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Abstract

Most work in ‘evolutionary linguistics’ seeks to motivate the emergence
of linguistic universals. Although the search for universals never played
a major role in semantics, a number of such universals have been pro-
posed concerning connectives, property and preposition denoting ex-
pressions, and quantifiers. In this paper we suggest some evolutionary
motivations for these proposed universals using game theory.

1 Introduction

The majority of work on the evolution of language concentrates on the evo-
lution of syntactic and phonetic rules and/or principles, and says virtually
nothing about semantics. This is, on the one hand, surprising, because lan-
guages without meanings associated with their expressions hardly make any
sense. This is obvious if language is thought of as the main vehicle to transmit
information, but is equally true if one thinks that natural languages are pri-
marily used as internal representation codes in which thinking can be carried
out. On the other hand, however, the focus on syntactic principles is under-
standable, because syntax seems to give the evolutionary linguist more things
to explain. This is due to the fact that in contrast to semantics, in syntax the
search for universals always played an important role. The major goal of lin-
guists working in the Chomskian tradition is to find the grammatical principles
that isolate the subclass of all possible human languages from the class of all
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1



possible languages. This set of abstract grammatical principles forms then the
universal grammar, and it is exactly the features of this universal grammar, or
language faculty, that most evolutionary linguists want to explain. The search
for universals as innate features of the language faculty played traditionally a
much less important role in semantics. In traditional typological work, the dis-
cussion of semantic universals is normally limited to color- and kinship terms
(cf. Leech, 1974). This lack of interest in universals can partly be explained
by the fact that denotational semantics – the standard, and certainly most
productive approach towards natural language meaning – stems from logicians
like Frege and Montague who held a rather anti-psychologistic view towards
their subject matter. More recently, however, the search for universals started
to play a more important role here as well. One of the reasons for this was that
around that time semanticists became more aware of the fact that although
making use of sets and functions of many different types allows one to describe
the meanings of expressions in a simple and compositional way, an unlimited
use of this machinery is all too powerful, and would demand too much of our
cognitive resourses.

There are, in fact, many constraints involving the interpretation of their
expressions, or at least in their use, shared by all languages of the world. For
instance, it seems to be the case that in all languages more can be communi-
cated than what is explicitly said, e.g., all languages make use of conversational
implicatures. The exact mechanisms by which we are allowed to do so are still
controversial, but it is safe to assume that the explanation for this fact of lan-
guage (use) involves considerations of efficiency. Similarly, in terms of utility
and efficiency one can explain why the use of negative predicates is marked,
although logically there is no reason for this. Other semantico/pragmatic uni-
versals concern also linguistic structure. One can observe, for instance, that
of all the speech acts that we can express in natural language, only three of
them are normally grammaticalized, and distinguished, in mood (i.e., declar-
ative, imperative, and interrogative). Finally there are universals that make
claims about what kinds of meanings are expressed by short and simple terms
in natural languages. One of them concerns indexicals, short expressions cor-
responding to the English I, you, this, that, here, etc., the denotations of which
are essentially context-dependent. It seems that all languages have short words
that express such meanings (cf. Goddard, 2001), and this fact makes evolution-
ary sense: it is a useful feature of a language if it can refer to nearby individuals,
objects, and places, and we can do so by using short expressions because their
denotations can normally be inferred from the shared context between speaker
and hearer. The latter kind of semantic universal is what I am most interested
in in this paper: of all possible meanings that we can potentially express in
natural language, which ones are expressed in ‘simple’, or lexicalized, terms
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in all languages? The major goal of this paper, however, is not to come up
and state such universals. Rather, I will rely on some descriptive work on
this area and concentrate myself on giving evolutionary motivations of these
universals. While admitting that Chomskian-like ‘explanations’ by innateness
might be used as a last resort, we would like to find deeper motivations for
why we have simple expressions for some particular meanings but not for oth-
ers in natural language. Most naturally, our explanatory motivation should
make use of notions like utility, learnability and complexity: we typically want
to express those meanings in simple terms that are (i) useful, (ii) easy to learn
and remember, and (iii) easy to use.

As a formal model of evolution, I will make use of evolutionary game theory
(EGT). This theory stems from biology to model natural selection, but has
acquired an important role in economics as well to model cultural evolution.
As a consequence – and perhaps in contrast to what is suggested by Nowak and
associates – an ‘explanation’ of universal features of natural language in terms
of EGT is quite neutral on the issue of whether these features have biologically
evolved to become part of our ‘language faculty’ or that they are established
anew by reinforcement due to language learning or use.1

2 Evolution and signaling games

David Lewis (1969) introduced signaling games to account for linguistic con-
ventions, and these games were developed further in economics and theoretical
biology. In this framework, signals have an underspecified meaning, and the
actual interpretation the signals receive depend on the equilibria of sender
and receiver strategy combinations of such games. Recently, these games have
been looked upon from an evolutionary point of view to study the evolution of
language. I will first sketch these games here and then look at them from an
evolutionary point of view.

A signalling game is a two-player game with a sender, s, and a receiver,
r. This is a game of asymmetric information: The sender starts off knowing
something that the receiver does not know. The sender knows the state t ∈ T
she is in but has no substantive payoff-relevant actions.2 The receiver has a
range of payoff-relevant actions to choose from but has no private informa-
tion, and his prior beliefs concerning the state the sender is in are given by a
probability distribution P over T ; these prior beliefs are common knowledge.
The sender, knowing t and trying to influence the action of the receiver, sends

1See Jäger & van Rooij (to appear) for extensive discussion on how to most naturally
interpret EGT to account for these universal features.

2In game theory, it is standard to say that t is the type of the sender.
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to the latter a signal of a certain message m drawn from some set M . The
messages don’t have a pre-existing meaning. The other player receives this
signal, and then takes an action a drawn from a set A. This ends the game.
Notice that the game is sequential in nature in the sense that the players don’t
move simultaneously: the action of the receiver might depend on the signal he
received from the sender. For simplicity, we take T , M and A all to be finite. A
pure sender strategy, S, says which message the sender will send in each state,
and is modeled as a (deterministic) function from states to signals (messages):
S ∈ [T → M ]. A pure receiver strategy, R, says which action the receiver will
perform after he received a message, and is modeled as a (deterministic) func-
tion from signals to actions: R ∈ [M → A]. Mixed strategies (probabilistic
functions, which allow us to account for ambiguity) will play only a minor role
in this paper and can for the most part be ignored.

As an example, consider the following signalling game with two equally
likely states: t1 and t2; two signals that the sender can use: m1 and m2; and
two actions that the receiver can perform: a1 and a2. Sender and receiver each
have now four (pure) strategies:

Sender :

t1 t2
S1 m1 m2

S2 m1 m1

S3 m2 m1

S4 m2 m2

Receiver :

m1 m2

R1 a1 a2

R2 a2 a1

R3 a1 a1

R4 a2 a2

Sender strategy S1, for instance, says that s sends message m1 in state t1
and message m2 in state t2, while receiver strategy R3 reacts by action a1

independent on which message he receives.
To complete the description of the game, we have to give the payoffs. The

payoffs of the sender and the receiver are given by utility functions Us and Ur,
respectively, which state for each state-action pair its payoff, modeled by a real
number.3 Formally, they are functions from T ×A to the set of reals, R.

Coming back to our example, we can assume, for instance, that the util-
ities of sender and receiver are in perfect alignment – i.e., for each agent i,
Ui(t1, a1) = 1 > 0 = Ui(t1, a2) and Ui(t2, a2) = 1 > 0 = Ui(t2, a1):

4

Ui(t, a) a1 a2

t1 1 0
t2 0 1

3Just like Lewis (1969) we assume that sending messages is costless, which means that
we are talking about cheap talk games here.

4This assumption allows Hurford (1989), Nowak & Krakauer (1999) and others to repre-
sent sender and receiver strategies by convenient transmission and reception matrices.
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Notice that according to this utility function, action a1 is for both the
preferred action in state t1, while action a2 is for both the best in state t2.
We can model this by means of a 1-1 function f from situations to actions:
f(t1) = a1 and f(t2) = a2. This 1-1 function will play an important part later
in the paper.

An equilibrium of a signalling game is described in terms of the strategies
of both players. If the sender uses strategy S and the receiver strategy R, it
is clear how to determine the utility of this profile for the sender, U∗

s (t, S, R),
in any state t:

U∗
s (t, S, R) = Us(t, R(S(t)))

The receiver does not know in which situation he is, which makes things
a bit more complicated for him. Because it might be that the sender using
strategy S sends in different states the same signal, m, the receiver doesn’t
necessarily know the unique state relevant to determine his utilities. Therefore,
he determines his utilities, or expected utilities, with respect to the set of states
in which the speaker could have sent message m. Let us define St to be the
information state (or information set) the receiver is in after the sender, using
strategy S, sends her signal in state t, i.e. St = {t′ ∈ T : S(t′) = S(t)}.
With respect to this set, we can determine the (expected) utility of receiver
strategy R in information state St, which is R’s expected utility in state t
when the sender uses strategy S, U∗

r (t, S, R) (where P (t′|St) is the conditional
probability of t′ given St):

U∗
r (t, S, R) =

∑
t′∈T

P (t′|St)× Ur(t
′, R(S(t′)))

A strategy profile 〈S, R〉 forms a Nash equilibrium iff neither the sender
nor the receiver can do better by unilateral deviation. That is, 〈S, R〉 forms a
Nash equilibrium iff for all t ∈ T the following two conditions are obeyed:

(i) ¬∃S ′ : U∗
s (t, S, R) < U∗

s (t, S ′, R), and
(ii) ¬∃R′ : U∗

r (t, S, R) < U∗
r (t, S, R′).

As can be checked easily, our game has 6 Nash equilibria: {〈S1, R1〉, 〈S3, R2〉, 〈S2, R3〉,
〈S2, R4〉, 〈S4, R3〉, 〈S4, R4〉}. This set of equilibria depends on the receiver’s
probability function. If, for instance, P (t1) > P (t2), then 〈S2, R4〉 and 〈S4, R4〉
are no equilibria anymore: it is always better for the receiver to perform a1.

In signalling games it is assumed that the messages have no pre-existing
meaning. However, it is possible that meanings can be associated with them
due to the sending and receiving strategies chosen in equilibrium. If in equi-
librium the sender sends different messages in different states and also the
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receiver acts differently on different messages, we can say with Lewis (1969,
p. 147) that the equilibrium pair 〈S, R〉 fixes meaning of expressions in the
following way: for each state t, the meaning of message S(t) can either be
thought of descriptively as St as the set of states in which message S(t) is
sent: St = {t′ ∈ T |S(t′) = S(t)}, or imperatively as the action performed
by the receiver: R(S(t)). Notice that St is just the same as S−1(S(t)) – the
inverse sender strategy applied to message S(t) – a notion that will play an
important role in section 3 of this paper. Following standard terminology in
economics (e.g. Crawford & Sobel, 1982), let us call 〈S, R〉 a (fully) separating
equilibrium if there is a one-to-one correspondence between states (meanings)
and messages, i.e., if there exists a bijection between T and M . Notice that
among the equilibria in our example, two of them are separating: 〈S1, R1〉
and 〈S3, R2〉. According to Lewis (1969), only these separating equilibria are
appropriate candidates for being a convention, and he calls them signaling
systems.

Unfortunately, however, Lewis’s characterization of conventions as sepa-
rating equilibria has a number of difficulties. First, Lewis is working in the
framework of traditional, or rational, game theory, where unreasonably strong
assumptions have to be made concerning rationality and common knowledge in
order to motivate the equilibria from an individualistic point of view. Second,
not all Nash equilibrium languages of signaling games are separating, so, Lewis
cannot really give a game-theoretical motivation for why linguistic conventions
– as being separating equilibria – are more self-purporting than equilibria that
are not separating.

As it turns out, if we look upon signaling games from an evolutionary,
rather than a standard rationalistic point of view, both of Lewis’s problems
can be solved. Thinking of signaling games from an evolutionary perspective,
it is natural to think of players as users of languages, rather than as senders
or receivers. To do this, it is useful to think of signaling games first from a
strategic perspective.

In the above description of a Nash equilibrium, we have taken the game
to be one in extensive form, where the sender acts first, and has information
that the receiver lacks. But we can also think of the game from a strategic
point of view, according to which these asymmetries of action and information
no longer holds. If we think of the game from a strategic point of view, we
assume that also the sender has incomplete information about the actual state,
and this information is represented by a probability function. We assume that
the information sender and receiver have is the same, and can be represented
by a a common (prior) probability distribution P . Sender and receiver now
have to make their choices simultaneously, and these depend on their expected
utilities. These expected utilities are defined in terms of the common probabil-
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ity distribution P : EUi(S, R) =
∑

t∈T P (t)×Ui(t, R(S(t))), with i ∈ {s, r}. A
combination of a sender and receiver strategy 〈S, R〉 is now a Nash equilibrium
if neither the sender nor the receiver can receive a higher expected utility by
unilateral deviation. Thus 〈S, R〉 is a Nash equilibrium iff the following two
conditions are met:

(i) ¬∃S ′ : EUs(S, R) < UEr(S
′, R), and

(ii) ¬∃R′ : EUr(S, R) < EUr(S, R′).

Until now we have assumed implicitly that individuals have fixed roles
in coordination situations: they are always either a sender or a receiver. In
this sense it is an asymmetric game. It is natural, however, to give up this
assumption and turn it into a symmetric game: we postulate that individuals
both speak and listen, and can take both the sender- and the receiver-role.
Now we might think of strategies as that what individuals will do if they
play their two roles. An individual strategy can now be modeled as a pair
like 〈S, R〉 and can be thought of as a language. Notice that because in our
example we had 4 sender strategies and 4 receiver strategies, there will now
be 16 individual strategies, or languages, that individuals can choose between.
Defining Si and Ri as the sender and receiver strategies of language Li, we
take Us(t, Li, Lj) = U(t, Rj(Si(t))) and Ur(t, Li, Lj) = U(t, Ri(Sj(t))).

Consider now the symmetric strategic game in which each player can choose
between languages. Notice that for our very simple example this is already a
16 × 16 game, which is hard to represent by a payoff table on one page. To
determine the payoffs of the (not represented) table, we have to know how to
define the utility of playing language Li with an other agent who plays Lj. We
assume that this will be the same as the utility of playing Lj with an other
agent who plays Li. On the assumption that individuals take both the sender
and the receiver role half of the time, the following utility function, U(Li, Lj),
is natural for an agent with strategy Li who plays with an agent using Lj

(where EUi(L, L′) denotes the expected utility for i to play language L if the
other participant plays L′, i.e.

∑
t P (t)× Ui(t, L, L′)):

U(Li, Lj) = [1
2
× (

∑
t P (t)× Us(t, Li, Lj))] + [1

2
× (

∑
t P (t)× Ur(t, Li, Lj))]

= 1
2
× (EUs(Li, Lj) + EUr(Li, Lj)).

Suppose now that two players are playing a language game. The pair
〈Li, Lj〉 is a Nash equilibrium under the standard condition that no player
can profit from unilateral deviation. Because the language game is symmetric
(meaning that U1(Li, Lj) = U2(Lj, Li)), we are interested in so-called sym-
metric equilibria where each agent chooses the same strategy, i.e., that the
language chosen is a convention. Then we say that Li is a symmetric (Nash)
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equilibrium of the language game iff Li is an optimal language to use if the
other player uses Li as well. Thus Li is a symmetric Nash equilibrium iff
U(Li, Li) ≥ U(Lj, Li) for all languages Lj. It is straightforward to show that
language Li is a (strict) symmetric equilibrium of the (symmetric) language
game if and only if the strategy pair 〈Si, Ri〉 is a (strict) equilibrium of the
(asymmetric) signalling game. But this means that our move from asym-
metric signaling games to symmetric language games does not solve Lewis’s
(1969) problems mentioned above. These problems can be solved, however, if
we think of language games from an evolutionary point of view and look at
evolutionarily stable states rather than at Nash equilibria.

The first problem is that the rationality and knowledge assumptions re-
quired to explain the attractiveness of a Nash equilibrium in standard game
theory are unreasonably strong. Evolutionary game theory (EGT) doesn’t
make such strong assumptions, but rather takes individuals as very limited
in their computational resources in their ability to reason and takes them to
be fully uninformed about what strategies other individuals will choose. The
notion of stability used in EGT is not reached in one go by thorough inter-
active reasoning of the agents, but reached after a (possibly) long trajectory
of trial and error by all agents involved. Thus, using evolutionary rather than
standard game theory to explain linguistic conventions as equilibria seems to
solve Lewis’s first problem. Lewis’s second problem was to give a motivation
for the selection of separating equilibria among other equilibria. As we will see
soon, the separating equilibria correspond exactly with the languages that are
evolutionarily stable in our simple setup.

So, under what circumstances is language L evolutionarily stable in our
language game? Thinking of strategies immediately as languages, standard
evolutionary game theory (see e.g. Maynard Smith, 1982) gives the following
answer. Suppose that all individuals of a population use language L, except
for a small fraction ε of ‘mutants’ which have chosen language L′. Assuming
random pairing of strategies, the expected utility, or fitness, of language Li ∈
{L, L′}, EU ε(Li), is now:

EU ε(Li) = (1− ε)U(Li, L) + εU(Li, L
′)

In order for mutation L′ to be driven out of the population, the expected
utility of the mutant need to be less than the expected utility of L, i.e.,
EU ε(L) > EU ε(L′). But this means that either U(L, L) is higher than U(L′, L),
or these are the same but U(L, L′) is higher than U(L′, L′). Thus, we have de-
rived Maynard Smith & Price’s (1973) definition of an evolutionarily stable
strategy (ESS) for our language game.

Definition 1 (Evolutionarily Stable Strategy, ESS)
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Language L is Evolutionarily Stable in the language game with respect to mu-
tations if

1. U(L, L) ≥ U(L′, L) for every L′, and

2. if U(L, L) = U(L′, L), then U(L′, L′) < U(L, L′).

Because the first condition means that 〈L, L〉 is a Nash equilibrium, we
see that the standard equilibrium concept in evolutionary game theory is a
refinement of its counterpart in standard game theory. As it turns out, this
refinement gives us an alternative way from Lewis (1969) to characterize the
Nash equilibria that are good candidates for being a convention.

In an interesting article, Wärneryd (1993) proves the following result: For
any sender-receiver game of the kind introduced above, with the same number
of signals as states and actions, a language 〈S, R〉 is evolutionarily stable if and
only if it is a (fully) separating Nash equilibrium.5 But this means that our
evolutionary perspective upon signaling games explains why only languages
that give a 1-1 mapping between signals and meanings (whether imperative
or descriptive) can be evolutionarily stable. Such a language is, of course, a
very simple holistic language, but in this paper we will discuss to what extent
signaling games from an evolutionary perspective can be used to discuss more
interesting features of languages. Wärneryd’s result is interesting, but not
enough for our purposes: it could be that stable states can never be reached.
To see whether they can be reached, we have to look at the dynamics ‘behind’
EGT.

Taylor & Jonker (1978) defined their replicator dynamics to provide a con-
tinuous dynamics for evolutionary game theory. It tells us how the distribution
of strategies playing against each other changes over time. For our language
game this can be done as follows: On the assumption of random pairing, the
expected utility, or fitness, of language Li at time t, EU t(Li), is defined as:

EU t(Li) =
∑
j

Pt(Lj)× U(Li, Lj).

where Pt(Lj) denotes the proportion of individuals in the population at time
t that play language Lj. The expected, or average, utility of a population of

5This result doesn’t hold anymore when there are more signals than states (and actions).
We will have some combinations 〈S, Ri〉 and 〈S, Rj〉 which in equilibrium give rise to the
same behavior, and thus payoff, although there will be an unused message m where Ri(m) 6=
Rj(m). Now these combinations are separating though not ESS. Wärneryd defines a more
general (and weaker) evolutionary stability concept, that of an evolutionarily stable set, and
shows that a strategy combination is separating if and only if it is an element of such a set.
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languages L with probability distribution Pt is then:

EU t(L) =
∑
L∈L

Pt(L)× EU t(L).

The replicator dynamics (for our language game) is then defined as follows:

dP (L)

dt
= P (L)× (EU(L)− EU(L)).

A dynamic equilibrium is a fixed point of the dynamics under consideration.
In a language game with 16 languages, the vector 〈P (L1), ..., P (L16)〉 is a fixed

point of the language game dynamics if for each language Li,
dP (Li)

dt
= 0. This

means that the proportion of languages doesn’t change anymore over time once
such a probability distribution is reached. A dynamic equilibrium is said to
be asymptotically stable if (intuitively) a solution path where a small fraction
of the population starts playing a mutant strategy still converges to the stable
point. Asymptotic stability is a refinement of the Nash equilibrium concept.
And one that is closely related with the concept of ESS. Taylor & Jonker (1978)
show that every ESS is asymptotically stable. Although in general it isn’t the
case that all asymptotically stable strategies are ESS, on our assumption that
a language game is a cooperative game (and thus doubly symmetric)6 this is
the case. Thus, we have the following

Fact 1 A language L is an ESS in our language game if and only if it is
asymptotically stable in the replicator dynamics.

This result is appealing, but not exactly enough for our purposes. What we
would like to see is that a separating Nash equilibrium will evolve in our
evolutionary language game by necessity. But the above result does not imply
that every solution will converge toward an asymptotically stable state. In fact,
as shown independently by Huttegger (to appear) and Pawlowitsch (ms), our
evolutionary language games have stable (mixed) states (or better, neutrally
stable states) which are not asymptotically stable. However, Huttegger (p.c.)
claims that if we add a little bit of mutation to the evolutionary dynamics, all
stable states will be asymptotically stable, from which we can infer our desired
conclusion.

In general, it is very hard to find out what (asymptotic) fixed points look
like. For simple 2× 2 symmetric games, however, this is relatively easy. Sup-
pose we have a symmetric language game with only two languages involved,

6Our symmetric language games are doubly symmetric because for all Li, Lj , U(Li, Lj) =
U(Lj , Li).
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with the following payoff table (with a− d ≥ 0 and b− c ≥ 0):

U(Li, Lj) L1 L2

L1 a, a c, d
L2 d, c b, b

Suppose that at time t the proportion of individuals playing language L1

is Pt(L1). The replicator dynamics for L1 says that this proportion will be
Pt(L1)× (EU t(L1)− EU t(L)) in the next time-point t′. But this is just

Pt′ = Pt(L1)× ((Pt(L1)× a) + Pt(L2)× c)− [[Pt(L1)× (Pt(L1)× a) + Pt(L2)× c))]

+[Pt(L2)× ((Pt(L1)× d) + Pt(L2)× b))]].

Let us now abreviate Pt(L1) by p, Pt(L2) thus by (1 − p), and Pt′(L1) by p′.
Then the last formula abbreviates to

p′ = p×((p×a)+((1−p)×c))−[[p×(p×a)+((1−p)×c))]+[((1−p)×((p×d)+(1−p)×b))]].

This simplifies to

p′ = p× [(1− p)× [(p× a)+ ((1− p)× c)]]− [(1− p)× [(p× d)+ ((1− p)× b)]].

This again simplifies to

p′ = p× (1− p)× [(p× a) + ((1− p)× c))− (p× d) + ((1− p)× b)],

which finally results in

p′ = p× (1− p)× [p× (a− d) + ((1− p)× (c− b))].

The vector of probability distributions 〈p, (1 − p)〉 is a restpoint of the
replicator dynamics iff p = p′ (and thus (1− p) = (1− p′)). This is obviously
the case iff one of the three arguments of the above formula is 0. Thus this
is the case if either (i) p = 0, (ii) (1 − p) = 0 and thus p = 1, or (iii)
[p× (a− d) + ((1− p)× (c− b))] = 0. The latter is the case whenever:

(p× (a− d)) + ((1− p)× (c− b)) = 0 iff
p× (a− d) + (c− b)− (p× (c− b)) = 0 iff
(c− b) + (p× (a− d))− (p× (c− b)) = 0 iff
(p× (c− b))− (p× (a− d)) = c− b iff
(p× c)− (p× b)− (p× a) + (p× d) = c− b iff
(p× (−(a + b) + (c + d)) = c− b iff

(c−b)
−(a+b)+(c+d)

= p.
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Although the vector 〈p, (1− p)〉 is a restpoint of the replicator dynamics if

p = (c−b)
−(a+b)+(c+d)

, this restpoint is not asymptotically stable. If p is any higher

than (c−b)
−(a+b)+(c+d)

, the proportion of individuals in the population that play
language L1 will grow, and we will eventually end up with a population where
all individuals play this language. If p is lower than the above fraction, we
will end up eventually with a population where all individuals play L2. Thus
only situations where either everybody plays L1 or everybody plays L2 are
asymptotically stable. The condition under which one of the languages will
grow will play a role in section 3.2 of this paper.

3 Towards natural language

As we have seen above, evolutionary game theory predicts that, if there are
equally many messages as there are situations, in all and only all evolution-
arily stable languages there exists a 1-1-1 correspondence between situations,
messages, and actions, if in each situation there is exactly one action that is
optimal for both speaker and hearer. It is obvious that in this simple com-
munication system there can be no role for property-denoting expressions and
connectives: the existence of a property-denoting message, or of a disjunctive
or conjunctive message, would destroy the 1-1 correspondence between (types
of) situations and messages. That gives rise to the question, however, under
which circumstances messages with such more complex meanings could arise.

3.1 Properties

As noted in the introduction, standard formal semantics predicts that (for a
simple fragment) any function from the set of worlds to the set of functions
from individuals to truth values is a property that can be denoted by a property
denoting expression. It is obvious, however, that in any language only a tiny
fragment of all these functions are, in fact, denoted by simple words or con-
structions. This gives rise to the following questions: (i) can we characterize
the properties that are denoted by simple expressions in natural language(s),
and, if so, (ii) can we give a pragmatic and/or evolutionary explanation of this
characterization?

The first idea to limit the use of all possible properties that comes to mind,
is that only those properties will be expressed a lot in natural language that
are useful for sender and receiver. Using our signaling game framework, it
is easy enough to show how usefulness can influence the existence of property
denoting terms when we either have less messages, or less actions than we have
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situations.7

Let us first look at the circumstances under which the signaling strategy
sends the same message in equilibrium in different situations, when there are
less signals than situations. Suppose that we have three sitations, three ac-
tions, but only two messages. Because the receiver strategy is a function from
messages to actions, in equilibrium there can only be two actions really be
performed. Which of those actions that will be depends on the utilities and
probabilities involved. Consider the following utility tables:

U(t, a) a1 a2 a3

t1 6 0 0
t2 0 4 0
t3 0 1 2

U(t, a) a1 a2 a3

t1 4 0 0
t2 0 4 0
t3 0 1 4

In both cases there exists a 1-1 correspondence between situations and mes-
sages. If there are three messages, in each situation the sender will send a
different message, and the receiver will react appropriately. When there are
only two messages, however, expected utility will play a role. In the left-hand
table above it is more useful to distinguish t1 from t2 and t3, then to distinguish
t2 from t3. As a consequence, in equilibrium t2 and t3 will not be distinguished
from each other and in both situations the same message will be sent (the
receiver will then perform action a2). We have implicitly assumed here that
the probability of the three situations was equal. Consider now the table on
the right-hand side, and suppose that the probability that t1 is the case is 5

9
,

P (t1) = 5
9
, while P (t2) = 3

9
and P (t1) = 1

9
. Again, it will be more useful to

distinguish t1 from t2 and t3, then to distinguish t2 from t3. Thus, also here
we find that in equilibrium t3 will not be distinguished separately, and meshed
together with t2.

8

Utility also plays an important role when there are less (relevantly different)
actions than situations. Consider the well-known alarm call signaling system
of vervet monkeys: what has evolved is a signaling system in which 3 different
predators (snake, eagle, and leopard) are correlated with 3 different signals.
This signaling system made sense because in the three (relevantly) different
situations, three different actions were triggered by the fellow vervet monkeys:

7These abstract formulations might be used to model other ‘real-world’ phenomena as
well, such as noise in the communication channel which doesn’t allow receivers to discrimi-
nate enough signals; a limitation of the objects speakers are acquainted with, perhaps due to
ever changing contexts; and maybe also non-aligned preferences between sender and receiver.

8It should be noted, though, that in case U(t3, a2) were 0, the clustering where t3 is
meshed with t1 would be equally good in both cases. Thus, the clustering that emerges can
depend crucially on the specific numbers in the table. See Donaldson et al (ms) for more
discussion.
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look on the ground, look upward, and go to the nearest tree, respectively.
Suppose now, however, that for two of these different predators (say snake
and leopard) the same action was called for. In that case, the vervet monkeys
have no ‘reason’ to send a different alarm call when a snake or when a leopard
approaches. In fact, we can now think of the situation as having only two
(relevantly) different states, and two actions. In equilibrium, two messages are
used; one for each relevantly different state, where the meaning of ‘relevantly
different’ depends on which action should be performed in that state.9 This
discussion is obviously relevant for the emergence of a language with property
denoting expressions: although individuals might be able to distinguish among
several different situations, or objects, there is no reason to do this, as reflected
in language, when it doesn’t have any practical use. Thus, some messages will
denote in equilibrium sets of states, not because the agents cannot distinguish
between the states, but because making a distinction is not useful.10 Putting
this in a slightly different way: in natural language we collect different objects
together to form a property, when there is a practical incentive to scramble
them together.

A common complaint of Chomskian linguists (e.g. Bickerton, Jackendoff)
against explanations like the one above is that usefulness can’t be the only
constraint: there are many useful properties, or distinctions ‘out there’ that
are still not really named, or distinguished, in simple natural language terms.
It seems that other, additional, constraints are called for, constraints that
should be explained in terms of learnability and/or complexity. It is easy to
see that a property is easier to learn, remember, or use, when it has some
structural features. Bickerton (1981), for instance, hypothesizes that ‘simple’
expressions can only denote connected, or convex, regions of cognitive space,
and hypothesizes that the preference for convex properties is an innate prop-
erty of our brains. Unfortunately, when we think of properties as in standard

9I have been somewhat sloppy here. If these monkeys still have three or more signals
at their disposal, an evolutionarily stable strategy is ruled out for technical reasons: there
will be different strategy combinations that give rise to the same 1-1 correspondence be-
tween situations and actions, but differ only in the unused message. Because such strategy
combinations give rise to the same behavior, and do equally well, none of them can be an
evolutionary stable strategy, ESS. However, these strategy combinations will all be part of
a set of neutrally stable strategies (Wärneryd, 1993), a slightly weaker notion of stability
than ESS, but one that reduces to it in case there are equally many states, messages, and
actions.

10There are other reasons why, in equilibrium, a non-separating language will evolve. One
reason might be that there is a difference in preferences between the agents on the actions
to be performed in the situations. Another circumstance, discussed in Nowak & Krakauer
(1999), is when there is noise in the signaling system: the hearer is not sure which signal
is being sent. In this paper I will limit myself to fully cooperative games, however, with
noiseless channels.
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denotational semantics, it is impossible to distinguish properties that have,
from properties that don’t have such ‘structural features’. Partly for reasons
like this both linguists and philosophers (van Fraassen 1967, Stalnaker, 1981)
proposed alternative, and richer, frameworks to represent meanings and sug-
gested that they can be used to distinguish ‘natural’ from ‘unnatural’ prop-
erties. A prominent idea found in those proposals is to assume that meaning
spaces have spatial, or geometrical structure, and should be modeled as vec-
tor spaces. Properties are now just subsets of this vector, or meaning space.
All properties distinguished within standard denotational semantics can be
distinguished in terms of these meaning spaces as well. However, because
meaning spaces have some additional structure, i.e., the a priori given coordi-
nate structure,11 we can now distinguish ‘natural’ from ‘unnatural’ properties.
This is exactly what Gärdenfors (2000) proposes. In terms of the framework
of meaning spaces, called ‘conceptual spaces’ by him, he called those subsets
of an Euclidean meaning space ‘natural’ properties which form convex regions
of this meaning space. For a set of objects to be a convex region, or set, it
has to be closed in the following sense: if x and y are elements of the set, all
objects ‘between’ x and y must also be members of this set. More formally,
if we assume that x and y are points in the meaning space that can be char-
acterized by a vector, then we say that z is a convex combination of x and y
iff z = αx + (1− α)y, with α ∈ [0, 1], and where α〈x1, ..., n〉 = 〈αx1, ..., αxn〉.
Gemetrically, this means that z is located somewhere in between x and y. It
is easy to see that the set of all convex combinations of x and y is the straight
line segment joining x and y. A set of vectors C is a convex set iff whenever
x ∈ C and y ∈ C, it follows that also any convex combination of x and y is in
C, i.e., αx + (1− α)y ∈ C. Notice that among all the subsets of the meaning
space, the set of those that build convex regions of it forms only a very small
minority. In consequence, Gärdenfors’ proposal that many, if not all, proper-
ties denoted by simple natural language expressions form such convex regions
of the conceptual space is, potentially, a very strong one. It is appealing as
well, because if we know that a set is convex, the extension of the set is much
easier to learn than without this knowledge. For instance, in the vector space
R2, the convex set with vertices 〈0, 0〉, 〈1, 0〉 and 〈0, 1〉 contains infinitely many
points, but to learn which elements are in this set if one assumes (as a learning
bias) that sets are convex, one only has to learn the three edges. Of course,
the strength of Gärdenfors’ hypothesis crucially depends on what could be the
coordinates. For some categories of property denoting expressions, like colors,
it is quite clear what the coordinates could be, and Gärdenfors’ proposal is
quite successful. For other expressions, however, it is less clear whether some-

11In denotational semantics, this ‘a priori’ knowledge can be represented in terms of a
restriction on accessible worlds.
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thing like the correct coordinate system can be found, and, in consequence,
his proposal is much harder to test here. But even if the hypothesis that prop-
erties expressed by simple natural language expressions form convex regions
of the meaning space is correct, two questions still have to be addressed: (i)
in what sense are meaning spaces given a priori, and (ii) what makes convex
regions so ‘natural’? The first question is important, because whether a set
of individuals forms a convex region or not crucially depends on the meaning
space: in a different meaning space, the same set of objects might not form
such a convex region anymore. Perhaps the a priori character of a coordinate
system, together with its notion of ‘similarity’ is just due to a social conven-
tion, but perhaps it is, in fact, an innate property of our brain. As even an
empiricist like Quine (1968) acknowledges, the latter seems natural for at least
some cases, and allows for a standard Darwinian explanations.12 As for the
second question, it is shown in Jäger & van Rooij (2005) that all evolution-
arily stable sender-receiver strategy combinations assign descriptive meanings
to messages that partition the Euclidean meaning space into convex regions
each with a particular point in its center such that all points in a region are
closer to its own central point than to any other. Partitions like this are also
known as Voronoi Tesselations. Thus, Gärdenfors’ proposal can be given an
evolutionary explanation.

Let me illustrate the evolution of Vorronoi Tesselations by a very simple
example. Let us take as our conceptual-, or vector-, space the line segment
[0, 1]. Each element of [0, 1] is a possible situation from which the sender can
send a message. We asume, as before, that the speaker strategy is a function
from T = [0, 1] to M , and we assume that M consists only of two messages,
mi and mj. This means, obviously, that we have many more situations than
messages, and thus that in equilibrium there will be at least one message that
will be sent in (many) different situations. Assume that P is a probability
measure over T which assigns to each point an equal probability. As usual, we
take the hearer strategy to be a function from M to A, but because we assume
again the existence of a 1-1 correspondence between A and T , modeled by
function f , we might think of the hearer’s strategy also as a function from M
to T . The goal of the hearer is to ‘guess’ what is the situation the speaker is in.
To account for this goal, we assume that the utility function is defined in terms

12‘A standard of similarity is in some sense innate. [...] why does our innate subjective
spacing of qualities accord so well with the functionally relevant groupings in nature as to
make our inductions tend to come out right? [...] There is some encouragement in Darwin. If
people’s innate spacing of qualities is a gene-linked trait, then the spacing that has made for
the most successful inductions will have tended to predominate through natural selection.’
(Quine, 1968, pp 123-126). Recent work of Kirby (2005) might suggest, though, that cultural
evolution is involved as well.

16



of a similarity measure, or distance function, between points. We will assume
that the utility U(ti, tj) is higher if the distance between ti and tj is lower.
Now one can easily see that according to the evolutionarily stable strategies,
the descriptive meanings of the messages gives rise to the following partition
of the state space: the descriptive meaning of the one message, S−1(mi), will
be the first half of the line segment, while the descriptive meaning of the other
message, S−1(mj), will be the second half of the line segment. Notice that
{S−1(mi), S

−1(mj)} is not just a partition of [0, 1], but a very special one in
the sense that both cells form convex regions.

Until now we have only looked at descriptive meanings, but what about
imperative meanings? Recall from section 2 that the imperative meaning of the
message sent in t according to language 〈S, R〉 is R(S(t)). On our assumption
that A = T , and thus that the receiver strategy is a function from M to T , the
imperative meaning will always be a particular point in [0, 1]. Which points
will that be for our messages mi and mj? On our assumption that each point
in [0, 1] is equally likely, it will be that R(mi) = 0.25 while R(mj) = 0.75.
Notice that R(mi) is just right in the middle of S−1(mi), and the same is
true for mj. In fact, we can think of the imperative meanings of the messages
as just the stereotypes of their descriptive meanings. What’s more, once we
assume a particular meaning space together with an a priori given distance
function (or more in general, a particular utility function), we can derive the
descriptive meaning of a particular message from its imperative meaning.13

Indeed, as shown by Gärdenfors (2000), that is one of the beauties of Vorronoi
Tesselations. The distinction between descriptive and imperative meaning will
play a major role in the following sections as well.

3.2 Compositionality and the meaning of concatenation

Remember that each (evolutionary) equilibrium 〈S, R〉 was always a solution
to a particular coordination problem. For instance, the problem of how to
classify a number of objects, or individuals, with respect to color. Of course,
there might be another coordination problem involving the same set of objects,
but now the problem is how to classify them, e.g., with respect to shape. The
combination 〈S ′, R′〉 might evolve as the equilibrium for this problem, and also
this equilibrium will partition the set T based on a (new, and disjoint to M) set
of messages M ′. It is now not unreasonable to assume that conjunction is one
of the things that might arise the moment we consider conjoined coordination
problems, in our case of how to classify the objects with respect to color and
shape.

13Of course, the other way round is possible as well.
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The natural suggestion is that if the descriptive meaning of m ∈ M is
S−1(m) and of m′ ∈ M ′ it is S ′−1(m′), then the combination of the two signals,
m∩m′, will denote those objects that have both the property denoted by m
and the property denoted by m′, i.e. S−1(m) ∩ S ′−1(m′).

Notice that the above analysis of conjunctive messages already presupposes
that compositional languages can and will emerge. In the previous paragraphs
we have explained how the messages of a language can receive a meaning,
but those messages were just unstructured wholes. Now we have assumed
that messages can be structured, and have suggested how the meanings of
these structured wholes can be determined from the meanings of its parts in
a compositional way. Why is compositionality so important? A traditional
answer is that in this way one can explain why a competent language user
is capable of interpreting a theoretically infinite number of sentences in finite
means.14 A more interesting answer, perhaps, is that if a language is (assumed
to be) compositional, it helps a lot to learn the syntax and semantics of this
language: ‘any information about either syntax or semantics would provide
some evidence about the other, and an optimal learning mechanism would
presumably exploit all available evidence’ (Partee, 1984, p. 285).

But why and how can such a compositional language emerge in the first
place? In the literature there exist two different types of approaches to address
this issue. On the first approach, dubbed synthetic by Hurford (2000), one as-
sumes that the set of messages is already partitioned – into nouns and verbs, for
instance –, with already established meanings, and that new messages emerge
from combining two messages from different types, e.g., sentences consisting of
nouns and verbs. This approach is adopted by Nowak & Krakauer (1999), and
it is shown by using evolutionary game theory that if compositional languages
are taken to be more robust against noise than holistic languages, only com-
positional languages are evolutionarily stable, and thus will emerge. Notice
that our above ‘story’ of conjunction is really in line with the first approach,
because it was assumed that the sets of messages M and M ′ were disjoint, and
that all these messages have already separate meanings.

Unfortunately, Nowak & Krakauer’s (1999) explanation of the emergence
of compositional languages has been criticized on several points, and I believe
these points are well-taken. Zuidema (2004), for instance, rightly criticizes
the implicitly adopted assumption that we just compare a holistic versus a
(pre-existing) compositional language to see which one comes out best (in
terms of invasion barrier). By adopting this assumption one already assumes
that compositional languages are possible, but does not explain how they can

14It should be noted, though, that compositionality is only one way to achieve this goal,
which means that the fact that we are successful in interpreting an infinite number of natural
language sentences doesn’t prove that natural languages are, in fact, compositional.
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emerge ‘out of’ holistic ones. More in general, the synthetic point of departure
has been claimed to be wrong by Wray (1998), for instance. She claims that
the meaningful messages in a holistic language should not be thought of as
words, but rather as whole utterances that describe not objects of a particular
type, but rather particular kinds of situations. In the footsteps of the Quinean
“radical translation” tradition, she proposes an analytic analysis to explain
the emergence of compositional languages. According to this kind of analysis,
compositional languages do not arise through the combination of meaningful
words, but rather through the correlation between (i) features of meaningful
messages, and (ii) aspects of the situations that these utterances describe.15

Notice that if we assume that meanings are represented in an n-ary vector
space, we can already take apart a situation, or objects, in various ‘aspects’.
So let us see how we could work out the analytic approach.

Let us look at a very simple example. Suppose that we have a meaning
space consisting of four meanings, given by the vectors 〈0, 0〉, 〈0, 1〉, 〈1, 0〉, and
〈1, 1〉, and suppose we have a holistic language where, for some reason, all
messages are expressions of length 2 using as its first part an element of {a, b},
and as its second part an element of {c, d}. It is now clear that, among others,
the following two languages, or message-meaning combinations, are possible:

meaning Ls Lc

〈0, 0〉 ac ac
〈0, 1〉 ad ad
〈1, 0〉 bc bd
〈1, 1〉 bd bc

We assume here that both Ls and Lc are holistic languages, and because
both are equally expressive, for communication they are equally good. If we
now adopt the analytic approach towards the emergence of compositional
languages, we must be looking for correlations between features of mean-
ingful messages and features of the meanings, such that also the parts of
the messages receive an independent meaning. Such a correlation is found
easily in the simple language Ls: ‘a’ and ‘b’ can be thought of as meaning
{〈0, 0〉, 〈0, 1〉} = 〈0, i〉 and {〈1, 1〉, 〈1, 1〉} = 〈1, i〉, respectively, while ‘c’ always
means {〈0, 0〉, 〈1, 0〉} = 〈j, 0〉, and ‘d’ always means {〈0, 0〉, 〈1, 1〉} = 〈j, 1〉. In
the more complex Lc, on the other hand, it seems that this kind of correlation
cannot be found: although ‘a’ and ‘b’ can be thought of as having the same
meanings as in Ls, the meanings of ‘c’ and ‘d’ seem to depend on whether ‘a’

15This analytic approach is not limited to the field of language evolution, but can be
found also in philosophy of language (e.g. Quine and Davidson) and language acquisition
(e.g. Tomassello).
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or ‘b’ was used first. Thus, it seems that Ls is fully compositional, while Lc

is not. Although this is not the case in this particular example, compositional
languages are in general preferred to holistic languages because they are more
robust under a learning bottleneck (e.g. Kirby, 2000) and noisy communica-
tive situations (Nowak & Krakauer, 1999). If we would slightly complicate our
example from going to a two- to a three-dimensional meaning space, learn-
ing a fully compositional language would only require learning the meaning
of 6 symbols, while learning a (completely) holistic language involves learn-
ing 9 (or 8) independent message-meaning combinations. Thus, a language
like Ls seems to be preferred to a language like Lc because by being composi-
tional it behaves better under a learning-bottleneck. But, then, complicating
the semantics of Lc slightly turns also this language in a compositional one:
also ‘c’ and ‘d’ can be given context-independent meanings, if we thinks of
meanings in a more abstract way. The meaning of ‘c’ in Lc, for instance,
can be thought of as being a function that says: 〈i, 0〉 if i is 0, and 〈i, 1〉 if
i is 1 (in set terms, this would be [[c]]Lc = {〈〈0, i〉, 〈0, 0〉〉, 〈〈1, i〉, 〈1, 1〉〉}, and
[[d]]Lc = {〈〈0, i〉, 〈0, 1〉〉, 〈〈1, i〉, 〈1, 0〉〉}.) Thus, if we assume that meanings can
be slightly more abstract than we thought of before, we can still claim that Lc

is a perfectly compositional language. This is only a very simple example, but
it seems that languages can usually be tricked this way. Rather than arguing
for this by giving more examples, or formal proofs, I will just rely on authority:

If the syntax is sufficiently unconstrained and meanings are suffi-
ciently rich, there seems no doubt that natural languages can be
described compositionally. (Partee, 1984, p. 281)

So, it is not compositionality all by itself that makes languages behave bet-
ter under a learning-bottleneck. If a language can be analyzed composition-
ally only by assuming unconstrained syntactic permutation or transformation
rules, or by assuming that the meaning of the signs that complex expressions
are made of are difficult to learn, or to compute, it doesn’t have an evolutionary
advantage. Thus, (ignoring syntax) if we take the analytic approach towards
the emergence of compositional languages seriously, what computational and
learning limitations select for is not so much compositionality, but rather lan-
guages that can be given a compositional analysis such that the meanings of
the simple expressions are easy to compute, use, or learn.16

16This point is mostly ignored in much of the work on the evolution of compositional
languages. Still, it doesn’t make that work nonsensical. In most of this work strong as-
sumptions are (implicitly) made concerning the complexity of syntax and semantics, and
if such assumptions are made, whether a language can be analyzed compositionally or not
becomes an empirical issue again.
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I know of three ways in which complexity can be made to have a selective
effect in evolutionary game theory. Either one takes complexity directly into
account when defining the utility function, or one assumes that complexity
functions as a filter for successful communication, which only indirectly in-
fluences the utility of a language, or one assumes that complexity influences
learning. Let me just give a very simplifying but high-level analysis here. As-
sume that we restrict ourselves in our language game to only two languages,
L1 and L2. If these languages are used by different agents, this might give rise
to the following payoff table:

U(Li, Lj) L1 L2

L1 1,1 0, 0

L2 0, 0 1,1

What this table models is not only that users of different languages don’t
understand each other, but also that as far as communication is concerned, it
doesn’t matter which language is used. On these assumptions it follows in the
replicator dynamics behind evolutionary game theory that language L1 grows
if and only if the majority of the population (however tiny this majority is)
uses L1. What if we give up our two assumptions? Then we end up with the
following table:

U(Li, Lj) L1 L2

L1 a, a c, d
L2 d, c b, b

We have seen in section 2 that in the replicator dynamics behind evolution-
ary game theory L1 grows whenever the distribution of players that plays L1

is higher than (c−b)
−(a+b)+(c+d)

. If we now still assume that users of different lan-
guages don’t understand each other, it follows that c = d = 0, and language
L1 grows whenever the distribution of players that plays L1 is higher than
b/(a + b). Thus, if a is higher than b, a > b, L1 has a better chance to grow
in a population of players than L2. Technically it means that L1 has a greater
‘basin of attraction’. But why should b be lower than a? One reason might
be that using L2 to communicate about the world is computationally more
complex, and that this complexity has an immediate payoff-relevant penalty
(e.g. van Rooij (2004a,b), Jäger (ms)). Another reason might be that using L2

is more complex and thus less successful under noisy situations (e.g. Nowak &
Krakauer, 1999). If one assumes a noisy communication channel, U(t, Li, Lj)
should not simply be defined as 1

2
U(t, Rj(Si(t))) + 1

2
U(t, Ri(Sj(t))). Rather,

the message send by Si (or Sj) in t can be distorted, and thus that Rj (or
Ri) applies to the distortion of Si(t) (or Sj(t)), modeled by a distortion ma-
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trix. Another reason why L1 might be ‘preferred’ (in the sense of being more
likely to emerge and harder to invade) to L2, of course, is that L2 is harder to
learn. This, too, can be represented in evolutionary game theory, at least if we
slightly complicate the dynamics ‘behind’ the evolutionary stable states (cf.
Komarova et al (2001)). In the standard replicator dynamics, the proportion
of players that uses language Li in a particular generation depends only on the
proportion of players playing Li in the previous generation, and the difference
between (i) the average utility of playing Li in this previous generation and
(ii) the average utility of the whole population. Once we take learning into
account, we don’t have to assume anymore that all ‘children’ of agents playing
Li also play Li: if Li is difficult to learn, not all, or even just a few ‘children’ of
agents using Li will perfectly acquire this language. This will have the result
that Li won’t have a very good chance to become the shared language of the
members of a population.

We have seen above that not only Ls but also Lc can be analyzed such that
all the expressions have context-independent meanings. However, there was
still a difference between the independent meanings of ‘c’ in the two languages:
the meaning of ‘c’ in Ls is the same as its denotation, but this is not the case
for the meaning of ‘c’ in Lc. In Lc, the denotation of ‘c’ depends not only on
its (context-independent) meaning, but also on the context in which it is used
(whether it is used in the context of ‘a’ or in the context of ‘b’). Thus, what
evolution seems to select for is not languages consisting of expressions with a
context-independent meaning (for that can almost always be arranged), but
rather for languages consisting of expressions whose denotations are context-
independent, i.e., whose denotations equal their meanings.17

Think of the languages Ls and Lc as subject predicate sentences, or, for
instance, as adjective noun combinations. Taking the first alternative, we can
think of {a, b} as subject expressions and of {c, d} as predicate expressions.
In each language we know already what the meanings are of all potential
subject predicate combinations, but how can they be determined in terms of
the meanings of their parts? In Ls things are very simple: the meaning of a
sentence of the form x∩y, [[x∩y]]L1 , is just [[x]]Ls ∩ [[y]]Ls . In Lc, however, we
have to make use of a more general mode of semantic combination: functional
application: [[x∩y]]Lc = [[x]]Lc∩[[y]]Lc([[x]]Lc) = [[y]]Lc([[x]]Lc). Thus, Ls seems
to be preferred to Lc because in the semantics for the latter we require this
more general mode of semantic combination, while in the former we don’t. This
point is not different from what we noted above, although it perhaps highlights

17This cannot be the whole story, of course, because for reasons of efficiency, all languages
make use of personal pronouns and tenses, for instance, whose denotations are very context-
dependent. Still, it remains true that expressions are selected for whose denotations depend
on context in very predictable ways.
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once more how costly some standard analyses in denotational semantics really
are.

An argument for descriptive meaning? Assume, as before, that all mes-
sages are expressions of length 2 using as its first part an element of {a, b}, and
as its second part an element of {c, d}. But let us now look at a completely
different meaning space: the meanings are points in the line segment [0, 1].
What will be the meanings of the 4 complex expressions? It is easy to see that
this will depend on the probability distribution over [0, 1]. Let us first consider
the case where all points are equally likely. In that case, the following type of
meaning assignment is natural:

L1 imperative meaning descriptive meaning
ac 0.125 [0, 0.25]
ad 0.375 [0.25, 0.5]
bc 0.625 [0.5, 0.75]
bd 0.875 [0.75, 1]

After analyzing this language, we can also give imperative and descriptive
meanings to the 4 simple symbols, such that concatenation is analyzed as im-
peratively meaning ‘+’, and as descriptively meaning ‘∩’. There are several
ways to do this18, but if we assume that L1 emerged from a simpler language
that described the line segment using only a and b as messages, only the one
below will result:

L1 imperative meaning descriptive meaning
a 0 [0, 0.5)
b 0.5 [0.5, 1]
c 0.125 [0, 0.25) ∪ [0.5, 0.75)
d 0.375 [0.25, 0.5) ∪ [0.75, 1]

Now assume that the probability is not equally distributed over [0, 1], but
that it gives rise to, for instance, a normal distribution with a peak at 0.5 and
minima at 0 and 1. Then, something like the following meaning assignment
will follow:

L2 imperative meaning descriptive meaning
ac 0.25 [0, 0.35)
ad 0.4 [0.35, 0.5)
bc 0.6 [0.5, 0.65)
bd 0.75 [0.65, 1]

18Thanks to an anonymous reviewer on this point.
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After analyzing this language, we can also give imperative and descriptive
meanings to the 4 simple symbols, such that concatenation is analyzed as im-
peratively meaning ‘+’, and as descriptively meaning ‘∩’:19

L2 imperative meaning descriptive meaning
a 0 [0, 0.5)
b 0.5 [0.5, 1]
c 0.25, if a, 0.1, if b [0, 0.35) ∪ [0.5, 0.65)
d 0.4, if a, 0.25, if b [0.65, 0.5) ∪ [0.65, 1]

What this simple example might suggest is that meanings should preferably
be thought of descriptively, rather than imperatively, and thus why concatena-
tion should mean ‘∩’ rather then ‘+’. The reason is that although the two come
down to the same if the meanings, or points in [0, 1], are equally distributed,
the descriptive meaning-analysis combined with a Boolean analysis of con-
catenation seems to allow for simpler meanings of the parts if the probability
distribution is not uniform, and the language is still analyzed compositionally.
Our example involved only a very simple meaning space, but it is easy to see
that the same would follow if we consider more complicated meaning spaces
(such as the binary meaning space [0, 1] × [0, 1]), or when the meaning space
does not give rise to ordered coordinates in the first place. Thus, a Boolean
analysis of concatenation seems to be preferred, because in general it allows
for simpler, or context-independent, meanings of its parts, when the language
is interpreted compositionally.

Perhaps unfortunately, however, this argument is not as convincing as it
might seem. It is not really clear why the descriptive meanings of ‘c’ and ‘d’
are simpler than their imperative meanings. Notice first that if the best way
to represent a meaning is in terms of a set, it means that its meaning is just
an enumeration of instances. So, what we are after is compact representations
of this set. Although at first sight the descriptive meanings of symbol ‘c’ in
L1 and L2 are equally complex – just the union of two sets of points –, in L1

the descriptive meaning of ‘c’ can be represented more compactly than in L2

in terms of how to compute this descriptive meaning: it means just something
like ‘the first half of’. Something like this cannot be done as easily for the
meaning of ‘c’ in L2. So, also the descriptive meaning of ‘c’ in L2 is perhaps
not as simple as it seemed at first, and it is not clear why this meaning is
any simpler than the imperative meaning of ‘c’ in L2. Thus, our suggested
motivation for the primacy of descriptive meaning, combined with a Boolean

19Assuming again that L2 emerged from a language that used only {a, b}.
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analysis of concatenation, is not as convincing as it might have seemed.20

Still, once we want to determine the meaning of a complex expression
from the meanings of its parts, it is generally assumed that this cannot be
done by looking only at imperative meanings, or stereotypes. What should
the mode of combination be if stereotypes are modeled by vectors? Addition,
or convex combination will not do in most cases. Still, Gärdenfors (2000)
suggests that there might be another mode of combination after all. Consider
adjectives-noun combinations like stone lion. It is clear that analyzing the
meaning of this complex phrase by means of intersection of the descriptive
meanings of its parts won’t give the correct result. A standard conclusion out
of this in denotational semantics is to assume that the adjective and the noun
should not be given meanings of the same type, and that concatenation should
be interpreted as functional application. But, as argued for by Gärdenfors
(2000), we don’t always need such a computational complex analysis which
requires the use of higher order logic. Assume that the adjective and the noun
have meanings of a different type in the sense that whereas the imperative
meaning of the noun is a vector with two coordinates, characterized in terms
of numbers on both the x-axis (say, material) and the y-axis (e.g. shape), the
imperative meaning of the adjective is a vector with only one coordinate, e.g.,
only characterized in terms of a number on the x-axis. Gärdenfors proposes
now substitution as a general mode of interpretation for concatenation: the
(imperative) meaning of ‘stone lion’ is the same as the imperative meaning of
‘lion’, but with the number of the x-axis replaced by the imperative meaning
of ‘stone’. Thus, ‘stone lion’ denotes an object with the stereotypical shape of
a lion, but that is made of stone. It is clear that substitution can account for
some meanings of concatenation where functional application has been used
in denotational semantics. It remains unclear, however, how general it really
is.

3.3 Truth conditional connectives

Disjunction Under which circumstances can a language evolve in which we
have a message that means ‘ti’, one that means ‘tj’, and yet another with
the disjunctive meaning ‘ti or tj’? We have seen above that if there exists a
1-1 function, f , from situations to (optimal) actions to be performed in those

20Notice that our discussion also suggests that if we want to think of meanings from
an evolutionary perspective, we shouldn’t think of them in the first place as sets, as in
denotational semantics. Rather, we should think of them in richer ways such that we
can determine how difficult it is to compute or learn a given meaning. Notice that this
points in the direction of procedural semantics, but it also suggests that the imperative, or
stereotypical, meaning of a simple expression is more basic than its denotational meaning.
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situations, a language can evolve with a 1-1 correspondence between messages
and meanings. The existence of this function f , however, won’t be enough
to ‘explain’ the emergence of messages with a disjunctive meaning. What is
required, instead, is a 1-1 function from sets of situations to (optimal) actions.
We can understand such a function in terms of a payoff table like the following:

U(t, a) a1 a2 a3 a4 a5 a6 a7

t1 4 0 0 3 3 0 2.3
t2 0 4 0 3 0 3 2.3
t3 0 0 4 0 3 3 2.3

Notice that according to this payoff table, action a1 is the unique optimal
action to be performed in situation t1, and the same holds for combinations
〈t2, a2〉 and 〈t3, a3〉. So far, this is the same as what we had in section 2.
This table, however, contains more information. Suppose that the speaker
(and/or hearer) knows that the actual situation is either t1 or t2, and that both
situations are equally likely. In that case the best action to perform is neither
a1 nor a2 – they only have an expected utility of 2 –, but rather a4, because
this action now has the highest expected utility, i.e., 3. Something similar
holds for information ‘t1 or t3’ and action a5, and for ‘t2 or t3’ and action a6.
Finally, in case of no information, which corresponds with information ‘t1 or
t2 or t3’, the unique optimal action to perform is a7. Thus for all (non-empty)
subsets of {t1, t2, t3} there exists now a unique best action to be performed.
Notice that each such subset may be thought of as an information state, the
(complete or incomplete) information an agent might have about the actual
situation. Suppose now that we lift the sender-strategy from a function that
assigns to each situation a unique message to be sent, to one that assigns
to each information state a unique message to be sent. It is not difficult to
see that now we will end up (after evolution) with a communication system in
which there exists a 1-1-1 correspondence between information states (or sets of
situations), messages, and actions to be performed (cf. Skyrms, 2004).21 Thus,
there will now be messages which have a disjunctive meaning. This by itself
doesn’t mean yet that we have a separate message that denotes disjunction,
but only that we have separate messages with disjunctive meanings in addition
to messages with simple meanings. However, as convincingly shown by Kirby
(2000) and others, under a learning bottleneck, languages are forced to become
compositional. Given that in all evolutionarily stable linguistic conventions
there will be separate messages that denote the most informative information
states – i.e. for all situations ti there will always be a message with (descriptive)

21This is a general result if there is a 1-1 correspondence between sets of situations and
actions, and not restricted to the particular example discussed above.
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meaning {ti} –, what will evolve under iterated learning forced by a learning
bottleneck is a complex message with meaning {ti, tj} that consists of three
separate signals: one signal denoting {ti}, one signal denoting {tj}, and one
signal that turns these two meanings into the complex meaning {ti, tj}, which
is done by (set theoretical) union. The latter signal, of course, might then be
called ‘disjunction’.

Although there appears to be some contrasting evidence, it is standardly
assumed that humans, and only humans, have (compositional) languages con-
taining messages which have a disjunctive meanings. In terms of the above
result we might speculate why this is the case. Recall that for disjunctive mes-
sages to evolve, it was crucial that we took information states, or belief states
into account. We might now speculate that it is the existence of such belief
states that sets us apart from (other) animals, and why we, but not them,
could make use of messages with disjunctive meanings.

In principle, once we take information states into account, we can not only
state under which circumstances disjunctive messages will evolve, but also
when negative and conjunctive messages will evolve. The main difference is
that we have to assume more structure of the set of information states (for
disjunction we only required that this set is an i-join semi-lattice, for both
disjunction and conjunction to evolve we most naturally have to assume that
the set forms a full lattice, while for negation to evolve as well we even have to
assume that the set is a free lattice, which contains much more elements, and
is of a more complicated structure than a lattice, and certainly than a i-join
semi-lattice).

Notice that there is a distinction between the circumstances under which
disjunction, and under which conjunction can arise. For disjunction to arise,
we needed the existence of information states: we required that the sender
has, and knows that he has, incomplete information about the actual situa-
tion, and we had to ‘lift’ the speaker strategy to a function from information
states to messages. In that case, messages will evolve that have a disjunctive
meaning and denote sets of situations. For conjunction to make sense, we also
had to assume that there will be messages that (descriptively) denote sets of
situations. However, for that to be the case we didn’t require that a speaker
strategy is a function taking sets of situations as input: it can just be a func-
tion that maps situations to messages. In that sense, conjunction is ‘simpler’
than disjunction.22 There is another sense in which conjunction is ‘simpler’
than (standard) disjunction, and this involves the notion of ‘convexity’. This
might have evolutionary impact as well.

22In fact, in natural language it seems that we don’t really need conjunctions to conjoin
messages: sequencing is good enough. According to Gil (1991) there are indeed (modern)
languages that don’t have the notion of a truth-conditional conjunction at all.
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Above I have assumed that disjunction has its standard Boolean meaning
and only investigated under which circumstances can expressions evolve with
this meaning. But why should we make this assumption, and why shouldn’t
we take into account the historical roots of expressions which now have the
standard meaning? As for the assumption, perhaps because meanings corre-
spond with ‘innate’ Boolean laws of thought. But, then, even if disjunction
has an innate Boolean meaning, we would like to explain how this could have
evolved.

It is widely assumed that in the animal kingdom what counts is not de-
scriptive meaning, but rather imperative meaning. Moreover, this imperative
meaning is just an action. In manipulative communicative situations, how-
ever, it might be good to leave the addressee a choice between several alter-
natives, and it might be that ‘or’ is used first to signal this. This would mean
that if the imperative meanings of X and Y are x and y respectively, the
imperative meaning of ‘X or Y ’ could be described as αx + (1 − α)y, with
α ∈ {0, 1}. Now suppose that later in evolution, the natural meanings of X
and Y are descriptive, rather than imperative, and that both denote sets of ob-
jects/situations. In that case, the meaning of ‘X or Y ’ could be the following
set {αx + (1− α)y : x ∈ X, y ∈ Y, α ∈ {0, 1}} = X ∪ Y .

Perhaps the last step was too quick. Recall that convexity is both a useful
constraint on properties, and one whose emergence can be explained. What
this suggests is that as many as possible properties that we use should denote
convex sets. Unfortunately, if we assume that disjunction is interpreted as
set theoretical union, in contrast to intersection, the union of two convex sets
need itself not be convex. So we would like to explain the emergence of our
non-convex notion of disjunction from a closely corresponding convex notion
of disjunction. If we assume that the meaning space has the form of a vector
space, I think we can give such an appealing explanation. The reason is that
there is another natural operation that can be associated with disjunction
that results in convex sets. This operation is just that of convex combination.
Remember that a convex combination of two vectors x and y is any vector
αx+(1−α)y with α ∈ [0, 1]. This operation can be lifted naturally from vectors
to sets of vectors in the following way: if X and Y are sets of vectors, we define
the convex combination of X and Y , X + Y , as {αx + (1 − α)y|x ∈ X, y ∈
Y, and α ∈ [0, 1]}. In distinction with Boolean disjunction, X +Y might have
elements that are neither in X nor in Y .23 One can show that if X and Y
both denote convex sets, what X + Y gives us is the smallest convex set that

23See Widdows & Peters (2003) for some uses of ‘or’ that perhaps can be analyzed in
terms of X +Y . Widdows (2004) argues that what is denoted by ‘mammals’ can be thought
of as the convex closure of the denotations of ‘rabbits’, ‘pigs’ and ‘dolphins’, and contains
many creatures that do not belong to any of the three sets.
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contains both X and Y . If convexity is a strong constraint not only on ‘simple’
properties, but on ‘complex’ ones as well, I believe that convex combination is
a natural candidate for being a meaning of disjunction. It should be clear that
the standard Boolean meaning of ‘X or Y ’ is just the same as X + Y , except
that α should be an element of {0, 1} instead of an element of [0, 1]. Can
we assume that the former evolves out of the latter? I think we can. Notice
that ‘convex combination’ is, in general, an analog, or continuous, notion. It
is a relatively standard assumption in epistomology (e.g. Dretske, 1981) that
the crucial difference between perceptual and cognitive phenomena is that the
first, but not the latter, is mostly analog in character: cognitive information is
normally discrete or digital. According to Sebeok (1962), a similar difference
exists between animal and human communication systems. What I would like
to suggest is that the step from interpreting disjunction as convex combination
to interpreting it in the standard way is just this step from analog to discrete.
In our case, it would mean that α should be an element of {0, 1} instead
of an element of [0, 1]. As we have seen above, what results is X ∪ Y , i.e.,
set-theoretical, or Boolean, union.

Why not more connectives? Above we have given some motivation for
why, and under which circumstances, certain truth-functional connectives could
arrive. We have motivated the existence of one unary truth-functional connec-
tive, negation, and two binary truth-functional connectives, disjunction and
conjunction. However, once we assume that each (declarative) sentence is ei-
ther true or false, there are four potential unary connectives, and as much as
sixteen potential binary connectives. Although all these potential connectives
can be expressed in natural language, the question is why only one unary and
only two (or perhaps three) binary truth-functional connectives are expressed
by means of simple words in all (or most) natural languages? That is, can we
give natural reasons for why languages don’t have the truth-functional connec-
tives that are mathematically possible? Fortunately for us, this problem has
already been solved convincingly by Gazdar & Pullum (1976). To illustrate
their proposal, let us look at the four possible unary connectives, c1, ...., c4:

p c1 p c2 p c3 p c4 p
1 0 1 0 1
0 1 0 0 1

Connective c1 is, of course, standard negation. Why don’t we see the others
in natural language(s)? The second one obviously doesn’t make a lot of sense:
c2 p just has the same truth-value as p itself, is thus superfluous, and can be
explained not to exist in this way. Connectives c3 and c4 are equally strange:
the truth values of c3 p and c4 p are independent of the truth value of p.
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Assuming, as a strict compositionality requirement, that all arguments of a
connective have to be potentially relevant to determine the truth value of the
whole, c3 and c4 are ruled out. Thus, only c1 is left, just as desired.

Gazdar & Pullum (1976) show that when we (i) assume the above principle
of strict compositionality, (ii) require (binary) connectives to be commutative,
and (iii) assume a principle of confessionality, which forbids natural languages
to have any (binary) connective which yields the value true when all its argu-
ments are false, then all potential binary connectives are ruled out except for
the following three: conjunction, standard (inclusive) disjunction, and what is
known as exclusive disjunction. This is an appealing result, given that strict
compositionality makes perfect sense (a language that doesn’t obey it is not
efficient), the principle of confessionality can be explained by the difficulty of
processing negation, while the constraint of commutativity is motivated by the
not unnatural idea that the underlying structures of the connected sentences
are linearly unordered. But it still leaves us with exclusive disjunction, a con-
nective of which many people have argued that it is not expressed by a simple
word in any language.24 Fortunately, there are several ways to rule out this
connective as well: based on the observation that when taking more than 2
arguments, exclusive disjunction gives rise to unnatural predictions (’p or q or
r’‘ is predicted to be true when either exactly one of the arguments is true,
or all of them!), Gazdar & Pullum show that it is ruled out by generalizing
their analysis by assuming that connectives take sets rather than sequences of
truth values as arguments. Horn (1989), on the other hand, argues that the
existence of a connective expressing exclusive disjunction is not required any-
way, because this meaning already follows from standard inclusive disjunction
in combination with the scalar implicature that not both disjuncts are true.

3.4 Relations and prepositions

Just as for connectives and properties, also for relations it is the case that
many more relation-meanings can be expressed between a number of objects,
than that we typically express by simple natural language expressions. And
because there are many more subsets of D × D (the set of denotations of
relational expressions) than that there are subsets of D (the set of denotations
of property expressions), or subsets of {1, 0} × {1, 0} (the set of binary truth-
functional connectives), the problem is much more serious here, but also more
difficult to solve. But also here utility, learnability and complexity seem to be
important factors.

First, utility plays obviously an important role, and this can again, to some
extent, be explained in terms of our signaling game perspective. When we think

24Although others have argued that Latin aut does express exactly this connective.
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of the meaning of a relation as a set of ordered pairs, the sender strategy, S, is
now a function from ordered pairs of situations, or objects, 〈t, t′〉, to messages,
while the receiver’s strategy, R, one from messages to actions. In analogy to
what we saw for properties, it holds that if there are either less messages or
less actions than there are ordered pairs of situations, at least some messages
will denote, in equilibrium, sets of ordered pairs.

Consider the case of four individuals consisting of a man, his wife, and their
two children, a boy, and a girl. Given that we have 4 individuals, we have
4× 4 = 16 ordered pairs. What is an example of a natural partition of this set
of ordered pairs? A natural partition could be, for instance, the following set
of relational-expressions:25 {father-of, mother-of, husband-of, wife-of, son-of,
daughter-of, brother-of, sister-of, identical-to}.26 Another example of a natural
partition would be the relation of individuals situated on a length-scale into
{longer than, equally long as, shorter than}.

The latter example suggests already that Gärdenfors’ (2000) analysis of
‘natural properties’ can sometimes be extended to ‘natural relations’. To do
so, Gärdenfors proposes that one dimension of the meaning space measures
the length of individuals. The comparative relation longer than would then
be represented by all ordered pairs of points in the space defined by this di-
mension. How can we think of this relation as denoting a convex set? Well,
we might think of a new binary meaning space where the first and second
dimension measure the length of the first and second object of each ordered
pair, respectively.27 In that case, the set of ordered pairs that constitutes the
denotation of the relation ‘longer than’ forms a convex region of the above
mentioned meaning space. In fact, this holds for all kinds of comparative rela-
tions where the generating dimension is isomorphic to the set of all (positive)
real numbers (e.g. larger, earlier, and before). For other relation-denoting ex-
pressions we can think of a relation R as a function that takes an object x and
maps it to the set of objects y such that xRy. Consider, for instance, a locative
preposition like ‘in front of’. Combined with a noun phrase, this preposition
denotes the set of objects in front of the denotation of the noun phrase. In
Zwart’s (1997) vector-based semantics, objects can be thought of as vectors,
and so the set of objects in front of the denotation of the noun phrase is a set
of vectors as well. Zwarts (1997) states three semantic universals that involve

25Certainly if we disregard the last relation, which is there for technical reasons, only.
26In an extensive discussion of semantic universals, Leech (1974) suggests that because all

basic kinship relations of (all) languages can at least be expressed in traditional componential
analyses as that of Lounsbury (1956) and others in terms of the relations in this set, that
this set of kinship relations might be thought of as a universal categorization of kinship
relations.

27Gärdenfors (2000, p. 92) attributes this idea to Holmqvist.
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locative prepositions: (i) the set of vectors denoted by any simple locative
preposition applied to an object is closed under shorthening;28 (ii) this set of
vectors is both linearly, and (ii) radially continuous.29 What matters here is
that all three universals follow immediately if these sets of vectors (or objects)
are taken to denote convex subsets of the meaning space.30 Of course, propos-
ing that also ‘natural relations’ are those sets of n-tuples that form, from a
certain perspective, a convex region of a meaning space is interesting from
our perspective, because we have seen that we can give a natural evolutionary
motivation for the notion of convexity.

Convexity can be used to constrain meanings of simple relational expres-
sions in other ways as well. In the footsteps of generative semanticists, Dowty
(1979) proposes that many verb meanings can be decomposed in terms of
meanings of stative predicates plus some abstract notions like CAUSE and
BECOME whose meaning is defined in his aspect calculus. The transitive
verb open, for instance, is decomposed in terms of the stative predicate ‘being
open’ as follows: λxλy[CAUSE(x, BECOME(be− open(y)). Dowty suggests
that we should exclude predicates whose interpretation depends on the state
of the world at more than one time (or in more than one possible world) in
any way other than in the ways explicitly allowed for by the tense and modal
operators of his calculus. This by itself does not constrain enough the possible
verb meanings, but – as explicitly suggested by Dowty (1979, section 2.4) – it
would be a strong constraint if we now assume that the stative predicates (or
at least the stage-level ones) should only be predicates that denote (convex)
regions of logical space.

Recall that the assumption of convexity is of considerable help to determine
(learn or compute) the extension of a set, or relation. The reason is that con-
vexity is a very strong closure condition. But relations might be closed under
other conditions as well, and this will also help to determine their extensions.31

28A region of vectors R is closed under shortening iff for every v ∈ R, sv ∈ R, for every
0 < s < 1, where s is a scalar (Zwarts, 1997).

29A vector v is linearly between u and w if v is a lengthening of u and w is a lengthening of
v. A vector is radially between two vectors u and w that from an acute angle if the shortest
rotation of u into w passes over v. A region of vectors is linearly/radially continuous iff for
all u,v ∈ R, if v is linearly/radially between u and w, when v ∈ R (Zwarts, 1997).

30The idea to relate the meaning of locative prepositions with convexity was explicitly
mentioned in later work of Zwarts, and also discussed in Gärdenfors (2000).

31Notice that if we can already determine the length of an object, it is easy to determine
whether one object is longer than another. To determine the meaning of the adjective
‘long’, however, more seems to be needed: to compute whether an object x is ‘long’ we
have to compare the set of objects that are longer than x with the set of objects that are
not longer than x, which involves much more computational recourses than determining the
comparative relation. This might be an argument for why adjectives evolved later than the
comparative relation, if that is, in fact, the case.
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For instance, a relation might have the higher order property of being reflex-
ive, symmetric, transitive, etc. It is obvious that once we know that a relation
has certain of these ‘natual’ higher order properties, it becomes much easier
for agents to learn and remember the extension of this relation. If you know,
for example, that a relation R is reflexive, you don’t need to check any object
to know that this object bears the relation R to itself, and if you know that
a relation R is symmetric, learning that x stands in relation R to y suffices
to know that also y stands in relation R to x. From this point of view one
would expect that those relations that are expressed a lot by simple natural
language expressions are such that they have many of such natural ‘higher
order’ properties. I don’t really know, to be honest, whether this is the case,
but I do know that some simple relation-denoting expressions that we seem to
find in all languages do have many such properties. Many relation-denoting
expressions, for instance, denote symmetric and irreflexive relations, e.g. ‘op-
posite to’, ‘near to’, ‘be married to’, ‘similar to’.32 Many other expressions
denote ordering relations, relations that are asymmetric, irreflexive, and tran-
sitive. Examples are ‘above’ and ‘below’, ‘before’ and ‘after’, ‘in(side)’, and
all comparative relations. A linear relation is any ordering relation that has
the additional property of being connected: for any x and y, either xRy, or
yRx (or x = y). In a very interesting article, the economist A. Rubinstein
(1996) shows that linear orderings are optimal with respect to learning, in the
sense that the minimal number of observations is required in order to learn
the extension of the relation. Moreover, he shows that linear orderings are
optimal in terms of expressibility: if you know that a set of objects stands in
a particular relation R to each other, the best relation that this could be is a
linear relation, because then we can denote any element of the set in terms of
R (plus the logical expressions) only.

4 Conclusion

In this paper we suggested some evolutionary motivations for some proposed
semantic universals using game theory. Our motivations made use of notions
like utility, learnability, and complexity: we expect those meanings to be uni-
versally expressed in simple terms that are useful, easy to learn and remember,
and easy to use. We suggested some ways in which these notions have evolu-
tionary bite, and how they might have given rise to semantic universals. In
the future we would like to see how our work on linguistic universals is con-
nected with work done in Edinburgh (e.g. Kirby, 2000) by modeling biases for
learning that have semantic influence.

32On the assumption, at least, that one can not be near to, or similar to, oneself.
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