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Abstract. Both numeric planning and Hierarchical Task Network
(HTN) planning are highly expressive planning formalisms – at the
cost of being undecidable in general. For both formalisms, decidable
fragments are known. Studying these restricted fragments has lead to
valuable insights, which ultimately gave rise to the development of
new efficient planning algorithms.

We identify new decidable fragments of both numeric and HTN
planning. For HTN planning, we introduce the fragments of one-
hole-digging, initial, and final problems. The former restrict every
task network to have at most one compound task, while the latter
two restrict compound tasks to be order-minimal or order-maximal,
respectively. For numeric planning, we introduce Positive Numeric
Planning (PNP) where the value of numeric variables can only be
non-negative. We determine the complexity of these fragments: they
are Ackermann-complete – which is significantly more difficult than
any prior known decidable fragment, but still barely decidable.

1 Introduction

While the expressive power of classical planning is limited [9], there
are several highly expressive extensions to it. In this paper, we will
study two such extensions: Hierarchical Task Network (HTN) plan-
ning [34, 11] and numeric planning [21, 18]. HTN planning allows
for describing the physics of the domain in terms of both the pre-
conditions and effects of actions but also allows for specifying a
grammar-like refinement-structure that valid plans must follow. Nu-
meric planning allows for using integer-valued variables to describe
states and for actions that manipulate them. While we will concen-
trate mainly on HTN planning, our results show an interesting con-
nection between the two, previously unconnected, extensions of clas-
sical planning – via the reachability problem of Petri nets [17, 13].
While classical planning relates to safe Petri nets [20], we will work
with general Petri nets.

The plan existence problems for both HTN and numeric planning
are in general undecidable. In several cases, theoretical insights into
decidable fragments have informed practical planning methods and
have lead to new algorithms. This includes Erol’s insight that totally-
ordered HTN planning is decidable [12], which has lead to dedicated
total-order HTN planners [30, 27, 37, 6, 5, 2], but also the complexity
analysis of tail-recursive HTN problems [4] and the idea of relating
HTN planning to formal languages [23], which have lead to dedi-
cated planning algorithms ([5] and [22] respectively).
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For both HTN planning and numeric planning, we present new,
previously unknown, classes of decidable problems. For HTN plan-
ning these are one-hole-digging, initial, and final problems, while
for numeric planning we present Positive Numeric Planning (PNP).
These classes are orthogonal to the previously investigated classes
and thus illuminate a new island of decidability. While being de-
cidable, one-hole-digging, initial, and final HTN problems and PNP
are only barely decidable: we show that they are complete for
ACKERMANN, i.e., for all problems solvable by a program whose
runtime is limited by an Ackermann function. For PNP, we are
also able to identify a computationally easier subclass (PNP without
equals constraints in the goal) that is “only” EXPSPACE-complete.

We first cover our results for HTN planning, and then turn to nu-
meric planning in Sec. 5.

2 Preliminaries
In order to present the new fragments and results for HTN planning,
we first formally define the notion of HTN planning. We then in-
troduce Petri nets, which we will use in our reduction, and lastly
introduce the required concepts of computational complexity theory.

2.1 HTN planning

In this section, we set up the HTN formalism following Geier and
Bercher [16]. This is a simple way of adding hierarchy to the STRIPS
formalism, and is hence comfortable for proving complexity results.

A task network over a set N of task names is a triple t= (T,≺,α)
where (i) T is a finite set of tasks; (ii) ≺ is a strict partial order on T ;
and (iii) α : T → N assigns a task name to each task in the network.
Let TNN be the set of all task networks over N. If T ′ ⊆ T , we define
the task subnetwork

t|T ′ =
(
T ′,≺ ∩(T ′×T ′),α|T ′) ∈ TNN .

For t ∈ T we write T ∖ t = T \{t}. We write t∖ t as a shorthand for
t|(T ∖ t). An embedding φ : t ↪→ t′ of task networks t = (T,≺,α)
and t′ = (T ′,≺′,α ′) is an injection φ : T ↪→ T ′ that preserves the
partial order both ways and satisfies α ′ ◦φ = α . An isomorphism is
a bijective embedding. Let 0 = ( /0, /0, /0) be the empty task network.
The symbol ⊔ denotes the union of disjoint sets. A task network t=
(T,≺,α) is a disjoint union of a family {ti : i ∈ I} of task networks
if there exist embeddings φi : ti ↪→ t such that

T =
⊔
i∈I

Imφi



and φi(ti) ̸≺ φ j(t j) whenever i, j ∈ I are distinct and ti and t j are tasks
of ti and t j respectively.

An HTN problem is a tuple Π = (F,C,O,M,δ , t0,s0) where

• F , C, and O are finite sets of (propositional) variables, compound
task names, and primitive task names, respectively;

• M ⊆C×TNC⊔O is a finite set of (decomposition) methods;
• δ : O → P(F)4 is an action mapping;
• t0 ∈ TNC⊔O is an initial task network;
• s0 ⊆ F is an initial propositional state.

A propositional state of Π is a subset of F . For better readability,
we will adopt the following style guide: propositional variables are
typewriter blue, compound task names bold and brown, primitive
task names sans serif pink and decomposition methods green. Let
t= (T,≺,α) be a task network over C⊔O. It is called a task network
of Π if t = t0 or (c, t) ∈ M for some c ∈ C. We call a task t ∈ T
compound if α(t) ∈C and primitive if α(t) ∈ O. We call t primitive
if all tasks in T are primitive (i.e. t is a task network over O).

A decomposition method is applied to change a non-primitive task
network into another task network. Suppose that t1 = (T1,≺1,α1),
t2 = (T2,≺2,α2) and t = (T,≺,α) are task networks, t ∈ T1 and
µ =

(
α1(t), t

)
is a method. We write t1 →t/µ t2 provided there exist

embeddings φ1 : t1 ∖ t ↪→ t2 and φ : t ↪→ t2 such that

T2 = Imφ1 ⊔ Imφ

and for all t1 ∈ T1 ∖ t and t ′ ∈ T and ∗ ∈ {≺,≻} it holds

t1∗1t ⇔ φ1(t1)∗2φ(t ′).

Intuitively this means that t got replaced by t. The task network t2
exists and is unique up to isomorphism.

The search space of the problem Π is

ΩΠ = TNC⊔O ×P(F).

The action mapping δ associates with each pr ∈ O a four-tuple
δ (pr) = (π+,π−,e+,e−) consisting of a positive precondition π+, a
negative precondition π−1, a positive effect e+, and a negative effect
e−. Now if s ⊆ F satisfies π+ ⊆ s and π−∩ s = /0, we say pr is appli-
cable in s and define γ(s,pr) = (s \ e−)∪ e+. Let (t,s) ∈ ΩΠ be an
HTN state with t= (T,≺,α) and let t ∈ T be a primitive ≺-minimal
task such that α(t) is applicable in s. Then write

(t,s)⇝Π

(
t∖ t,γ

(
s,α(t)

))
∈ ΩΠ (progression).

If t1 →t/µ t2 for some t and µ ∈ M, also let

(t1,s)⇝Π (t2,s).

The search graph of Π is ΦΠ =
(
ΩΠ,⇝Π

)
. For the relation with

other views on HTN search, we refer to [3]. The problem Π is solv-
able if for some propositional state sω , the state (0,sω ) is reachable
from (t0,s0) in ΦΠ. If it is, it can be reached by first applying only
decomposition methods until the task network is primitive, and then
applying only actions.

Example 1. Let F = {var}, C = {comp}, O = {pr,g},

M =
{

stop = (comp,0),cont = (comp, t)
}

(1)

1 It is well-known that negative preconditions can be compiled away in linear
time; cf. [15, section 2.6].

where t contains two ordered tasks with respective names comp
and pr, δ (pr) = ⟨ /0, /0,F, /0⟩, δ (g) = ⟨F, /0, /0, /0⟩, t0 contains three un-
ordered tasks named comp, comp and g, and s0 = /0. Then Π =
(F,C,O,M,δ , t0,s0) is an HTN problem. To solve this problem, one
should use the method cont to introduce a task with name pr. Execut-
ing this task makes the precondition var of g true. The method stop
can be used to get rid of remaining compound tasks. In fact, every
path through ΦΠ starting at (t0,s0) leads to the goal, except when
one immediately applies the stop method twice or when one applies
the cont method infinitely often.

If Q is a class of planning problems, let PLANEX(Q) be the prob-
lem of deciding whether or not a given member of Q is solvable.
This problem has been studied for various classes Q of HTN prob-
lems, whose complexities range from polynomial time to undecid-
able [1, 4, 11, 16].

2.2 Petri nets

A Petri net is a pair N = (P,Θ) where P is a finite set of places
and Θ is a finite set of transitions, which are functions P → Z. The
Petri net N is called ordinary if

∣∣θ(p)
∣∣≤ 1 for all θ ∈ Θ and p ∈ P.

Ordinary Petri nets have the same modelling power as arbitrary Petri
nets (see [29, Sect. IV.A]). The search space ΩN of N is the set of
all functions P → N. We work with pointwise addition of functions
P → Z. For σ ,σ ′ ∈ ΩN , we define σ ⇝N σ ′ iff there exists a tran-
sition θ ∈ Θ such that σ + θ = σ ′. This is called a firing of θ . Let
ΦN = (ΩN ,⇝N ) be the search graph. A state σ ∈ ΩN is called
a unit state of N if σ(p)≤ 1 for all p ∈ P.

Petri nets are often imagined to include an unlimited pool of to-
kens. State σ encodes that there are σ(p) tokens at each place p ∈ P.

PETRI is the problem of deciding given a Petri net N and states
τ0,τ1 of N whether or not τ1 can be reached from τ0 in ΦN .
PETRI1 is the same problem under the additional assumptions that
N is ordinary and τ0 and τ1 are unit states. For more information
on this and similar problems we refer to [13]. It is easy to see that
PETRI reduces to PETRI1 in polynomial time. Moreover, the fol-
lowing is standard:

Lemma 2. Given a finite set P of instances of PETRI1 we can com-
pute in polynomial time another instance of PETRI1 that has answer
“yes” iff some instance in P has answer “yes”.

2.3 Complexity theory

In this paper, we will consider complexity classes that lie beyond
the typically considered hierarchy of complexity classes such as L,
NL, P, NP, PSPACE, EXPTIME, . . . . We introduce the notion of
ACKERMANN-completeness following [36].

We define F0(n) = n+2 and

Fk(n) = Fn
k−1(k) = Fk−1(. . .(Fk−1(︸ ︷︷ ︸

n times

k)) . . .).

As a result, we get that F1(n)≥ 2n, F2(n)≥ 2n and

F3(n)≥ 22...
2︸︷︷︸

n times

,

while also limk→∞ Fk(0) =∞. Lastly we define Fω (n) =Fn(n), which
is the Ackermann function. Let ACKERMANN be the class of all
decision problems that can be solved by a deterministic Turing ma-
chine with a time bound of Fω

(
Fk(n)

)
for an input length n for some



k. A problem solvable by a program with runtime F3(n) for an input
length n, already need not be in the class ELEMENTARY which con-
tains all problems solvable with runtime limited to some fixed height
exponentiation tower. Problems in ACKERMANN can be still much
harder.

A problem Π is ACKERMANN-hard if for every problem Π′ ∈
ACKERMANN there exists k ∈ N such that there exists a program
that reduces any instance of Π′ of some size n to an instance of Π

in time at most Fk(n). The intuition behind this definition is that any
function Fk is negligibly small in comparison to the Ackermann func-
tion Fω in the limit. As we can choose k = 2, it follows that exponen-
tial time reductions are valid for proving ACKERMANN-hardness.

Leroux and Schmitz [25] proved that PETRI1 ∈ ACKERMANN.
Recently, Czerwiński and Orlikowski complemented this result with
hardness:

Theorem 3. [10] PETRI is ACKERMANN-complete.

Hence the same holds true for PETRI1.

3 New fragments of HTN planning
Let Π = (F,C,O,M,δ , t0,s0) be an HTN problem and t0 = (T0,≺0
,α0).

• Π is initial if any compound task in any task network of Π is
minimal w.r.t. the task network’s order:

∀t= (T,≺,α) ∈ TNC⊔O :
(
t0 = t |

(
∃c : (c, t) ∈ M

))
=⇒ ∀t, t ′ ∈ T :

(
t ≺ t ′ =⇒ α(t ′) ∈ O

)
.

• Π is final if any compound task in any task network of Π is order-
maximal.

• Π is clean if it is initial and final. Equivalently, all compound tasks
are isolated (a task is isolated in a task network if it is not ordered
against any other task in the task network).

• Π is one-hole-digging if every task network of Π contains at most
one compound task:∣∣α−1

0 [C]
∣∣≤ 1 & ∀

(
c,(T,≺,α)

)
∈ M :

∣∣α−1[C]
∣∣≤ 1.

• Π is bottomless if every primitive method task network is empty:

∀(c, t) ∈ M : t ∈ TNO =⇒ t= 0.

• Π is loop-unrolling if it contains at most one compound task name
and at most two methods:

|C| ≤ 1 & |M| ≤ 2.

The problem Π from Ex. 1 is initial.
For a one-hole-digging problem, decomposition is a single se-

quence of methods that are successively applied to the only present
compound task, and the number of compound tasks never exceeds 1
while moving through ΦΠ.

If some loop-unrolling Π with at least one compound task in the
initial task network t0 is solvable, there can only be one method –
call it cont – with a non-primitive task network. The other method –
call it stop – serves to end recursion. Consider some subcases:

• If Π is additionally one-hole-digging, the only choice to make for
the decomposition of Π is how often to apply cont before applying
stop.

• If Π is additionally bottomless, then equation (1) holds for some
comp and t. Let tpr

(0) be the largest primitive task subnetwork of
t(0); if Π is additionally clean, then the primitive task networks
obtainable from t0 with the decomposition methods in M are pre-
cisely the disjoint unions of tpr

0 with any number of copies of tpr.

Example 4. Imagine we want to bury an object. The procedure is
to dig a hole in the ground, put the object in it, and then cover it
with the dirt that was dug up. The hole can be of any depth, so the
propositional variables are not able to capture the amount of dirt
that is dug. The propositional state will be a highly simplified model
of the world. However, the task hierarchy can make sure that as many
dirt is dug up as is put back. Let F = {hole,buried}, C = {bury},
O = {dig,put,cover},

M =
{

deeper = (bury, tdeeper),bottom = (bury, tbottom)
}

where tdeeper is the totally ordered task network consisting of three
tasks with names dig, bury and cover, tbottom is the task network
consisting of one task with name put, δ (dig) =

〈
/0, /0,{hole}, /0

〉
,

δ (put) =
〈
{hole}, /0,{buried}, /0

〉
, δ (cover) = ⟨ /0, /0, /0, /0⟩, t0 is

the task network consisting of one task t0 with name α0(t0) = bury
and s0 = /0. Then Π = (F,C,O,M,δ , t0,s0) is a one-hole-digging
loop-unrolling problem. Every path of ΦΠ leads to the goal, except
when one immediately applies the bottom method or when one ap-
plies the deeper method infinitely often.

Remark 5. Every classical STRIPS planning problem can be com-
piled into an equivalent clean problem, an equivalent totally ordered
initial problem, and an equivalent totally ordered final problem. This
is done in essentially the same way as the original translation of
STRIPS to HTN [12, Thm. 5].

Let I be the class of initial problems. Let F be the class of fi-
nal problems. Let C be the class of clean problems. Let H1 be the
class of one-hole-digging problems. Let B be the class of bottomless
problems. Let L be the class of loop-unrolling problems.

All regular problems, introduced by [11], are final and one-hole-
digging. However, not all final one-hole-digging problems are regu-
lar (there can be multiple maximal tasks). Still, if all task networks
of some final problem are totally ordered, it is regular.

We call an HTN problem Π quasi-final if removing all maxi-
mal tasks from all task networks of Π results in an acyclic prob-
lem (see again [11]). Then the remaining compound tasks can be
compiled away in exponential time; thus we can compute a final
problem that is solvable iff Π is solvable. Let F ′ be the class
of quasi-final problems. Then it follows from the results below
that PLANEX(F ′) ∈ ACKERMANN. Similar remarks hold for ini-
tial problems. Out of the IPC 2023, the domains AssemblyHier-
archical, Blocksworld-HPDDL, Multiarm-Blocksworld, Robot, and
Tower were quasi-final. However, as the task networks of these ex-
amples are totally ordered, they are actually in EXPTIME [12], so
much easier than ACKERMANN.

4 Results for HTN planning
Intuitively, the class H1 might be complexity-wise close to other
HTN classes or even classical (i.e. non-hierarchical) planning as the
restrictions to the allowed decompositions are severe. A method ap-
plication either seems to “move the problem” by replacing the com-
pound task with a new compound task and some primitive tasks, or
readily creates a primitive task network. Ex. 4 is trivial, but this is



largely caused by the total order in the method task network tdeeper.
We will prove that the complexity with partial order is high: the prob-
lem PLANEX(H1) is ACKERMANN-complete. It is thus signif-
icantly more complex than any other known decidable HTN class
and only barely easier than undecidable problems. The proof heav-
ily relies on Thm. 3, by showing equivalence of PLANEX(H1) to
PETRI1. As a bonus, our reductions work for I and F as well.

4.1 Membership

In this section we prove membership in ACKERMANN (and hence
decidability) of the plan existence problem of a large fragment of
HTN planning. The proof combines progression and regression. Bi-
directional search is a common technique in planning known since
1969 [31]. If Π = (F,C,O,M,δ , t0,s0) is an HTN problem, its bi-
directional search space is

Ω
bi
Π = TNC⊔O ×P(F)2.

The first propositional state in a triple in Ωbi
Π

is understood as the
propositional state in forward search and the second in backward
search. The search graph Φbi

Π
= (Ωbi

Π
,⇝bi

Π
) over the bi-directional

search space inherits the arrows ⇝Π (where the propositional state
in backward search does not change) with the addition of regression:(

t,s,γ(s1,α(t)
))
⇝bi

Π (t∖ t,s,s1)

whenever t= (T,≺,α) and t ∈ T is ≺-maximal. It is easy to see that
Π is solvable iff (0,s1,s1) can be reached from (t0,s0,sω ) in Φbi

Π

for some propositional states s1,sω . In particular, the bi-directional
search starts with the propositional states s0 and sω of the start and
the end of the plan, the latter of which has to be guessed.

If Π ∈ H1, we also inherit the property that the number of com-
pound tasks remains at most 1 while moving through Φbi

Π
.

In general, such a bi-directional HTN search cannot be encoded by
a Petri net, since decompositions allow the task network to become
arbitrarily complicated. However, we will show that a Petri net can
capture a method application to a compound task that is isolated in
the task network of the bi-directional search state. The Petri net does
this by spawning a token to keep track of progression and regression
within the method task network. It turns out that these more restric-
tive method applications suffice for the HTN fragments we consider:

Lemma 6. Every solvable Π ∈ H1 ∪I ∪F can be solved in the
bi-directional search graph of Π without method applications

(t1,s,s1)⇝
bi
Π (t2,s,s1)

unless t1 →t/µ t2 for some method µ of Π and some task t that is
isolated in t1.

Proof. First consider the case Π ∈ H1, and suppose that sω is a
propositional state such the goal can be reached from (t0,s0,sω ) in
Φbi

Π
. Then any task network reachable from (t0,s0,sω ) in Φbi

Π
has

at most one compound task. Decomposing a compound task x can
always be deferred until x is isolated: if there is a (primitive) pre-
decessor task t ≺ x, then t can be progressed before decomposing
x, since all primitive tasks executed before t in the plan have to be
already present in the task network because there is no compound
task besides x in the task network; similarly, if there is a (primitive)
successor task, it can be executed in backward search before decom-
posing x.

Next suppose that Π ∈ F . Solve Π using only progression. De-
composing a compound task x can always be deferred until x is order-
minimal (and hence isolated): if there are no isolated compound tasks
in the task network, there are no minimal compound tasks so the next
primitive task in the plan must already be present in the task network.

The argument for I is analogous using regression.

We are now ready to show how a path through the search graph of
a suitable Petri net provides a path through the bi-directional search
graph of a one-hole-digging, initial or final HTN problem.

Proposition 7. PLANEX(H1 ∪I ∪F ) reduces to PETRI1 in expo-
nential time.

Proof. Write Π = (F,C,O,M,δ , t0,s0).
Consider the problem of determining given Π ∈ H1 ∪I ∪F and

propositional states s1,sω ⊆ F whether

(0,s1,s1) can be reached from (t0,s0,sω ) in Φ
bi
Π. (2)

By Lemma 2, it suffices to reduce this problem to PETRI1.
Let Π be any HTN problem. Let X be the set of all nonempty task

subnetworks of (initial or method) task networks of Π. Define a set
of places as

P = X⊔
(
P(F)×{forward,backward}

)
.

A state σ : P → N satisfying

∑
s∈P(F)

σ(s,υ) = 1

for each υ ∈ {forward,backward}, will encode an element of the
bi-directional search space of Π. Namely, the task network is a dis-
joint union of σ(x) copies of x for each x ∈X; the propositional state
in forward search is the unique s such that σ(s, forward) = 1 and
the propositional state in backward search is the unique s′ such that
σ(s′,backward) = 1. Accordingly, let τ0 be the unit state given by

τ0(p) =


1 (p = t0)

1
(

p = (s0, forward)
)

1
(

p = (sω ,backward)
)

0 (otherwise),

encoding (t0,s0,sω ); and let τ1 be the unit state given by

τ1(p) =

{
1

(
p ∈ {s1}×{forward,backward}

)
0 (otherwise),

encoding (0,s1,s1).
Suppose that s⊆F and pr∈O is applicable in s. Also let x= (X ,≺

,α) ∈ X and x ∈ X with name α(x) = pr. If x ∈ X is ≺-minimal, we
define a transition P → Z by

p 7→



−1 (p = x)

1 (p = x∖ x)
−1

(
p = (s, forward)

)
1

(
p =

(
γ(s,pr), forward

))
0 (otherwise),

Firing this transition corresponds to progressing task x of one of the
copies of x in the encoded task network. If x∈X is ≺-maximal, define



a transition P → Z by

p 7→



−1 (p = x)

1 (p = x∖ x)

−1
(

p =
(
γ(s,pr),backward

))
1

(
p = (s,backward)

)
0 (otherwise).

Firing this transition corresponds to regressing task x of one of the
copies of x in the encoded task network.

By Lemma 6, for Π ∈H1 ∪I ∪F it suffices to define transitions
modelling decompositions of isolated tasks. Consider a method µ =
(c, t) ∈ M, a task network x = (X ,≺,α) ∈ X and a task x ∈ X with
name α(x) = c. If σ : P → N is a state encoding an element of Ωbi

Π
,

then any of the σ(x) copies of x is isolated iff x is ≺-isolated. If this
is the case, introduce a transition P → Z :

p 7→


−1 (p = x)

1 (p = t)

1 (p = x∖ x)
0 (otherwise).

Firing this transition corresponds to an application of the method µ

to x in one of the copies of x in the encoded task network.
Let Θ be the set of all transitions introduced above and N =

(P,Θ). Then (2) holds iff τ1 can be reached from τ0 in the search
graph ΦN .

4.2 Hardness

Next, we turn from showing ACKERMANN-membership of the plan
existence problems of I ,H1, and F , to showing hardness. While
from Exs. 1 and 4, one might suspect that these problems could
be computationally easy, we show that even clean, bottomless, one-
hole-digging, loop-unrolling problems are in general rather complex.
To be precise, we show that even this highly restricted class of prob-
lems is also hard for the class ACKERMANN.

To establish this result, we show that the reachability problem for
Petri nets can be encoded in such an HTN planning problem. For
transparency, we restrict ourselves to ordinary Petri nets with unit
states. I.e. we reduce PETRI1, not PETRI.

Fig. 1 shows the tasks contained in the construction’s only recur-
sive method task network while Table 1 compactly displays the pre-
conditions and effects of all actions. Certain ingredients – notably
the concept of trashing – are only necessary as we want to estab-
lish hardness even for loop-unrolling problems. The proof translates
to an easier version without the loop-unrolling property and without
trashing.

Proposition 8. PETRI1 reduces to PLANEX(C ∩H1 ∩L ∩B) in
polynomial time.

Proof. Let N = (P,Θ) be an ordinary Petri net and τ0 and τ1 unit
states of N . We define Π=(F,C,O,M,δ , t0,s0)∈C ∩H1∩L ∩B.
Let C = {comp}. M will be of the form (1), such that τ1 will be reach-
able from τ0 in ΦN iff a sufficiently large number of applications of
cont yields a solution to Π.

We denote our variables and tasks as follows:

F =
{
searchPhase,pTrashPhase,rTrashPhase, (3)

(flags for Petri net search, place trashing, and remaining trashing)

transInProg (“transition firing in progress”),

pTrashInProg (“place trashing in progress”),

inc(p) (“increment p”),dec(p) (“decrement p”) : p ∈ P
}
,

Omain = {startPTrashPhase,startRTrashPhase},

O′ =
{

inc(p),dec(p),startPTrash,endPTrash,

startTrans,endTrans,

requestInc(p),checkInc(p),

requestDec(p),checkDec(p),

fakeInc(p), fakeDec(p) : p ∈ P
}
,

O = Omain ⊔O′.

The cont network t is given by Fig. 1 where α removes subscripts. δ

is given by Table 1 and t0 = (T0,≺0,α0) with

T0 = {comp}⊔({
requestInc(p)≺0 checkInc(p) : p ∈ P & τ0(p) = 1

}
≺0 (4){

requestDec(p)≺0 checkDec(p) : p ∈ P & τ1(p) = 1
}
≺0 (5)

Omain

)
,

α0 = id and s0 = {searchPhase}. We claim that τ1 is reachable
from τ0 in ΦN iff Π is solvable.

As a guiding example, suppose that P = {p,q} and Θ = {θ ,η}
and τ0,τ1 are as in Table 2. Then τ1 is reachable from τ0 by firing
just θ . Fig. 2 shows a solution to Π. Only one copy of t is needed in
this case (see line 1).

For any p ∈ P, the “token tasks” inc(p) and dec(p) of t together
encode a single occurrence of a token at place p. Specifically, given
the task network of a node in the search graph of Π reachable from
(t0,s0), we can define a state of N by setting the number of tokens
at place p ∈ P to the number of copies of t of which task inc(p) has
been performed but task dec(p) has not. The variables inc(p) and
dec(p) can be thought of as commands for the incrementation re-
spectively decrementation of place p. A pair of two tasks with names
requestInc(p) and checkInc(p) can be executed in this order iff in
the interim either the value of p in the encoded Petri net state is incre-
mented or a task with name fakeInc(p) is executed. Here the impor-
tance of checkInc(p) is to leave the HTN no choice but to comply
to the incrementation command. Analogously for decrementation. In
Fig. 2 this happens in lines 2, 3, 5 and 6, which we will come back
to.

Any solution to Π can be split into three phases, that are character-
ized by the truth of the variables in (3) and separated by the execu-
tions of the tasks in Omain (lines 4 and 7 in Fig. 2). searchPhase
simulates the search in ΦN from τ0 to τ1. Then pTrashPhase
trashes unused token tasks. Finally, rTrashPhase trashes any re-
maining tasks. We next detail each of these phases.

Observe that in searchPhase we can only execute token tasks,
“transition tasks” (fifth column in Fig. 1) and “boundary tasks” ((4)–
(5)). The boundary tasks (4) generate τ0 and the boundary tasks (5)
consume τ1 (line 3 in Fig. 2). The order ≺0 ensures that the boundary
tasks are completed in searchPhase. Hence, since tasks inc(p)
are ≺-minimal and tasks dec(p) are ≺-maximal, it is w.l.o.g. that a



comp inc(p)

dec(p)

startPTrashp

requestInc(p)

checkInc(p)

requestDec(p)

checkDec(p)

endPTrashp

fakeInc(p)

fakeDec(p)

requestDec(p−)θ

startTransθ

checkDec(p−)θ

requestInc(p+)θ

checkInc(p+)θ

endTransθ

fakeDec(p−)θ

fakeInc(p+)θ

Figure 1: Task network t= (T,≺,α) (include instances for all p, p−, p+ ∈ P and θ ∈ Θ with θ(p+) = 1, θ(p−) =−1).

Table 1: Action mapping δ (pr) = (π+,π−,e+,e−).
pr π+ π− e+ e−

startPTrashPhase searchPhase transInProg pTrashPhase searchPhase
startRTrashPhase pTrashPhase pTrashInProg rTrashPhase pTrashPhase

startPTrash searchPhase pTrashInProg
pTrashInProg

endPTrash pTrashInProg
startTrans pTrashPhase transInProg

transInProg
endTrans transInProg

inc(p) inc(p) rTrashPhase inc(p)
dec(p) dec(p) rTrashPhase dec(p)

requestInc(p) inc(p) inc(p)
checkInc(p) inc(p)

requestDec(p) dec(p) dec(p)
checkDec(p) dec(p)

fakeInc(p) rTrashPhase inc(p)
fakeDec(p) rTrashPhase dec(p)

Table 2: Example instance of PETRI1.
p q

θ 1 0
η 0 1
τ0 0 0
τ1 1 0

1 cont,stop,
2 startTransθ , requestInc(p)

θ
, inc(p),checkInc(p)

θ
,endTransθ ,

3 requestDec(p),dec(p),checkDec(p),
4 startPTrashPhase,
5 startPTrashq, requestInc(q), inc(q),checkInc(q),
6 requestDec(q),dec(q),checkDec(q),endPTrashq,
7 startRTrashPhase,
8 startPTrashp, requestInc(p), fakeInc(p),checkInc(p),
9 requestDec(p), fakeDec(p),checkDec(p),endPTrashp,

10 fakeInc(q), fakeDec(q),
11 startTransη , requestInc(q)

η
, fakeInc(q)

η
,checkInc(q)

η
,endTransη ,

12 fakeInc(p)
θ

Figure 2: Example solution to Π (tasks in T0).



plan starts with (4) and the searchPhase ends with (5) (both ac-
companied by executions of token tasks). In the interim, executions
of transition tasks simulate transition firings. Firing a transition θ

corresponds to executing an entire chain of transition tasks of θ , also
accompanied by executions of token tasks. The chain features tasks
for each place that has nonzero value under θ , ensuring that the Petri
net state encoded by the HTN state is updated appropriately. Line 2
of Fig. 2 exemplifies this process. The variable transInProg pre-
vents that we work on two transitions at the same time. I.e. once
startTransθ is executed, the task endTransθ in the same copy of t
has to be executed before any other copy of some startTransθ ′ can
be executed. Moreover, as transInProg is a negative precondi-
tion of startPTrashPhase, every transition firing simulation com-
menced in searchPhase has to be finished in searchPhase.
After the boundary tasks (4) are completed, the task network en-
codes τ0. The task network encodes τ1 before the excution of (5)
iff the task network encodes the zero state of N after the execu-
tion of (5). Hence the transition firings corresponding to the transi-
tion tasks executed during searchPhase constitute a path through
ΦN from τ0 to τ1 iff the task network encodes the zero state of
N at the end of searchPhase. Hence the crucial claim is that an
HTN state without remaining boundary tasks and with propositional
state {searchPhase} encodes the zero state of N iff executing
startPTrashPhase allows one to reach 0 in ΦΠ.

In pTrashPhase, only token tasks and “place trashing tasks”
(third column of Fig. 1) can be executed. Executing an entire chain
of place trashing tasks of p ∈ P needs to be accompanied by the
execution of exactly one inc(p) task and exactly one dec(p) task.
For an example, see lines 5-6 in Fig. 2. Similar to transInProg,
the variable pTrashInProg prevents that we work on two place
trashings at the same time, and every place trashing commenced
in pTrashPhase has to be finished in pTrashPhase. Hence
for each p ∈ P, equally many copies of inc(p) as dec(p) are exe-
cuted in this phase, so (since they cannot be executed in the final
rTrashPhase phase) the HTN state must encode the zero state
of N when executing startPTrashPhase. Conversely, we have to
show that after place trashing all leftover token tasks, all remaining
tasks can be finished starting with startRTrashPhase.

To this end, tasks with names fakeInc(p) and fakeDec(p) can be
executed in rTrashPhase. As there are enough such tasks, this ef-
fectively means that incrementation and decrementation commands
can be ignored. Hence all remaining place trashing tasks and transi-
tion tasks can be executed (lines 8-9 respectively 11 in Fig. 2).

The method task network t in Fig. 1 consists of parallel sequences.
This type of structure occurs frequently in HTN planning; cf. [7].

4.3 Main result

Theorem 9. Let C ∩ H1 ∩ L ∩ B ⊆ Q ⊆ H1 ∪ I ∪ F . Then
PLANEX(Q) is ACKERMANN-complete.

Proof. Thm. 3 and Props. 7 and 8.

5 Numeric planning
While the main contribution of this paper is a new class of barely
decidable HTN planning problems, we also identified a new barely
decidable fragment of numeric planning. While HTN planning and
numeric planning have not been regarded as related formalisms in
the past, we nevertheless think that both barely decidable fragments
share significant similarities – as both relate to Petri nets.

Like HTN planning, numeric planning is an extension of classical
planning. In contrast to HTN planning, classical planning features
only primitive tasks, and no methods or compound tasks (see e.g.
STRIPS [14]). A classical plan π is a sequence of primitive tasks
(called actions in this context) that is executable and for which the
state reached after executing the plan satisfies a given goal condition.

Numeric planning extends classical planning by allowing for num-
bers in the state representation. Instead of propositional variables, nu-
meric planning features a set V of numeric variables. A state is any
function V 7→ Z, i.e., any assignment of integer values to these vari-
ables [18, 38]. In general, we can allow for values in Q, but for the
setting we will consider later on, this is as expressive as restricting
to Z only (see [38]). Preconditions and effects of actions are numeric
conditions and numeric changes, respectively. A precondition is of
the form f ▷◁ 0 where f is an integer polynomial over V and ▷◁ is
any of the relations =, ̸=,≥. Similarly, effects are of the form v = f
where v ∈V , indicating that the value of variable v is changed to the
result of evaluating f in the state. The goal G is a set of preconditions.

In the just presented form, numeric planning is undecidable [18].
Research has thus focussed on identifying restrictions to the precon-
ditions and effects under which the plan existence problem is still
decidable. A commonly studied restriction is simple numeric plan-
ning, where effects are restricted to be of the form v = v ± c for
v ∈ V and c ∈ Z only [21, 35, 38]. We will abbreviate v = v± c as
v ±= c. Helmert [18] proved that already a subclass of simple nu-
meric planning is undecidable, namely if we restrict preconditions
to be of the form v ▷◁ 0 and effects to be v ±= 1. Plan existence for
simple numeric planning becomes decidable in two known syntactic
cases (Cp,C /0,E

=c
±c ) and (Cp,Cp,E =c

+c ) in Helmert’s notation [18].
The first option restricts all preconditions to be empty and the goals
to be of the form f (v) ▷◁ 0 where f is a polynomial over a single state
variable. The other restricts effects to the form v += c for c ∈N, and
both preconditions and goals to f (v) ▷◁ 0. In both cases, effects of
the type v = c for c ∈ Z can also be allowed. Both classes are rather
restrictive: in the first, we cannot have numeric preconditions, while
in the second, the value of a variable can only increase or be set
to a fixed value, so never decreases by a constant. In another direc-
tion, Shleyfman et al. [38] studied structural restrictions to the causal
graph [19] of the problem and the special case of only a single nu-
meric variable.

We identified a new class of decidable numeric planning problems
that have not yet been covered by any of the previous studies: Posi-
tive Numeric Planning (PNP). In PNP, we enforce that the value of
every numeric state variable is non-negative and impose further re-
strictions. A PNP problem (V,A, I,G) is defined as follows. A state
s is a function V → N, i.e., it maps each variable v ∈ V to a non-
negative integer s(v). The initial state I is a state. We denote the set
of actions as A. Actions a are defined by ⟨pre,eff ⟩, where pre and
eff are sets of numeric conditions or numeric effects, respectively.
Preconditions are of the form v ≥ c for c ∈N. Effects are of the form
v ±= c for c ∈ N. Further, if (v −= c) ∈ eff , then we require that
(v ≥ c′) ∈ pre for some c′ ≥ c. This condition ensures that in any
reachable state, the value of all variables is non-negative – and is the
novel restriction of PNP. The goal is a set of conditions that can be
of the form v = c or v ≥ c for constants c ∈ N. We consider two sub-
fragments: PNP≥ and PNP= where only goals of the form v ≥ c or
v = c, respectively, are allowed.

PNP is a special case of simple numeric planning. In contrast to
previously known decidable classes, it allows for a combination of
decreasing numeric effects (v −= c) and some numeric precondi-
tions. If we were to allow preconditions of the form v = c, we would



obtain an undecidable problem (as (Cc,Cc,E±1) in Helmert’s nota-
tion [18] is undecidable). As such, PNP is a new island of decidability
in numeric planning.

On the other hand, PNP problems are also extremely hard prob-
lems – they are ACKERMANN-complete.

Proposition 10. PLANEX(PNP) reduces to PETRI.

Proof. Consider a PNP problem Π = (V,A, I,G). We set P = V ⊔
A⊔{C,G}, i.e., the places of the Petri net are the numeric variables,
the actions, and two new places: C is a place for general execution
control and G signifies that the goal has been reached. Consider an
action a = ⟨pre,eff ⟩ ∈ A. We can assume w.l.o.g. that a has an effect
related to v ∈V iff a has a precondition on v; if only has an effect, we
can add the precondition v ≥ 0, while if it only has a precondition,
we can add the effect v += 0, without changing the semantics of Π.
Define two transitions θ−

a ,θ+
a : P → Z by

θ
−
a (p) =


−c

(
(p ≥ c) ∈ pre

)
1 (p = a)
−1 (p = C)

0 (otherwise)

and

θ
+
a (p) =



c1 + c2
(
(p ≥ c1) ∈ pre & (p += c2) ∈ eff

)
c1 − c2

(
(p ≥ c1) ∈ pre & (p −= c2) ∈ eff

)
−1 (p = a)
1 (p = C)

0 (otherwise).

These are well-defined as the action a cannot have multiple precon-
ditions or multiple effects on the same state variable. Note that by
the definition of PNP, we have that c1 − c2 ≥ 0 in the second case
of the definition of θ+

a . Executing action a corresponds to firing θ−
a

followed by firing θ+
a .

We then add a transition θ G with

θ
G(p) =



−c
(
(p ≥ c) ∈ G

)
−c

(
(p = c) ∈ G

)
−1 (p = C)

1 (p =G)

0 (otherwise).

Lastly, for every variable v ∈ V such that there is no goal condition
of the form (v = c) ∈ G, we add a transition θv with

θv(p) =

{
−1 (p = v)
0 (otherwise).

Note that it is correct to allow transitions θv to fire at any time as the
firing sequence can always be re-ordered s.t. θv fire only after θ G.
We are then asking whether from the state τ0 ∈ ΩN defined by

τ0(p) =


I(p) (p ∈V )

1 (p = C)

0 (otherwise)

we can reach the state τ1 defined by

τ1(p) =

{
1 (p =G)

0 (otherwise).

By construction, this is the case iff Π is solvable.

Proposition 11. PETRI reduces to PLANEX(PNP=).

Proof. Let N = (P,Θ) be a Petri net and τ0,τ1 two states. We then
set V = P, I = τ0, G =

{
p = τ1(p) | p ∈ P

}
, and A = {aθ : θ ∈

Θ}, where aθ has preconditions v ≥−θ(p) and effects v −=−θ(p)
for all p ∈ P with θ(p) < 0 and effects p += θ(p) for all p ∈ P
with θ(p)> 0. A plan for (V,A, I,G) implies the existence of a firing
sequence reaching τ1 and vice versa.

Theorem 12. PLANEX(PNP) and PLANEX(PNP=) are
ACKERMANN-complete.

Proof. Thm. 3 and Props. 10 and 11.

Interestingly, the problem PLANEX(PNP≥) has also not been
studied in the literature and is much easier. For this, we use the
coverability problem of Petri nets PETRICOV. Given a Petri net
N = (P,Θ) and two states τ0 and τ1, we have to decide whether
there is state τ ′1 reachable from τ0 that is point-wise greater or
equal to τ1, i.e., ∀p ∈ P : τ1(p)≤ τ ′1(p). PETRICOV is EXPSPACE-
complete [26, 32]. Using the same reduction as in Prop. 11 but for
PETRICOV, we obtain EXPSPACE-hardness for PLANEX(PNP≥).
For membership, we can use the same construction as in Prop. 10, but
have to ask whether the state τ1 is covered from τ0. We thus obtain:

Corollary 13. PLANEX(PNP≥) is EXPSPACE-complete.

Lastly, there is an extension to Petri nets: Petri nets with inhibitor
arcs [8]. Inhibitor arcs are additional conditions of the form (θ , p)
for transitions θ and places p. The transition θ of an inhibitor arc
can only fire if the place p currently contains zero tokens. Reachabil-
ity for Petri nets with one inhibitor arc is decidable [33], but unde-
cidable for at least two inhibitor arcs [28]. The exact complexity of
the former problems is not known. From these results, it follows that
if we add one v = 0 precondition to a PNP problem, we still retain
decidability, while the problem becomes undecidable as soon as we
allow for two such preconditions.

6 Conclusion and future work
We introduced several new fragments of HTN and numeric plan-
ning and proved that many of them are complete for the large class
ACKERMANN of decidable problems. Table 3 lists some natural
fragments. Notice that the new fragments have higher computational
complexity than the previously known ones.

Table 3: Some fragments of planning and their complexities.
Fragment Q Complexity of PLANEX(Q) Reference

All HTN problems Undecidable [11]
H1 (one-hole-digging) ACKERMANN-complete Thm. 9

I (initial) ACKERMANN-complete Thm. 9
F (final) ACKERMANN-complete Thm. 9
C (clean) ACKERMANN-complete Thm. 9

Tail-recursive EXPSPACE-complete [4]
Acyclic NEXPTIME-complete [4]

Total order EXPTIME-complete [4]
Regular PSPACE-complete [11]

Simple numeric Undecidable [18]
PNP (positive numeric) ACKERMANN-complete Thm. 12

PNP= ACKERMANN-complete Thm. 12
PNP≥ EXPSPACE-complete Corol. 13

(Cp,C /0,E
=c
±c ) PSPACE-complete [18]

(Cp,Cp,E =c
+c ) PSPACE-complete [18]

The proof of Thm. 9 relies on the recently established
ACKERMANN-completeness of the Petri net reachability problem.



In future work we hope to further investigate the relationship between
HTN planning and Petri nets, and use it to invent new algorithms for
HTN planning. In particular, the construction in the proof of Prop. 7
can be carried out for any HTN problem, and may provide a heuristic.

Moreover, we would like to investigate the class H2 of two-hole-
digging problems, that have two compound tasks in the initial task
network but only one compound task per method task network. It
is known that PLANEX(H2) is undecidable; see [24]. However, is
PLANEX(H2 ∩L ) decidable?
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