
Hardness of Chosen Length Planning Games and Regular Fixed Methods FOND
HTN Planning

P. Maurice Dekker & Gregor Behnke
University of Amsterdam

{p.m.dekker, g.behnke}@uva.nl

Abstract

We introduce a new version of general game-playing in which
one of the players chooses the length of the game. Consider
a classical planning problem and suppose that two players
take turns applying actions. Player 1 wins iff the goal is true
after a predetermined number of moves has been made. Is
there a number r such that player 1 has a winning strat-
egy for the game of length r? We show that this problem is
EXPSPACE-complete. Moreover, we show that the problem
is equivalent to the plan existence problem for a class of fully
observable non-deterministic hierarchical task network plan-
ning problems under the solution concept with fixed methods
introduced by Chen and Bercher (2021). This class consists
of all regular loop-unrolling problems, where a problem is
loop-unrolling if it has at most one compound task name and
at most two methods. As a corollary, we obtain hardness for
regular problems, solving an open problem.

Introduction
The core of planning research focusses on the simplistic set-
ting of classical planning. It however lacks the expressive-
ness to capture more complex and thus more realistic set-
tings. Notably, classical planning assumes that the execu-
tion of actions is always deterministic – which implicitly
means that the actor is in full control of the environment.
For certain applications this is not the case. Let’s consider
a grid-shaped warehouse in which the planner controls a
single robot. The robot’s move actions are in reality non-
deterministic, as it might fail to physically traverse from one
cell to the next. But, the robot still has full observability of
its environment, leading to the notion of Fully-Observable
Non-Deterministic (FOND) planning.

In this paper, we extend the previous theoretical inves-
tigations into FOND planning two ways. Firstly, we intro-
duce the formal notion of planning games, interpreting non-
determinism as a second player that acts against the first
player controlled by the planner. Similar connections be-
tween planning and games were drawn (Muise et al. 2016;
Camacho et al. 2018). The new twist in this paper is that
the first player chooses the game length before the start of
the game. In FOND, this means that the planner must an-
nounce the length L of their plan before it is actually exe-

Preprint 2025. Preliminary version of a paper accepted at ICAPS
2025.

cuted. The plan is only valid if a goal state is reached after
exactly L many steps, regardless of non-determinism. In our
robot example, the robot has to announce when it is going
to arrive at its goal before it starts moving. This happens
e.g. if the robot is providing a transport or pick-up service
(similar to a bus) and must announce its schedule before
it starts operating. As our main result, we prove that solv-
ing chosen length planning games is EXPSPACE-complete
and thus harder than general FOND planning, which is only
EXPTIME-complete (Rintanen 2004).

Secondly, we show that this new type of planning games
and FOND planning is related to FOND planning for Hi-
erarchical Task Network (HTN) planning. HTN planning
extends classical planning by adding the notion of com-
pound tasks – which cannot be executed directly. Instead,
the planner must apply decomposition methods that refine
compound tasks into more concrete partially-ordered sets of
other tasks. In previous work, Chen and Bercher (2021) in-
troduced a formalism for FOND HTN planning and stud-
ied its computational complexity. They however left sev-
eral open questions. With a reduction to planning games, we
solve one of these cases – namely that strong FOND HTN
planning for regular HTNs is EXPSPACE-complete.

Planning Games
A STRIPS planning problem is a quadruple Π = (P,A, I,G)
where:
• P is a finite set of (propositional) variables;
• A ⊆ P(P)4 is a finite set of actions;
• I ⊆ P is the initial state;
• G ⊆ P is the goal.
✓ = (/0, /0, /0, /0) denotes the empty action. A (propositional)
state of Π is a subset of P. An action a = (π+,π−,e+,e−) ∈
A consists of a a positive precondition π+, a negative precon-
dition1 π−, a positive effect e+ and a negative effect e−. a is
applicable in a state s ⊆ P provided π+ ⊆ s and π−∩ s = /0.
Then the result of applying a to s is γ(s,a) = (s \ e−)∪ e+.
For r ∈N, the planning game G(Π,r) is played by two play-
ers, Éloise and Abélard, and has a maximal duration of r
plies. The game is initialized in the initial state I. Éloise goes

1It is well-known that negative preconditions can be compiled
away in linear time; cf. (Gazen and Knoblock 1997, section 2.6).

first. The players take turns choosing an applicable action in
A to apply to the current state. When no action in A is ap-
plicable to the current state because each action has a pre-
condition that is violated, the player who is to move loses.
Otherwise, after r actions have been executed, Éloise wins
if the goal is satisfied in (viz. a subset of) the current state;
otherwise Abélard wins.

Note that players are allowed to pass a turn in G(Π,r) if
✓ ∈ A. The symbol ⊔ denotes the union of disjoint sets.

Example 1. Let Π = (P,A, I,G) be a STRIPS planning prob-
lem such that |P|= 100,

A =
{
(/0, /0,P′, /0) : P′ ∈ P(P) s.t. |P′|= 2

}
⊔
{
(/0, /0, /0,P′) : P′ ∈ P(P) s.t. |P′|= 1

}
,

and I = /0. If |G| = 99, Éloise has a winning strategy for
G(Π,r) iff r = 195 or r ≥ 197. If G = P, Éloise has a win-
ning strategy for G(Π,r) iff r ≥ 197 and r is odd.

Planning games can be efficiently formulated in the Game
Description Language (Genesereth, Love, and Pell 2005).
However, the choice of game length can only be encoded up
to an exponential limit (in basic GDL).

Transformations of Planning Games
To some extent, it is w.l.o.g. that players can pass a turn.
This is expressed by the next lemma.

Lemma 2. Let Π be a STRIPS planning problem. Then:
1. We can compute in polynomial time a STRIPS planning

problem Π′ that has ✓ as an action such that for all even
numbers r ∈ N, the games G(Π,r) and G(Π′,r) are won
by the same player.

2. As 1 but with “odd” instead of “even”.
3. We can compute in polynomial time a STRIPS planning

problem Π′ that has an action without preconditions such
that for all r ∈N, the games G(Π,r) and G(Π′,r) are won
by the same player.

Proof. We only prove 1. 2 and 3 are no more difficult to
prove.

Write Π = (P,A, I,G). Let

P′ = P⊔{∃,⋆,g}.
Define a set A′

a of variants of an action a =
(π+,π−,e+,e−) ∈ A as follows. In any case put(

π+⊔{⋆,∃},π−,e+⊔{g},e−⊔{∃}
)
∈ A′

a (1)

and (
π+⊔{⋆},π−⊔{∃},e+⊔{∃},e−

)
∈ A′

a.

If e−∩G ̸= /0, also put(
π+⊔{⋆},π−⊔{∃},e+⊔{∃},e−⊔{g}

)
∈ A′

a. (2)

Otherwise, for each p ∈ G\ (π+∪ e+) put(
π+⊔{⋆},π−∪{p,∃},e+⊔{∃},e−⊔{g}

)
∈ A′

a. (3)

Let

A′=
{
✓,

(
{⋆,∃}, /0, /0,{⋆,g}

)
,
(
{⋆},{∃},{g},{⋆}

)}
⊔

⊔
a∈A

A′
a.

Finally define

I′ =
{

I ⊔{∃,⋆,g} (G ⊆ I)
I ⊔{∃,⋆} (G ̸⊆ I)

and G′ = {g}. Then we claim that Π′ = (P′,A′, I′,G′) is as
desired.

As long as only actions in⊔
a∈A

A′
a (4)

are played, ∃ is true if Éloise is to move and false if Abélard
is to move. Note that all actions in A′ except ✓ require ⋆.
Hence if Éloise is to move and ∃ is false, she can win by
deleting ⋆ and adding g. Similarly, if Abélard is to move
and ∃ is true, he can win by deleting ⋆ and g. Hence, up
until Abélard’s last move, only actions in (4) will be played,
as playing ✓ allows the other player to win. In particular,
Éloise’s last move adds g (1), so Abélard wants to delete it
with his last move. He can do this iff he can either apply an
action that deletes some goal variable in G (2) or there is a
false goal variable in G and he can apply an action that does
not add it (3).

Next we present two lemmas that manipulate the length
of planning games.

Lemma 3. Let Π be a STRIPS planning problem. Then:
1. We can compute a STRIPS planning problem Π′ in poly-

nomial time such that for all r ∈ N, the games G(Π,r)
and G(Π′,2r) are won by the same player.

2. As 1 but with 2⌈r/2⌉ instead of 2r.
3. As 1 but with 2r+1 instead of 2r.
4. As 1 but with 2⌊r/2⌋+1 instead of 2r.

Proof. We only prove 1. 3 follows from 1 and 4.
Write Π = (P,A, I,G). Let

P′ = P⊔{∃,w}.

Define a set A′
a of variants of an action a =

(π+,π−,e+,e−) ∈ A by

A′
a =

{(
π+⊔{∃},π−⊔{w},e+⊔{w},e−⊔{∃}

)
, (5)(

π+,π−⊔{∃,w},e+,e−⊔{∃}
)}

. (6)

Let

A′ =
{(

{w},{∃},{∃}, /0
)
,
(
{∃,w}, /0, /0,{∃,w}

)}
⊔

⊔
a∈A

A′
a.

Finally define I′ = I ⊔{∃} and G′ = G. Then we claim that
Π′ = (P′,A′, I′,G′) is as desired.

Éloise starts with an action of the form (5) (if r ≥
1). Then ∃ is false and w is true, so Abélard must do(
{w},{∃},{∃}, /0

)
. Then ∃ and w are true, so Éloise must

do
(
{∃,w}, /0, /0,{∃,w}

)
(if r ≥ 2). Afterwards, ∃ and w are

false and Abélard chooses an action of the form (6), making
∃ true again. Éloise again proceeds with an action from (5)
(provided r ≥ 3), and so on.

We see that G(Π,2n) and G(Π′,4n) are won by the
same player, and the games G(Π,2n + 1), G(Π′,4n + 1),
G(Π′,4n + 2) and G(Π′,4n + 3) are all won by the same
player, for all n ∈ N.

Lemma 4. Let Π be a STRIPS planning problem and m ∈
N>0 a number in unary encoding. Then we can compute a
STRIPS planning problem Π′ in polynomial time such that
the following are equivalent for all r ∈ N:

1. Éloise wins G(Π,r) and r ∼= 0 mod m.
2. Éloise wins G(Π′,r).

Proof. Write Π = (P,A, I,G). Problem Π′ = (P′,A′, I′,G′)
features a cyclic counter of length m. Let

P′ = P⊔{pk : k ∈ Z/mZ},

A′ =
{(

π+⊔{pk},π−,e+⊔{pk+1},e−⊔{pk}
)

:

(π+,π−,e+,e−) ∈ A & k ∈ Z/mZ
}
,

I′ = I ⊔{p0} and G′ = G⊔{p0}.

Generalizations of this lemma exist, e.g. with m in binary
encoding.

Main Result
Theorem 5. It is EXPSPACE-complete to decide given a
STRIPS planning problem Π whether there exists r ∈N such
that Éloise has a winning strategy for the r ply planning
game G(Π,r). This remains true when confining attention
to problems Π with action✓, and it does not matter whether
r is restricted to be even or odd.

We introduce the following notation for the proof.

Notation 6. If Π = (P,A, I,G) and s is a propositional state,
write Πs = (P,A,s,G).

Membership
Alg. 1 requires O(2|P|) memory and searches for a win-
ning even length. We derived if from the algorithm given
by (Chen and Bercher 2021, Thm. 5.3) using the proof of
Thm. 11 below. Line 1 sets S to the set of all states s such
that Éloise wins G(Πs,0). During the loop on Line 2, it is
maintained that S is the set of all states s such that Éloise
wins G(Πs,2r). Then whenever I ∈ S, we have found an
even length of the game that is winning for Éloise (Lines 3-
4). To calculate the next value of S, initialize it to /0 in Line 5
while keeping the old set S in memory until the new one
has been computed (Line 14). We take a state s (Line 6) and
wonder whether Éloise can win G(Πs,2r+2), meaning that
she can choose an action a (Line 7) that is applicable in s
(Line 8) such that no matter Abélard’s reply (Line 9), the
resulting state will be in the old set S. Indeed, if Abélard
has a legal (Line 10) reply to a leading out of S (Line 11),
we reach Line 12 discarding the action a; if Abélard has no
such option, Line 13 adds s to the new S. If the same set S
occurs twice during the main loop, there is no r such that
Éloise wins G(Π,2r). We cannot keep a history of the sets S

Algorithm 1: Search for winning even length of the
planning game

Data: STRIPS planning problem Π = (P,A, I,G)

Result: r ∈ N such that Éloise has a winning strategy
for G(Π,2r), or NIL if such r does not exist

1 Let S = {s ⊆ P : G ⊆ s}.

2 forall r = 0, . . . ,22|P| −1 do
3 if I ∈ S then
4 return r
5 Let S′ = /0.
6 for s ⊆ P do
7 for a ∈ A do
8 if a is applicable in s then
9 for b ∈ A do

10 if b is applicable in γ(s,a) then
11 if γ

(
γ(s,a),b

)
/∈ S then

12 continue with the loop on
Line 7

13 Add s to S′.

14 Let S = S′.
15 return NIL

as this may require doubly exponential space, but we know
that the same set S must occur twice if we iterate 22|P| times,
so at that point we return a negative answer with Line 15.
Since r can be encoded in binary, it can be iterated until this
limit using only a singly exponential amount of space.

To search for a winning odd length 2r+1 instead, change
the initialization of S in Line 1 to the set of all states s ⊆ P
such that G ⊆ γ(s,a) for some a ∈ A.

Hardness
Let T be a Turing machine. T works with only two symbols:
the alphabet is Σ = {⃝,

⊙
}. A transition of T always con-

sists of reading a symbol, writing a symbol, moving either
left or right, and going to a new internal state. Moreover, T
has only one halting state. We only run T on the constant
⃝ input. The head of T starts at location 0. Assume that
n ∈ N such that the head of T remains in the interval [0,2n).
We construct a STRIPS planning problem Π in time polyno-
mial in n and an encoding size of T , such that for all r ∈ N,
machine T halts after exactly r transitions iff Éloise wins
G
(
Π,(2n+ 4)r

)
. This is sufficient for hardness in Thm. 5

in view of Lemma 4. Let Q be the set of internal states of
T . Let q0 ∈ Q be the initial state of T and let qω ∈ Q be the
halting state of T .

The basic idea is that the set of all possible states after
some number of plies in Éloise’s strategy encodes a config-
uration of T . Each consecutive sequence of 2n+ 4 plies of
the planning game corresponds to a single regression step in
the run of T . By the proof of Lemma 4, we can restrict which
actions are applicable at which moments in this cycle. At the
start of the planning game, machine T is in state qω .

Variables Introduce the following set of variables:

{di : i < n}⊔Σ⊔{h}⊔Q. (7)

The variables di encode the location of a tape cell of T . For
c < 2n, let Pc be the set containing di for each i < n such that
digit i in the binary representation of c has value 1.

The variables in (7) describe a configuration of T . The
idea is that after every full cycle of the planning game, ex-
actly one variable in the set

Σ⊔{h}⊔Q (8)

is true. We want to arrange that for all t ∈ N and for all c <
2n:

(tape) For each σ ∈ Σ, Éloise wins G
(
ΠPc⊔{σ},(2n+ 4)t

)
iff

tape cell c of T contains symbol σ at time t.
(head) Éloise wins G

(
ΠPc⊔{h},(2n+4)t

)
iff the head of T is at

position c at time t.
(state) For all q ∈ Q, Éloise wins G

(
ΠPc⊔{q},(2n+4)t

)
iff T is

in state q at time t.

In particular, we mean that Éloise should lose the games of
length (2n+ 4)t if T halts after less than t transitions (viz.:
tape, head and machine cease to exist after T halts).

We next describe the rules of the game, omitting the tech-
nical details on how to encode them in STRIPS using addi-
tional variables. However, we mention that a total number
of variables that is linear in n and an encoding size of T suf-
fices.

Initial State The initial state is {qω} (disregarding auxil-
iary variables).

Actions Each cycle of 2n+4 plies proceeds as follows:

• If some σ ∈ Σ is true, Éloise adds h and chooses from
two possible courses of action:

– Write: She deletes σ and adds a symbol σ ′ ∈ Σ of
choice and an internal state q ∈ Q \ {qω} of choice,
under the restriction that T writes value σ when read-
ing σ ′ in state q.

– Preserve: In this case, Abélard first deletes either σ

or h. Then if h is still true, Éloise changes the num-
ber encoded by the variables di. Changing this number
means that she chooses a different number than what
was encoded at the start of the cycle. I.e. she flips at
least one of the variables di and more if she wants to,
but flips none of them twice. (Indeed, with the help of
additional variables this can be described by STRIPS
over n+1 of Éloise’s moves, viz. 2n+1 plies.)

• If h is true, Éloise adds a symbol σ ∈ Σ of choice and an
internal state q ∈ Q\{qω} of choice. If T moves the head
to the left when reading σ in state q, she must increment
the number encoded by the variables di. Otherwise (if T
moves the head to the right in that situation) she must
decrement the number.

• If some q ∈ Q is true, she deletes it. Then she adds h,
a symbol σ ∈ Σ of choice and an internal state q′ ∈ Q \
{qω} of choice, under the restriction that T transitions to

state q when reading σ in state q′. Moreover, she chooses
any location on the tape, viz. she can either add or delete
each variable di. (Again, choosing the location is done
over the course of 2n+1 plies.)

In general, when Éloise chooses a symbol in Σ, we think
of it as the symbol read by T at the previous moment in
time. When she chooses an internal state in Q \ {qω}, we
think of it as the state that the machine was in at the previous
moment in time. When she chooses a number encoded by the
variables di, we think of it as the position of the head of T at
the previous moment in time.

In any case, at his last move of the cycle, Abélard has to
delete all of (8) except one variable of choice.

All of this fits into 2n+4 plies.

Goal At the end of the planning game, Éloise wins iff all
variables in {

⊙
}⊔Q \ {q0} are false and, if h is true, also

all variables d0, . . . ,dn−1 are false. This can be compiled into
STRIPS by creating several copies of all actions: ones that
make the goal true and ones that make the goal false.

This completes the description of Π. We next prove (tape),
(head) and (state) by induction on t.

Inductive Basis Consider t = 0. Then (tape) says that σ =
⃝ iff tape cell c of T contains symbol σ at time 0, which
was one of our assumptions. (head) says that Pc = /0 iff the
head of T is at position c at time 0, which was one of our
assumptions. (state) says that q = q0 iff T is in state q at
time 0, which was one of our assumptions.

Inductive Hypothesis Suppose that (tape), (head) and
(state) hold for t.

Inductive Step Consider t +1 and let c < 2n be given.

• To prove (tape) for t + 1, let σ be given and distinguish
two cases:

– At time t, the head of T is at location c. If Éloise
chooses Preserve, Abélard can make sure that the cy-
cle ends in a propositional state of the form Fc′ ⊔{h}
for some c′ ∈ [0,2n) \ {c}, and win by the inductive
hypothesis on (head). So Éloise chooses Write, and,
by the inductive hypothesis, she can win iff she can
choose σ ′ and q such that T writes σ when reading σ ′

in state q, cell c contains symbol σ ′ at time t, the head
of T is at position c at time t, and T is in state q at time
t.

– At time t, the head of T is at a different location
than c. If Éloise chooses Write, Abélard can make
sure that the cycle ends in a propositional state of the
form Pc ⊔{h}, and win by the inductive hypothesis on
(head). So Éloise chooses Preserve, and, by the induc-
tive hypothesis on (tape) and (head), she can win iff
tape cell c contains symbol σ at time t and she can
choose c′ ∈ [0,2n)\{c} such that the head of T is at c′
at time t. Note that such c′ does exist.

• For (head), the inductive hypothesis implies that Éloise
can win iff she can choose σ and q such that T is in state
q at time t and either

q0q qω

read ⃝ write
⊙

move right

read ⃝ write ⃝
move left

read
⊙

write ⃝
move right

Figure 1: A Turing machine. The initial state is filled and the
halting state has a thick border. The irrelevant specification
on reading

⊙
in state q is omitted.

Table 1: The run of the Turing machine in Fig. 1. The posi-
tion of the head is the shaded cell.

Time State Cell 0 Cell 1
0 q0 ⃝ ⃝
1 q

⊙
⃝

2 q0
⊙

⃝
3 qω ⃝ ⃝

– cell c+1 contains symbol σ at time t, the head of T is
at position c+1 at time t, and T moves the head to the
left when reading σ in state q; or

– cell c−1 contains symbol σ at time t, the head of T is
at position c−1 at time t, and T moves the head to the
right when reading σ in state q.

• For (state), let q be given. The inductive hypothesis im-
plies that Éloise can win iff she can choose σ , q′ and c′
such that T transitions to q when reading σ in state q′,
cell c′ contains symbol σ at time t, the head of T is at
position c′ at time t, and T is in state q′ at time t.

Conclusion (tape), (head) and (state) hold for all t ∈N and
c < 2n. Consider (state) for qω . Then T halts after exactly r
transitions iff Éloise wins G

(
Π,(2n+4)r

)
.

Example Consider the Turing machine T in Fig. 1. Its run
is given in Table 1. With n = 1, the head stays in the interval
[0,2n). The machine halts after three transitions, meaning
that Éloise can win G(Π,18).

• The first six plies (time 3 ⇝ time 2): Éloise starts by
deleting qω and adding h,

⊙
and q0, which is allowed

because T transitions to qω when reading
⊙

in state q0.
She makes d0 false, encoding location 0 · 20 = 0 on the
tape. At the end of this cycle, it holds that

(h∨
⊙

∨q0)∧¬d0.

• The next six plies (time 2⇝ time 1):

– If h is true, Éloise adds ⃝ and q and makes d0 true
(incrementing the encoded number to 1·20 = 1), which
is allowed because T moves the head to the left when
reading ⃝ in state q.

– If
⊙

is true, Éloise adds h and chooses Preserve, and
if Abélard then keeps h, she makes d0 true, changing
the location from 0 to 1.

– Otherwise q0 is true, in which case Éloise deletes it
and adds h, ⃝ and q, which is allowed because T tran-
sitions to q0 when reading ⃝ in state q, and chooses
location 1 on the tape.

At the end of this cycle, it holds that

(h∨⃝∨
⊙

∨q)∧ (d0 ↔¬
⊙
).

• The final six plies (time 1⇝ time 0):

– If h is true, Éloise adds ⃝ and q0 and makes d0 false
(decrementing the encoded number), which is allowed
because T moves the head to the right when reading
⃝ in state q0.

– If ⃝ is true, Éloise adds h and chooses Preserve, and
if Abélard then keeps h, she makes d0 false, changing
the location from 1 to 0.

– If
⊙

is true, Éloise adds h and chooses Write, deleting⊙
and adding ⃝ and q0, which is allowed because T

writes
⊙

when reading ⃝ in state q0. In this case, d0
was already false.

– If q is true, Éloise deletes it and adds h, ⃝ and q0,
which is allowed because T transitions to q when read-
ing ⃝ in state q0, and chooses location 0 on the tape.

At the end, it holds that

(h∨⃝∨q0)∧ (d0 →⃝),

so the goal is achieved.

Adding Passes If we naively add ✓ to this construction,
the proof falls apart, e.g. when T halts after only one tran-
sition. To obtain the second statement in Thm. 5, extend the
cycle of 2n+4 plies to a cycle of 2n+6 plies. During the last
two plies of the cycle, nothing happens. Relax the goal: for
Éloise to win, the cyclic plycounter need not necessarily be
at 0, but may also be at 2n+5. Add the action ✓. Moreover
add a special variable ⋆ that is true in the initial state and
is a precondition of every action except ✓. Introduce 2n+6
more actions: when the plycounter is at an even value, one
can delete ⋆ while making the goal false, and when the ply-
counter is at an odd value one can delete ⋆ while making
the goal true. (These actions also require ⋆.) Call Π′ the re-
sulting problem. Then neither player ever has an incentive
to play✓ (except possibly on the very last ply of the game),
as the other player will use one of the ⋆-consuming actions
to secure a win. Hence the following are equivalent for all
r ∈ N>0:
1. T halts after exactly r transitions.
2. Éloise wins G

(
Π′,(2n+6)r+ ε

)
for some −1 ≤ ε ≤ 1.

3. As 2 but with “all” instead of “some”.
And Éloise loses G(Π′,r) whenever r is not congruent to
−1, 0 or 1 modulo 2n+6.

FOND HTN Planning
We revisit a FOND version of HTN planning introduced by
(Chen and Bercher 2021).

A task network over a set N of task names is a triple t =
(T,≺,α) where (i) T is a finite set of tasks; (ii) ≺ is a strict

partial order on T ; and (iii) α : T → N assigns a task name
to each task in the network. Let TNN be the set of all task
networks over N. If T ′ ⊆ T , we define the task subnetwork

t|T ′ =
(
T ′,≺ ∩(T ′×T ′),α|T ′) ∈ TNN .

For t ∈ T we write T ∖ t = T \{t}. We write t∖ t as a short-
hand for

t|(T ∖ t).

An embedding φ : t ↪→ t′ of task networks t= (T,≺,α) and
t′ = (T ′,≺′,α ′) is an injection φ : T ↪→ T ′ that preserves
the partial order both ways and satisfies α ′ ◦φ = α . An iso-
morphism is a bijective embedding. Let 0 = (/0, /0, /0) be the
empty task network. A task network t = (T,≺,α) is a dis-
joint union of a family {ti : i ∈ I} of task networks if there
exist embeddings φi : ti ↪→ t such that

T =
⊔
i∈I

Imφi

and φi(ti) ̸≺ φ j(t j) whenever i, j ∈ I are distinct and ti and t j
are tasks of ti and t j respectively.

A FOND HTN problem is a tuple H =
(F,C,O,M,δ , t0,s0) where
• F , C, and O are finite sets of (propositional) variables,

compound task names, and primitive task names, respec-
tively;

• M ⊆ C×TNC⊔O is a finite set of (decomposition) meth-
ods;

• δ : O →P(F)2×P
(
P(F)2

)
is a non-deterministic ac-

tion mapping;
• t0 ∈ TNC⊔O is an initial task network;
• s0 ⊆ F is an initial propositional state.

A propositional state of H is a subset of F . For better read-
ability, we will adopt the following style guide: proposi-
tional variables are typewriter blue, compound task
names bold and brown, primitive task names sans serif
pink and decomposition methods green. Let t = (T,≺,α)
be a task network over C⊔O. It is called a task network of
H if t= t0 or (c, t) ∈ M for some c ∈C. We call a task t ∈ T
compound if α(t) ∈ C and primitive if α(t) ∈ O. We call t
primitive if all tasks in T are primitive (i.e. t is a task network
over O).

A decomposition method is applied to change a non-
primitive task network into another task network. Suppose
that t1 = (T1,≺1,α1), t2 = (T2,≺2,α2) and t = (T,≺,α)
are task networks, t ∈ T1 and µ =

(
α1(t), t

)
is a method.

We write t1 →t/µ t2 provided there exists an embedding
φ : t ↪→ t2 such that

T2 = (T1 ∖ t)⊔ Imφ

and for all t1 ∈ T1 ∖ t and t ′ ∈ T and ∗ ∈ {≺,≻} it holds

t1∗1t ⇔ t1∗2φ(t ′).

Intuitively this means that t got replaced by t. The task net-
work t2 exists and is unique up to isomorphism.

The action mapping δ associates with each pr ∈ O a triple
δ (pr) = (π+,π−,E) consisting of a positive precondition

π+, a negative precondition π−, and a set E of effects. An
effect is a pair (e+,e−) consisting of a positive effect e+ and
a negative effect e−. Now if propositional state s ⊆ F satis-
fies π+ ⊆ s and π−∩ s = /0, we say pr is applicable in s and
define

Γ(s,pr) =
{
(s\ e−)∪ e+ : (e+,e−) ∈ E

}
.

We say that a belief state S ⊆ TNO ×P(F) is solvable if
for all

(
t = (T,≺,α),s

)
∈ S, either t = 0 or there exists a

primitive ≺-minimal task t ∈ T such that α(t) is applicable
in s and the belief state{

(t∖ t,s′) : s′ ∈ Γ
(
s,α(t)

)}
is, recursively, solvable. In this paper, we consider plans
whose method applications are independent of non-
determinism. That is, the problem H is solvable if there exist
n ∈ N and a sequence

t0 →t0/µ0 . . .→tn−1/µn−1 tn ∈ TNO

of applications of methods µ i ∈ M ending in a primitive task
network such that {

(tn,s0)
}

is a solvable belief state.

Example 7. Let F = {var0,var1}, C = {comp}, O =
{pr0,pr1,pr2},

M =
{

stop = (comp,0),cont = (comp, t)
}

where t contains four unordered tasks with names comp,
pr0, pr0 and pr2,

δ (pr0) =
(
{var0}, /0,

{(
{var1}, /0

)})
(i.e. pr0 requires var0 and adds var1),

δ (pr1) =
(
{var1}, /0,

{(
{var0}, /0

)})
(i.e. pr1 requires var1 and adds var0),

δ (pr2) =
(

/0, /0,
{(

{var0}, /0
)
,
(
{var1}, /0

)})
(i.e. pr2 adds either var0 or var1), t0 contains three or-
dered tasks named comp, comp and pr0, and s0 = /0. Then
H = (F,C,O,M,δ , t0,s0) is a FOND HTN problem. Every
sequence of method applications solves H, except when one
immediately applies the stop method twice or when one ap-
plies the cont method infinitely often. We may write δ (pr0)
as var0 : var1.

Fragments
Many fragments of HTN planning have analogues in the
FOND setting.

Let H = (F,C,O,M,δ , t0,s0) be a FOND HTN problem.
• H is regular (Erol, Hendler, and Nau 1994) if every task

network of H contains at most one compound task, and,
if it does contain a compound task, this task is the last
task; formally:

∀t= (T,≺,α) ∈ TNC⊔O :
((

∃c : (c, t) ∈ M
)
| t0 = t

)
=⇒ ∀t, t ′ ∈ T : α(t) ∈C =⇒

(
t ′ ≺ t | t = t ′

)
.

• H is loop-unrolling (Dekker and Behnke 2024) if it con-
tains at most one compound task name and two methods:

|C| ≤ 1 & |M| ≤ 2.

If a loop-unrolling problem with a non-primitive initial task
network is solvable, at least one of its methods (which we
denote stop) must have a primitive task network, so only
one of its methods (which we denote cont) can have a non-
primitive task network.

The following is known (Chen and Bercher 2021,
Thm. 5.3):

Theorem 8. It is in EXPSPACE to decide whether a given
regular FOND HTN problem is solvable.

Even deterministic loop-unrolling HTN problems are un-
decidable; see (Höller et al. 2023). Hence:

Theorem 9. It is undecidable whether a given loop-unrolling
FOND HTN problem is solvable.

The following is our new result:

Theorem 10. It is EXPSPACE-hard to decide whether a
given regular loop-unrolling FOND HTN problem is solv-
able.

Translations
In this section, we show that planning games in which Éloise
chooses the game length at the start are equivalent to regular
loop-unrolling FOND HTN problems.

Theorem 11. Let Π be a STRIPS planning problem. Then we
can compute a regular loop-unrolling FOND HTN problem
H in polynomial time such that the following are equivalent
for all r ∈ N:
1. Éloise wins G(Π,r).
2. H can be solved by applying cont a total of r times before

applying stop.

Proof. Calculate Π′ = (P′,A′, I′,G′) using Lemma 3-1. We
construct the problem H such that for all r ∈ N, Éloise wins
G(Π′,2r) iff 2 holds. W.l.o.g., A′ contains an action with a
precondition and – by Lemma 2 – an action without precon-
ditions.

The propositional variables of H:{
v(p),BU(p) : p ∈ P′}⊔{

do(a) : a ∈ A′}
⊔ {done,win∃,BU∃}.

Write v[s] =
{
v(p) : p ∈ s

}
for s ⊆ P′.

We introduce a “backup” tool. See Fig. 2. Notice that
there are no order constraints in this task network. It creates
an extra copy of (the HTN encoding of) a state of Π′ and the
variable win∃. More precisely, it copies the truth values of
all v(p) and win∃ onto the respective BU variables. The task
network “restore” is the same except that all BU variables are
swapped with the other variables.

For a = (π+,π−,e+,e−) ∈ A′, introduce two primitive
task names Éloise(a) and Abélard(a) of H. Define

Ea =

{(
e+⊔{done},e−⊔

{
do(a)

})}
,

v(p) : ¬BU(p),¬v(p) ¬v(p) : BU(p),v(p)

win∃ : ¬BU∃,¬win∃ ¬win∃ : BU∃,win∃

Figure 2: The task network “backup” in the proof of
Thm. 11. Include tasks for all p ∈ P′.

δ
(
Éloise(a)

)
=
(
v[π+],v[π−]⊔{done},Ea

)
and

δ
(
Abélard(a)

)
=
({
do(a)

}
, /0,Ea

)
.

Let comp be the compound task name of H. Define the cont
task network of H as in Fig. 3. The stop task network is
given in Fig. 4. The initial task network of H contains just
the compound task, and the initial propositional state of H is
v[I′]. Evidently, H is a regular loop-unrolling problem.

When starting to execute the primitive tasks of some
copy of the cont task network, done is false. Éloise’s move
choice a ∈ A′ corresponds to the task Éloise(a) that is exe-
cuted first. Then done becomes true and a backup is made.
Next, the tasks ordered immediately after the backup ensure
that the remaining tasks Éloise(a′) can be executed, but they
have no net effect because the backup is restored afterwards.

Abélard’s move choice a′ ∈ A′ corresponds to the non-
deterministic effect do(a′) of the next task. Again done
is false. Here w.l.o.g. an action is chosen whose precondi-
tions are satisfied; otherwise win∃ can be made true and H
is easily solved (using an action without preconditions for
Éloise’s choices in the remainder of the plan). Then one is
forced to execute Abélard(a′), make a backup and execute
the remaining tasks before restoring again, which is again al-
ways possible (in particular, win∃ can temporarily be made
true because A′ contains an action with a precondition).

The stop task network says that either the goal of Π′ is
satisfied or win∃ is true.

Proof of Thm. 10. Thms. 5 and 11.

Theorem 12. Let H be a regular loop-unrolling FOND HTN
problem. Let T0,Tcont,Tstop be the sets of primitive tasks
in the three task networks of H. Then we can compute a
STRIPS planning problem Π in polynomial time such that
for all r ∈ N the following are equivalent:

1. Éloise wins G
(

Π,2
(
|T0|+ r|Tcont|+ |Tstop|

))
.

2. H can be solved by applying cont a total of r times before
applying stop.

Proof. The execution of a primitive task in a plan for H cor-
responds to two plies in the planning game. Éloise chooses
the task and Abélard chooses the effect.

Assume w.l.o.g. that T0, Tcont and Tstop are pairwise
disjoint. The variables of Π are the variables of H and
do(t),done(t) for all t ∈ T := T0 ⊔ Tcont ⊔ Tstop. Write

Éloise(a)done :

backup

: ¬done

: v(p)

: ¬v(p)

restore

: ¬done,
(
do(a′) (for some a′ ∈ A′)

)

Abélard(a)done :

backup

: do(a)

: v(p)

: ¬v(p)

restore

: ¬done,
(
¬do(a′) (for all a′ ∈ A′)

)

comp

do(a),¬v(p′) : win∃

do(a),v(p′′) : win∃

win∃ : done

Figure 3: The non-primitive method task network in the
proof of Thm. 11. Include tasks for all a ∈ A′ and p ∈ P′

and positive preconditions p′ and negative preconditions p′′
of a. Include enough (e.g., |A′| many) copies of the tasks
marked with thick border.

v[G′] : win∃ win∃ : v[G′]

Figure 4: The primitive method task network in the proof of
Thm. 11.

done[T ′] =
{

done(t) : t ∈ T ′} and sim. for do, for T ′ ⊆ T .
For each t ∈ T with name pr, construct some actions of Π:

• tÉloise has the preconditions of the action associated with
pr and moreover requires ¬done(t), ¬do(t ′) for all t ′, and
done(t ′) for every t ′ that is ordered before t (in the same
task network of H that t is in). If t ∈ Tcont ⊔ Tstop, the
action tÉloise also requires done[T0]. If t ∈ Tstop, the action
tÉloise also requires done[Tcont]. The only effect of tÉloise
is that do(t) becomes true.

• If t is an order-minimal task in Tcont, also introduce the
action t⟲

Éloise
that is the same as tÉloise except that it con-

sumes2 done[Tcont] (so done(t) is not a negative precondi-
tion anymore) and requires ¬done(t ′) for every t ′ ∈ Tstop.

• For each possible effect e = (e+,e−) of pr, the action
te
Abélard of Π consumes do(t), adds e+ and deletes e−.

The initial state of Π is the initial propositional state of H
together with done[Tcont], and the goal of Π is the set of all
variables done(t).

The only possible play is that Éloise chooses tasks t ∈ T
to execute in an order complying with the hierarchical struc-
ture of H (she uses the corresponding action tÉloise unless
she is starting a new copy of Tcont in which case she uses
t⟲
Éloise

), and Abélard replies with actions te
Abélard mimicing

non-deterministic effects.

Conclusion
We introduced a formalism for general game-playing and
proved EXPSPACE-completeness for the case in which one
of the players chooses the game length up front. Then we
provided a reformulation of this setting in terms of FOND
HTN planning.

As an example application, consider the variant of Chess
in which players are allowed to move into check and kings
cannot be captured. Players can even continue moving after
a player gets checkmated. If after a predetermined odd num-
ber of plies Black is checkmated, White wins the game; oth-
erwise Black wins the game. Such a game can be modeled as
a planning game. Assuming that White can choose the game
length at the time of making their first move, by Thm. 5 it is
in EXPSPACE to decide whether White has a winning strat-
egy in a given position on an n×n board. We conjecture that
this upper bound is tight. In comparison, standard Chess is
EXPTIME-complete (Fraenkel and Lichtenstein 1981).

References
Camacho, A.; Baier, J. A.; Muise, C.; and McIlraith, S. A.
2018. Finite LTL Synthesis as Planning. In Proceedings of

2Consuming means requiring and deleting.

the Twenty-Eighth International Conference on Automated
Planning and Scheduling (ICAPS-18), 29–38. Delft: AAAI
Press.
Chen, D.; and Bercher, P. 2021. Fully Observable Nonde-
terministic HTN Planning – Formalisation and Complexity
Results. In Proceedings of the 31st International Conference
on Automated Planning and Scheduling, 74–84.
Dekker, P. M.; and Behnke, G. 2024. Barely Decidable Frag-
ments of Planning. In Proceedings of the 27th European
Conference on Artificial Intelligence (ECAI 2024), 4198–
4206. Santiago de Compostela.
Erol, K.; Hendler, J.; and Nau, D. 1994. HTN Planning:
Complexity and Expressivity. In Proceedings of the Associ-
ation for the Advancement of Artificial Intelligence, 1123–
1128.
Fraenkel, A. S.; and Lichtenstein, D. 1981. Computing a
perfect strategy for n x n chess requires time exponential in
n. Journal of Combinatorial Theory, Series A, 31: 199–214.
Gazen, B.; and Knoblock, C. 1997. Combining the expres-
sivity of UCPOP with the efficiency of graphplan. In Pro-
ceedings of the European Conference on Planning: Recent
Advances in AI Planning, volume 4, 221–233. Springer.
Genesereth, M.; Love, N.; and Pell, B. 2005. General Game
Playing: Overview of the AAAI Competition. AI Magazine,
26(2): 62–72.
Höller, D.; Lin, S.; Erol, K.; and Bercher, P. 2023. From PCP
to HTN Planning Through CFGs. The 10th International
Planning Competition – Planner and Domains Abstracts.
Muise, C.; Felli, P.; Miller, T.; Pearce, A. R.; and Sonen-
berg, L. 2016. Planning for a Single Agent in a Multi-
Agent Environment Using FOND. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial In-
telligence (IJCAI-16), 3206–3212. New York: AAAI Press.
Rintanen, J. 2004. Complexity of Planning with Partial Ob-
servability. In Proceedings of the 13th International Confer-
ence on Automated Planning and Scheduling (ICAPS 2004),
345–354.

