}^{\lceil 2^d \alpha \rceil - 1} x_{2^d - j + 1}(z) \Big).$$

In particular, if $\alpha < 1/2^d$ we have

$$g(z) = |z_1| + |z_2| + \ldots + |z_d|.$$

Suppose that the one-period risk measures are given by the **Gini** risk measure: Define

$$I(z) = \sup \left\{ I \in \{2^d, \dots, 1\} | \text{for all } j \in \{2^d, \dots, l\} : \frac{1}{\theta(2^d + 1 - j)} > - \frac{\sum_{i=l}^{2^d} x_i(z)}{2^d + 1 - l} + x_j(z) \text{ and } \frac{1}{\theta(2^d + 1 - l)} \le - \frac{\sum_{i=l}^{2^d} x_i(z)}{2^d + 1 - l} + x_{l-1}(z) \right\}.$$

The driver for the BSDE of the extension of the Gini risk measure to continuous time is given by

$$g(z) = -\frac{1}{2\theta(2^d + 1 - l(z))} + \frac{1}{2\theta} - \frac{\sum_{j=l(z)}^{2^d} x_i(z)}{2^d + 1 - l(z)} - \frac{\theta}{2} \frac{\left(\sum_{j=l(z)}^{2^d} x_i(z)\right)^2}{2^d + 1 - l(z)} + \frac{\theta}{2} \sum_{j=l(z)}^{2^d} x_j^2(z)$$

for $z = (z^1, \dots, z^d) \in \mathbb{R}^d$. In the special case that d = 1 we get

$$g(z)= \left\{egin{array}{ll} |z|-rac{1}{2 heta}, & ext{if} \ |z|\geq 1/ heta\ rac{ heta}{2}z^2, & ext{if} \ |z|<1/ heta. \end{array}
ight.$$

.