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What is risk?

Let Ω be a fixed set of scenarios. A financial position is described
by a mapping X : Ω → R where X (ω) is the discounted net worth
of the position at the end of the trading period if the scenario
ω ∈ Ω is realized. What is the risk of X?
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Value at Risk

One notion of risk used by banks and insurances is Value at Risk

(V@R). For the cdf FX of the random variable X define

q+
X (s) = inf{x ∈ R|FX (x) > s}.

Then for fixed α ∈ (0, 1] the Value at Risk of X to a level α is
defined by

Risk(X ) = V @Rα(X ) = −q+
X (α) = inf{m ∈ R|P(X+m < 0] ≤ α}.

In other words V @Rα(X ) is the minimal amount of money I have
to add to my position X such that with a probability greater than
1 − α I will not encounter any losses.
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Axiomatic approach: static (one-period) convex risk

measure (Artzner, Delbaen, Heath (1999), Föllmer,
Schied/Frittelli, Rosazza Gianin (2002))

Let (Ω,F ,P) be a probability space and suppose that the set of all
possible payoffs is given by L∞(Ω,F ,P). A mapping
ρ : L∞(Ω,F ,P) → R, is a convex risk measure if it has the
following properties:

Normalization: ρ(0) = 0

Translation Invariance: ρ(X + m) = ρ(X ) − m for all m ∈ R

Monotonicity: If X ≤ Y a.s., then ρ(X ) ≥ ρ(Y )

Convexity: ρ(λX + (1 − λ)Y ) ≤ λρ(X ) + (1 − λ)ρ(Y ) for
0 ≤ λ ≤ 1

Lower-Semicontinuity: If (Xn) is a bounded sequence which
converges to X a.s. then

ρ(X ) ≤ lim inf
n

ρ(Xn).
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Examples

Typical examples for one-period risk measures are

Average Value at Risk:

AV @Rα(X ) =
1

α

∫ α

0
V @Rλ(X )dλ, α ∈ (0, 1].

If the distribution of X is continuous
AV @Rα(X ) = E[−X |X ≤ q+

X (α)].

Semi-deviation risk measure:

S
λ,p
ti

(X ) = E[−X ]+λ||(X−E[X ])−||p, λ ∈ [0, 1], p ∈ [1,∞).

Gini risk measure:

V θ(X ) = sup
Q<<P

{

EQ [−X ] −
1

2θ
C (Q|P)

}

, θ > 0

where

C (Q|P) = E

[(dQ

dP
− 1

)2]

.
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Dynamic risk measures

Given (Ω,F , (Ft),P). Let I be the set of time instances in which
the agent is allowed to udate his risk. We call a family of
mappings ρs,t : L∞(Ft) → L∞(Fs), s, t ∈ I and s ≤ t, a dynamic

risk measure if it has the following properties for X ,Y ∈ L∞(Ft):

Normalization: ρs,t(0) = 0

Monotonicity: If X ≤ Y , then ρs,t(X ) ≥ ρs,t(Y ) a.s.

Fs -Translation Invariance: ρs,t(X + m) = ρs,t(X ) − m for all
m ∈ L∞(Fs)

Fs -Convexity:
ρs,t(λX + (1 − λ)Y ) ≤ λρs,t(X ) + (1 − λ)ρt(Y ) for all
λ ∈ L∞(Fs) such that 0 ≤ λ ≤ 1

Fs -Lower-Semicontinuity: For any Ft−adapted bounded
sequences Xn converging a.s. to X we have
ρs,t(X ) ≤ lim infn ρs,t(Xn) a.s.
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Dynamic risk measures

If T is the time horizon of our model, ρs,T is often denoted by ρs .

Time-consistency: for X ,Y ∈ L∞(Ft) ρs′,t(X ) ≤ ρs′,t(Y ) a.s.
for some s ′ with t ≥ s ′ ≥ s, implies ρs,t(X ) ≤ ρs,t(Y ) a.s.

see for instance Delbaen (2003) or Barrieu and El Karoui (2005).
Using time-consistency you can show that for every bounded
Ft−measurable X

ρs,t(X ) = ρs,T (X ) = ρs(X ),

i.e., ρs,t = ρs |L
∞(Ft) and thus the whole family (ρs,t)s,t∈I is

uniquely determined by (ρs)s∈I .

Mitja Stadje, Eurandom Dynamic Risk Measures: From Discrete to Continuous Time



Dynamic risk measures

If T is the time horizon of our model, ρs,T is often denoted by ρs .

Time-consistency: for X ,Y ∈ L∞(Ft) ρs′,t(X ) ≤ ρs′,t(Y ) a.s.
for some s ′ with t ≥ s ′ ≥ s, implies ρs,t(X ) ≤ ρs,t(Y ) a.s.

see for instance Delbaen (2003) or Barrieu and El Karoui (2005).
Using time-consistency you can show that for every bounded
Ft−measurable X

ρs,t(X ) = ρs,T (X ) = ρs(X ),

i.e., ρs,t = ρs |L
∞(Ft) and thus the whole family (ρs,t)s,t∈I is

uniquely determined by (ρs)s∈I .

Mitja Stadje, Eurandom Dynamic Risk Measures: From Discrete to Continuous Time



Duality in a discrete setting

Suppose that we are in a multiperiod discrete setting, i.e.,
I = {t0, t1, . . . , tk} where 0 = t0 < t1 < . . . < tk = T .
For i = 0, . . . , k − 1 define the set of one-step transition densities

Dti = {ξti+1
∈ L1

+(Fti+1
) | E[ξti+1

|Fti ] = 1 a.s.}.

We identify a probability measure Q with its density ξti+1
∈ Dti .

Suppose that ρti ,ti+1
: L∞(Fti+1

) → L∞(Fti ) is a one-period risk
measure.
Define the penalty function on Dti of a one-period risk measure
ρti ,ti+1

as

φ
ρti ,ti+1
ti

(Q) = ess supX∈L∞(Fti+1
){EQ [−X |Fti ] − ρti ,ti+1

(X )}.
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Every sequence ξ ∈ Dti × Dti+1
× . . . × Dtk−1

induces a
P-martingale

M
ξ
tr =











r
∏

j=i+1

ξtj if r ≥ i + 1

1 if r ≤ i

and a probability measure Qξ by
dQξ

dP
= M

ξ
T . Set

D = Dt0 × Dt1 × . . . × Dtk−1
. For ξ ∈ D define

φ
ρti ,ti+1
ti

(Qξ) = φ
ρti ,ti+1
ti

(ξti+1
). Then from Cheridito and Kupper

(2006), we obtain the following representation.

Proposition

Suppose that (ρs)s∈I is a discrete-time risk measure. Then

ρti (X ) = ess supQ∈D EQ

[

− X −
k−1
∑

j=i

φ
ρtj ,tj+1
tj

(Q)
∣

∣

∣
Fti

]

.
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Dynamic risk measures in continuous time

Now suppose that I = [0,T ], i.e., the risk manager is allowed to
update his information at any time. Risk Modelling can then be
done using Backward Stochastic Differential Equations (Barrieu
and El Karoui (2005)).
BSDE = backward stochastic differential equation
Definition of a BSDE
Assume that we have a d-dimensional Brownian Motion
(W 1

t , . . . ,W d
t ) on a filtered probability space (Ω,F , (Ft),P) where

(Ft) is the standard filtration. Let g : [0,T ] × Ω × R
d → R be a

function such that

z 7→ g(t, ω, z) is convex for every fixed (t, ω) ∈ [0,T ] × Ω

for every fixed z ∈ R
d , (t, ω) → g(t, ω, z) is progressively

measurable

there exists a K > 0 with |g(t, ω, z)| ≤ K (1 + |z |2) a.s.

. . .
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The solution of a BSDE with driver g(t, ω, z) and terminal
condition X ∈ L∞(FT ) is a pair of (suitably integrable)
progressively measurable processes (Yt ,Zt) with values in R × R

d ,
which satisfy

Yt = X +

∫ T

t

g(s,Zs)ds −

∫ T

t

ZsdWs , t ∈ [0,T ].

Let Y g (−X ) be the solution (Yt) of the BSDE with driver g and
terminal condition −X . Define

ρg
t (X ) = Y

g
t (−X ).

Then ρg is a dynamic risk measure!
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Framework: Risk measures in discrete time

Setting: For fixed N let B
j
N,l be independent Bernoulli random

variable with

P [B j
N,l = 1] = P [B j

N,l = −1] =
1

2
; j = 1, . . . , d , N ∈ N,

l = 1, . . . ,N. Let

RN,j(ti ) =

√

T

N

i
∑

l=1

B
j
N,l , ti = iT/N, i = 1, ..,N, j = 1, .., d

and constant on the intervals [ti , ti+1). Let

RN(ti ) = (RN,1(ti ), . . . ,R
N,d(ti )).

Denote by FN = (FN
t )0≤t≤T the filtration generated by the

random walk.
Assume that there exists a standard Brownian motion Wt such that

sup
0≤s≤T

|RN(s) − Ws | → 0 in L2.
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A robust way of measuring risk in discrete time

Definition

For a collection of one-period risk measures (FN
ti

)i=0,...,k−1 with

penalty functions (φ
FN

ti
ti

)i=0,...,k−1 we define its (tilted) robust
extension as

ρN
ti
(X ) = sup

µN

Ê
µN

[−X −

N−1
∑

j=i

φ
FN

tj

tj

(

1 + µN
ti
BN

i+1

)

∆tj+1|Fti ]

where for every bounded, FN -adapted process µN , P̂µN
is the

measure under which RN
t −

∑

tj≤t µN
tj
∆tj+1 is a martingale.

Goal: Start with one-period risk measures FN
ti

like AV@R,
semi-deviation etc.
→ Define the robust extension in discrete time.
→ Extend it to continuous time by convergence.
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Proposition

Suppose we are given a collection of one-period risk measures

(FN
ti

)i=0,...,k−1. For z ∈ R
d ,M ∈ R let

gN(ti , z ,M) = FN
ti

(−zBN
ti+1

− M).

Then for every XN ∈ L∞(FN
T ) there exists a process ZN and a

martingale MN orthogonal to RN such that

ρN
ti
(XN) = −XN +

∑

ti≤tj<T

gN(tj ,Z
N
tj

,MN
tj+1

)(tj+1 − tj)

−
∑

ti≤tj<T

ZN
tj

(RN
tj+1

− RN
tj

) − (MN
T − MN

ti
).
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Convergence Theorem for discrete-time risk measures to

continuous-time risk measures

Theorem

Let g be a driver function such that for every z ∈ R
d :

E

[

sup
0≤t≤T

∣

∣gN(t, z , 0) − g(t, z)
∣

∣

2
]

N→∞
→ 0.

Then there exists a continuous-time dynamic risk measure

(ρs)s∈[0,T ] such that for every sequence of discrete payoffs XN

which converge in L2 to a continuous-time payoff X we have

sup
t

|ρN
t (XN) − ρt(X )|

N→∞
→ 0 in L2

Moreover, ρ is the solution of a continuous-time BSDE with

terminal condition −X and driver g .
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Examples of discrete-time risk measures extended to

continuous time: semi-deviation

Suppose that the one-period risk measures are given by the
semi-deviation:

The robust extension of semi-deviation converges to ρt , where for
any terminal condition X , (ρt(X ),Zt) is the solution of

ρt(X ) = −X +

∫ T

t

g(Zs)ds −

∫ T

t

ZsdWs

with g(z) defined by

g(z) = λ

(

1

2d

(

∑

l=1,...,d, kl∈{1,2}

(−1)kl z l
)p

−

)1/p

, z = (z1, . . . , zd) ∈ R
d .

Mitja Stadje, Eurandom Dynamic Risk Measures: From Discrete to Continuous Time



Examples of discrete-time risk measures extended to

continuous time: Average Value at Risk

Suppose that the one-period risk measures are given by
Average Value at Risk:

Let

xi(z) = i-th largest element of the set

{(−1)k1z1 + . . . + (−1)kd zd |kl ∈ {1, 2}, l = 1, . . . , d}.

The robust extension of AV@R converges to ρt , where (ρt(X ),Zt)
is the solution of the BSDE with terminal condition −X and driver

g(z) = −
1

α

(

x2d−d2dαe+1

(

α −
d2dαe − 1

2d

)

+
1

2d

d2dαe−1
∑

j=1

x2d−j+1(z)
)

.

In particular, if α < 1/2d we have

g(z) = |z1| + |z2| + . . . + |zd |.
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Examples of discrete risk measures extended to continuous

time

Suppose that the one-period risk measures are given by the Gini

risk measure: Define

l(z) = sup
{

l ∈ {2d , . . . , 1}
∣

∣for all j ∈ {2d , . . . , l} :
1

θ(2d + 1 − j)
>

−

∑2d

i=l xi (z)

2d + 1 − l
+ xj(z) and

1

θ(2d + 1 − l)
≤ −

∑2d

i=l xi (z)

2d + 1 − l
+ xl−1(z)

}

.
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The driver for the BSDE of the extension of the Gini risk measure
to continuous time is given by

g(z) = −
1

2θ(2d + 1 − l(z))
+

1

2θ
−

∑2d

j=l(z) xi(z)

2d + 1 − l(z)

−
θ

2

(

∑2d

j=l(z) xi(z)
)2

2d + 1 − l(z)
+

θ

2

2d
∑

j=l(z)

x2
j (z)

for z = (z1, . . . , zd) ∈ R
d . In the special case that d = 1 we get

g(z) =











|z | −
1

2θ
, if |z | ≥ 1/θ

θ

2
z2, if |z | < 1/θ.
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