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1 Introduction

Climate change is one of the main risks the economy will face in the upcoming decades
or possibly even centuries. But although climate scientists agree on the fact that
climate change will most likely have dramatic negative consequences for the environ-
ment and economic growth, there is still much uncertainty surrounding the extent
and timing of future damages induced by climate change (cf IPCC (2021) for a recent
assessment). Despite all the uncertainty about the timing and the exact structure
and extent of the damages that climate change will cause, we do know that if they
are to be avoided policies need to be implemented today. This should place the issue
of how to discount future uncertain cost of climate change back towards today to
allow comparison to the costs of today’s policy interventions, at the center-stage of
the climate change debate. And hence the subject of this paper, on climate change,
risk, ambiguity aversion and Epstein-Zin preferences, and what it all implies for the
Social Cost of Carbon (SCC).

Rather than arguing about specific numerical values for parameters such as time
preference, we challenge the structure of preferences commonly assumed to derive the
appropriate discounting procedures and discount rates.1 Specifically, in this paper
we model climate damages as disaster risk and assume that there is ambiguity about
the arrival rate and size of future climate disasters. We show that implementing
these extensions leads to estimates of the social cost of carbon that are substantially
higher than have been derived so far using conventional approaches to time and risk
discounting. Since so little is known about the exact distribution of uncertain climate
shocks, we focus predominantly on Ambiguity Aversion under different assumptions
about preferences, and its impact on the SCC.

The impact of climate change on the economy is most commonly modeled us-
ing combined economy/climate models called Integrated Assessment Models (IAMs).
IAMs integrate the knowledge of different domains into one model. In the case of
climate change, IAMs combine an economic model with a climate model. Three well-
known IAMs are DICE (W. Nordhaus, 2014), PAGE (Hope, 2006) and FUND (Tol,
2002).2 These models are, among others, used as policy tools for cost-benefit analyses.
They provide a conceptual framework to better understand the complex problem of
climate change by combining different fields and allowing for feedback effects between
those fields.

But IAMs also have major drawbacks. To quote Pindyck (2017): “IAM-based
analyses of climate policy create a perception of knowledge and precision that is il-
lusory ...” His critique is that the models are (1) very sensitive to the choices of
parameters and functional forms, especially the discount rate. Besides, we know very
little about (2) climate sensitivity and (3) damage functions. Lastly, (4) IAMs don’t
incorporate tail risk. He recommends simplifying the problem by focusing on the

1For a very different (and strongly worded) view focusing on the social welfare aspects of the
rate of time preference rather than on individual preferences, see Stern (2015) and Chichilnisky,
Hammond, and Stern (2018) who look at a positive rate of time preference as discrimination between
generations that happen to have been born at different moments in time.

2The references do not contain the most recent versions of the IAMs.
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catastrophic outcomes of climate change, instead of modeling the underlying causes.
In line with that view we focus on disaster risks by modeling them as tail risks (Poisson
shocks). And our focus on ambiguity aversion naturally follows from his observation
that we know very little about the precise stochastics of climate disasters.

The three main IAMs are deterministic, largely because stochastic models with
many state variables are more difficult to solve than deterministic models. To never-
theless capture uncertainty, some authors perform an Initial Value Monte Carlo-like
approach (IVMC) by analyzing several deterministic runs with different parameter
values and then taking a weighted average of all runs (Dietz, 2011; W. D. Nordhaus,
2014). Such an analysis is useful if we are interested in the sensitivity of the models
to different parameter values. However, it is conceptually different from explicitly
using stochastic processes, since under this IVMC approach for each individual run
all uncertainty is resolved at time 0. Crost and Traeger (2013) compare the IVMC
approach to an explicitly stochastic model and find that the IVMC approach under-
estimates the impact of climate damages. And as we will discuss below, the timing
of the resolution of uncertainty particularly matters a great deal under the structure
of preferences we are analyzing.

We propose an analytically solvable IAM (Integrated Assessment Model) that
addresses both the critiques of Pindyck (2017) and of Crost and Traeger (2013) on the
use of deterministic IAMs. Since there is so little known about the damage functions,
we investigate the impact of both attitudes towards well defined measurable risks and
ambiguity aversion towards unmeasurable uncertainty on the willingness to pay for
avoiding climate risk. Furthermore we model climate risk as disaster risk instead of
assuming that temperature increases generate a certain amount of damage every year.
The model is transparent due to the analytic solutions for the social cost of carbon.
Where stochastic numerical IAMs commonly take hours or more to be solved, solving
this model only requires numerical integration and is therefore solved within seconds,
which makes it a useful tool for further analysis.

In the first part of the paper we provide analytical solutions. To make that possible
we model the economy as a pure exchange economy with exogenous stochastic en-
dowments. In this part of the paper we model emissions as an deterministic although
time varying process, since linking stochastic emissions to the stochastics of output-
and consumption processes precludes analytical solutions. Of course assuming an
exogenous emissions stream is highly unrealistic, we therefore endogenize emissions
in the main part of the paper were we link emissions to output and use numerical
methods to solve the model. We extend the general equilibrium Consumption-based
Capital Asset Pricing Model (CCAPM), also known as Lucas-tree model, developed
in Lucas Jr (1978) in several directions. In the literature, this model is widely used in
conjunction with a lognormal distribution.3 The diffusion component of the endow-
ment captures fluctuations in consumption. But we take into account that the nature
of climate risk is different from ‘normal’ economic risk as captured by a diffusion
term. Climate disasters are events that occur rarely and take place abruptly (Goosse,
2015). To model this feature, we add a jump process to the endowment consumption

3Although Lucas Jr (1978) doesn’t assume a specific distribution for the endowment stream.
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stream to capture climate disaster risk.
The intensity of the disasters is temperature-dependent. We model emissions,

atmospheric carbon concentration and the temperature anomaly. The arrival rate
of climate disasters is increasing in temperature. Furthermore we explicitly take
into account that it is hard to estimate the probability that a disaster occurs and
its expected impact by assuming that the agent does not know the exact probability
distributions of the arrival rate of climate disasters and the size of the disasters: there
is so called ambiguity about the characteristics of the jump risk component. And the
agent is assumed to be averse to this ambiguity or Knightian uncertainty.

Finally we use the continuous time version of Epstein-Zin utility, which allows
us to separate the intertemporal elasticity of substitution from the degree of risk
aversion. In the widely used power utility specification risk aversion and elasticity of
intertemporal substitution (EIS) are captured by one parameter, they are equal to
each other’s inverse. There is strong empirical evidence placing the relative degree
of risk aversion in the range of 5 - 10 (Cochrane, 2009). Using such estimates in
combination with power utility then results in implied estimates for the EIS much
lower than direct empirical estimates suggest. But especially for long term problems
such as climate change intertemporal choices play an important role and restricting
parameters such as the EIS is a severe limitation. Epstein-Zin preferences make it
possible to separate risk aversion and the elasticity of intertemporal substitution.

We can therefore disentangle risk aversion effects (known probabilities), ambiguity
aversion effects (unknown probabilities) and substitution effects. The Epstein-Zin
preferences also allow for the possibility that the agent has a preference for early
resolution of risk, clearly of relevance in a discussion on climate risks. We show that
the specification of the agent’s preferences in combination with stochastic disaster
risk has large effects on how much one is willing to pay to reduce climate risk.

The literature reports diverging results on the impact of ambiguity aversion on
the SCC. Our comprehensive framework incorporating both Epstein-Zin preferences
and Ambiguity Aversion proves its value added here: we show that assumptions on
the structure of preferences have a major impact on estimates of the link between
ambiguity aversion and the SCC made using these assumptions. We conclusively
show that for empirically supported values of risk aversion and the EIS, Ambiguity
Aversion has a substantial impact on the SCC.

We explicitly focus on the valuation of climate risk in the Business As Usual (BAU)
scenario and do not analyse optimal abatement policies at this stage yet, optimal
policy is integrated into the analysis in a companion paper (Olijslagers, van der Ploeg,
and van Wijnbergen (2021)). The idea is that an analysis of the environmental costs
of current policies (not current plans...) is useful in the climate policy debate. A
commonly used measure for the cost of carbon emissions is the social cost of carbon
(SCC), the long term discounted damage in dollar terms of emitting one ton of carbon
today. The BAU scenario is also the default scenario to calculate the social cost of
carbon in W. Nordhaus (2014). 4. The social cost of carbon using a baseline scenario

4Note that not incorporating optimal abatement policies implies that the social cost of carbon
derived here in our model is not equal to the globally optimal Pigouvian carbon tax
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can be interpreted as the monetized welfare loss of emitting one additional unit of
carbon today, given the current global carbon abatement policy scenario under the
assumption that no measures will be taken in the future either. This seems to us an
important first step to take for as long as effective international policies are not yet
agreed upon and future agreement is not yet certain. In those circumstances the cost
of doing nothing should surely be an important input in the debate.

Our base calibration yields a sizable social cost of carbon. Similar to the nu-
merical IAMs, the SCC in our model is very sensitive to the choice of the input pa-
rameters. But in addition because we do have (mostly) analytical solutions, we can
easily explore the implications of ambiguity aversion, preferences for early resolution
of uncertainty and (related to that) a higher elasticity of intertemporal substitution
(EIS). The preference structure we use (Epstein-Zin preferences) allows for variation
of the EIS without corresponding variation in the degree of risk aversion; the two are
inversely related under the more commonly used power utility assumption. In spite of
incorporating all these generalizations we can still derive analytic expressions for the
SCC, up to an integral, in our core model setup, making it transparent how ambigu-
ity aversion and Epstein-Zin preferences influence the SCC. Our numerical example
using best estimates of the various parameters indicates that introducing ambiguity
aversion yields a SCC that is between 65% and 83% higher depending on the structure
of climate risk. Moreover we highlight that the social cost of carbon is also sensitive
to choices about time discounting, either via the pure rate of time preference, risk
aversion or the elasticity of intertemporal substitution, and that all these parameters
interact with the cost of ambiguity aversion in complicated ways. But the overall
conclusion remains: insufficient attention to risk and ambiguity pricing leads to sub-
stantial underestimation of the SCC. These are non-trivial results because risk and
ambiguity aversion also lead to higher risk premia. The impact of higher risk premia
is more than offset however by the impact of risk aversion and ambiguity aversion on
the certainty equivalence estimates that are subsequently discounted back to today.
The net impact of higher aversion to risk and to ambiguity is to substantially raise
the SCC, in particular for the realistic case of stochastic emissions which we analyse
in the numerical solutions section..

In the first part of the paper we assumed that emissions are an independent and
non-stochastic process with the same expected time path as in the stochastic endoge-
nous version we introduce subsequently. This is clearly an unrealistic assumption,
but allows us to derive analytical solutions. We introduce stochastic emissions in the
section using numerical solution procedures and do that in two steps. In the first
step, we solve numerically for the variant with exogenous emissions (i.e. the version
where we also obtain analytical solutions). We present the numerical solutions of
the model version solved analytically also because they do provide specific qualitative
insights that are difficult to isolate in the more complex numerical model used in
the endogenous emissions version of the paper. in Step 2 we introduce endogenous
emissions. There we show that the stochastic nature of emissions (and the correla-
tion to output) adds additional sources of risk and leads to a higher impact of risk
aversion and ambiguity aversion on the Social Cost of Carbon than we get assuming
an exogenous time path for emissions.
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The plan of the paper is as follows: After the introduction (Section 1) we discuss
related literature in Section 2 and introduce the basic model in Section 3. In Section
3.1 we focus on the endowment process and in sction 3.2 on modeling climate change
and its economic impact. Section 3.3 focuses on preference structure and on the
consequences of assuming Epstein-Zin preferences. In Sections 3.4 we outline our
approach to ambiguity Aversion and what that implies in the current model (Section
3.5). In Section 4 we present our analytical results on discount rates, the social cost
of carbon and ambiguity aversion. Section 5 switches to the use of numerical solution
methods; we first calibrate our model (Section 5.1), and use the calibrated version to
illustrate our analytical results quantitatively, still assuming deterministic emissions
(Section 5.2). In Section 5.3 we analyse the full model with stochastic emissions.
Section 6 concludes.

2 Related literature

This paper is related to two strands in the literature. First, our methodology is
related to consumption based asset pricing models with disaster risk and/or non-
expected utility. And second and more important, the paper is related to research on
the impact of climate change on the economy.

The model we develop is an extension of the Consumption based Capital Asset
Pricing Model (CCAPM) by Lucas Jr (1978). Mehra and Prescott (1985) point out
that for plausible parameter values, the CCAPM produces a way too low equity
premium and correspondingly a too high risk-free rate. Jump risk or disaster risk
has been proposed as a possible solution of these puzzles (Barro, 2006; Rietz, 1988).
Extensions to the early disaster/jump risk models are the use of Epstein-Zin utility
instead of power utility, and the introduction of time-varying disaster probabilities and
multi-period (i.e. persistent) disasters (Barro, 2009; Tsai & Wachter, 2015; Wachter,
2013). We build on these extensions and take a similar approach, because climate
change is widely thought to give rise to abrupt destructive changes in the Earth’s
environment (Goosse, 2015). We therefore define climate shocks as disasters whose
occurrence has a small probability at any given moment of time but with possibly
large negative effects on the economy once they do take place.

Ambiguity aversion, aversion of unmeasurable or Knightian uncertainty, is the
second extension of the CCAPM we introduce to our climate model. This has been
done before in the Finance literature: Liu, Pan, and Wang (2004) consider a gen-
eral equilibrium model with rare disasters and ambiguity aversion in their analysis
of option pricing and the well known failure of the Black-Scholes-Merton model to
adequately reflect tail risks (vide the apprearance of ‘smirks’ in implied volatility
graphs). Their agent is only concerned about misspecification of the jump process
and not of the diffusion terms, a logical choice that we follow, since the probability
distribution of rare events is by their very nature (they do not occur regularly) much
harder to estimate than the diffusion component.

Finally, since abrupt climate change is anticipated to take place far into the fu-
ture, intertemporal choice plays an important role as well. Power utility is then an
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unsatisfactory framework since with that structure of preferences, risk aversion and
elasticity of intertemporal substitution (EIS) cannot be varied independently, cf Ep-
stein and Zin (1989) and a still growing literature that took off after their paper. We
adopt the continuous time implementation of the Epstein-Zin framework introduced
by Duffie and Epstein (1992a) and Duffie and Epstein (1992b). With Epstein-Zin
preferences, the risk aversion parameter and the EIS are no longer restricted to be
each other’s inverse.

Furthermore, our paper is related to the literature on climate change economics,
and more specifically the part that considers risk, ambiguity aversion and non-expected
utility. These issues are not yet analyzed in the most well-known integrated assess-
ment model, the DICE model (W. D. Nordhaus, 2017). This model is still determin-
istic and the representative agent is assumed to have power utility. Several papers
have recently studied the impact of risk and more complex preference structures on
the social cost of carbon. For instance Cai and Lontzek (2019), Hambel, Kraft, and
Schwartz (2021) and Jensen and Traeger (2014) study integrated assessment models
with Epstein-Zin preferences and different types of economic and climate risk. They
show that Epstein-Zin preferences can have a substantial effect on the discount rate,
for obvious reasons a very important parameter in climate models. Barro (2015) ex-
tends his disaster risk model with environmental disasters and focuses on discount
rates and optimal environmental investment. He does not incorporate a climate
model but simply assumes that the disaster probability is constant and that it can
be reduced by environmental investment. Bansal, Kiku, and Ochoa (2016) propose
a climate model based on the Long-Run-Risk (LRR) model of Bansal and Yaron
(2004). In the LRR-model, the agent has Epstein-Zin preferences and consumption
growth is subject to persistent shocks. Bansal et al. (2016) model climate disasters
as a jump process that affects both consumption itself and the growth rate of con-
sumption. They also show that their results are very sensitive to choices of the EIS.
Karydas and Xepapadeas (2019) consider a dynamic asset pricing framework with
both macroeconomic disasters and climate change related disasters and analyze the
implications for portfolio allocation. We add to this part of the literature by including
ambiguity aversion in our framework.

Most integrated assessment models are solved using numerical methods. The dis-
advantage of numerical solution approaches is that the choice of the input parameters
in numerical solutions has a large influence on the results but not always in trans-
parent ways. That is why analytical approaches such as adopted in the first part
of our paper are useful. They can be used to show how exactly these parameters
influence the outcomes. Of course we are not the first ones going for analytical so-
lutions: Golosov, Hassler, Krusell, and Tsyvinski (2014) already obtain closed form
solutions in a climate economy model. However, this required strict assumptions
such as logarithmic utility and full depreciation of capital every decade. Bretscher
and Vinogradova (2018) develop a stylized production-based model where the current
carbon concentration directly enters the damage function and obtain closed form so-
lutions for the optimal abatement policy. Van den Bremer and Van der Ploeg (2021)
consider a stochastic production-based model with Epstein-Zin preferences, convex
damages, uncertainty in state variables, correlated risks and skewed distributions to
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capture climate feedbacks. Since the model is too complex to obtain exact analytic
solutions, they obtain closed form approximate solutions using perturbation meth-
ods. Lastly, Traeger (2021) extends the model of Golosov et al. (2014). The model
allows for uncertainty in both the climate model and in climate damage impacts.
Our contribution to this literature is that we obtain analytic results for a model with
ambiguity about climate impacts.

There is a recent literature emerging on climate change and ambiguity aversion but
this literature seems to come out on diverging views. Millner, Dietz, and Heal (2013)
consider ambiguity about the climate sensitivity parameter within the DICE model
and conclude that ambiguity aversion can lead to much higher optimal abatement
policies. Barnett, Brock, and Hansen (2020) study ambiguity about both the climate
sensitivity and damages within a climate economy model with a focus on the optimal
carbon price. In their setup ambiguity aversion leads to a substantially higher optimal
carbon price. On the other hand, Lemoine and Traeger (2016) model ambiguity
around tipping points and claim it plays a minor role in the optimal carbon price.

Our analytic framework gives additional insights about the implication of ambi-
guity aversion in a climate model: we show that different outcomes can be traced
back to particular assumptions on parameter values of the preference parameters.
Our analytic results specifically allow for a decomposition of the effect of ambiguity
aversion on the social cost of carbon. Introducing ambiguity aversion will lead to a
higher social cost of carbon but also has an indirect effect on the discount rate. We
are able to disentangle the direct and discounting effects that work in opposite direc-
tions. The size of both effects interacts with the other preference parameters: risk
aversion and the EIS. These effects cannot be separated in a numerical application.

3 The Model

We extend a standard endowment economy by assuming that the stochastic endow-
ment stream is subject to climate disasters, where the probability of a climate disaster
depends on the temperature level. An endowment economy is in our view a suitable
starting point given our focus on the social cost of carbon and the way it depends
on uncertainty and ambiguity for given policies. In particular we analyse the SCC
in Nordhaus’ Business As Usual scenario. In a companion paper (Olijslagers et al.,
2021) we endogenize abatement policy and analyse the price of carbon under optimal
abatement policies and different objective functions.

3.1 The economy

The aggregate endowment process follows a geometric Brownian motion with an ad-
ditional jump component that represents climate disasters:

dCt = µCtdt+ σCtdZt + JtCt−dNt.
5 (1)

5Ct− denotes aggregate endowment just before a jump (Ct− = limh↓0 Ct−h).
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In equilibrium, aggregate consumption must equal the aggregate endowment and
therefore we also refer to the process as the aggregate consumption process. The
growth rate µ and the volatility σ are constant. Zt is a standard Brownian motion
that captures ’normal’ uncertainty, i.e. non-climate uncertainty. Nt is a Poisson
process which represents climate disasters. The arrival rate of a climate disaster
equals λt, which we assume to be a function the temperature level Tt.

When a climate disaster strikes at time t, the size of the disaster is controlled
by the random variable Jt. The distribution of the size of disasters is assumed to
be the same for any t. We assume that Jt has the density f(x) = η(1 + x)η−1

where −1 < x < 0. Jt represents the percentage loss of aggregate consumption after
a disaster. The expected disaster size then equals E[Jt] =

−1
η+1

and the moments

E
[
(1 + Jt)

n
]
= η

η+n
can be easily calculated. In line with the subject of climate

disasters, jumps can only be negative.

3.2 The climate model

The arrival rate of disasters is assumed to be temperature dependent. We assume
that damages are linearly increasing in temperature: λt = λTTt. However, all our
derivations remain valid for non-linear specifications of the arrival rate. We discuss
this assumption in the calibration section.

In the first part of the paper we make a number of simplifying assumptions to
allow for analytic solution of the model. The main solvability requirement is that
the state variables of the climate submodel are deterministic, and this in particular
affects the way we model emissions. Carbon emissions are the product of the carbon
intensity of aggregate output and aggregate output itself. We will introduce emis-
sions in this way in the numerical part of the paper, but doing so precludes analytical
solution. So our main simplification in the analytical part of the paper is the assump-
tion that aggregate emissions are driven by an independent deterministic process,
an unavoidable simplification if one is to obtain analytical solutions. In section 5.3
we use numerical methods and introduce stochastic emissions correlated with out-
put. Making emissions stochastic clearly adds realism and enriches the results, but
interpreting the numerical results benefits substantially from the additional insights
obtained from the analytical results obtained earlier.

So assume for the first part of the paper that emissions Et are exogenous. Et is
growing at a non-stochastic rate gE,t. The growth rate itself moves gradually towards
the long-run equilibrium gE,∞ at a rate δE. By assuming a high initial growth rate
but a negative long run rate (gE,∞ < 0), we have growing emissions today; but the
growth rate starts declining immediately and eventually turns negative because of
gE,∞ < 0, so emissions will go to zero eventually. This is a plausible assumption since
there is a point where the stock of fossil fuels will be depleted. All this leads to the
following process for emissions:

dEt = gE,tEtdt,

dgE,t = δE(gE,∞ − gE,t)dt.
(2)
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We calibrate this process to match the baseline scenario in W. D. Nordhaus (2017).
We use the climate model (carbon cycle and temperature model) discussed in

Mattauch et al. (2018), which they call the IPCC AR5 impulse-response model. This
model is in line with recent insights from the climate literature and is also used in
IPCC (2013). Specifically, this climate model incorporates the fact that thermal iner-
tia plays a smaller role than commonly assumed in the climate modules in economic
models. Climate modules commonly used in economic models tend to overstate the
time it takes for the earth to warm in response to carbon emissions (cf Dietz, van der
Ploeg, Rezai, and Venmans (2021)).

Define by Mt the carbon concentration with respect to pre-industrial emissions
Mpre. In our model, Mt is the sum of four artificial carbon boxes: Mt =

∑3
i=0Mi,t.

This specification can capture that the decay of carbon has multiple time scales and
that a fraction of emissions will stay in the atmosphere forever. The dynamics of
carbon box i are given by:

dMi,t = νi

(
Et − δM,iMi,t

)
dt. (3)

νi is the fraction of emissions that ends up in carbon box i, which implies that∑3
i=0 νi = 1. δM,i controls the decay rate of carbon in box i. We assume that all

carbon that ends up in box 0 will permanently stay in the atmosphere, such that
δM,0 = 0. The other three boxes have a positive decay rate: δM,i > 0, i = {1, 2, 3}.

The next step is to model the impact of carbon concentration on temperature.
This requires modeling what is called radiative forcing: the difference between energy
absorbed by the earth from sunlight and the energy that is radiated back to space.
A higher atmospheric carbon concentration strengthens the greenhouse effect and
therefore leads to higher radiative forcing. The relation between atmospheric carbon
concentration and radiative forcing is logarithmic:

FM,t = α
υ

log(2)
log
(Mt +Mpre

Mpre

)
. (4)

α equals the climate sensitivity: the long-run change in temperature due to a doubling
of the carbon concentration compared to the pre-industrial level. υ is a parameter
that is also part of the temperature module and this parameter will be discussed later.

Finally we also include non-carbon related (exogenous) forcing FE,t, which follows:

dFE,t = δF (FE,∞ − FE,t)dt. (5)

Total radiative forcing is the sum of carbon-related radiative forcing and exogenous
forcing: Ft = FM,t + FE,t.

The final step moves from Ft to the actual surface temperature Tt. Tt is the
difference between the actual temperature compared to the pre-industrial temperature
level. The change in surface temperature is a delayed response to radiative forcing.
Call the heat capacity of the surface and the upper layers of the ocean τ while τoc
equals the heat capacity of the deeper layers of the ocean. The parameter κ captures
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the speed of temperature transfer between the upper layers and the deep layers of the
ocean. The dynamics of temperature are then given by:

dTt =
1

τ

(
Ft − υTt − κ(Tt − T oct )

)
dt,

dT oct =
κ

τoc
(Tt − T oct )dt.

(6)

From this equation, one can derive a long run equilibrium temperature for a given
level of radiative forcing Ft:

T eqt =
Ft
υ

(7)

The parameter υ controls the equilibrium temperature response to a given level
of forcing. Note that equation (4) tells us that when Mt = 2Mpre, we get that Ft =

αυ + FE,t and T
eq
t = α +

FE,t
υ

. Therefore the parameter α can indeed be interpreted
as the equilibrium temperature response to doubling of the carbon concentration.

Using equation(7), we can rewrite the first line of equation (6) as:

dTt =
1

τ

(
υ(T eqt − Tt)− κ(Tt − T oct )

)
. (8)

Written this way the equation is more intuitive, since it captures the fact that the
temperature moves towards its equilibrium level at a rate proportional to T eqt − Tt.
The second part shows that the oceans are delaying this convergence. It takes time
for T oct to adjust towards Tt and this will also delay the convergence of Tt towards
the equilibrium level T eqt . As specified earlier, the arrival rate of climate disasters is
a linear function of temperature Tt.

3.3 Preference specification

The representative agent maximizes utility of consumption over an infinite planning
horizon. Because of the different roles played by intertemporal substitution and risk
aversion in determining risk premia, the safe rate of interest, and therefore also the
social cost of carbon, we use Epstein-Zin (EZ) preferences (Epstein & Zin, 1989); EZ
preferences allow us to vary the elasticity of intertemporal substitution (EIS) and
the coefficient of relative risk aversion independently. This is additionally important
in our framework since both the elasticity of intertemporal substitution (through
the discount rate) and risk aversion interact with ambiguity aversion. We use the
continuous time version of of Epstein-Zin utility, a special case of stochastic differential
utility introduced by (Duffie & Epstein, 1992b).
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The agent’s utility or value function is:

Vt = Et

[ ∫ ∞

t

f(Cs, Vs)ds
]

where

f(C, V ) =
β

1− 1/ϵ

C1−1/ϵ −
(
(1− γ)V

) 1
ζ(

(1− γ)V
) 1
ζ
−1

for ϵ ̸= 1

with ζ =
1− γ

1− 1/ϵ
.

(9)

γ denotes risk-aversion, ϵ is the elasticity of intertemporal substitution and β equals
the time preference parameter. We will focus on the more general case where ϵ ̸= 1.
For the case ϵ = 1 one can take the limit ϵ → 1 or follow the same derivation but
with f(C, V ) = β(1− γ)V

(
logC − 1

1−γ log
(
(1− γ)V

))
. Finally if γ = 1

ϵ
, the utility

specification reduces to standard power utility.

3.4 Ambiguity

There is much uncertainty regarding the arrival rate and magnitude of climate dis-
asters. Pindyck (2017) already stresses that we know very little about the damage
functions. And where consumption growth and volatility can be estimated accurately
from historical data, the estimation of the climate disaster parameters will be much
harder since climate disasters do not happen that often. It is fair to state that we
simply do not know the exact distribution of climate damages. We should therefore
account for the possibility that the ‘best estimate’ model is not the true model: there
is ambiguity. We assume that the representative agent is ambiguity averse.

It is important to stress the difference between risk and ambiguity. When we
are talking about risk, an agent knows the probabilities and possible outcomes of
all events. When the agent has to deal with ambiguity, the probabilities attached to
particular events are unknown. The distinction between risk and ambiguity is already
extensively discussed in Knight (1921), which is why ambiguity is often referred to as
Knightian uncertainty. Ellsberg (1961) shows using the Ellsberg Paradox that people
are ambiguity averse, i.e. they prefer known probabilities over unknown probabilities.

We use the recursive multiple priors utility developed in continuous time by Chen
and Epstein (2002) to model ambiguity aversion. This method selects a set of models
that are relatively similar. The size of the set depends on the degree of ambiguity
aversion. Given this set of reasonable models, the worst case model is selected. The
decision maker thus makes a robust decision given the set of reasonable models.

To apply the approach of Chen and Epstein (2002) to modeling ambiguity aversion
we begin by defining the ‘best estimate’ model or reference model as the agent’s most
reliable model, with probability measure P. But the agent takes into account that his
reference model may not be the true model and specifies a set of models Pθ that he
considers possible. The alternative models have measure Qa,b; the jump arrival rate

becomes λQ
a,b

t = aλt and the jump size parameter becomes ηQ
a,b

t = bη. Remember
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that the expected jump size equals −1
η+1

, i.e. a low b leads to a more negative jump size.

Given the set of models Pθ , Chen and Epstein (2002) then assume that the agent
optimizes assuming the worst case, in line with the axiomatic Minimax approach
advocated by (Gilboa & Schmeidler, 1989).

An alternative way to model ambiguity is to use the smooth ambiguity model
(Klibanoff, Marinacci, & Mukerji, 2005). Assume again that the agent does not know
the true values of λ and η. In this approach the agent first constructs a prior prob-
ability distribution that reflects his beliefs on λ and η. To incorporate ambiguity
aversion, he then transforms this distribution to put more weight on the events that
give him low utility and less weight on the events that give high utility. This trans-
formation works in a similar way as risk aversion in a standard utility function but
adds another layer to your utility specification. This may be a matter of taste, but
we think that the assumption of probabilities attached to the different priors is in
fact at variance with the basic assumption that ambiguity is about unmeasurable
processes, i.e. we cannot map events to probability densities, or in this case priors
to model probabilities. Additionally the recursive multiple priors approach is simpler
and leads to more tractable results. We therefore chose to use the recursive multiple
priors approach.

All models with a distance smaller than θ are in the set of admissible models, so
the size of the set of models depends on the ambiguity aversion parameter θ; and
θ can be interpreted as a measure of the extent of ambiguity. We measure distance
between the reference model P and an alternative model Qa,b using the concept of
relative entropy, a common metric for the distance between two probability measures
(see for example Hansen and Sargent (2008)). Relative entropy thus gives information
about how similar two probability measures are. To obtain our distance measure, we
scale relative entropy by the arrival rate λt.

6 Without this scaling, the optimal a∗ and
b∗ would be time-varying. This would imply that the decision maker is continuously
updating a∗ and b∗. A constant a∗ and b∗ are both more intuitive and more tractable.

The distance between the reference and alternative model depends on the param-
eters a and b and can therefore be written as d(a, b). The distance measure satisfies
d(a, b) ≥ 0 ∀(a, b) and d(1, 1) = 0: the distance of the reference model to itself is
by definition equal to 0. If θ is large, the agent is very ambiguity averse and thus
considers a large set of models. The preferences of the agent then become:

Vt = min
Qa,b∈Pθ

V Qa,b
t

where V Qa,b
t = EQa,b

t

[ ∫ ∞

t

f(Cs, V
Qa,b
s )ds

]
and Pθ = {Qa,b : d(a, b) ≤ θ ∀t}.

(10)

Here V Qa,b
t is the value function assuming Qa,b is the true probability measure.

θ = 0 implies that Pθ = {P} and the agent only considers one measure, namely the
reference measure. Thus there is no ambiguity aversion when θ = 0. Where the

6Liu et al. (2004) and Maenhout (2004) also use a normalisation factor to scale their distance
measure in order to get tractable results.
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Figure 1: Distance measure for different values of a and b.
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risk aversion parameter γ can be seen a parameter that is relevant for any risky bet,
the parameter θ captures intrinsic ambiguity aversion (one person might be more
ambiguity averse than another), but it is also source dependent. If there is a lot
of information and data available about a process, θ will be smaller and the set of
admissible models will be smaller compared to a process about which not much is
known. But at the same time θ also captures aversion to ambiguity similar to risk
aversion.

In appendix A we derive that the distance measure equals:

d(a, b) = (1− a) + a
(
log(ab) +

1

b
− 1
)
. (11)

It is easy to verify that d(1,1) = 0, the distance between the reference distribution and
itself is zero. When one or both of the two variables a and b deviate from the reference
model, d(a, b) increases. Every contour in figure 1 gives a set of combinations (a, b)
that yields the same distance. If for example θ = 0.1, then all (a, b) combinations
within that contour line are included in the set of admissible models. The worst
case probability measure will be the probability measure for which either a is large
(high arrival rate) and/or b is small, since the expectation of the jump size under the
alternative measure is inversely related to b: EQa,b [Jt] =

−1
bη+1

.
From the current setup, it is hard to argue what a reasonable value for ambiguity

aversion θ would be. In order to give more guidance about reasonable values for θ,
we use the concept of detection error probabilities introduced by Anderson, Hansen,
and Sargent (2003).7 Consider the following thought experiment. Assume that the

7See for example Maenhout (2006) for another application of detection error probabilities.
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representative agent would be able to observe the process of consumption over the
next N years, and after observing the process the agent has to choose which of
the two models (the reference model or the worst-case model) is most likely. There
are two types of errors in this case. The agent could choose the reference model
while the process was actually generated by the worst-case model and he could also
make the opposite error. The detection error probability is defined as the average
of the probability of the two errors. Appendix B describes how the detection error
probability is calculated.

The detection error probability depends on N , since when the agent observes the
process for a longer period, the probability of a mistake will be smaller. The detection
error probability also depends on the ambiguity aversion parameter: when θ is small,
the reference and worst-case model are similar to each other and the probability of a
mistake is large. On the other hand, when the agent is extremely ambiguity averse
(or there is a lot of ambiguity) the reference and worst-case models are very different
and the detection error probability becomes small. The representative agent wants to
make the set of models sufficiently large to make a robust decision, but on the other
hand does not want to take into account implausible models. The detection error
probability gives guidance about whether the set of admissible models is too small
or too large. Since the detection error also depends on the other parameters of the
model, we come back to the issue of calibrating the ambiguity aversion parameter in
the calibration section.

3.5 Optimal a and b

As discussed before, the agent has the following utility function: Vt = minQa,b∈Pθ V
Qa,b
t ,

where Pθ is the set of all probability measures that satisfy the distance constraint.
Since every probability measure Qa,b is uniquely defined by the parameters a and b,
minimizing over Qa,b is equivalent to minimizing over the parameters a and b. In
appendix C we show that this minimization problem boils down to minimizing the
following expression:

min
(a,b)

aλt
−1

bη + 1− γ
s.t. d(a, b) ≤ θ. (12)

We start with discussing this minimization problem assuming that the agent would be
risk-neutral (γ = 0) but ambiguity averse (θ > 0). At every time unit, the expected
loss equals the probability of a disaster times the expected disaster size. Assuming
that Qa,b is the true measure, the arrival rate becomes aλt and the expected disaster
size equals −1

bη+1
. The expected loss of a climate disaster therefore equals aλt

−1
bη+1

. The
agent then chooses the combination of a and b that gives the most negative expected
loss while still satisfying the distance restriction d(a, b) ≤ θ. A higher θ allows a
larger range of values for a and b that satisfy the distance constraint.

In our specification the agent is both risk averse and ambiguity averse. Instead of
minimizing the expected loss, the agent minimizes the certainty equivalent of a climate
disaster: aλt

−1
bη+1−γ . The certainty equivalent is more negative than the expected loss

since it contains a correction for risk aversion. The optimal parameters a∗ and b∗ are
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Figure 2: Selection of the optimal a and b.
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(a) Contour plot of the objective function of the
constrained minimization problem for different
values of a and b.
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(b) Illustration of selection of optimal (a, b).
The oval area shows all admissible values for
a and b that are within the ambiguity budget of
0.1. The straight line is the objective function.

thus a function of ambiguity aversion θ, the jump size parameter η but also of risk
aversion γ.

Figure 2 illustrates the optimization problem. Given an ambiguity budget θ, one
can determine the feasible set of (a, b). Figure 1 shows the feasible sets for several
budgets. A contour plot of the objective function for several (a, b) combinations is
given in subfigure 2a. Clearly combinations in the bottom right corner (high a, low
b) give the lowest value of the objective function. The optimization will thus lead
to a∗ > 1 and b∗ < 1 since b∗ and the disaster size are inversely related. The goal
is to minimize this function, given the distance constraint. Subfigure 2b shows how
the optimal combination (a∗, b∗) is determined. The point where objective function
touches the feasible region is the optimal solution. From now on we use the following
notation for the optimal arrival rate and jump parameter: λ∗t = a∗λt and η

∗ = b∗η.

4 Discounting and the Social Cost of Carbon: An-

alytical Solutions

We are now ready to address the key questions raised in the introduction, how to
discount future carbon damages and what that implies for the Social Cost of Carbon
(SCC). We focus first on the appropriate discount rates.

4.1 On Discounting

Consider first the risk-free rate and the risk premium; we then derive the growth-
adjusted consumption discount rate, the rate at which future consumption streams
(or their decline) need to be discounted towards today, which is used to discount
future damages when calculating the SCC.
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In appendix D we derive the expressions for the interest rate, the risk premium
and the consumption rate of interest from no arbitrage conditions for the valuation
of respectively a safe asset Bt, aggregate wealth and a synthetic asset paying out
aggregate consumption at a specified future time. We label latter the CDRt; it
equals the return on wealth r+ rp minus a correction for the growth in consumption.

Consider first the expression for the safe rate of interest, derived from the no
arbitrage condition of a safe asset Bt (cf appendix D for the derivation details):

rt = β +
µ

ϵ
−
(
1 +

1

ϵ

)γ
2
σ2 −

(
γ − 1

ϵ

)
a∗λt

−1

b∗η + 1− γ

− a∗λt

( b∗η

b∗η − γ
− 1
)
.

(13)

We return to this expression below in the discussion. The relevant risk premium is
the excess return on a claim on consumption, or, more precisely, a stock St paying out
continuous dividends Ct. The value of the stock can also be interpreted as aggregate
wealth, since total wealth of the representative agent is equal to the total claim on
future consumption. Requiring once again the familiar no arbitrage condition gives
the expression for the risk premium (again cf appendix D):

rpt = γσ2 + a∗λt

( −1

b∗η + 1
− b∗η

b∗η + 1− γ
+

b∗η

b∗η − γ

)
. (14)

Without climate risk (the Poisson terms), the risk premium boils down to the well
known expression: γσ2.

Finally we use the results for the safe rate of interest and the risk premium in
the derivation of the expression for the growth-adjusted Consumption Discount Rate
CDRt. The consumption discount rate CDRt is the relevant discount rate for dis-
counting climate damages when calculating the social cost of carbon. In appendix D
we derive the expression for this discount rate using the results we obtained so far for
rt and rpt. The no-arbitrage condition is applied to a synthetic asset Ht paying out
aggregate consumption at time s > t:

CDRt = rt︸︷︷︸
I

+ rpt︸︷︷︸
II

−
(
µ+ a∗λt

−1

b∗η + 1

)
︸ ︷︷ ︸

III

= β + (1/ϵ− 1)
(
µ− γ

2
σ2 + a∗λt

−1

b∗η + 1− γ

)
.

(15)

CDRt consists of three terms, labeled I, II and III. Part I is the risk-free rate.
But future economic growth is uncertain, so we need to add a risk premium since
damages are a fraction of the economy and thus have an impact on consumption:
part II. Lastly, the discount rate should be corrected for the growth of the aggregate
consumption process (part III). Future damages are larger because the future econ-
omy is larger, which is why we need to correct the discount rate for future growth.
On average, consumption grows at a rate µ+ a∗λt

−1
b∗η+1

< µ: the average growth rate
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is smaller than µ since climate disasters are expected to have a negative impact on
consumption.

In the simplest case, without any risk at all, the risk premium is zero and the
interest rate then reduces to the well-known Ramsey rule (Ramsey, 1928):

(σ, λT ) = (0, 0) => rt = β +
µ

ϵ
, (15a)

which implies a growth corrected discount rate rn,t for the case of (σ, λT ) = (0, 0)
equal to:

rn,t = β + (1/ϵ− 1)µ. (15b)

Clearly a higher value for ϵ implies a lower growth corrected discount rate: a higher
willingness to substitute over time implies less discounting of the future. Adding
diffusion risk (σ > 0, λT = 0) leads to well known results: this will both affect the
safe interest rate, which falls due to a flight to safety effect, and the risk premium,
which now becomes γσ2:

(σ > 0, λT = 0) => rt = β +
µ

ϵ
− (1 + 1/ϵ)

γ

2
σ2, (15c)

rpt = γσ2. (15d)

Adding the risk premium to the risk-free rate and again correcting for the growth
rate gives the growth-adjusted discount rate, still assuming σ > 0, λT = 0:

rn,t = β + (1/ϵ− 1)
(
µ− γ

2
σ2
)
. (15e)

So the impact on the safe rate and on the risk premium are in opposite directions, as
is well known from the literature. For ϵ = 1 the two effects cancel out, for ϵ > 1 the
risk premium impact dominates and the overall discount rate increases with risk. For
ϵ < 1 the opposite result obtains and discount rates will actually go down with higher
risk as the flight to safety effect dominates the impact on the risk premium. While ϵ
determines the relative importance of the interest rate and risk premium effects, risk
aversion γ determines their magnitude. A high degree of risk aversion amplifies the
effect of risk on the discount rate. Of course when the agent is risk neutral (γ = 0),
risk has no effect on the discount rate.

We now introduce climate uncertainty in addition to diffusion risk, and ambiguity
aversion, the main topic of this paper. Adding climate disaster risk to diffusion risk
implies: σ > 0 and λT > 0. To set a benchmark we first analyse the case where there
is no ambiguity aversion (θ = 0). This corresponds to a∗ = 1, b∗ = 1, the optimal
and the reference case actually coincide when θ = 0. Equation (15) then shows
that adding climate disaster risk has an effect on both the interest rate and the risk
premium very much like changes in σ have. The climate risk term is premultiplied
by (1/ϵ − 1) in equation (15), so when ϵ < 1 the interest rate effect dominates and
adding disasters leads to a lower discount rate. But when ϵ > 1, the risk premium
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effect dominates and adding climate disasters actually leads to higher discount rates.
Finally when ϵ = 1, the two effects cancel.

In our no-ambiguity-aversion benchmark case a∗ = 1, b∗ = 1, the climate related
term in equation (15) then becomes:

λt
−1

η + 1− γ
. (16)

−1
η+1−γ equals the certainty equivalent of the climate shock. When γ = 0, the certainty

equivalent is equal to the expected value Et[Jt] =
−1
η+1

. The term scales with the
arrival rate λt: more frequent disasters have a larger effect on discount rates. Finally
a higher γ leads to a smaller certainty equivalent (i.e. a larger negative shock), since
η is substantially larger than 1.

Now introduce ambiguity aversion. The climate term in equation (15) now equals:

a∗λt
−1

b∗η + 1− γ
. (17)

Including ambiguity aversion leads to a larger worst case arrival rate: a∗ > 1 =>
a∗λt > λt so one can see from equation (17) that ambiguity aversion leads to a larger
worst case arrival rate. Thus ambiguity aversion amplifies the impact that the arrival
rate of climate disasters has on discounting. Also, we can see from (17) that ambiguity
aversion implies a more negative certainty equivalent term since b∗ < 1; so once again
we find that ambiguity aversion leads to a larger impact of climate risk on discounting.
Therefore we can unambiguously conclude that there is AA amplification: ambiguity
aversion amplifies the effect of climate risk on discounting, both through its impact
on the worst case arrival state and on the worst case certainty equivalent conditional
on arrival.

Whether AA amplification leads to a higher or lower discount rate depends on
the value of ϵ, much like in the earlier discussion on the impact of (climate) risk on
interest rates in the absence of ambiguity.

ϵ = 1: the impact of AA amplification on the safe rate and on the risk premium
cancel each other out and the discount rate simply becomes β irrespective of climate
risk (or for that matter any other risk).

ϵ < 1: the flight to safety effect of magnification dominates the impact of a higher
risk premium, so AA amplification actually leads to a lower discount rate.

ϵ > 1: we get the presumably more intuitive outcome, with ϵ > 1 the risk premium
effect dominates and AA magnification actually leads to a higher discount rate than
obtained without AA magnification.

4.2 The social cost of carbon

With the machinery developed sofar and using the value function from equation (9) we
can take the next step and calculate the Social Cost of Carbon (SCC). We define the
SCC as the marginal cost in terms of reduced welfare of increasing carbon emissions
by one ton carbon scaled by the marginal welfare effect of one additional unit of
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consumption. This gives us the social cost of carbon in terms of the price of time t
consumption units terms (conventionally referred to as ‘in dollar terms’). In appendix
E we derive the following expression for the SCC based on this definition:

SCCt = Ct

∫ ∞

0

exp
{
−
∫ t+u

t

CDRsds
}

︸ ︷︷ ︸
I

∫ t+u

t

a∗λT
∂Ts
∂Mt

ds︸ ︷︷ ︸
II

1

b∗η + 1− γ︸ ︷︷ ︸
III

du
(18)

Equation (18) shows first of all that the social cost of carbon is proportional to Ct,
the aggregate consumption level: when the current aggregate consumption level Ct
doubles, the SCC doubles as well. For a given consumption level, the SCC depends
on three terms, labeled I, II and III respectively in equation 18. The social cost of
carbon. the marginal welfare loss due to emitting an additional unit of carbon today,
is the discounted sum of all current and future damages done by emitting one ton
of carbon today. The outer integral indicates that all future marginal damages are
included in the SCC. Future damages are discounted with the (cumulative) consump-
tion discount rate (term I). Term II is the change in the probability of a disaster
between time t and time t + u due to an additional unit of emissions today. This
change in probability is a function of the derivative of future temperature levels with
respect to current carbon emissions (which marginally change current carbon concen-
tration Mt). Term III captures the damages when a disaster actually takes place. It
can be interpreted as a certainty equivalent: the expected value is adjusted for risk
and ambiguity preferences.

Consider first the impact of risk aversion as measured by γ. Term III is clearly
increasing in risk aversion. But risk aversion also has an effect on the discount rate
CDRt. As discussed before, increasing risk aversion increases the discount rate when
ϵ > 1. So when ϵ > 1 the discounting effect works in opposite direction of the effect on
the certainty equivalent: for ϵ > 1 the impact of γ on the SCC is therefore ambiguous
in general and will depend on the specific parameter values chosen (cf the numerical
analysis in Section 5).

Consider next the impact of ϵ. The elasticity of intertemporal substitution ϵ only
plays a role in the discount rate. When ϵ increases, the willingness to substitute over
time increases which leads to lower discount rates. So a higher ϵ unambiguously leads
to a higher SCC.

The ambiguity aversion parameter θ does not directly show up in the formula
for the SCC, but its effect works through the choice of a∗ and b∗. When ambiguity
aversion is present, i.e. θ > 0, a∗ > 1 (higher worst-case arrival rate) and b∗ < 1
(more negative worst-case jump size). With θ > 0, the increase in the probability of
a disaster happening (term II) is larger because the worst case arrival rate of disasters
a∗λt is higher. And term III in expression 18, the certainty equivalent damage term
conditional on a disaster happening, is also higher. So through these two channels
ambiguity aversion leads to a higher social cost of carbon.

But ambiguity aversion also affects discount rates and the sign again depends
on the elasticity of intertemporal subtitution ϵ. When ϵ < 1, ambiguity aversion
additionally leads to a lower discount rate and thus an even higher SCC. When ϵ = 1,
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the discount rate is simply β and ambiguity has no effect on the discount rate so in
that case the SCC increases with ambiguity also. Lastly, when ϵ > 1, increasing θ
leads to higher discount rates. Therefore increasing ambiguity aversion then has two
offsetting effects in this case and the net sign of the impact of θ on the SCC is in
principle ambiguous. Since ambiguity aversion always leads to a higher SCC when
ϵ ≤ 1, we only focus on the case of ϵ > 1 in the Numerical Solutions Section 5 below.

Summarizing, when considering the effect of ambiguity aversion on the social cost
of carbon we can identify two effects. First, including ambiguity aversion leads to a
higher arrival rate and a larger certainty equivalent of expected damages conditional
on arrival, which unambiguously pushes the social cost of carbon up. We call this
effect the direct effect of ambiguity aversion. Second, there is a more indirect general
equilibrium effect through the impact of ambiguity aversion on discount rates. The
discount rate that should be used to discount future climate disasters is the consump-
tion discount rate. When ϵ ≤ 1, the discount rate goes down as ambiguity aversion
increases but when ϵ > 1 the elasticity of substitution is larger than 1, ambiguity aver-
sion leads to a higher consumption discount rate. This is an intuitive result: if the
representative agent is very ambiguity averse about climate disasters, he would rather
like to consume today than to postpone consumption since the future consumption
level is uncertain. Ambiguity aversion therefore increases the consumption discount
rate when ϵ > 1. When ϵ > 1 it is ultimately a numerical issue which of the two
effects dominates. We will highlight both effects separately in the numerical section
and show that for our calibration the first effect dominates. Thus in our numerical
analysis more ambiguity aversion leads to a higher SCC for all values of ϵ.

5 Climate change and the social cost of carbon:

numerical results

We now switch to a more realistic way of modelling emissions by assuming they are
endogenous because linked to aggregate output, and hence are driven by a stochastic
process too. This necessitates resorting to numerical solutions. We do this in two
steps after first discussing our calibration choices (section 5.1). Then in the first step
towards a full endogenous emissions version we first analyse the equivalent of the
analytical setup with exogenous emissions in Section 5.2. In Step 2 we introduce the
full model version with endogenous stochastic emissions (in Section 5.3.

There are two reasons for numerically solving the model with exogenous emissions
too. First, analyzing both variants allows us to show what adding endogeneity and
thus stochastics to the emission process adds to the results on the SCC. But there
is a second reason for also analyzing the exogenous emissions case: the analytical
solution and its quantitative version allow us one more insight. Volatility has an
impact both on the discount rate and on the Certainty Equivalents being discounted
but the two effects work against each other: higher volatility raises the discount rate
but lowers the Certainty Equivalent quantities being discounted. Since without an
analytical solution we do not have a separate expression for the discount rate the full
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Table 1: Parameters for the economic model

Par. Description Value
Ct Initial consumption level (PPP, in trillion 2015$) 83.07
λT Arrival rate parameter 0.02 / 0.04
η Disaster size parameter 30.25 / 61.5
E[J ] Expected disaster size -0.032 / -0.016
γ Risk aversion 5
θ Ambiguity aversion parameter 0.1
a∗ Optimal ambiguity parameter 1.27 / 1.30
b∗ Optimal ambiguity parameter 0.74 / 0.75
ϵ Elasticity of substitution 1.5
CDR0 Consumption discount rate 1.5%

model version does not allow for separate assessment of the impact of volatility on the
discount rate and on the CEEs being discounted we can only assess the net impact.

5.1 Calibration

Appendix F gives the full details of the calibration of the climate model. Parameters
for the growth rate of emissions and the initial level are chosen to match the baseline
scenario of the DICE-2016 calibration (W. D. Nordhaus, 2017). The parameters of
the carbon cycle and temperature model are taken from Mattauch et al. (2018). In
addition, and different from Mattauch et al. (2018), we also include a base level of
non-carbon related radiative forcing and calibrate it to match exogenous forcing in
DICE-2016. Figure 3 shows the future path of the climate state variables using our
emissions path and climate model. Under the Business-As-Usual scenario, emissions
are projected to peak at the end of the century, and decline from then on. The surface
temperature will then rise by almost 4 degrees in 2100. Note that the SCC is not
very sensitive to assumptions about the emissions scenario, since it will only affect the
SCC via the discount rate CDRt and via the derivative of temperature with respect
to the carbon concentration.

The calibration of the economic parameters is given in table 1. Since we consider
an exogenous endowment economy, output and consumption are the same thing in our
model. That leaves the question open whether we should calibrate the endowment to
output or to consumption data. The focus of the paper is on the social cost of carbon.
What ultimately matters for the social cost of carbon is consumption, since utility
depends on consumption and not on output. To make our results more comparable
to other models, we therefore calibrate endowment to consumption data. The next
choice to be made is whether one should aggregate output or consumption data using
market exchange rates or using purchasing power parities (PPP). In line with the
DICE-2016 model we use purchasing power parity exchange rates. Consumption
data is not directly available in PPP. To obtain a proxy for world consumption in
PPP we first obtain output data in PPP. Then we determine the world consumption
ratio using market exchange rates. Our proxy for world consumption in PPP is then
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Figure 3: Future path of climate variables.
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output in PPP multiplied by the world consumption ratio. Real world GDP (PPP)
in 2015 equals 114.137 trillion 2015$ (IMF World Economic Outlook October 2016).
World consumption in 2015 using market exchange rates equals 55.167 (in trillion
2010 $), while world GDP using market exchange rates equals 75.803 (in trillion
2010 $) (Worldbank Database). This yields a consumption-output ratio of 72.78%.
Applying this ratio to World GDP (PPP) then gives 83.065 (in trillion 2015 $) for
aggregate consumption in PPP terms.

The next step is to calibrate the climate disaster distribution, and in particular
the parameters λT and η. Our setup does allow for an arrival rate that is convex
in temperature, but we do not consider this extension since it would give another
free parameter to calibrate. Karydas and Xepapadeas (2019) also consider climate
disasters and assume, based on natural disaster data, that for every degree warming
the arrival rate increases by 6%. The disaster size is calibrated to 1.6%. This implies
that the expected growth loss due to climate change would be 6%× 1.6% = 0.096%
per degree global warming. W. D. Nordhaus (2017) models the economic impact of
climate change as the percentage loss of output as a function of temperature (level
impact). Hambel et al. (2021) consider both a level and a growth impact of climate
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damages. They find that a loss of 0.026% per degree warming gives the same GDP
loss in the year 2100 as the level impact of W. D. Nordhaus (2017). Setting the
disaster size to 1.6% and calibrating λT such that on average climate disasters lead
to a loss of 0.026% gives λT = 1.63%, much lower than the arrival rate assumed
in Karydas and Xepapadeas (2019). The latter obviously get much higher expected
damages than the calibration of W. Nordhaus (2014) yields.

We decide to choose λT = 4%, which is in between these two calibrations and set
η = 61.5 which yields Et[Jt] = −1.6%, in line with Karydas and Xepapadeas (2019).
Additionally, we consider a variant with less frequent but on average larger disasters:
λT = 2%, and a disaster size parameter η = 30.25 which gives Et[Jt] = −3.2%. While
both calibrations have on average the same impact, their impact on risk premia is
very different.

We now turn to the calibration of risk aversion and ambiguity aversion. We set
risk aversion equal to 5. This level of risk aversion can be seen as conservative if we
compare it to common values in the asset pricing literature.8

The level of ambiguity aversion is harder to calibrate. To get a feeling for reason-
able values of ambiguity aversion, we use the concept of detection error probabilities.
The ambiguity aversion parameter θ pins down the arrival rate and the expected jump
size in the worst-case scenario. A higher θ leads to a higher worst-case arrival rate
and a more negative worst-case expected jump size. The detection error probability
is the probability of choosing the wrong model (so choosing the reference model P
when the worst-case Qa,b is true and vice-versa). When θ is higher, the two models
are more different and the probability of making a mistake is therefore lower. When
the detection error probability is close to 50%, the two models are very similar. This
is an indication of a low ambiguity aversion parameter. On the other hand, when the
detection error probability is close to 0, it is easy to distinguish the worst-case model
from the reference model. This indicates that the worst-case model is extreme and
the ambiguity aversion parameter very high.

We calculate the detection error probability assuming that the consumption pro-
cess can be observed over a period of 100 years. The ambiguity aversion parameter
θ is varied between 0 and 0.5. The results are given in figure 4. Detection error
probabilities are decreasing in θ and are higher for a lower λT . This is intuitive, since
a lower λT implies that there are less disasters over the observed time period and
the probability of choosing the wrong model is therefore larger. We choose to set
θ = 0.1 in the base calibration, which gives a detection error probability of 24.6% for
(λT , η) = (0.02, 30.25) and 31.6% for (λT , η) = (0.04, 61.5) (cf figure 4). This level of
ambiguity aversion balances the trade-off between wanting to make a robust decision,
but not taking into account too extreme models. The detection error probabilities
for θ = 0.1 are sufficiently far away from 50%, which implies that the reference model
and the worst case model are not too similar. On the other hand, the detection er-
ror probabilities are also not close to 0, which would indicate an extreme amount of
ambiguity aversion. However, since this parameter remains hard to calibrate, we do

8A coefficient of relative risk aversion between 5 and 10 is common in the asset pricing literature
according to (Cochrane, 2009).
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Figure 4: Detection error probabilities as a function of θ.
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vary θ in robustness checks.
For the calibration (λT , η) = (0.04, 61.5) the resulting optimal parameters with

θ = 0.1 are: a∗ = 1.30 and b∗ = 0.75. The arrival rate under the worst-case probability
measure is 30% higher compared to the reference model. And the expected jump size
becomes −1

b∗η+1
= −2.12% compared to −1.6% in the reference model. The optimal

parameters for the case (λT , η) = (0.02, 30.25) are quite similar: a∗ = 1.27 and
b∗ = 0.74.

The parameters that still have to be calibrated affect the social cost of carbon
only indirectly, via the discount rate. Equation (15) shows that one can separate
the expression for the Consumption Discount Rate (the relevant discount rate for the
social cost of carbon) CDRt in a time-independent part CDR0 and a part that does
depend on time as:

CDRt = CDR0 + (1/ϵ− 1)a∗λt
−1

b∗η + 1− γ

CDR0 = β + (1/ϵ− 1)
(
µ− γ

2
σ2
)
.

(19)

CDR0 is the consumption discount rate in the absence of climate disasters. First, the
value of the elasticity of intertemporal substitution ϵ determines whether additional
risk increases or decreases the discount rate. Generally, there is strong empirical
evidence of an EIS larger than one (Van Binsbergen, Fernández-Villaverde, Koijen,
& Rubio-Ramı́rez, 2012; Vissing-Jørgensen & Attanasio, 2003). When ϵ > 1, we
are in the realistic situation that additional risk decreases asset prices. We choose
ϵ = 1.5, which is a common value in the literature on Epstein-Zin preferences. The
growth rate µ, the volatility σ and the pure rate of time preference β only affect
the social cost of carbon via CDR0. The calibration of β has been widely discussed
in the climate change literature. Additionally, we could calibrate σ from observed
consumption volatility. However, as Mehra and Prescott (1985) point out, the model
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in that case would generate a way too low risk premium (the equity premium puzzle).
A way to circumvent this is to calibrate σ to the volatility of stock prices, but this
solution is also not very satisfactory. There have been several (partial) solutions
proposed to the equity premium puzzle, for example including economic disaster
risk. Solving the equity premium puzzle goes beyond the scope of this paper. Since
both β and σ only affect the SCC via CDR0, we choose to directly calibrate the
consumption discount rate in the absence of climate risk. In our base calibration, we
choose CDR0 = 1.5%, but we show our results for values of CDR0 between 0.5%
and 2.5%. The parameter combinations (β, µ, σ) = (2.25%, 2.5%, 3%) and (β, µ, σ) =
(1.5%, 2.5%, 10%) for example yield a consumption discount rate CDR0 = 1.5%. Note
that the actual consumption discount rate CDRt is higher because of the impact of
climate disasters on discounting.

5.2 The Social Cost of Carbon with non-stochastic emissions:
the analytical model quantified

Our base calibration yields a social cost of carbon of $599 per ton of carbon ($163
per ton CO2) with (λT , η) = (0.04, 61.5) and $664 per ton carbon ($181 per ton CO2)
with (λT , η) = (0.02, 30.25).9 Comparing the two cases shows that it matters whether
the disasters are frequent but small (large η) or more infrequent but larger (smaller
η). The two sets of assumptions yield the same expected disaster shock, but in the
low frequency/large-shock case risk aversion and ambiguity aversion play a larger role
and the social cost of carbon is correspondingly higher.

Ambiguity aversion and the SCC
Figure 5 shows for each of the two sets of assumptions on the disaster risk parame-

ters the social cost of carbon for different values of θ. Ambiguity aversion clearly leads
to a substantially higher social cost of carbon. For the (λT , η) = (0.04, 61.5) case,
the SCC is 65% higher with θ = 0.1 compared no the case without ambiguity aver-
sion. The relative increase is even larger when we consider the (λT , η) = (0.02, 30.25)
case: the SCC is then 83% higher with ambiguity aversion. The intuition behind
this difference is that risk aversion and ambiguity aversion have a larger effect with
less frequent but larger disasters. Therefore the relative increase in the SCC due to
ambiguity aversion is larger with the λT = 0.02 process than it is with λT = 0.04
setup.

We saw already from equation (19) that ambiguity aversion affects both the arrival
rate and the certainty equivalent of climate disasters, but also the discount rate. In
our calibration with ϵ = 1.5 > 1, more ambiguity aversion leads to a higher discount
rate which means the direct effect via the arrival rate and the certainly equivalent
and the indirect effect via the discount rate have the opposite effect on the SCC. We
show the two effects separately and combined in Figure 5. There we consider the
indirect discounting only effect, in which we assume ambiguity aversion only affects

9We express the social cost of carbon in the rest of this paper in dollars per ton carbon. To
convert in dollars per ton CO2, divide by 3.67.
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Figure 5: Social cost of carbon as a function of θ.
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(a) (λT , η) = (0.04, 61.5)
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(b) (λT , η) = (0.02, 30.25)
This figure shows the social cost of carbon as a function of the ambiguity aversion parameter θ. The total effect of
ambiguity aversion on the SCC is given by the solid line (base). We additionally distinguish two special cases. In
the discounting effect only case (dashed line) we assume that increasing θ does lead to an increase in the discount
rate, but does not change the arrival rate and the certainty equivalent in the SCC formula. In the direct effect only
case (dotted line) we look at the opposite case, where increasing θ is assumed to have an effect on the arrival rate

and the certainty equivalent, but not on the consumption discount rate CDRt.

the discount rate CDRt (the dashed line); and the direct effect where we leave the
consumption discount rate CDRt unchanged, but take into account the direct effect
of ambiguity aversion on the arrival rate and certainty equivalent of the climate disas-
ters (dotted line) in figure 5. The two effects are combined in the case labeled ”Base”
(solid line). Figure 5 clearly indicates that ambiguity aversion increases the discount
rate (remember we assume ϵ > 1 in this set of simulations); but we also see that the
direct effect on the SCC dominates, the solid line slopes upward. We conclude that
even for ϵ > 1 ambiguity aversion leads to a higher social cost of carbon, and in our
calibration actually substantially so.

The elasticity of intertemporal substitution ϵ and the SCC
The sign of the discounting effect depends on the value of ϵ. When ϵ < 1, addi-

tional risk, more risk aversion or more ambiguity aversion would lower discount rates
and both the indirect discounting effect and the direct effect of ambiguity aversion
would have the same sign. However, this leads to counter-intuitive effects. For ex-
ample ϵ < 1 implies that the consumption discount rate decreases when the volatility
of consumption increases. For ϵ = 1, the consumption discount rate CDRt simply
equals β and risk, risk aversion and ambiguity aversion do not affect discount rates.

Risk aversion, ambiguity aversion and the SCC
In table 2 we compare the effect of risk aversion and of ambiguity aversion on the

SCC numerically. By definition, the SCC is the same for both calibrations when risk
aversion γ and ambiguity aversion θ are both 0. In that case the expected value of
both calibrations is the same and since risk is not priced under those assumptions, the
SCC is the same for both calibrations. Introducing risk aversion has a negligible effect
on the SCC for the frequent disasters with low disaster size: for (λT , η) = (0.04, 62.5)
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Table 2: Social cost of carbon as function of risk aversion and ambiguity aversion

Social Cost of Carbon (λT , η) = (0.04, 61.5) (λT , η) = (0.02, 30.25)
γ = 0, θ = 0 363 363
γ = 5, θ = 0 360 392
γ = 5, θ = 0.1 599 664

the direct impact of risk aversion on the certainty equivalent is small and is canceled
out by the discounting effect: for this configuration the SCC is even slightly lower
than what it is without risk aversion. This changes when damages are more infrequent
but larger. In the alternative calibration with (λT , η) = (0.02, 30.25), risk aversion
does increase the social cost of carbon, from $363 to $392. Either way the impact
of risk aversion on the SCC is not substantial. But the analysis shows very different
results for ambiguity aversion. In both cases, introducing ambiguity aversion leads
to a significantly higher value of the social cost of carbon, when θ goes from 0 to 0.1,
the SCC increases by almost 70%. The table thus shows that that risk and ambiguity
aversion have very different implications for the valuation of climate risk.

Discount rates and the SCC
Figure 6 shows the dependence of the SCC on the time-independent part of the

consumption discount rate CDR0, the core discount rate. Note that the actual dis-
count rate that is used to discount future damages (CDRt) is higher than CDR0

due to the effect of climate disasters itself on discounting. When core discount rates
are close to zero, the social cost of carbon becomes very high. With CDR0 = 0.5%,
the SCC is even above $2000, around four times higher than in the base calibration.
On the other hand, setting CDR0 = 2.5% gives a social cost of carbon that is less
than half the value in the base calibration. This figure highlights the importance of
the discount rate when analyzing climate change and in particular its impact on the
social cost of carbon.

Figure 6: Social cost of carbon as a function of CDR0.

0.005 0.01 0.015 0.02 0.025

0

500

1000

1500

2000

2500

3000

28



5.3 The Full Model: the Social cost of carbon with stochastic
emissions

So far we have made the obviously counterfactual assumption that emissions are a
non-stochastic process, since assuming otherwise would preclude analytical solutions.
In this section we remedy this shortcoming by modeling emissions as an explicitly
stochastic process correlated to the process generating output. The short answer to
the question what this brings about is that the main results are still true in this more
realistic case. But stochastic emission processes add to risk and uncertainty, with as
implication that higher risk aversion and more am case.

Thus assume now that emissions are the product of carbon intensity ψt and aggre-
gate endowment Ct: Et = ψtCt. We calibrate the stochastic process for ψt such that
in expectation emissions are similar to what they are in the non-stochastic emissions
case. To bring this about we postulate that ψt declines at the rate ψ0e

−αψt + δ∞(1−
e−αψt) and set δψ0 = −0.6%, δψ∞ = −6% and αψ = 0.0045. All other parameters are
the same as in the exogenous case. The only difference is that future emissions are
now also stochastic and correlated to output. The solution method is described in
appendix G.

Table 3: Social cost of carbon as function of risk aversion and ambiguity aversion
with stochastic emissions correlated to output

Social Cost of Carbon (λT , η) = (0.04, 61.5) (λT , η) = (0.02, 30.25)
γ = 0, θ = 0 352 352
γ = 5, θ = 0 368 399
γ = 5, θ = 0.1 609 673

The results are given in Table 3. For zero risk aversion and in the absence of
ambiguity aversion (γ = 0 and θ = 0) the SCC is slightly smaller compared to the
exogenous emissions case, although negligibly so: 352 $/tC instead of 363 $/tC.
But with endogenous and stochastic emissions, both risk and ambiguity aversion
have larger effects on the social cost of carbon. For the high expected damages
parametrization of the climate damages jump process (λT , η) = (0.02, 30.25), column
two in Table 3 shows that increasing γ from 0 to 5 leads to a 13 % increase in
the SCC (go from the first to the second row in column two of table 3). Adding
ambiguity aversion (go from the second to the third row in column two of table 3)
leads to a further 69 % increase in the SCC. The combined impact of going from
no risk/ambiguity aversion to our base case assumptions on the risk and ambiguity
aversion parameters is a 91% increase in the SCC, up from 83% in the non-stochastic
emissions case.

For the alternative low-expected-damages case (λT , η) = (0.04, 61.5), column one
in Table 3, the impact of increasing γ and θ is smaller although still sizable. Increasing
γ from 0 to 5 leads to a 5 % increase in the SCC and subsequently increasing θ to 0.1
leads to a substantially larger increase in the SCC of 65%. The combined impact is
in this case a somewhat smaller but still large: an increase in the SCC of 73%.
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Overall Table 3 shows that our main results remain valid in the more realistic
case where emissions are a function of aggregate endowment, while the impact of risk
aversion and ambiguity aversion now is even a bit larger. These results should be
intuitive since with endogenous emissions there is additional risk within the model:
future emissions are now also stochastic. Especially risk aversion will therefore have
a larger effect.

6 Conclusions

Climate change will beyond reasonable doubt have a large impact on economic growth
in the future. However, because of the complex nature of the problem and the lack of
data, it is not possible yet to accurately estimate the timing and extent of its impact.
But we do know that potentially large and irreversible consequences are likely to
take place unless mitigating policies are implemented in time. But these changes will
happen possibly far into the future, while mitigating policies are (or should be) under
consideration right now. That discrepancy should put the discussion on discounting at
the center of the debate about the social cost of carbon and what we should do about
climate change: to compare uncertain future damages with costs today, those future
damages need to be discounted back towards today. The debate in the literature
has largely zeroed in on the rate of time preference; the problem there is that to
be consistent with capital market data, discount rates must be relatively high which
in turn does not leave much once climate change consequences a century out are
discounted back towards today (cf Weitzman (2007) for a very lucid overview of this
debate). In this paper we also focus on the discounting question and its implication
for the SCC, but we take a different approach. Rather than discussing numerical
values of certain parameters, we explore alternative specifications of preferences with
respect to risk and more fundamental uncertainty. We explicitly introduce not just
risk (i.e. stochastic outcomes with known probability distribution) but also ambiguity
(stochastic outcomes with unknown distribution), and show the implications for the
social cost of carbon of risk and ambiguity aversion under different and independent
assumptions about the intertemporal rate of substitution.

To do so we focus on the effect of Epstein-Zin recursive preferences on outcomes
of the model, and on the impact of unmeasurable risk (ambiguity) and the interaction
between those two. Both breaking the link between γ and the EIS (by introducing
Epstein-Zin utility) and introducing ambiguity aversion are conceptually relevant in
the climate change setting. The first extension is relevant because climate change
problems have a very long horizon and therefore the elasticity of intertemporal sub-
stitution (EIS) unavoidably plays an important role. Arbitrarily restricting its value
to 1/γ is then surely unsatisfactory. Second, conceptually ambiguity aversion is a
logical extension, since we have no accurate estimation of climate damages nor in
particular of their probability density function in the future. The assumption of un-
measurable risk (”Knightian uncertainty”) then is a natural framework to use. Finally
we highlight the sometimes complicated interactions between ambiguity aversion and
intertemporal substitution elasticities for the value of the Social Cost of Carbon.
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To do all this we set up an analytic IAM by extending a disaster risk model with
a climate change model and a temperature dependent arrival rate. Furthermore,
we model climate risk as tail risk instead of assuming that temperature increases
generate a certain amount of damage every year. The model is transparent because we
manage to derive closed form solutions for the social cost of carbon. Where stochastic
numerical IAMs can take hours to be solved, solving our model only requires numerical
integration and is therefore solved within seconds.

Our base calibration generates a substantial social cost of carbon, is between $599
and $664 per ton of carbon ($163 - $181 per ton CO2) with non-stochastic emissions,
and slightly more for the stochastic case (between $609 and $673 per ton of carbon).
This is much higher than for example the estimate of $114 per ton carbon that is
obtained using the DICE-2016R model (W. D. Nordhaus, 2017), and also higher than
current market prices in for example the European Emissions Trading System by the
time of writing this paper. Most importantly, we use our model to highlight how
ambiguity aversion changes the social cost of carbon.

Analysing the effect of ambiguity aversion on the SCC is not a trivial exercise since
multiple potentially offsetting effects play a role: we show that ambiguity aversion has
both a direct effect on the arrival rate and certainty equivalent of disasters for given
discount rates (more ambiguity aversion leads to a higher certainty equivalent) and
an indirect effect on the discounting component. The effect of ambiguity aversion
on discounting depends on the intertemporal rate of substitution ϵ. When ϵ < 1,
increasing ambiguity aversion leads to a smaller effective discount rate on climate
damages, making for a higher SCC since both the direct and the indirect effect work
in the same direction. For the arguably interesting (because empirically supported)
case ϵ > 1, increasing ambiguity aversion has two offsetting effects on the SCC, the
direct and indirect effects actually work in different direction. While the direct effect
is qualitatively the same as in the ϵ < 1 case, the indirect effect now has the opposite
direction because with ϵ > 1 discount rates actually go up with higher risk aversion
and ambiguity aversion. However, we show that even then the direct effect dominates
when evaluated numerically and therefore that the presence of ambiguity aversion
leads to a (substantially) higher social cost of carbon.

Lastly, we also show the importance of fully considering the impact of the con-
sumption discount rate on the social cost of carbon, not just the impact of the rate
of time preference. It is of course well known that the social cost of carbon is very
sensitive to changes in the discount rate, but we stress that analyzing the discount
rate impact of climate change involves more than a discussion of the pure rate of time
preference on the discount rate; a low discount rate can also be caused by a high elas-
ticity of intertemporal substitution, and additionally the appropriate discount rate
depends in elaborate ways on the growth rate of the economy, volatility, risk aver-
sion, climate disaster risk and ambiguity aversion. Disentangling these various effects,
their interactions and their impact on the SCC is the key contribution of this paper.
One major theme emerges: proper risk pricing and incorporating ambiguity aversion
leads to much higher estimates of the Social Cost of Carbon, literally by orders of
magnitude. These findings are surely of more than just academic interest.
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A Relative Entropy and the Distance Measure d(a,b)

For each a and b we define the measure Qa,b which is equivalent to P and has Radon-
Nikodym derivative ξa,bt where ξa,bt follows:

dξa,bt = (λt − λQ
a,b

t )ξa,bt dt+
(λQa,bt fQa,b(Jt)

λtf(Jt)
− 1
)
ξa,bt− dNt. (20)

Under the alternative measure Qa,b the arrival rate equals λQ
a,b

t = aλt and the jump
size parameter equals ηQ

a,b
= bη. We can calculate in this case the fraction of the two

probability distributions: fQ
a,b

(x)
f(x)

= b(1 + x)(b−1)η. Substituting this into (20) gives:

dξa,bt = (1− a)λtξ
a,b
t dt+

(
ab(1 + Jt)

(b−1)η − 1
)
ξa,bt− dNt. (21)

The Radon-Nikodym derivative ξa,bt is the ratio between the alternative measure Qa,b

and the reference measure P. The relative entropy between Qa,b and P over time unit

∆ is defined as EQa,b
t

[
log(

ξa,bt+∆

ξa,bt
)
]
. Here EQa,b

t denotes the expectation with respect

to the alternative measure Qa,b. Then divide by ∆ and let ∆ → 0 to obtain the

instantaneous relative entropy: RE(a, b) = lim∆→0
1
∆
EQa,b
t

[
log
(
ξa,bt+∆

ξa,bt

)]
.

Applying Itô’s lemma for jump processes to ξa,bt , we obtain the following dynamics
for log(ξa,bt ):

d log(ξa,bt ) = (1− a)λtdt+
(
log(ab) + (b− 1)η log(1 + Jt)

)
dNt. (22)

Using integration by parts we can calculate that EQa,b
t [log(1 + Jt)] = − 1

ηQ
. Therefore

the (instantaneous) relative entropy at time t equals:

RE(a, b) = lim
∆→0

1

∆
EQa,b
t

[
log
(ξa,bt+∆

ξa,bt

)]
=

(1− a)λt + aλt

(
log(ab) +

1

b
− 1
)
.

(23)

Scaling relative entropy by the arrival rate λt yields our distance measure:

d(a, b) =
RE(a, b)

λt
= (1− a) + a

(
log(ab) +

1

b
− 1
)
. (24)

B Calculating the detection error probability

After observing the process of consumption over a period N years, what is the prob-
ability of choosing the wrong model? Let us start with the case that the reference
model P is the true model and the agent considers the alternative model Qa,b. Note
that the Radon-Nikodym derivative informs us about the likelihood ratio of both
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models. When this derivative is larger than one after N years, the worst-case model
Qa,b is the most likely and the agent will choose the wrong model. The probability of
making this error is equal to (see for example Maenhout (2006)):

P
(
ξa,bN > 1|P

)
= P

(
log(ξa,bN ) > 0|P

)
. (25)

We calculate this probability by simulating the process of log(ξa,bt ) forward. Simu-
lation is done via a standard Euler method. Similarly, we can define the opposite
mistake where the alternative model is actually true and the agent chooses the ref-

erence model. We now define the inverse Radon-Nikodym derivative: dP
dQa,b = ξ̃t

a,b

where ξ̃t
a,b

follows:

dξ̃t
a,b

= (a− 1)λtξ̃t
a,b
dt+

( 1

ab
(1 + J)(1−b)η − 1

)
ξ̃t
a,b

− dNt. (26)

Applying Itô’s lemma gives:

d log(ξ̃a,bt ) = (a− 1)λtdt+
(
− log(ab) + (1− b)η log(1 + Jt)

)
dNt. (27)

The probability of choosing the wrong model when actually the alternative model
Qa,b is true equals:

P
(
ξ̃N

a,b
> 1|Qa,b

)
= P

(
log(ξ̃N

a,b
) > 0|Qa,b

)
. (28)

Again this probability can be calculated by simulating the process log(ξ̃t) forward.
The detection error probability is then defined as:

1

2
P
(
log(ξa,bN ) > 0|P

)
+

1

2
P
(
log(ξ̃N

a,b
) > 0|Q

)
. (29)

C Solving the model

C.1 Hamilton-Jacobi-Bellman equation

We will first derive the Hamilton-Jacobi-Bellman equation for every measure Qa,b. In
the next subsection of the appendix we introduce ambiguity.

The value function V Qa,b
t = V Qa,b(Ct, Xt) is a function of aggregate consumption

Ct and the vector of climate state variables Xt. Let V
Qa,b
C denote the first derivative

of the value function with respect to aggregate consumption, similar notation is used
for the second derivative. For notational purposes, define the vector of climate state
variables:

Xt = [gE,t Et M0,t M1,t M2,t M3,t FE,t Tt T
oc
t ]′. (30)

The vector of state variables then follows: dXt = µX(Xt)dt. Denote by V
Qa,b
X the row

vector of partial derivatives of the value function V Qa,b
t with respect to the vector of

state variables Xt: V
Qa,b
X =

[
∂V Qa,b (Ct,Xt)

∂gE,t
... ∂V Qa,b (Ct,Xt)

∂T oct

]
.
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Duffie and Epstein (1992b) show that the HJB-equation for stochastic differential
utility equals:

0 = f(Ct, V
Qa,b
t ) +DVQa,b . (31)

Here DVQa,b is the drift of the value function. In order to calculate the drift of the
value function, we will apply Itô’s lemma. By Itô’s lemma for jump processes we
have:

dV Qa,b
t = V Qa,b

C

(
µCtdt+ σCtdZt

)
+ V Qa,b

X µX(Xt)dt+
1

2
V Qa,b
CC σ2C2

t dt

+
(
V Qa,b((1 + Jt)Ct−, Xt

)
− V Qa,b(Ct−, Xt)

)
dNt.

(32)

Then the drift under Qa,b equals:

DVQa,b = V Qa,b
C µCt + V Qa,b

X µX(Xt) +
1

2
V Qa,b
CC σ2C2

t

+ λQ
a,b

t EQa,b[V Qa,b((1 + Jt)Ct−, Xt

)
− V Qa,b(Ct−, Xt)

]
.

(33)

This gives the following Hamilton-Jacobi-Bellman equation:

0 = f(Ct, V
Qa,b
t ) + V Qa,b

C µCt + V Qa,b
X µX(Xt) +

1

2
V Qa,b
CC σ2C2

t

+ λQ
a,b

t EQa,b[V Qa,b((1 + Jt)Ct−, Xt

)
− V Qa,b(Ct−, Xt)

]
.

(34)

We conjecture and verify that the value function is of the following form:

V Qa,b(Ct) = gQ
a,b

(Xt)
C1−γ
t

1− γ
, (35)

where gQ
a,b
(Xt) is some function of Xt. Substituting our conjecture V Qa,b(Ct, Xt) =

gQ
a,b

(Xt)C
1−γ
t

1−γ into f(Ct, Vt) gives:

f(Ct, V
Qa,b(Ct, Xt)) =

β

1− 1/ϵ

C
1−1/ϵ
t −

(
gQ

a,b
(Xt)C

1−γ
t

) 1
ζ

(
gQa,b(Xt)C

1−γ
t

) 1
ζ
−1

=
β

1− 1/ϵ

(
gQ

a,b

(Xt)
1− 1

ζC1−γ
t − gQ

a,b

(Xt)C
1−γ
t

)
= βζ

(
gQ

a,b

(Xt)
− 1
ζ − 1

)
V Qa,b(Ct, Xt).

(36)

The partial derivatives of V are given by:

V Qa,b
C = gQ

a,b

(Xt)C
−γ
t , V Qa,b

CC = −γgQa,b(Xt)C
−γ−1
t ,

V Qa,b
X =

gQ
a,b

X (Xt)C
1−γ
t

1− γ
.

(37)
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Here gQ
a,b

X denotes the row vector with partial derivatives to each of the state variables,

similar to V Qa,b
X . Additionally we can calculate the expected impact of a jump on the

value function:

EQa,b[V Qa,b((1 + Jt)Ct−, Xt

)
− V Qa,b(Ct−, Xt)

]
=
EQa,b

[
(1 + Jt)

1−γ]− 1

1− γ
gQ

a,b

(Xt)C
1−γ
t

=

btη
btη+1−γ − 1

1− γ
gQ

a,b

(Xt)C
1−γ
t =

−1

btη + 1− γ
gQ

a,b

(Xt)C
1−γ
t .

(38)

Substituting f(Ct, V
Qa,b(Ct, Xt)) together with the partial derivatives of V Qa,b

t and
the expectation into (34) yields the following equation:

0 =
β

1− 1/ϵ

(
gQ

a,b

(Xt)
− 1
ζ − 1

)
gQ

a,b

(Xt)C
1−γ
t + µgQ

a,b

(Xt)C
1−γ
t

− γ

2
σ2gQ

a,b

(Xt)C
1−γ
t +

gQ
a,b

X (Xt)C
1−γ
t

1− γ
µX(Xt) + atλt

−1

btη + 1− γ
gQ

a,b

(Xt)C
1−γ
t .

(39)
Dividing by gQ

a,b
(Xt)C

1−γ
t gives:

0 =
β

1− 1/ϵ

(
gQ

a,b

(Xt)
− 1
ζ − 1

)
+ µ− γ

2
σ2 +

gQ
a,b

X (Xt)

gQa,b(Xt)(1− γ)
µX(Xt)

+ atλt
−1

btη + 1− γ
.

(40)

C.2 Optimal a and b

Given a probability measure Qa,b, we can solve equation (40) to find gQ
a,b
(Xt) . Now

let us return to the problem with ambiguity. We are not interested in the solution
for every single measure Qa,b. The maxmin procedure advocated by Gilboa and
Schmeidler (1989) that we apply in this paper requires us to focus on the worst case
distribution, which leads to the following minimization problem:

Vt = min
Qa,b∈Pθ

V Qa,b
t . (41)

And since every probability measure Qa,b that we consider in our set Pθ is uniquely
defined by the parameters a and b, minimizing over Qa,b is equivalent to minimizing
over the parameters a and b. So we can replace the global minimization problem of
equation (41) by an instantaneous optimization problem over a and b. The HJB-
equation of the problem with ambiguity then becomes:

0 = min
(a,b) s.t. d(a,b)≤θ

{ β

1− 1/ϵ

(
gQ

a,b

(Xt)
− 1
ζ − 1

)
+ µ− γ

2
σ2

+
gQ

a,b

X (Xt)

gQa,b(Xt)(1− γ)
µX(Xt) + aλt

−1

bη + 1− γ

}
.

(42)
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The optimal a and b can thus be found by solving:

min
(a,b)

aλt
−1

bη + 1− γ
s.t. d(a, b) ≤ θ. (43)

We can drop λt and write this problem as a constrained optimization problem with
Lagrangian:

L(a, b, l) = a
−1

bη + 1− γ
− l
(
d(a, b)− θ

)
. (44)

Here l is the Lagrange multiplier. a∗ and b∗ and the Lagrange-multiplier l are the
solutions to the following first order conditions:

∂

∂a
L(a, b, l) =

−1

bη + 1− γ
− l
(
log(ab) +

1

b
− 1
)
= 0,

∂

∂b
L(a, b, l) = a

η

(bη + 1− γ)2
− la

b− 1

b2
= 0,

∂

∂lt
L(a, b, l) = θ − (1− a)−

(
log(ab) +

1

b
− 1
)
= 0.

(45)

From now on, we use the notation Vt for the optimal value function (Vt = V Qa∗,b∗

t ).
Similar notation is used for gt.

C.3 Solving the model

It is typically not possible to solve the partial differential equation of the problem
with climate state variables unless one would make the highly restrictive assumption
assumption of a unit EIS, which we choose not to do. However we are able to obtain
exact solutions for the value function and the consumption-to-wealth ratio without
making restrictive assumptions like EIS = 1, and the consumption-to-wealth ratio is
what we need for assessing the SCC. We will now sketch our approach.

Duffie and Epstein (1992a) derive that the pricing kernel (or stochastic discount

factor) with stochastic differential utility equals πt = exp
{∫ t

0
fV (Cs, Vs)ds

}
fC(Ct, Vt).

However, the pricing kernel has to be adjusted for the ambiguity aversion preferences.
Chen and Epstein (2002) show that the pricing kernel in the ambiguity setting should
be multiplied by the Radon-Nikodym derivative ξa

∗,b∗

t of the measure corresponding
to the optimal a∗ and b∗. ξa,bt is defined in (20). When calculating the pricing kernel,
we obtain an expression that depends on the unknown function g(Xt). But by sub-
stituting the HJB-equation into the pricing kernel we obtain an expression that only
depends on known parameters.

As an intermediate step it is helpful to introduce the concept of consumption
strips. A consumption strip is an asset that pays a unit of aggregate consumption Cs
at time time s > t. Call its price at time t: H(Ct, Xt, u), where u denotes the time
to maturity; u = s − t. The price of a consumption strip paying out at time s > t
equals:

Ht = H(Ct, Xt, u)

= Et

[πs
πt
Cs

]
= exp

{
−
∫ t+u

t

CDRsds
}
Ct.

(46)
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We will refer to CDRt as the consumption discount rate. Now define a stock St that
gives a claim to consumption and therefore it pays a continuous stream of dividends
Ct. The value of such a stock then obviously becomes:

St =

∫ ∞

0

H(Ct, Xt, u)du. (47)

In equilibrium aggregate wealth must be equal to the value of the stock. The state-
dependent consumption-wealth ratio therefore equals:

k(Xt) =
Ct
St

=
Ct∫∞

0
H(Ct, Xt, u)du

=

(∫ ∞

0

exp
{
−
∫ t+u

t

CDRsds
}
du

)−1

. (48)

Using the expression for the consumption-wealth ratio, we can calculate the value
function. At the optimum (see for example Munk (2015), Ch. 17), we have the

envelope condition that fC = VS. Furthermore, we derived that V (Ct, Xt) =
g(Xt)C

1−γ
t

1−γ .
Using the chain rule we get:

VS = VC
∂C

∂S
= VCk(Xt) = g(Xt)C

−γ
t k(Xt). (49)

Also we have for the intertemporal aggregator:

fC = βg(Xt)
1/ϵ−γ
1−γ C−γ

t . (50)

Together this gives us:

g(Xt) =
(k(Xt)

β

)− 1−γ
1−1/ϵ

. (51)

In appendix D we derive an expression for the consumption discount rate CDRt.
Given the consumption discount rate, we can solve for the consumption-wealth ratio
and therefore we know the value function.

D Discount rates

D.1 The Pricing Kernel

Duffie and Epstein (1992a) derive that the pricing kernel with stochastic differential

utility equals πt = exp
{∫ t

0
fV (Cs, Vs)ds

}
fC(Ct, Vt). However, the pricing kernel has

to be adjusted for the ambiguity aversion preferences. Chen and Epstein (2002) show
that the pricing kernel in the ambiguity setting should be multiplied by the Radon-
Nikodym derivative ξa

∗,b∗

t of the measure corresponding to the optimal a∗ and b∗. ξa,bt
is defined in (20).
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We will start with deriving the explicit stochastic differential equation of the
pricing kernel. First we calculate the derivatives of f(Ct, Vt) with respect to Ct and
Vt:

fC(C, V ) =
βC−1/ϵ(

(1− γ)V
) 1
ζ
−1
,

fV (C, V ) = βζ
{(

1− 1

ζ

)(
(1− γ)V

)− 1
ζ
C1−1/ϵ − 1

}
.

(52)

Substituting Vt = g(Xt)
C1−γ
t

1−γ into fC(Ct, Vt) and fV (Ct, Vt) we obtain:

fC(Ct, Vt) = βg(Xt)
1− 1

ζC−γ
t ,

fV (Ct, Vt) = βζ
{
g(Xt)

− 1
ζ

(
1− 1

ζ

)
− 1
}
.

(53)

This gives:

πt = ξa
∗,b∗

t exp

(∫ t

0

βζ
(
g(Xs)

− 1
ζ
(
1− 1

ζ

)
− 1
)
ds

)
βg(Xt)

1− 1
ζC−γ

t . (54)

Take the logarithm and write as a differential equation:

d log(πt) = βζ
(
g(Xt)

− 1
ζ
(
1− 1

ζ

)
− 1
)
dt− γd log(Ct) + d log(ξa

∗,b∗

t )

+ (1− 1

ζ
)d log

(
g(Xt)

)
.

(55)

Apply Ito’s lemma to log(Ct), log(ξ
a∗,b∗

t ) and log
(
g(Xt)

)
and substitute the results;

this leads to the following differential equation:

d log(πt) =
{
βζ
(
g(Xt)

− 1
ζ
(
1− 1

ζ

)
− 1
)
− γ
(
µ− σ2

2

)
+ λt(1− a∗)

+ (1/ϵ− γ)
gX(Xt)

g(Xt)(1− γ)
µX(Xt)

}
dt

− γσdZt +
(
log(a∗b∗) +

(
(b∗ − 1)η − γ

)
log(1 + Jt)

)
dNt.

(56)

After applying Ito’s lemma to log(πt) we find:

dπt =
{
βζ
(
g(Xt)

− 1
ζ
(
1− 1

ζ

)
− 1
)
− γ
(
µ− (γ + 1)

σ2

2

)
+ λt(1− a∗)

+ (1/ϵ− γ)
gX(Xt)

g(Xt)(1− γ)
µX(Xt)

}
πtdt+−γσπtdZt

+
(
a∗b∗(1 + Jt)

(b∗−1)η−γ − 1
)
πt−dNt.

(57)
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We can now substitute the HJB equation (40) into the pricing kernel. Several terms
cancel out and we are left with:

dπt =
{
− β − µ

ϵ
+
(
1 +

1

ϵ

)γ
2
σ2 +

(
γ − 1

ϵ

)
λ∗t

−1

b∗η + 1− γ

+ λt(1− a∗)
}
πtdt− γσπtdZt

+
(
a∗b∗(1 + Jt)

(b∗−1)η−γ − 1
)
πt−dNt.

(58)

D.2 The interest rate

Let Bt be the price of a risk-free asset with a return equal to the interest rate. By the
no-arbitrage argument, the interest rate rt should be such that πtBt is a martingale, .
Now write dπt = µπ,tπtdt+ σππtdZt + Jπ,tπt−dNt. The product with Bt then follows:

dπtBt = (rt + µπ,t)πtBtdt+ σππtBtdZt + Jπ,tπt−BtdNt. (59)

This is a martingale if rt+µπ+λtEt[Jπ,t] = rt+µπ+λt

(
a∗ b∗η

b∗η−γ − 1
)
= 0. Therefore

the equilibrium interest rate equals:

rt =− µπ − λt

(
a∗

b∗η

b∗η − γ
− 1
)

= β +
µ

ϵ
−
(
1 +

1

ϵ

)γ
2
σ2 −

(
γ − 1

ϵ

)
a∗λt

−1

b∗η + 1− γ

− a∗λt

( b∗η

b∗η − γ
− 1
)
.

(60)

Substituting rt into the pricing kernel gives:

dπt =
{
− rt − λt

(
a∗

b∗η

b∗η − γ
− 1
)}
πtdt− γσπtdZt

+
(
a∗b∗(1 + Jt)

(b∗−1)η−γ − 1
)
πt−dNt.

(61)

D.3 The equity premium

Consider a stock that pays continuous dividends at a rate Ct and has ex-dividend
price St. We denote the cum-dividend stock price by Sdt . We use the expression for
the consumption-wealth ratio in combination with the HJB-equation to derive the
risk premium. An alternative derivation is to apply the no arbitrage condition. Using
equation (48) we can write St =

Ct
k(Xt)

. The stock price then follows:

dSdt = dSt + Ctdt =
1

k(Xt)
dCt −

Ct
k(Xt)2

dk(Xt) + k(Xt)Stdt

=
(
µ− kX(Xt)

k(Xt)
µX(Xt) + k(Xt)

)
Stdt+ σStdZt + JtSt−dNt.

(62)
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From equation (62), we know that the drift of the stock equals µS,t = µ−kX(Xt)
k(Xt)

µX(Xt)+

k(Xt). From (51) we have: k(Xt) = βg(Xt)
− 1−1/ϵ

1−γ . This gives: kX(Xt)
k(Xt)

= −1−1/ϵ
1−γ

gX(Xt)
g(Xt)

.

Rewriting the HJB equation (40) gives:

1− 1/ϵ

1− γ

gX(Xt)

g(Xt)
µX(Xt) + k(Xt) = β + (1/ϵ− 1)

(
µ− γ

2
σ2

+ a∗λt
−1

b∗η + 1− γ

)
.

(63)

Substituting this into µS,t gives:

µS,t = µ− kX(Xt)

k(Xt)
µX(Xt) + k(Xt)

= µ+ β + (1/ϵ− 1)
(
µ− γ

2
σ2 + a∗λt

−1

b∗η + 1− γ

)
.

(64)

The risk premium is then equal to the excess return of the stock over the interest
rate:

rpt = µS,t + a∗λt
−1

b∗η + 1
− rt

= γσ2 + a∗λt

( −1

b∗η + 1
− b∗η

b∗η + 1− γ
+

b∗η

b∗η − γ

)
.

(65)

D.4 Consumption strips

Let Ht = H(Ct, Xt, s − t) = Et

[
πs
πt
Cs

]
be the price of an asset that pays out the

aggregate consumption at time s. Ht is also called a consumption strip. Conjecture

that H(Ct, Xt, u) = exp
{
−
∫ t+u
t

CDRsds
}
Ct. u denotes the time to maturity of the

consumption strip. Clearly, H(Ct, Xt, 0) = Ct. Applying Ito’s lemma to Ht gives:

dHt = HCdCt +HXdXt −
∂Ht

∂u
dt =

1

Ct
HtdCt

− ∂

∂Xt

(∫ t+u

t

CDRsds

)
µX(Xt)Htdt

+
∂

∂u

(∫ t+u

t

CDRsds

)
Htdt.

(66)

We can calculate both derivatives:

∂

∂Xt

(∫ t+u

t

CDRsds
)
µX(Xt) =

∂

∂t

(∫ t+u

t

CDRsds
) ∂t

∂Xt

µX(Xt)

=
∂

∂t

(∫ t+u

t

CDRsds
)
= CDRt+u − CDRt,

(67)

∂

∂u

(∫ t+u

t

CDRsds
)
= CDRt+u. (68)
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Therefore dHt becomes:

dHt =
(
µ+ CDRt

)
Htdt+ σHtdZt + JtHt−dNt. (69)

Now define dHt = µH,tHtdt + σHtdZt + JtHt−dNt. By the no arbitrage condition,
πtHt must be a martingale:

dπtHt = (µπ,t + µH + σσπ)πtHtdt+ (σ + σπ)πtHtdZt

+
(
(1 + Jt)(1 + Jπ,t)− 1

)
πt−Ht−dNt.

(70)

We can calculate the expectation of the jump term:

Et[(1 + Jt)(1 + Jπ,t)− 1] = Et[a
∗b∗(1 + Jt)

(b∗−1)η+1−γ − 1]

= a∗
b∗η

b∗η + 1− γ
− 1.

(71)

Therefore πtHt is a martingale if:

0 = µπ + µH + σσπ + λt

(
a∗

b∗η

b∗η + 1− γ
− 1
)
. (72)

Substituting µπ, µH and σσπ = −γσ2 gives:

0 = µ+ CDRt − rt − λt

(
a∗

b∗η

b∗η − γ
− 1
)
− γσ2

+ λt

(
a∗

b∗η

b∗η + 1− γ
− 1
)
.

(73)

Note that this implies that: CDRt = rt + rpt − (µ + a∗λt
−1

b∗η+1
). Lastly, we can

substitute rt and rpt, which yields:

CDRt = β + (1/ϵ− 1)
(
µ− γ

2
σ2 + a∗λt

−1

b∗η + 1− γ

)
. (74)

E The Social Cost of Carbon

The Social Cost of Carbon is calculated as the derivative of the value function with
respect to carbon emissions, scaled by instantaneous marginal utility. With a single
carbon box, the marginal cost of increasing carbon emissions by one unit is the
derivative of the value function with respect to the carbon concentration Mt:

∂Vt
∂Mt

.
However, with multiple carbon boxes, emitting one unit of carbon leads to an increase
of νi units in box i, i = 0, 1, 2, 3. We slightly abuse notation and define ∂

∂Mt
≡
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ν0
∂

∂M0,t
+ ν1

∂
∂M1,t

+ ν2
∂

∂M2,t
+ ν3

∂
∂M3,t

. Differentiation of the value function gives:

SCCt = − ∂Vt/∂Mt

fC(Ct, Vt)
= −

∂
∂Mt

g(Xt)

(1− γ)g(Xt)k(Xt)
Ct = −

∂
∂Mt

(k(Xt)
β

)−
1−γ

1−1/ϵ

(1− γ)(k(Xt)
β

)−
1−γ

1−1/ϵk(Xt)
Ct

= − Ct
1/ϵ− 1

∂
∂Mt

k(Xt)

k(Xt)2
=

Ct
1/ϵ− 1

∂

∂Mt

∫ ∞

0

exp
{
−
∫ t+u

t

CDRsds
}
du

= Ct

∫ ∞

0

exp
{
−
∫ t+u

t

CDRsds
}∫ t+u

t

a∗λT
∂Ts
∂Mt

ds
1

b∗η + 1− γ
du

(75)
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F Calibration of Climate model

Table 4: Parameters for the Climate model

Par. Description Value
E0 Initial level of total emissions (in GtC, 2015) 10.45
gE0 Initial growth rate of emissions (2015) 0.017
gE∞ Long-run growth rate of emissions -0.02
δgE Speed of convergence of growth rate of emissions 0.0075
M0 Initial carbon concentration compared to pre-industrial (in GtC, 2015) 263
Mpre Pre-industrial atmospheric carbon concentration (in GtC) 588
M0,0 Initial carbon concentration box 0 (in GtC, 2015) 139
M1,0 Initial carbon concentration box 1 (in GtC, 2015) 90
M2,0 Initial carbon concentration box 2 (in GtC, 2015) 29
M3,0 Initial carbon concentration box 3 (in GtC, 2015) 4
δM,0 Decay rate of carbon box 0 0
δM,1 Decay rate of carbon box 1 0.0025
δM,2 Decay rate of carbon box 2 0.027
δM,3 Decay rate of carbon box 3 0.23
ν0 Fraction of emissions carbon box 0 0.217
ν1 Fraction of emissions carbon box 1 0.224
ν2 Fraction of emissions carbon box 2 0.282
ν3 Fraction of emissions carbon box 3 0.276
FE
0 Initial level of exogenous forcing (in W/m2, 2015) 0.5
FE
∞ Long-run level of exogenous forcing (in W/m2) 1
δF Speed of convergence exogenous forcing 0.02
T0 Initial surface temperature compared to pre-industrial (in ◦C, 2015) 0.85
T oc0 Initial ocean temperature compared to pre-industrial (in ◦C, 2015) 0.0068
κ Speed of temperature transfer between upper and deep ocean 0.73
υ Equilibrium temperature response to radiative forcing 1.13
α Equilibrium temperature impact of CO2 doubling (in ◦C) 3.05
τ Heat capacity of the surface 7.34
τoc Heat capacity of the oceans 105.5
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G Stochastic Emissions

The HJB-equation for this problem becomes:

0 = min
(a,b) s.t. d(a,b)≤θ

{
f(Ct, V

Q
t ) + V Q

C µCtdt+
1

2
V Q
CCσ

2C2
t + V Q

X µX(Xt, Ct)

+ λQt E
Q
t

[
V Q((1 + Jt)Ct−, Xt

)
− V Q(Ct−, Xt)

]}
.

(76)

The main difference with the HJB-equation without stochastic emissions is that now,
the drift of the state variables µX also depends on aggregate endowment Ct. It is
therefore not possible anymore to substitute out the variable Ct. We thus have to
solve a seven dimensional model numerically. We use the stochastic grid method to
numerically solve the model, as described in Olijslagers (2021). Similar to value func-
tion iteration, the time step is discretized and the problem is solved backwards. The
stochastic grid method simulates random grid points every time period and uses re-
gressions with basis functions to approximate the value function. The main advantage
is that this method can handle high-dimensional problems while avoiding the curse
of dimensionality (computing time growing exponentially along with dimensionality)
and that derivatives of the value function can be calculated easily. This is useful to
calculate the social cost of carbon, and also to solve the first order conditions.

The first order conditions for optimal consumption are:

EQ
t

[
V Q((1 + Jt)Ct−, Xt

)
− V Q(Ct−, Xt)

]
− lt

(
log(ab) +

1

b
− 1
)
= 0,

a
∂EQ

t

[
V Q
(
(1 + Jt)Ct−, Xt

)]
∂bt

− lta
b− 1

b2
= 0,

θ − (1− a)− a
(
log(ab) +

1

b
− 1
)
= 0.

(77)
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