Discrete hedging in models with jumps

Peter Tankov

CMAP, Ecole Polytechnique

Joint work with E. Voltchkova (Toulouse 1), M. Brodén (Lund)

Lunteren, January 18, 2010

Discrete hedging Hedging in incomplete markets

Discrete hedging

- In option pricing models, the hedging strategy is usually computed as a function of stock price (greek) or in feedback form, which means that it varies continuously, and often has infinite variation.
- Continuous rebalancing is unfeasible: in practice, the strategy F_t is replaced with a discrete strategy, leading to a discretization error.
- The simplest choice is $F_t^n := F_{h[t/h]}$, h = T/n.
- This discretization error has only been studied in the case of continuous processes.
- Two main approaches: weak convergence (CLT for hedging error) and L^2 convergence

< 日 > < 同 > < 三 > < 三 >

Discrete hedging Hedging in incomplete markets

Discrete hedging: the complete market case

• Bertsimas, Kogan and Lo '98 introduced an *asymptotic approach* allowing to study discrete hedging in continuous time.

Suppose

$$dS_t = \mu(t, S_t)dt + \sigma(t, S_t)dW_t$$

and we want to hedge a European option with payoff $H(S_T)$ using delta-hedging $F_t = \frac{\partial C}{\partial S}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\begin{array}{c} {\color{black} Introduction}\\ Weak convergence\\ L^2 convergence\\ Specific strategies and pay-offs \end{array}$

Discrete hedging Hedging in incomplete markets

CLT for hedging error

The discrete hedging error is defined by

$$\varepsilon_T^n = H(S_T) - \int_0^T F_t^n dS_t$$

Then $\varepsilon^n_T \to 0$ but the renormalized error $\frac{1}{\sqrt{h}} \varepsilon^n_T$ converges to

$$\sqrt{\frac{1}{2}}\int_0^T \frac{\partial^2 C}{\partial S^2} \sigma(t, S_t)^2 dW_t^*,$$

where W^* is a Brownian motion independent of W.

- Hedging error decays as \sqrt{h} .
- It is orthogonal to the stock price.
- The amplitude is determined by the gamma $\frac{\partial^2 C}{\partial S^2}$

Approximating hedging portfolios

Hayashi and Mykland '05 interpreted the discrete hedging error as the error of approximating the "ideal" hedging portfolio $\int_0^T F_t dS_t$ with a feasible hedging portfolio $\int_0^T F_t^n dS_t$

This makes sense in incomplete markets
 Suppose F and S are Itô process:

 $dF_t = \tilde{\mu}_t dt + \tilde{\sigma}_t dW_t$ and $dS_t = \mu_t dt + \sigma_t dW_t$. Then

$$\frac{1}{\sqrt{h}}\varepsilon_t^n \Rightarrow \sqrt{\frac{1}{2}} \int_0^t \tilde{\sigma}_s \sigma_s dW_s^*, \qquad \left(\tilde{\sigma}_t = \frac{\partial^2 C}{\partial S^2} \sigma(t, S_t)\right)$$

where $\varepsilon_t^n := \int_0^t (F_t - F_t^n) dS_t.$

- Weak convergence of processes in the Skorokhod topology on the space $\mathbb D$ of càdlàg functions

 $\begin{array}{c} {\color{black} Introduction}\\ Weak convergence\\ L^2 convergence\\ Specific strategies and pay-offs \end{array}$

Discrete hedging Hedging in incomplete markets

 L^2 hedging error for continuous processes

• Result by Zhang (1999): for call/put options, the L^2 hedging error converges to the expected square of the weak limit.

$$\lim_{n\to\infty}\frac{1}{h}E[(\varepsilon_T^n)^2] = \frac{1}{2}E\left[\int_0^T \left(\frac{\partial^2 C}{\partial S^2}\right)^2 \sigma(s,S_s)^4 ds\right].$$

- The constant may be improved by an intelligent choice of rebalancing dates (Brodén and Wiktorsson '08) but the convergence rate cannot be improved.
- See also related results by Gobet and Temam (01) and Geiss (02), (06), (07).

イロト イポト イヨト イヨト

 $\begin{array}{c} {\color{black} Introduction}\\ Weak convergence\\ L^2 convergence\\ Specific strategies and pay-offs \end{array}$

Discrete hedging Hedging in incomplete markets

Hedging in incomplete markets

- Incomplete market: exact replication impossible.
- Hedging is now an approximation problem.
- Industry practice: sensitivities to risk factors

 $\begin{aligned} \text{Delta} &= \frac{\partial C(t,S_t)}{\partial S}: & \text{infinitesimal moves, hedge with stock} \\ \text{Gamma} &= \frac{\partial^2 C(t,S_t)}{\partial S^2}: & \text{bigger moves; hedge with liquid options} \end{aligned}$

• Quadratic hedging: control the residual error

$$\min_{F} E\left(c + \int_{0}^{T} F_{t} dS_{t} - Y\right)^{2}$$

All these strategies require a continuously rebalanced portfolio.

Discretization error in presence of jumps

Our idea: study the discretization error

$$\varepsilon_t^n := \int_0^t (F_{t-} - F_{t-}^n) dS_t$$

in presence of jumps in the underlying and the hedging strategy.

- Approximation error of the Lévy-driven Euler scheme: Jacod and Protter (98), Jacod (04)
- Related results in the approximation of quadratic variation by realized volatility

$$X_T^2 = X_0^2 + 2 \int_0^T X_{t-} dX_t + [X, X]_T$$

• Limit theorems for the approximation error of quadratic variation: Jacod (08).

Model setup The asymptotic error process Proof of the weak convergence

Model setup: Lévy-Itô processes

$$\begin{aligned} X_t &= X_0 + \int_0^t \mu_s ds + \int_0^t \sigma_s dW_s + \int_0^t \int_{|z| \le 1} \gamma_s(z) \tilde{J}(ds \times dz) \\ &+ \int_0^t \int_{|z| > 1} \gamma_s(z) J(ds \times dz). \end{aligned}$$

- J: Poisson random measure with intensity $dt imes \nu$
- μ and σ are càdlàg (\mathcal{F}_t)-adapted • $\gamma: \Omega \times [0, T] \times \mathbb{R} \to \mathbb{R}$ is such that $(\omega, z) \mapsto \gamma_t(z)$ is $\mathcal{F}_t \times \mathcal{B}(\mathbb{R})$ -measurable $\forall t$ and $t \to \gamma_t(z)$ is càglàd $\forall \omega, z$;

$$\gamma_t(z)^2 \leq A_t \rho(z), \qquad \int_{|z| \leq 1} \rho(z) \nu(dz) < \infty$$

with ρ positive deterministic and A càglàd (\mathcal{F}_t)-adapted.

Model setup The asymptotic error process Proof of the weak convergence

Model setup

- The stock price S is a Lévy-Itô process with coefficients $\mu, \sigma, \gamma;$
- The continuous-time strategy F is a Lévy-Itô process with coefficients μ̃, σ̃, γ̃.
- The agent uses the discrete strategy Fⁿ_t := F_{h[t/h]} instead of the continuous strategy F_t.

< 日 > < 同 > < 三 > < 三 >

Introduction Weak convergence L^2 convergence Specific strategies and pay-offs Model setup The asymptotic error process Proof of the weak convergence

Weak convergence: the normalizing sequence

The normalizing factor need not be equal to $1/\sqrt{h}$. Suppose *F* and *S* move only by finite-intensity jumps. If there is only one jump between t_i and t_{i+1} ,

$$\int_{t_{i}}^{t_{i+1}} F_{t-} dS_{t} = \int_{t_{i}}^{t_{i+1}} F_{t-}^{n} dS_{t}$$

Therefore $P[\varepsilon_t^n \neq 0] = O(1/n)$ and

$$\frac{1}{h^{\alpha}}\varepsilon_t^n \to 0$$

in probability $\forall \alpha > 0$.

More generally, if S and F are Lévy-Itô processes without diffusion parts,

$$\frac{1}{\sqrt{h}}\varepsilon_t^n \to 0$$

in probability uniformly on t.

<ロト < 同ト < 三ト

Introduction Weak convergence L² convergence Specific strategies and pay-offs Model setup The asymptotic error process Proof of the weak convergence

Weak convergence

The discretization error satisfies

$$\begin{split} \frac{1}{\sqrt{h}} \varepsilon_t^n &\to \sqrt{\frac{1}{2}} \int_0^t \sigma_s \tilde{\sigma}_s dW_s^* + \sum_{i: T_i \leq t} \Delta F_{T_i} \sqrt{\zeta_i} \xi_i \sigma_{T_i} \\ &+ \sum_{i: T_i \leq t} \Delta S_{T_i} \sqrt{1 - \zeta_i} \xi_i' \tilde{\sigma}_{T_i-}. \end{split}$$

 W^* is a standard BM independent from W and J, $(\xi_k)_{k\geq 1}$ and $(\xi'_k)_{k\geq 1}$ are two sequences of independent N(0,1), $(\zeta_k)_{k\geq 1}$ is sequence of independent U([0,1]) $(T_i)_{i\geq 1}$ are the jump times of J enumerated in any order.

イロト イポト イヨト イヨト

Introduction Weak convergence L² convergence Specific strategies and pay-offs Model setup The asymptotic error process Proof of the weak convergence

Remarks on convergence

- The hedging error $\frac{1}{\sqrt{h}}\varepsilon_t^n$ converges weakly in finite-dimensional laws but not in Skorohod topology.
- The discretized error process $\frac{1}{\sqrt{h}}\varepsilon_{h[t/h]}^{n}$ converges in Skorohod topology to the same limit.

イロト イポト イヨト イヨト

Model setup The asymptotic error process **Proof of the weak convergence**

Idea of the proof

Main tool: if (X^n) and (Y^n) are two sequences of processes such that

$$\sup_t |X_t^n - Y_t^n| \to 0 \quad \text{in probability}$$

and $X^n \to X$ weakly then $Y^n \to X$ weakly.

< 日 > < 同 > < 三 > < 三 >

Model setup The asymptotic error process **Proof of the weak convergence**

Idea of the proof

- Step 1 Remove the big jumps
- Step 2 Remove the small jumps
- Step 3 Now we can write

$$S_{t} = S_{0} + S_{t}^{d} + S_{t}^{c} + S_{t}^{j}$$

$$S_{t}^{d} = \int_{0}^{t} \left(\mu_{s} + \int \gamma_{s}(z)\nu(dz) \right) ds$$

$$S_{t}^{c} = \int_{0}^{t} \sigma_{s} dW_{s}$$

$$S_{t}^{j} = \int_{0}^{t} \int \gamma_{s}(z)J(ds \times dz)$$

and $F_t = F_0 + F_t^d + F_t^c + F_t^j$.

< D > < P > < P > < P >

Model setup The asymptotic error process Proof of the weak convergence

Idea of the proof

The leading terms in the hedging error are

$$\begin{split} \frac{1}{\sqrt{h}} \int (F_t^c - F_t^{c,n}) dS_t^c &\to \sqrt{\frac{1}{2}} \int_0^t \sigma_s \tilde{\sigma}_s dW_s^* \\ \frac{1}{\sqrt{h}} \int (F_t^j - F_t^{j,n}) dS_t^c &= \sum_i \Delta F_{T_i} \frac{1}{\sqrt{h}} \int_{T_i}^{r(T_i)} \sigma_s dW_s \\ &\to \sum_{i:T_i \leq t} \Delta F_{T_i} \sqrt{\zeta_i} \xi_i \sigma_{T_i} \\ \frac{1}{\sqrt{h}} \int (F_t^c - F_t^{c,n}) dS_t^j &= \sum_i \Delta S_{T_i} \frac{1}{\sqrt{h}} \int_{I(T_i)}^{T_i} \tilde{\sigma}_s dW_s \\ &\to \sum_{i:T_i \leq t} \Delta S_{T_i} \sqrt{1 - \zeta_i} \xi_i' \tilde{\sigma}_{T_i-}. \end{split}$$

< D > < P > < P > < P >

Introduction Weak convergence *L*² convergence Specific strategies and pay-offs The model The main theorem The proof

Discretization error in presence of jumps

- In finance it is more common to measure risk by an L² criterion, therefore in this work we want to study the rate of convergence of E[(ε^h_T)²] to zero.
- Surprising result: Even in the most simple cases, the L² error does not converge to the expected square of the weak limit if there are jumps *both* in *S* and in *F*.

 $\begin{array}{c} & \text{Introduction} \\ \text{Weak convergence} \\ & \textit{L}^2 \text{ convergence} \\ \text{Specific strategies and pay-offs} \end{array}$

The model The main theorem The proof

L^2 convergence: example

Suppose

$$F_t = S_t = N_t,$$

with N_t a Poisson process with intensity λ . Then

$$P\left[\int_{0}^{T} (N_{t-} - N_{h[t/h]}) dN_{t} \neq 0\right] = O(h)$$

and therefore $h^{-\alpha}\varepsilon_T^h \to 0$ in probability for all $\alpha > 0$. However

$$\lim_{n\to\infty} E\left[\left(\frac{1}{\sqrt{h}}\int_0^T (N_{t-}-N_{h[t/h]})dN_t\right)^2\right]=\frac{\lambda^2 T}{2}.$$

イロト イポト イヨト イヨト

Introduction Weak convergence L^2 convergence Specific strategies and pay-offs

The model The main theorem The proof

Model setup: the stock price process

Let S_t = e^{Xt}, where X is a Lévy process with characteristic triple (a, ν, b), such that E[S²_t] < ∞ and denote

$$A:=a^2+\int_{\mathbb{R}}(e^z-1)^2\nu(dz),\quad \phi_t(u)=E[e^{iuX_t}]$$

• There exists an equivalent martingale measure Q under which X is again a Lévy process with triple $(a, \overline{\nu}, \overline{b})$ and we denote

$$ar{A} := a^2 + \int_{\mathbb{R}} (e^z - 1)^2 ar{
u}(dz), \quad ar{\phi}_t(u) = E^Q[e^{iuX_t}]$$

< 🗇 🕨 < 🖻 🕨

 $\begin{array}{c} & \text{Introduction} \\ \text{Weak convergence} \\ \textbf{\textit{L}}^2 \text{ convergence} \\ \text{Specific strategies and pay-offs} \end{array}$

The model The main theorem The proof

Model setup: the strategy

 Assume the continuous-time hedging strategy F is a Lévy-Itô process

$$F_t = F_0 + \int_0^t \mu_u du + \int_0^t \sigma_u dW_u + \int_0^t \int_{\mathbb{R}} \gamma_{u-}(z) \tilde{J}(du \times dz),$$

where \tilde{J} is the compensated Poisson random measure of jumps of X.

- The rebalancing dates are equally spaced: T_i = hi and we denote I(t) = sup{T_i, T_i < t} and r(t) = inf{T_i, T_i ≥ t}
- The agent uses the discrete-time strategy $F_{l(t)}$ instead of the continuous-time strategy F_t .

イロン イボン イヨン イヨン

 $\begin{array}{c} & \text{Introduction} \\ \text{Weak convergence} \\ \textbf{\textit{L}}^2 \text{ convergence} \\ \text{Specific strategies and pay-offs} \end{array}$

The model The main theorem The proof

The general limit theorem

Choose a function $\rho(h)$ with $\lim_{h\downarrow 0} \rho(h) = 0$ and assume that

$$\frac{h}{\rho(h)} E\left[\int_{0}^{T} S_{t}^{2}(r(t)-t) \left(\mu_{t}^{2}+\int_{\mathbb{R}} \gamma_{t}^{2}(z)\nu(dz)\right) dt\right] \xrightarrow{h\to 0} 0.$$

Then
$$\lim_{h\downarrow 0} \frac{1}{\rho(h)} E\left[\left(\varepsilon_{T}^{h}\right)^{2}\right]$$
$$=\lim_{h\downarrow 0} \frac{A}{\rho(h)} E\left[\int_{0}^{T} S_{t}^{2}(r(t)-t) \left(\sigma_{t}^{2}+\int_{\mathbb{R}} \gamma_{t}^{2}(z)e^{2z}\nu(dz)\right) dt\right]$$

whenever the limit in the right-hand side exists.

(人間) ト く ヨ ト く ヨ ト

Introduction Weak convergence L^2 convergence Specific strategies and pay-offs The model The main theorem The proof

The regular regime

Let the assumption of the theorem be satisfied and suppose

$$E\left[\int_0^T S_t^2\left(\sigma_t^2 + \int_{\mathbb{R}} \gamma_t^2(z) e^{2z} \nu(dz)\right) dt\right] < \infty$$

Then it is easy to see that

$$\lim_{h\downarrow 0} \frac{1}{h} E\left[\left(\varepsilon_T^n\right)^2\right] = \frac{A}{2} E\left[\int_0^T S_t^2\left(\sigma_t^2 + \int_{\mathbb{R}} \gamma_t^2(z) e^{2z} \nu(dz)\right) dt\right].$$

Therefore the best possible convergence rate in this setting, obtained for regular strategies, is $\rho(h) = h$. However, worse rates may arise in the presence of irregular pay-offs.

・ 戸 ト ・ ヨ ト

Introduction Weak convergence L² convergence Specific strategies and pay-offs The model The main theorem **The proof**

Idea of the proof

- For simplicity, suppose that S is a P-martingale.
- Define an auxiliary probability measure P^2 by

$$\frac{dP^2}{dP}|_{\mathcal{F}_t} = \frac{e^{2X_t}}{e^{t\psi(-2i)}}, \quad \psi(u) = \log E e^{iuX_1}.$$

• Under P^2 , the proces $W_t^{(2)} = W_t - 2at$ is a standard Brownian motion and

$$ilde{J}^{(2)}(dt imes dz) = ilde{J}(dt imes dz) - dt imes (e^{2z}-1)
u(dz)$$

is a compensated Poisson random measure.

- 4 同 6 4 日 6 4 日 6

 $\begin{array}{c} & \text{Introduction} \\ \text{Weak convergence} \\ \textbf{\textit{L}}^2 \text{ convergence} \\ \text{Specific strategies and pay-offs} \end{array}$

The model The main theorem **The proof**

Idea of the proof

The hedging error satisfies

$$\begin{aligned} \frac{1}{\rho(h)} E\left[\left(\varepsilon_{T}^{h}\right)^{2}\right] &= \frac{1}{\rho(h)} E\left[\left(\int_{0}^{T} (F_{t-} - F_{l(t)}) dS_{t}\right)^{2}\right] \\ &= \frac{A}{\rho(h)} E\left[\int_{0}^{T} (F_{t-} - F_{l(t)})^{2} S_{t}^{2} dt\right] \\ &= \frac{A}{\rho(h)} \int_{0}^{T} e^{t\psi(-2i)} E^{P^{2}} [(F_{t-} - F_{l(t)})^{2}] dt \\ &\approx \frac{A}{\rho(h)} \int_{0}^{T} dt \, e^{t\psi(-2i)} E^{P^{2}} \left[\int_{l(t)}^{t} \sigma_{s} dW_{s}^{(2)} + \int_{l(t)}^{t} \int \gamma_{s-}(z) \tilde{J}^{(2)}(ds \, dz)\right]^{2} \\ &= \frac{A}{\rho(h)} \int_{0}^{T} dt \, e^{t\psi(-2i)} E^{P^{2}} \left[\int_{l(t)}^{t} \left(\sigma_{s}^{2} + \int_{\mathbb{R}} \gamma_{s}^{2}(z) e^{2z} \nu(dz)\right) ds\right] \end{aligned}$$

 $\begin{array}{c} & \text{Introduction} \\ \text{Weak convergence} \\ & \textit{L}^2 \text{ convergence} \\ \text{Specific strategies and pay-offs} \end{array}$

The model The main theorem The proof

Idea of the proof

Using integration by parts and switching back to the probability P,

$$\begin{aligned} \frac{A}{\rho(h)} \int_0^T e^{t\psi(-2i)} E^{P^2} \left[\int_{l(t)}^t \left(\sigma_s^2 + \int_{\mathbb{R}} \gamma_s^2(z) e^{2z} \nu(dz) \right) ds \right] dt \\ &= \frac{A}{\rho(h)} \int_0^T dt \, E^{P^2} \left[\sigma_t^2 + \int_{\mathbb{R}} \gamma_t^2(z) e^{2z} \nu(dz) \right] \int_t^{r(t)} e^{s\psi(-2i)} ds \\ &= \frac{A(1+O(h))}{\rho(h)} E \left[\int_0^T S_t^2(r(t)-t) \left(\sigma_t^2 + \int_{\mathbb{R}} \gamma_t^2(z) e^{2z} \nu(dz) \right) dt \right] \end{aligned}$$

< 日 > < 同 > < 三 > < 三 >

 $\begin{array}{c} & \text{Introduction} \\ \text{Weak convergence} \\ L^2 \text{ convergence} \\ \text{Specific strategies and pay-offs} \end{array}$

Fourier representation of prices and strategies European options Digital options

Fourier transform option pricing

We consider a European option with pay-off $G(S_T)$ at time T and denote by g its log-payoff function: $G(e^x) \equiv g(x)$. Suppose that there exists $R \in \mathbb{R}$ such that

$$egin{aligned} g(x)e^{-Rx} & ext{has finite variation on } \mathbb{R}, \ g(x)e^{-Rx} &\in L^1(\mathbb{R}), \ E^Q[e^{RX_t}] < \infty & ext{and} & \int_{\mathbb{R}} rac{|ar{\phi}_{\mathcal{T}-t}(u-iR)|}{1+|u|} du < \infty. \end{aligned}$$

Then

$$C(t,S_t) := E^Q[G(S_T)|\mathcal{F}_t] = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{g}(u+iR)\bar{\phi}_{T-t}(-u-iR)S_t^{R-iu}du,$$

where

$$\hat{g}(u) := \int_{\mathbb{R}} e^{iux} g(x) dx$$

伺 と く ヨ と く ヨ と

 $\begin{array}{c} & \text{Introduction} \\ \text{Weak convergence} \\ & L^2 \text{ convergence} \\ \text{Specific strategies and pay-offs} \end{array}$

Fourier representation of prices and strategies European options Digital options

The strategies

• The delta hedging strategy is given by

$$F_t = \frac{\partial C(t, S_t)}{\partial S} = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{g}(u + iR) \bar{\phi}_{T-t}(-u - iR)(R - iu) S_t^{R-iu-1} du.$$

• The quadratic hedging strategy minimizes

$$E^{Q}\left[\left(G(S_{T})-C(0,S_{0})-\int_{0}^{T}F_{t}dS_{t}\right)^{2}\right]$$

and is given by

$$F_{t} = \frac{d\langle C, S \rangle_{t}^{Q}}{d\langle S, S \rangle_{t}^{Q}} = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{g}(u+iR) \bar{\phi}_{T-t}(-u-iR) S_{t}^{R-iu-1} \Upsilon(u) du$$

where $\Upsilon(u) = \frac{\bar{\psi}(-u-i(R+1)) - \bar{\psi}(-u-iR) - \bar{\psi}(-i)}{\bar{\psi}(-2i) - 2\bar{\psi}(-i)}.$

 $\begin{array}{c} & \text{Introduction} \\ \text{Weak convergence} \\ & L^2 \text{ convergence} \\ \text{Specific strategies and pay-offs} \end{array}$

Fourier representation of prices and strategies **European options** Digital options

European options

 For all parametric models found in the literature, both for delta hedging and the quadratic hedging the convergence takes place in the regular regime:

$$\lim_{h\downarrow 0} \frac{1}{h} E\left[\left(\varepsilon_T^h\right)^2\right] = \frac{A}{2} E\left[\int_0^T S_t^2\left(\sigma_t^2 + \int_{\mathbb{R}} \gamma_t^2(z) e^{2z} \nu(dz)\right) dt\right]$$

• The limit can be evaluated via Fourier transform as a 3-dimensional integral.

 $\begin{array}{c} & \text{Introduction} \\ \text{Weak convergence} \\ & L^2 \text{ convergence} \\ \text{Specific strategies and pay-offs} \end{array}$

Fourier representation of prices and strategies European options Digital options

Digital options: delta hedging

• Assume a non-zero diffusion component or a stable-like behavior of small jumps: the Lévy measure ν has a density satisfying

$$u(x) = \frac{f(x)}{|x|^{1+\alpha}}, \quad \lim_{x \to 0+} f(x) = f_+, \quad \lim_{x \to 0-} f(x) = f_-$$

for some constants $f_- > 0$ and $f_+ > 0$.

- Let the pay-off function be given by $G(S_T) = 1_{S_T \ge K}$.
- If $\alpha \in (1,2]$, for delta hedging the discretization error satisfies

$$\lim_{h\downarrow 0} \frac{1}{\rho(h)} E\left[\left(\varepsilon_T^h\right)^2\right] = ADp_T(\log K),$$

with $\rho(h) = h^{1-1/\alpha}$, where D depends only on α , f_+ and f_- .

Introduction Weak convergence L^2 convergence Specific strategies and pay-offs

Fourier representation of prices and strategies European options Digital options

Digital options: quadratic hedging

- Same assumptions as for delta hedging.
- If $\alpha \in (0, \frac{3}{2})$, for quadratic hedging the convergence takes place in the *regular regime*:

$$\lim_{h\downarrow 0} \frac{1}{h} E\left[\left(\varepsilon_T^h\right)^2\right] = \frac{A}{2} E\left[\int_0^T S_t^2\left(\sigma_t^2 + \int_{\mathbb{R}} \gamma_t(z) e^{2z} \nu(dz)\right) dt\right].$$

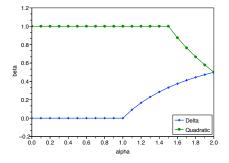
• If $\alpha \in \left(\frac{3}{2},2\right]$, the discretization error satisfies

$$\lim_{h\downarrow 0} \frac{1}{\rho(h)} E\left[\left(\varepsilon_T^h\right)^2\right] = \frac{AQ}{\bar{A}^2} p_T(\log K)$$

with $\rho(h) = h^{\frac{3}{\alpha}-1}$, where Q depends only on α , f_+ and f_- .

Fourier representation of prices and strategies European options Digital options

Comparison of delta and quadratic hedging

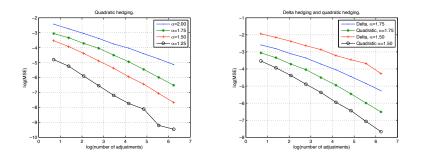


Convergence rate of the expected squared discretization error to zero as function of the stability index α for a digital option. The rate is given by $\rho(h) = h^{\beta}$, where β is plotted on the graph.

 $\begin{array}{c} & \text{Introduction} \\ \text{Weak convergence} \\ L^2 \text{ convergence} \\ \text{Specific strategies and pay-offs} \end{array}$

Fourier representation of prices and strategies European options Digital options

Numerical illustration



Convergence of the discretization error to zero for hedging a digital option in the CGMY model. Left: quadratic hedging. Right: delta hedging vs. quadratic hedging.

< 日 > < 同 > < 三 > < 三 >

 $\begin{array}{c} & \text{Introduction} \\ \text{Weak convergence} \\ L^2 \text{ convergence} \\ \text{Specific strategies and pay-offs} \end{array}$

Fourier representation of prices and strategies European options Digital options

Concluding remarks

- Combined with recent results of C. Geiss and E. Laukkarinen (talk by C. Geiss at SPA'09), our findings allow to exhibit the non-equidistant rebalancing strategy allowing to recover the optimal rate $\frac{1}{n}$ in the irregular case.
- For pure-jump processes, the convergence rate may be improved beyond $\frac{1}{n}$ by taking suitable random rebalancing dates (work in progress).

< 🗇 🕨 < 🖻 🕨