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1 Introduction

An expression is vague, if its meaning is not precise. For vagueness at the
sentence-level this means that a vague sentence does not give rise to precise
truth conditions. This is a problem for the standard theory of meaning within
linguistics, because this theory presupposes that each sentence has a precise
meaning with respect to each context of use. The philosophical discussion on
‘vagueness’ concentrates on the notion of tolerance. A expression is vague, or
has a tolerant meaning, if it is insensitive to small changes in the objects to
which it can be meaningfully predicated. The discussion of ‘vagueness’ in lin-
guistics mostly focusses on the interpretation of so-called ‘gradable adjectives’.
Within that class a difference is made between relative adjectives like ‘tall’ and
absolute adjectives like ‘flat’. An important difference between these two types
of adjectives is that in contrast to relative adjectives, absolute adjectives allow
for natural precisifications: if a we fix a level of granularity, relative adjectives
are still vague, but absolute adjectives are not. Still, also absolute adjectives
give rise to vagueness. This suggests that vagueness also has something to do
with what a natural, or appropriate, precisification is.

In this paper I first discuss the nature of vagueness, and contrast it with
notions such as ambiguity and context-dependence. In section 3 I briefly dis-
cuss some reasons that could perhaps explain why vagueness is such a pervasive
phenomenon in natural language. Section 4 reviews some more or less stan-
dard linguistic analyses of gradable adjectives. I will concentrate myself on
approaches that take comparison classes into account. Because comparative
constructions are ideally formed in terms of gradable adjectives, comparative
ordering relations will be discussed as well. In section 5 it will be argued
that one specific ordering relation is crucial for any analysis of vagueness that
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wants to capture the notion of ‘tolerance’: semi-orders. I will focus my atten-
tion here on contextuallist’ approaches that want to account for the Sorites
paradox, because these approaches are most popular within linguistics. In the
final main section, I concentrate on what some people have called ‘loose talk’.
The main issue here is whether with loose use of language we say something
that is strictly speaking false, but true enough in the particular conversational
setting, or true, because the conversational setting loosens the requirements
for a sentence to be true.

As a warning to the reader, I should emphasize that this paper is not just an
unbiased overview of work in linguistics on vagueness. Especially the extensive
use of comparison classes throughout the paper, the view that positive uses of
adjectives are primary to their comparative use, the claim that semi-orders are
crucial to model tolerance, and the ordering relation between structures used
to model coarser-grained talk are at best not very common.

2 What is vagueness?

Vagueness is a pervasive feature of natural language. Members of almost any
lexical category can be vague. Prototypical vague expressions are adjectives
like ‘tall’, ‘fast’, ‘red’, and ‘adolescent’. The Sorites Paradox is the hallmark of
vagueness and formulated in terms of a noun, ‘heap’. But also many adverbs
(‘very’, ‘rather’, ‘probably’, ‘softly’, ‘well’) and quantifiers (‘many’, ‘a lot’, ‘a
few’) give rise to vagueness. In fact, no linguistic expression whose meaning
involves perception and categorization can be entirely free of vagueness. This
is true for proper names and definite descriptions (‘Amsterdam’, ‘the border
between Belgium and the Netherlands’), verbs like ‘start’, ‘finish’ and ‘under-
stand’, but also for more abstract linguistic categories such as tense (past or
future) and aspect (perfective or imperfective). If a vague term occurs in a
complex expression, this complex expression is often vague as well. Because
’very’ and ‘a heap’ are vague, the expressions ‘very sick’ and ‘not a heap’ are
vague too. Some expressions turn vague expressions in complex expressions
that are less vague. A measure phrase is a prototypical example (turning ‘tall’
into ‘3 feet tall’). Other expressions have the opposite effect: while ‘2 o’clock’ is
not vague, when we combine it with a hedging expression like ‘approximately’,
‘about’, ‘almost’, ‘roughly’, etc. it becomes vague. Lakoff (1973) gives a list
of more than 60 hedging expressions, and discusses in what sense they differ
in meaning.

Whether one is tall depends on a unique gradient contingent fact, one’s
height. Vagueness of being tall is then due to the fact that it is unclear whether
one’s height counts as being tall or not. There is another reason for vagueness,

2



though. Whether one is a clever person depends, intuitively on more than one
factor. If one scores well in some relevant respects but not in others one can
be a borderline clever person. As discussed by Lakoff (1973), one can reduce
this vagueness by using so-called hedging expressions like ‘In some respects’,
‘to some extent’, and ‘in a sense’.

With some vague content words (‘red’) we associate a prototype, i.e., a typi-
cal representative. For those expressions, membership is a matter of prototype
resemblance. But having a prototypical representative is neither a necessary
(‘tall’, ‘heavy’), nor a sufficient (‘bird’, ‘grandmother’) condition for being
vague. Adverbs and quantifiers don’t have prototypes at all, and an adjective
like ‘tall’ presumably has no prototype because there is in general no natural
upper bound to how tall things can be (Kamp & Partee, 1995). Although a
pinguin is a much less prototypical bird than a robin, it is not less of a bird.

Vagueness in linguistics is a problem about the meaning of linguistic expres-
sions. It seems natural to assume that to be a competent speaker of English
one has to know what it means for ‘John came’ to be true or false. So, a
minimal requirement for any theory of meaning seems to be that one knows
the meaning of a declarative sentence if one knows under which circumstances
it is, or would be true. According to truth conditional semantics – the most
successful and productive linguistic theory of meaning we know so far – we
should stick to this minimal requirement: identify the meaning of a declara-
tive sentence with the conditions, or circumstances under which the sentence
is true.

The phenomenon of vagueness poses a problem, or threat, to this initially
appealingly simple picture of meaning.1 Even if we know that John is 1.80
meters long, it is still not clear whether we should count ‘John is tall’ as being
true or as being false. The phenomenon of ambiguity seems to pose a similar
threat. The noun ‘bank’, for instance, can be interpreted in several ways: it
is perhaps used most often to denote a financial institution, but it can also be
used to denote the edge of a river (ambiguity). Assuming that the meaning
expressed by a sentence is via Frege’s principle of compositionality determined
by the meanings of its constituent expressions (and the way they are combined
syntactically), the sentence ‘John went to the bank’ can be used to express (at
least) two very different meanings. There is an important difference between
ambiguity and vagueness: an expression is ambiguous when it has more than
one semantically unrelated meaning, and thus tends to come with separate
dictionary entries. This in contrast with expressions that are vague.2 Based
on this intuition, Lakoff (1970) suggested a test to distinguish ambiguity from

1There are other problems as well, but they are not relevant for this paper.
2At the level or individual words, the contrast between ambiguity and vagueness can also

be denoted by the distinction between homonymy and polysemy.
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vagueness and underspecification based on V(erb) P(hrase) ellipsis. Suppose
a sentence S has a finite number of interpretations. Lakoff proposed that we
should continue the sentence with phrases like ‘and Mary did too’ or ‘and
Mary isn’t either’. In case this new larger sentence has equally many inter-
pretations as S itself, sentence S is ambiguous. Otherwise, the sentence is
vague or underspecified. As an example, take the sentence ‘John walked to
the bank’ containing the word ‘bank’. Suppose that this sentence has two
interpretations: (i) John walked to the building in which the financial insti-
tution is housed, and (ii) John walked to the edge of the river. Intuitively,
the whole sentence ‘John walked to the bank and Mary did too’ also has two
interpretations: (i) both John and Mary walked to the building in which the
financial institution is housed, and (ii) both John and Mary walked to the edge
of the river. In particular, it doesn’t have an extra reading saying, for instance,
that John walked to the edge of he river while Mary walked to the building
in which the financial institution is housed. Thus, ‘John walked to the bank’
is ambiguous. The reason is that the two meanings of ‘bank’ are not semanti-
cally related at all, so ‘Mary did too’ has to pick up the original meaning. Now
consider the sentence ‘John is not a bachelor’. Suppose that being a bachelor
means that you have to be human, male, adult, and unmarried. Thus, our
sentence can be true for four different reasons, and might thus be interpreted
in four different ways. Now continue the sentence with ‘and Mary isn’t either’.
Lakoff’s test predicts that the original sentence was not ambiguous, because
the new sentence can be true if John is not a bachelor because he is not an
adult, while Mary is not a bachelor because she is not male. Thus, the whole
sentence might be true for more than four different reasons.

Although ‘John is not a bachelor’ is not ambiguous, it is also not vague.
Rather, it is a general sentence, on a par with an example like ‘Katrin received a
degree’. Just like the truth of the latter sentence does not specify the particular
type of degree Katrin received, the truth of the former does not specify the
reason why John is not a bachelor. In contrast to vague sentences, however,
general sentences have determinate truth conditions, and do not pose a threat
to truth conditional semantics.

Vagueness should also be contrasted with context dependence. Whether
what is expressed by a sentence like ‘I am Robert’ is true or false obviously
depends on who (of potentially infinitely many persons) utters it, a context
dependent fact. Vagueness and context dependence are in principle indepen-
dent properties, although they often co-occur. Left and right are context-
dependent but not (very) vague, whereas nouns like vegetable and bush are
vague but not (very) context dependent (Kamp & Partee, 1995). The fact
that natural language is context dependent complicates, but does not threaten
truth-conditional semantics.
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A traditional way of thinking about vagueness is in terms of the existence of
borderline cases. John is a borderline case of a tall man, if the sentence ‘John
is a tall man’ is neither (clearly) true nor (clearly) false. The three-valued logic
account of vagueness, as well as the core supervaluation theory-account3 are
based on exactly this idea. These theories assume that predicates like ‘tall’
and ‘bald’ do not give rise to a two-fold, but rather to a three-fold partition of
objects: the positive ones, the negatives ones, and the borderline cases. But
proponents of fuzzy logic like Lakoff (1973), and authors like Wright (1975),
Kamp (1981) have argued that the existence of borderline cases is inadequate
to characterize vagueness: although by assuming a three-fold instead of a two-
fold distinction one rightly rejects the existence of a clear border between the
positive and the negative cases, one still assumes the existence of an equally
unnatural border between, for instance, the positive and the borderline cases.
What seems to characterize vagueness, instead, is the fact that the denotation
of vague terms lack sharp boundaries. In the words of Sainsburry (1991), they
are ‘boundaryless’: there is no sharp boundary that marks the things which
fall under it from the things that do not, and no sharp boundary which marks
the things which do definitely fall under it from those which do not definitely,
and so on. Instead, all these boundaries are blurred. Fuzzy logicians model
this by assuming an infinite, rather than a finite set of truth values. Arguably,
however, this is not enough: even if we assume infinitely many truth values,
there still has to be a sharp boundary between, for instance, those objects
that do and those objects that don’t have the relevant property P to degree
1.4 According to Wright (1975) and Kamp (1981), instead, vagueness gives
rise to tolerance: a vague predicate is insensitive to very small changes in the
objects to which it can be meaningfully predicated. Obviously, on such a view,
vagueness is intimately related with the Sorites paradox.

It is clear that the existence of borderline cases does not automatically lead
to vagueness (what is vague about a clear three-fold distinction?), but it is not
so clear that only predicates that give rise to tolerance are vague. Gaifman
(1997) discusses the predicate ‘large number of fingers’. Because changes in
fingers are in discrete units, there is hardly any scope for tolerance, and one
finger can make the difference. Still, 5 and 6 are borderline cases of ‘large
number of fingers’, and the predicate seems vague. One might propose that
only those expressions give rise to tolerance that can be modified by a hedge,

3Roughly speaking, with the ‘core’ supervaluation theory account of vagueness, I mean
the theory without something like Fine’s (1975) treatment of higher-order vagueness.

4Fuzzy logicians might respond by saying that with respect to a relative adjective like
‘tall’, no individual has this property to degree 1. But then, as noted by Williamson (p.c.),
what to do with the sharp boundary between those objects that do and those objects that
don’t have the relevant property P to degree > 0.5?
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such as about, sort of, or somewhat. An obvious consequence of this suggestion
is, however, that tolerance is the rule, rather than the exception.

Vagueness is standardly opposed to precision. Just as gradable adjectives
like ‘tall’ and a quantity modifier like ‘a lot’ are prototypical vague expressions,
mathematical adjectives like ‘rectangular’, and measure phrases like ‘1.80 me-
ter’ are prototypically precise. But what does it mean for these latter ex-
pressions to be precise? On first thought it just means that they are precise,
because they have an exact mathematical definition. However, if we want to
use these terms to talk about observable objects, it is clear that these math-
ematical definitions would be useless: if they exist at all, we cannot possibly
determine what are the rectangular objects in the precise geometrical sense,
or objects that are exactly 1.80 meters long. For this reason, one allows for
a margin of measurement error, or a threshold, in physics and other sciences.
Notice, however, that once we allow for a margin of error, we could almost im-
mediately construct a Sorites-series, meaning that adjectives like ‘rectangular’
and measurement phrases like ‘1.80 meter’ give rise to tolerance. According to
Wright, this should mean that these phrases are vague. Pinkal (1995) stressed
that our use of ‘precise’ measure phrases in natural language give rise to toler-
ance just like in the language of physics, but now to a much larger extent. But
this means that it is not clear what is left of the absolute opposition between
precision and vagueness.

A central problem posed by the Sorites paradox is whether vague predicates
really give rise to inconsistency. Another conceptual problem is why vagueness
is so pervasive in natural languages. A linguistic, or logical, problem is that
although sorite predicates give rise to vagueness, it seems that sorite predicates
are not distinct from non-vague predicates with respect to their inferential
power: from ‘John is very tall’, for instance, we conclude to the truth of ‘John
is tall’ and they give rise to valid syllogistisms: ‘If some linguists are tall, and
every linguist is smart, then some smart people are tall.’ Moreover, vague
terms can be used to express uncontroversial true statements like ‘If John
is an adult, he is a man’ and vague adjectives like ‘tall’ are typically used
in comparatives that give rise to precise truth conditions. Moreover, we can
reason with that: If John is taller than Mary, and Mary is taller than Sue,
then John is taller than Sue.

3 Why vagueness?

It is standardly assumed that the existence of vagueness in natural language
is unavoidable in ordinary discourse. Our powers of discrimination are limited
and come with a margin of error, and it is just not always possible to draw
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sharp borderlines. Sometimes we cannot be more precise even if we would want
to. And indeed, the pervasive vagueness of natural language has often been
regarded as a deficiency, especially by scientists, logicians, and philosophers.
However, it seems that the use of vague expressions is not such a bad thing,
and might even be beneficial compared to their precise counterparts.

First, on the standard view communicative success is defined as a 1-1 cor-
respondence between what the speaker intends and how the listener interprets
it. Communicating with vague expressions is then predicted to be bad. But
the above definition of communicative success is both unreasonably strict, and
more than required. Communication can still be successful in case speaker’s
intention and hearer’s interpretation have sufficient overlap. How much over-
lap is sufficient depends on what is at stake, and could be utility-based, as
suggested by R. Parikh (1994).

Standard Gricean pragmatic explanations of the use of language assumes
that communication is a cooperative affair. In such a situation it never does
any harm to be as precise as possible (disregarding processing costs). Thus,
being vague can never be advantageous. This is in accordance with a standard
game theoretical result saying that messages with precise meanings can be
communicated successfully only in case the preferences of speaker and listener
coincide. However, this result is based on the assumption that communication
is noiseless. Recently, some game theorists (e.g. Myerson, 1991; de Jaegher,
2003) have shown that once the preferences of speaker and listener are not
completely aligned, we can sometimes communicate more with vague, impre-
cise, or noisy information than with precise information. Vague, or indirect,
use of language might be beneficial as well in case the speaker is unsure about
the preferences of the hearer. In such circumstances a speaker might intent
some of his messages to be diversely interpretable by cooperative versus non-
cooperative listeners.

It is sometimes argued that it is useful to have vague predicates like ‘tall’ in
our language, because it allows us to use language in a flexible way. Obviously,
‘tall’ means something different with respect to men than with respect to
basketball players, which means that it has a very flexible meaning. This
does not show, however, that vagueness is useful: vagueness is not the same
as context-dependence, and the argument is consistent with ‘tall’ having a
precise meaning in each context. But not any function from contexts to precise
meanings will do. The meaning of ‘tall’ should be learnable and computable by
us as boundedly rational agents. One requirement seems to be that ‘tall’ should
at least behave consistent across these contexts: It shouldn’t be possible that
in one context x is counted as tall, but y is not, while in another context where
we still look at things from the same perspective, but where we take more or
less individuals into account, it is the other way around. But consistency is not
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enough: for a predicate to be precise, it has to be learnable and computable
what the extension of that predicate is in each context. Bosch (1983) argues
this is too much to ask, because there are many potential contexts for which
we wouldn’t know how to distinguish the individuals to which we can apply
the predicate from those to which we cannot.5

In the introduction I claimed that vagueness involves not only tolerance,
but also the required level of fine-grainedness. It seems beneficial for both
the speaker and the hearer to sometimes describe the world at a more coarse-
grained level (see for instance Hobbs (1985) and Krifka (2006)). There is
obviously something to this. Deciding which precise term to use may be harder
than using a vague term. For the listener, information which is too specific
may require more effort to analyze. Another reason for not always trying to be
as precise as possible is that this would give rise to instability. As stressed by
Pinkal (1995), in case one measures the height of a person in all too much detail,
this measure might change from day to day, which is not very useful. Also,
in case there exists no standard way to measure the length of a certain object
(like a river), being too precise is only confusing if the method of measurement
is not provided as well.

A final reason why vague expressions are so prevalent in natural language
might be that vague expressions are very useful to make value judgments.6

Even if you know that Quiza is 1.45 meters long, you might still learn something
new when I tell you that she is tall for a Martian. This is mostly the case
because whether one is tall depends on a gradient contingent fact, one’s height,
and it is not always very clear whether this particular height counts as being
tall or not (for a Martian). A man for whom it is not clear whether he is
tall or not, is standardly called a borderline case of tallness. John might be a
borderline tall man although the speaker knows his height either because there
is divergence in usage among competent speakers, or because the speaker still
hesitates to call him tall or not. Lewis (1969), for instance, adopts the former
characterization and suggests that languages themselves are free of vagueness
but that the linguistic conventions of a population, or the linguistic habits of a
person, select not a point but a fuzzy region in the space of precise languages.7

Proponents of the epistemic approach to vagueness (e.g. Williamson, 1994)
and many adherents of the supervaluation theory (e.g. Fine, 1975; Kamp

5Bosch (1983) refers here to Waisman’s (1968) notion of ‘open texture’, the feeling that
for outlandish cases we wouldn’t know yet how to apply the predicate. I believe this notion
is closely related with the notion of ‘unforeseen contingencies’ in economics.

6Franks Veltman stresses this in his inaugural lecture Veltman (2002).
7Lewis (1970) takes this analysis of vagueness to be very similar to (what is now called)

a supervaluation account. Burns (1991) argues (unconvincingly, we think) that the two are
very different.
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1975; Keefe, 2000) go for the second alternative: English, or its valuation
function, is, or can be made, precise, but agents don’t know, or don’t bother
to care, exactly what this valuation function is. On such a view, borderline
cases of ‘tall’ are individuals that some speakers of a language consistent with
the linguistic convention of English consider to be tall, while others don’t
(on Lewis’s meta-linguistic account), or individuals of which an agent doesn’t
know, or doesn’t care much about, whether they count as being tall or not,
although the agent knows their precise height.

A semantic valuation function normally only determines how the facts are
(e.g. whether John’s height is 1.80 meters or 1.70 meters). One way to model
the above intuition of borderline cases is to assume that a valuation function
includes information about ‘semantic’ facts, and that a speaker takes several
of such valuation functions to be possible. A valuation function includes in-
formation about semantic facts, if it not only says what John’s height is, but
also whether this particular height counts as being ‘tall’, i.e., whether some-
body who is 1.80 meters should be considered to be tall or not. On this view,
valuation functions, or worlds, should thus fulfill two roles, and those roles
are exactly the roles a world can play according to Stalnaker’s (1978) two-
dimensional view on language. If we fix the meanings of the expressions, a
sentence expresses a meaning, represented by a set of worlds, and if the ac-
tual world is a member of this set, what is said by the sentence is true, false
otherwise. But if what is expressed by a (token of a) sentence depends on
context, we can think of the world (together with the expression token) as
determining how the expressions should be interpreted, and then it might be
that in different worlds something different is said (i.e. different meanings are
expressed) by the same sentential token. In this way we might explain why it
might be unclear to the hearers what the speaker meant by saying ‘I like you’:
the hearers might be unsure about the context that determines the reference
of ‘you’ that the speaker had in mind. In the same way one might argue that
also the meaning of nouns and adjectives depends on the utterance context.
But if worlds fulfill the two roles suggested above, it seems natural to assume
that they always fulfill the two roles at the same time. It follows that if we
interpret a sentential token of a sentence ϕ in world w of which we consider it
possible that it is the actual world, we use w both to determine what is said
by ϕ, (denoted by [[ϕ]]w), and to determining whether what is said by ϕ in w
is true in w, i.e., whether w ∈ [[ϕ]]w. The set of worlds in which what is said
by sentence ϕ is w is also true in w – denoted by {w ∈ W : w ∈ [[ϕ]]w} – is
called the diagonal proposition by Stalnaker (1978). The diagonal proposition
expressed by a sentence can be used to explain the so-called evaluative mean-
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ing of vague predicates. As noted by Barker (2002),8 if one says that ‘John
is tall’, one can make two kinds of statements: a descriptive one saying that
John is above the relevant cut-off point (if it is clear in a context what the
cut-off point for being tall is) and a metalinguistic one saying that the cut-off
point for being tall is below the height of John (if it is clear in a context what
john’s height is). The latter involves the evaluative meaning of ‘tall’ and can
be accounted for straightforwardly in terms of diagonalization. There is noth-
ing extraordinary about metalinguistic statements: identity statements can be
used to express them as well. It is well-known that identity statements can
be used (i) to state the identity of meaning of the two terms, but also (ii) to
fix the meaning of one term in terms of the meaning of the other. The second
reading is prominent in a sentence like ‘Deep throat is the person who was the
source of Woodward and Bernstein’s Watergate information’, and should be
understood metalinguistically.

4 Gradable adjectives

Although we have seen in section 2 that expressions of many lexical categories
are vague, most research on vagueness concentrates on adjectives like ‘tall’
and ‘wide’. In linguistics these adjectives are known as gradable adjectives
and should be distinguished from non-gradable adjectives like ‘pregnant’ and
‘even’. The latter adjectives do not give rise to (much) vagueness. There exist
two major types of approaches to the analysis of gradable adjectives: degree-
based approaches and delineation approaches. Degree-based approaches (e.g.
Seuren, 1973; Cresswell, 1976; Bierwisch, 1984; von Stechow, 1984, Kennedy,
1999, 2007), analyze gradable adjectives as relations between individuals and
degrees, where these degrees are thought of as scales associated with the di-
mension referred to by the adjective. Individuals can posses a property to a
certain measurable degree. The truth conditions of sentences involving these
adjectives are stated in terms of degrees. Delineation approaches (Lewis, 1970;
Kamp, 1975; Klein 1980, 1991) analyze gradable adjectives like ‘tall’ as simple
predicates, but assume that the extension of these terms are crucially con-
text dependent. In this section we will discuss both types of approaches in
somewhat more detail, and also see how they treat comparatives.

4.1 The degree based account

According to the degree-based approaches, relative adjectives are analyzed as
relations between individuals and degrees, where these degrees are associated

8But see also Kyburg & Morreau (2000).
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with the dimension referred to by the adjective. Individuals can posses a prop-
erty to a certain measurable degree, and the truth conditions of comparative
and positive sentences are stated in terms of degrees. According to the most
straightforward degree-based approach, the absolutive (1) is true iff the degree
to which John is tall is (significantly) greater than a (contextually given) stan-
dard of height.9 while the comparative (2) is true iff the degree to which John
is tall is greater than the degree to which Mary is tall.

(1) John is tall.

(2) John is taller than Mary.

But this straightforward degree-based approach has a problem with examples
where the scope of the comparative contains an indefinite (‘any’), or existential
modal:

(3) a. John is taller than anyone else.
b. John is taller than allowed.

It is not easy to see how the above degree-based approach can account in a
compositional way for the intuition that from (3-a), for instance, we infer that
John is taller than everybody else, if we treat any as an indefinite. To account
for this problem Seuren (1973) proposed that (2) ‘John is taller than Mary’
should be counted as true iff there is a degree d of tallness that John has but
Mary does not: ∃d[Tall(j, d) ∧ ¬Tall(m, d)].10 In this formalization, T (j, d)
means that John’s degree of tallness includes at least d. This analysis easily
accounts for the intuition concerning (3-a) and (3-b), by representing them by
(4-a), and (4-b) respectively (treating ‘any’ as an existential quantifier):11

(4) a. ∃d[T (j, d) ∧ ¬∃x[x 6= j ∧ T (x, d)]].
b. ∃d[T (j, d) ∧ ¬3T (j, d)].

Unfortunately, Seuren’s analysis of comparatives meets a serious problem: we
can’t immediately account for the fact that from the truth of (2) we conclude

9For some adjectives, like ‘tall’ this standard is either defined as the (arithmetical or
geometrical, possibly weighted) mean of the height of all individuals in the class, for others,
like ‘red’ this standard can be thought of as the prototype representative of the class.

10The idea that the ‘than’-clause of a comparative contains a negation goes back to Jes-
persen (1917).

11Von Stechow (1984) proposed a somewhat different analysis to account for these sen-
tences. It is fair to say that although Von Stechow’s analysis has been improved on recently,
it is the classic paper on comparatives, and still contains the most complete discussion of
the analyses on the subject.
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to (5) which involves its antonym:12

(2) John is taller than Mary.

(5) Mary is shorter than John.

There seems to be an easy way to account for this problem, however: just
assume that ‘John is short’ is true if and only if he is not tall. Unfortunately,
accounting for antonyms in this way gives rise to a serious problem. The
problem – which von Stechow (1984) attributes to Hoepelman – is that it is
predicted that the following two sentences are equivalent:

(6) a. *John is tall and short.
b. John is neither tall nor short.

Indeed, the approach predicts that (6-a) is represented as T (j)∧¬T (j), while
(6-b) is represented as ¬T (j) ∧ ¬¬T (j), which have the same meaning, and
denote a contradiction. Although (6-a) seems inappropriate for exactly this
reading, (6-b) seems to express a contingent proposition. The obvious conclu-
sion from these examples is that we should not analyze ‘short’ as ‘not tall’.
But if we can’t do this, it is not clear anymore how to account for the inference
from (2) to (5) without making extra ad hoc assumptions.13

Von Stechow (1984) and Kennedy (1999) conclude that to account for this
latter problem14 we have to assume that degrees are directional. Fortunately,
it appears that in the alternative delineation approach to gradable adjectives,
the above problem need not show up.

4.2 The delineation approach

Lewis (1970) and Kamp (1975) make use of supervaluation theory to account
for the vagueness of adjectives like ‘tall’ and ‘bald’. These expressions are taken

12In an early, but still very relevant study on grading, Sapir (1944), makes a distinction
between adjectives for which inferences like that between (2) and (5) go through, and adjec-
tives for which they do not. In the first class are things like ‘good’-‘bad’ and ‘far’-‘near’, while
in the second class are antonyms like ‘brilliant’-‘stupid’: From ‘John is it less/more brilliant
than Mary’ we conclude that both John and Mary are brilliant, and we can’t continue this
sentence with ‘but both are stupid’. This in contrast with the appropriate discourse ‘From
the point of view of America, France is on the near side of Europe, though actually far’.

13Proponents of the degree-based approach can propose that in comparatives ‘short’ means
‘not tall’, but not in the positive use of the predicates: ‘John is short’ doesn’t mean the
same as ‘John is not tall’. They can account for this by making use of the POS-operator
they they use to account for positive use of adjectives.

14And for a related problem that you can’t say ‘John is 1.80 meters short’.
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to have specific cutoff-points with respect to each classical valuation function,
or world, but it is undetermined, or unknown, what the actual cutoff-point for
English is. Thus, a positive adjective is considered to be a simple predicate
the extension of which depends on a world-dependent cutoff-point. For an
adjective like ‘tall’, they propose that ‘John is taller than Mary’ is true just
in case the set of worlds in which John is tall is a proper superset of the set of
worlds in which Mary is tall.15 Because the proper superset relation gives rise
to a strict partial order (irreflexive and transitive),16 it is correctly predicted
that the comparative gives rise to a strict partial order as well. Still, the
resulting analysis is not completely satisfactory.

First of all, as noted by Kamp (1975), in order to make this analysis work
for comparisons like ‘taller than’ that give rise to orders that are not only
irreflexive and transitive but satisfy other properties as well, Kamp and Lewis
have to make a crucial meaning postulate to constrain the possible cutoff-
points of a vague predicate P in the worlds: for all individuals x and y: either
‘P (x) → P (y)’ must be true in all worlds, or ‘P (y) → P (x)’.17 Although the
meaning postulate required by Kamp and Lewis is natural, it is questionable
whether by assuming it, we not already assume that we take the comparative
to be more basic than the positive use of the adjective. But if so, this proposal
is not in the ‘spirit’ of the delineation approach after all.

Second, the analysis gives rise to the same problem as Seuren’s (1973)
analysis does: it cannot account for the equivalence of (6-a) and (6-b) with-
out making ad hoc assumptions. As noted by von Stechow (1984), the reason
is that the analyses of Kamp and Lewis are essentially the same as Seuren’s
degree-based analysis. Lewis (1970) and Kamp (1975) assume that the worlds
differ from each other in their cutoff-points of vague predicates. The compara-
tive ‘John is taller than Mary’ is considered to be true if and only if there is a
cutoff-point for ‘tall’ such that John is above it, while Mary is not. The easiest
way to think of the cutoff-point of ‘tall’ in a world is as a particular number,
a degree. But then we can assume that the predicate denotes a relation be-
tween individuals and degrees, and the delineation approach just claims that
the comparative is true iff John has a degree of tallness that Mary does not
have. This, of course, is exactly Seuren’s analysis of comparatives.

In the standard supervaluation theory used by Lewis and Kamp it is as-

15Well, this is Kamp’s (1975) proposal in case at least one of the two is considered to be
a borderline tall individual.

16A relation R is irreflexive iff for all objects x ∈ I : ¬R(x, x). It is transitive iff for all
objects x, y, z ∈ I : R(x, y) ∧R(y, z) → R(x, z).

17Notice that by adopting this constraint we can reformulate the above analysis of com-
parisons in terms of existential quantification: John is taller than Mary is true in a super-
valuation frame just in case there is a complete valuation function, or world, in which John
is tall, but Mary is not.
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sumed that vague words like ‘bald’ simply have an extension in a world: each
world has a unique cutoff-point from whereon individuals are not counted as
bald anymore. But it might be, of course, that John can be counted as tall
when we compare him with other men, but not tall when we compare him with
(other) basketball players. Thus, whether someone of 1.80 meters is tall or not
depends (partly) on who that person is compared with. In case the adjective
occurs in attributive position it is natural to assume that the comparison class
is at least partly determined by the noun to which the adjective is attached.
For John to be a tall man it must be that John is being tall for a man, but that
doesn’t mean that John is a tall basketball player. This suggests that whether
we count an object to be tall for an X, we compare this object with the other
objects that are X and decide whether the former object is tall. Because ad-
jectives need not be attached to nouns, however, this can’t be enough. That is
why we will assume with Wheeler (1972) and Klein (1980) that every relative
adjective should be interpreted with respect to a comparison class.18 A com-
parison class is just a set of objects/individuals and is contextually given. In
particular if the adjective stands alone, we might assume that the contextually
given comparison class helps to determine what counts as being tall.19 The
truth of the positive sentence (1)

(1) John is tall.

depends on the contextually given comparison class: (1) is true with respect
to comparison class c (in model M) iff John is counted as tall in this class
(in model M). The proposition expressed by a comparative like (2) is context
independent.20

(2) John is taller than Mary.

and the sentence is true iff there is a comparison class according to which John
counts as tall, while Mary does not.21 This analysis is obviously close to the

18Graff (2000) has argued that a comparison class should be an intensional instead of an
extensional object. If we allow for individuals of different worlds to be part of the same
comparison class, I don’t think this crucially undermines Klein’s proposal.

19Although it does not necessarily uniquely determine what counts as being tall. See the
end of this section for some discussion.

20But see section 6.
21Equatives can be analyzed in terms of comparison classes as well. Klein (1980) proposes

that (i-a) should be interpreted as (i-b).

(i) a. John is as tall as Mary.
b. In every context where Mary is tall, John is tall as well.

Klein (1980) notes that on this analysis, the negation of (i-a), i.e. (ii-a), is correctly predicted
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Kamp/Lewis approach to comparatives and to Seuren’s degree-based account.
Indeed, one can easily show that Klein (1980) can account for (3-a), and (3-b)
in almost exactly the same way as Seuren (1973) could. But Klein’s (1980)
analysis seems better suited to account for the fact that from (2) we conclude
that Mary is shorter than John. We have concluded above that to account for
this problem we are not allowed to analyze ‘short’ as ‘not tall’. Fortunately,
Klein (1980) doesn’t need to analyze ‘short’ in this way in order to account for
the equivalence of (2) and (5).

(5) Mary is shorter than John.

The reason is that if there is any comparison class in which John but not Mary
counts as tall, this is also the case in the comparison class containing just John
and Mary.22 But this means, intuitively, that in this context Mary is short,
while John is not. From this we can conclude that we can account for the
intuition that (2) and (5) have the same truth conditions without assuming
that we should analyze ‘short’ as meaning not tall.

Notice that both the degree-based and the delineation account assume that
the meaning of comparatives are context independent, but that the meaning
of sentences containing positive adjectives are context dependent. On the
comparison-class approach context-dependence is (partly) accounted for by
the selection of the relevant comparison class, while on the degree approach
the truth conditions of a sentence like (1) depend on the contextually selected
standard of height. In this sense, the two approaches are the same. But there
are also four differences that (we feel) are in favor of the comparison-class
approach.

First, degree-based approaches need something like comparison classes as
well. Such approaches claim that a positive sentence like ‘John is tall’ is true iff
the degree to which John is tall is (significantly) greater than a given standard
of height. But, obviously, this standard for basketball players differs from the
standard for men.

to be equivalent with (ii-b):

(ii) a. John is not as tall as Mary.
b. Mary is taller than John.

Standard pragmatics can explain why in the context of question ‘How tall is John?’, (i-a)
would come to mean that John and Mary are equally tall.

22Later we will see that this is guaranteed by van Benthem’s (1983) Downward Difference
constraint (DD). However, some authors have argued that objects indistinguishable with
respect to a small comparison class, might be distinguishable with respect to a larger com-
parison class. According to proponents of this view (see section 5.2), constraint (DD) is not
valid.
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Second, the comparison-class account just assumes that the meaning of the
comparative ‘taller than’ is a function of the meaning of ‘tall’. This is much in
line with Frege’s principle of compositionality,23 and also accounts for the fact
that in a wide variety of languages the positive is formally unmarked in relation
to the comparative (Klein, 1980). The degree-based approach, however, treats
the comparative as basic, and states the truth conditions of a sentence involving
a positive adjective like (1) by making use of the comparative relation ‘taller
than’: John should be (significantly) taller than the norm, or normal size of
individuals, or taller than indifferent, or taller than we expected him to be. But
why then, does at least the vast majority of languages express the comparative
in more terms than the positive?24

The third obvious difference is that in contrast to the comparison-class
approach, the degree approach makes essential use of degrees from the very
beginning. Because we can only make sense of degrees once we adopt a system
of full-blooded quantitative measurement, it is predicted that already for very
simple comparatives like (2) it is crucial to make use of quantitative measure-
ment. But this seems wrong: making comparisons precedes measurement and
counting, both in science and in individual development. A child may observe
and inform others, for instance, that an individual is taller than he was be-
fore, or that John is taller than Mary, before it is able to count or to handle
a measure tape. Thus, it seems preferred to favor a system that is able to
account for simple comparatives that doesn’t make use of precise measures,
i.e. degrees. Of course, one also has to make sense of measurement phrases,
but it would be preferred to find a system that accounts for comparisons that
doesn’t explicitly mention measures without degrees. Moreover, the introduc-
tion of degrees should give rise to a system that is a natural extension of the
theory of comparatives that doesn’t make use of degrees.

Suppose that one already has degrees with respect to a gradable adjective
‘P ’ at one’s disposal. According to a degree-based analysis, a positive sentence
of the form ‘x is P ’ is now considered to be true iff x has property P to a degree

23But see Von Stechow (1984) for an argument saying that also the degree-based approach
is in line with Frege’s principle.

24Sapir (1944, 125) argues that we must regard grading from different points of view. “It
is very important to realize that psychologically all comparatives are primary in relation
to their corresponding absolutes (‘positives’) [...] Linguistic usage tends to start from the
graded concept, e.g. good (= better than indifferent), bad (= worse than indifferent) [...] for
the obvious reason that in experience it is the strikingly high-graded or low-graded concept
that has significance, while the generalized concept which includes all the members of a
graded series is arrived at by a gradual process of striking the balance between these graded
terms. The purely logical, the psychological, and the linguistic orders of primacy, therefore,
do not necessarily correspond.” Perhaps this is so, but this doesn’t mean that making use
of a theory that reflects such a correspondence wouldn’t be preferred.
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higher than a contextually given cutoff-point. But one may wonder why anyone
then would use the positive sentence at all? Why not immediately state the
precise degree to which x has property P? One valid reason can be, of course,
that the speaker doesn’t know the precise degree. Another reason might be
that by using the positive sentence the speaker can make a value judgement
(see section 3). However, it seems clear that there are more obvious reasons
why the vague positive sentence is used. Consider expressions like ‘probable’
and ‘useful’. They behave much like gradable adjectives. I take it that these
types of expressions have been used (also to give value judgments) long before
they have been given a measure-theoretic interpretation in the 20th century.
It is unnatural to claim that a speaker who uses such an expression believes
that its positive use comes with a precise cardinal cutoff-point, but that he or
she just doesn’t know what this exact cutoff-point is. In fact, most economists
in the 19th and early 20th century used an expression like ‘useful’ even though
they strongly disbelieved that ‘usefulness’ could be given a precise measure-
theoretic interpretation.

A final problem for the degree-based account is that it is unclear how it
accounts for the vagueness of sentences that involve, for instance, nouns, and
not relative adjectives. Of course, prototype-based approaches of the meanings
of nouns make use of something like degrees: the degree to which an object
is a (typical) bird is inversely related to the distance of this object to the
prototypical bird. But if one uses degrees here, it is unclear why we don’t have
simple comparatives like ‘x is more heap than y’ that involve nouns.25,26

Comparison classes can not only be used to help to determine the meaning
of adjectives like ‘tall’, they can be used to help determining the meaning of
degree modifier like ‘very’ and ‘fairly’ as well (cf. Wheeler, 1972; Klein, 1980).
Suppose John is considered to be tall with respect to comparison class c. Then
we might say that John is very tall just in case John is considered to be tall

25Of course, we do have ‘x is more of a heap than y’, but that seems to have a somewhat
different meaning (or not?).

26There exists a striking syntactic difference between common nouns like ‘bank’ on the one
hand and verbs and adjectives like ‘tall’ on the other: whereas common nouns combine with
a determiner to form a noun phrase, verbs and adjectives must be nominalized first, before
they can play that role. It has been argued that there corresponds a semantic difference
with this syntactic difference: it is in general not determinate how to count things like ‘the
tall ones’ or ‘the red ones’ (a red grapefruit, for instance, won’t have the same color as a
red tomato), nor is it determinate how a thing which is tall or is red must be individuated
and reidentified. In contrast to what falls under a common noun like ‘cat’ or ‘bank’, the
general terms ‘tall’ and ‘red’ do not by themselves determine units which could underlie the
possibility of counting: arbitrary many parts of a red object are red objects again. Of course,
we can count red things, but only once we have determined beforehand what counts as an
individual thing. Notice, though, that some philosophers have argued that even for nouns
like ‘cats’ it is unclear exactly what should be counted (see Lewis (1993) for discussion).
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among the tall ones in c, i.e., iff John ∈ Tall(Tall(c)). Similarly, we might say
that John is fairly tall if he is tall, but not very tall. Assuming that predicates
denote (in each model) functions from sets of individuals (i.e. comparison
classes) to sets of individuals (i.e., comparison classes) is crucial for such an
analysis of degree modifiers.

Klein (1980) argued that because the positive adjective ‘tall’ is formally
unmarked in relation to the comparative ‘taller than’, the meaning of the latter
should be a function of the meaning of the former. Before we will look at how
the meaning of the comparative ‘taller than’ can be defined in terms of the
meaning of the adjective ‘tall’, we will take a look at positive and comparative
sentences involving absolute adjectives first, because it turns out that their
behavior can be characterized easier.

4.3 Absolute terms and comparison classes

Consider adjectives like ‘full’, ‘flat’, or ‘straight’. Just like the meaning of
‘tall’, also the meaning of these adjectives is vague. These adjectives are also
perfectly acceptable in comparatives: there is nothing wrong with saying that
one surface is flatter than another, or that one bottle is fuller than another.
In this respect they differ from adjectives like ‘pregnant’ and ‘even’, and are
on a par with other gradable adjectives like ‘tall’. However, as observed by
Unger (1975) and also discussed by Rothstein & Winter (2004) and Kennedy
& McNally (2005), while with relative adjectives one can easily say something
like

(7) John is tall, but not the tallest/ but somebody else is taller.

this can’t be done (so naturally) with (maximal) absolute adjectives.27

(8) a. *My glass is FULL, but it could be fuller.
b. *This line is STRAIGHT, but you can make it straighter.

What this contrast shows is that sentences with absolute adjectives generate
entailments that sentences with relative adjectives lack: it is inconsistent to
say that something is flatter than something that is flat.28 Thus, from (9-a)
we conclude (9-b) that the pavement is not flat:

(9) a. The desk is flatter than the pavement.

27According to Unger, stress forces a precise interpretation of the absolute adjective.
28Bolinger (1972) and others working on degree words observed another contrast between

absolute and relative adjectives: while relative adjectives combine well with degree adverbs
like ‘very’ and ‘rather’, absolute adjectives combine well with other adverbs like ‘completely’,
‘almost’, ‘hardly’, and ‘nearly’.
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b. The pavement is not flat.

Comparatives with relative adjectives, however, don’t give rise to entailments
at all:

(10) a. John is taller than Mary. 6⇒ John/Mary is tall/not tall.

The natural way to account for absolute adjectives in a degree-based approach
is to assume with Kennedy & McNally (2005) and others that we start with
a ‘fuller than’ or ‘flatter than’-relation between degrees, but assume that in
contrast to the ‘taller than’-relation formed with the relative adjective ‘tall’, the
‘fuller than’ and ‘flatter than’-relations have maximal elements. The positive
use of the adjective has then this maximal degree as its cut-off point.

But now suppose that we would like to assume with Klein (1980) that not
only comparatives with relative adjectives like ‘taller than’ should be defined
in terms of its corresponding positive adjective, but that this also holds for
‘flatter than’. How should we proceed? Intuitively – and in contrast to the
meaning of relative adjectives –, the meaning of the positive use of ’flat’ is
context-independent. We will suggest that this means that in the positive use
of ‘flat’, the adjective should always be interpreted with respect to the maximal
comparison class: the whole domain. If ‘flat’ is used in a comparative, however,
we will assume that its meaning is relativized to a smaller comparison class.
However, ‘flat’ selects with respect to each comparison class intuitively its
‘maximal’ element.

Saying that the meaning of an adjective depends on a comparison class,
and defining the comparative relation by saying that ‘x is P -er than y’ iff x
has property P in comparison class {x, y}, but y has not is not enough to
give a proper analysis of the comparative relation. The reason is that once
we relativize the meaning of adjectives to comparison classes, this leaves room
for the most diverse behavior. It might be, for instance, that although x is
considered flat in set {x, y} and y is not, x is not considered to be flat in set
{x, y, z}, while y is. In order to assure that the meaning of the adjective in
different comparison classes behaves properly, we have to constrain this behav-
ior. Fortunately for us, the formal problem we face here is exactly the same as
the problem discussed already by Arrow (1959) of how to derive a preference
ordering relation from the assumption that the notion of choice is primitive.
Assuming a choice function – a function that selects elements from each finite
set of options –, Arrow showed how this can generate an ordering relation if
we put some natural constraints on how this choice function should behave on
different contexts. Let us define a context structure, M , to be a triple 〈I, C, V 〉,
where I is a non-empty set of individuals, the set of contexts, C, consists of
all finite subsets of I, and the valuation V assigns to each context c ∈ C and
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each property P those individuals in c which are to count as ‘being P in c’.
Say that P (c) denotes the set of individuals in c that have property P with
respect to c: P (c) = {x ∈ c : x ∈ V (P, c)} (In the context of social choice
theory, P is thought of as a choice function, selecting the best elements of c.)
We follow Arrow by proposing the following principle of choice (C), and the
cross-contextual constraints (A1) and (A2) to limit the possible variation:

(C) ∀c ∈ C : P (c) 6= ∅.
(A1) If c ⊆ c′, then c ∩ P (c′) ⊆ P (c).
(A2) If c ⊆ c′ and c ∩ P (c′) 6= ∅, then P (c) ⊆ P (c′).

If we say that ‘x is P -er than y’, x >P y, iffdef x ∈ P ({x, y}) ∧ y 6∈ P ({x, y}),
Arrow (1959) shows that the comparative as defined above gives rise to a weak
order. A structure 〈I, R〉, with R a binary relation on I, is a weak order just
in case R is irreflexive (IR), transitive (TR), and almost connected (AC).

Definition 1.
A weak order is a structure 〈I, R〉, with R a binary relation on I that satisfies
the following conditions:
(IR) ∀x : ¬R(x, x).
(TR) ∀x, y, z : (R(x, y) ∧R(y, z)) → R(x, z).
(AC) ∀x, y, z : R(x, y) → (R(x, z) ∨R(z, y)).

We can now define the relations ‘being as P as’, ’‘∼P ’, and ‘being at least
as P as’, ‘≥P ’, as follows: x ∼P y iffdef neither x >P y nor y >P x, and
x ≥P y iffdef x >P y or x ∼P y. The relation ‘∼P ’ is predicted to be an
equivalence relation, while ‘≥P ’ is predicted to be reflexive, transitive, and
strongly connected (meaning that ∀x, y : x ≥P y ∨ y ≥P x).29

Although weak orders seem appropriate for the analysis of comparatives,30

by just looking at the comparison class involving the desk and the pavement,
we can’t account for the contrast between the acceptability of (11-a) versus
the (at least according to Unger (1975)) unacceptability of (11-b):

(11) a. The desk is not flat, but it is flatter than the pavement.
b. *The pavement is FLAT, but the desk is flatter.

The asymmetry suggests that the comparison class involved in the first con-
junct should play a role in the discourse as well: the comparison class c involved

29It is standard in the literature to also denote a structure 〈I,≥P 〉 with ‘≥P ’ reflexive,
transitive, and strongly connected by a weak order.

30The reader probably doubts whether weak orders are also appropriate for the analysis of
vagueness. Indeed, I will argue in section 5 that for vagueness, we need semi-orders, rather
than weak orders.
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in the analysis of the conjunctive sentences (11-a) and (11-b), and thus their
first clauses, should be a superset of the comparison involved in the analysis
of the second conjunct, i.e. c ⊇ {d, p}. Thus, a comparative like ‘The desk
is flatter than the pavement’ is true in context c iff (i) {d, p} ⊆ c and (ii)
d ∈ Flat({d, p}, but p 6∈ Flat({d, p}). With this extra constraint we pre-
dict by (A1) that from the truth of this sentence in c, we conclude that the
pavement is not flat in c, because {d, p} ∩ Flat(c) is by (A1) required to be a
subset of {d}. From this it follows that (11-b) denotes a contradiction. Sen-
tence (11-a), however, does not denote a contradiction, because the desk can
be flat compared to the pavement, without it being the case that the desk is
flat when compared to the other members of c ⊇ {d, p}.

Kennedy & McNally (2005) and Kennedy (2007) observe that although all
sentences involving absolute adjectives give rise to inferences, there exists an
important distinction between the two opposing absolute adjectives ‘dry’ and
‘wet’: whereas ‘dry’ behaves the same as ‘flat’ with respect to their entailment
behavior in comparatives, ‘wet’ behaves quite differently, and gives rise to a
positive inference:

(12) a. The floor is drier than the table. ⇒ The table is not dry.
b. The floor is wetter than the table. ⇒ The floor is wet.

How can we account for this difference between ‘dry’ and ‘wet’? Assuming
that absolute adjectives satisfy axiom (A1) will prove useful here. But an-
other distinction between relative and absolute adjectives is crucial as well.
Cruse (1986) observes that in contrast to the case of relative adjectives, with
antonym pairs involving absolute adjectives, the negation of one form (nor-
mally) entails the positive statement of the other (i.e., they are contradictory
to one another):31

(13) a. The door is not open. ⇒ The door is closed.
b. The table is not wet. ⇒ The table is dry.
c. The baby is not awake. ⇒ The baby is asleep.

Based on this observation, we will assume that ‘wet’ is defined as ‘not being
dry’. It follows by axiom (A1) that if there is a subset c′ of c in which the floor
is not considered to be dry, the floor won’t be considered dry in comparison
class c either. So, we can conclude that the floor is wet in c.

But not only the inference pattern in comparatives with ‘wet’ is different
from that of its antonym ‘dry’, the same is true for acceptable discourses. For
adjectives like ‘flat’ and ‘dry’, we have seen above that (11-a) is appropri-
ate, but (11-b) is not, and this was explained by our constraint on accessible

31This is not always the case, it doesn’t hold for the pair full-empty.
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comparison classes, and our assumption that absolute predicates obey con-
straint (A1). But the same constraint also explains the contrastive behavior
of appropriate discourses for the adjective ‘wet’.

(14) a. *?The floor is not wet, but wetter than the table.
b. The table is wet, but the floor is wetter.

The appropriateness of (14-b) is easily accounted for: the floor is not considered
dry w.r.t. comparison class c. In the subset {table, floor} of c, however,
objects not dry in c might be considered dry, and thus the floor might be dry
with respect to {table, floor}, and thus not wet. This doesn’t have to be the
case for the table, and so (14-b) is predicted to be appropriate. As for the
inappropriateness of (14-a), note that if the floor is not wet with respect to
comparison class c, it can’t be counted as wet in any subset c′ of c either, which
is enough to rule out (14-a).

Although this analysis of absolute adjectives is appealing, the analysis given
above cannot explain yet another contrast between absolute and relative adjec-
tives. As observed by Sedivy et al. (1999) and discussed by Kennedy (2007),
there is nothing wrong with using a relative adjective as part of a definite
description in a sentence like ‘Please give me the long nail’ to distinguish two
nails neither of which is particularly long. The use of absolute adjectives in
such definite descriptions is much less appropriate.32 In terms of our frame-
work, what this suggests is that the use of the positive absolute adjective (in
contrast to the use of the adjective in a comparative) demands that the com-
parison class with respect to which the adjective is interpreted is simply the
whole domain, and thus that only those individuals can be called ‘flat’, that
are the flattest of all the individuals in the whole (context independent) do-
main. We will see in section 6 how this analysis might still account for the
vagueness of absolute adjectives.

4.4 Comparison classes and relative adjectives

Let us now consider relative adjectives like ‘tall’ again. Just like for ‘flat’, we
want to derive a weak ordering relation for ‘tall’ in terms of how this adjective
behaves across comparison classes. However, it is easily seen that although
‘tall’ seems to obey axiom (A2), axiom (A1) is much too strong for relative
adjectives: (A1) demands that if both x and y are considered to be tall in the
context of {x, y, z}, both should considered to be tall in the context {x, y} as

32It should be noted, though, that Kennedy (2007) bases this general claim on the differ-
ence between the behavior of ‘long’ versus ‘full’. But the absolute adjective ‘full’ behaves
crucially different from other claimed absolute adjectives, in that its antonym ‘empty’ is not
contradictory with ‘full’. This might well be a crucial difference.
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well. But that is exactly what we don’t want: in the latter context, we want
it to be possible that only x, or only y, is considered to be tall. We should
conclude that if we want to characterize the behavior of relative adjectives, we
should give up on (A1). Unfortunately, by just constraints (C) and (A2) we
cannot guarantee that the comparative behaves as desired. In particular, we
cannot guarantee that it behaves as almost connected ((C) assures that the
relation ‘at least as P as’ is complete, while (A2) assures that the comparative
behaves as a strict partial order , i.e., irreflexive and transitive.).

To assure that the comparative behaves as desired, we add to (C) and (A2)
the Upward Difference-constraint (UD), proposed by Van Benthem (1982). To
state this constraint, we define the notion of a difference pair: 〈x, y〉 ∈ DP (c)
iffdef x ∈ P (c) and y ∈ (c− P (c)). Now we can define the constraint:

(UD) c ⊆ c′ and DP (c′) = ∅, then DP (c) = ∅.

In fact, van Benthem (1983) states the following constraints: No Reversal
(NR), Upward Difference (UD), and Downward Difference (DD) (where c2 ab-
breviates c× c):

(NR) ¬∃c, c′ ∈ C, x, y ∈ I : 〈x, y〉 ∈ DP (c) ∧ 〈y, x〉 ∈ DP (c′).
(UD) c ⊆ c′ and DP (c′) = ∅, then DP (c) = ∅.
(DD) c ⊆ c′ and DP (c) = ∅, then DP (c′) ∩ c2 = ∅.

Van Benthem (1982) shows that if constraints (NR), (UD) and (UD) are
satisfied, the relations ‘≥P ’, ‘∼P ’ and ‘>P ’ as defined before still have the same
properties as before: ‘≥P ’ is reflexive, transitive, and strongly connected; ‘∼P ’
is still predicted to be an equivalence relation, while the comparative ‘>P ’ is
still predicted to be (i) irreflexive, (ii) transitive, and (iii) almost connected,
just as in the case of absolute adjectives. For adjectives like ‘tall’, this seems
just what we want.

It is important to realize that the above conditions constrain, but do not
(at all) uniquely determine the behavior of the relevant predicate P across
comparative classes. First, it might be that different context structures give
rise to quite different ordering relations ‘>P ’. But even if two context struc-
tures gives rise to the same ‘>P ’-ordering, predicate P might still behave quite
differently in those two models on larger comparison classes. This is due to the
fact that to prove that ‘>P ’ behaves as desired, we look at comparison classes
of at most 3 elements. Once we have larger subsets of I, there are at least two
context structures that give rise to the same ordering that satisfy the above
constraints. Thus, whether a particular individual of a given comparison class
counts as a P -individual or not might still depend on the context structure
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M .33 This is as it should be, if we want to account for the observation of
Kamp (1975) and Graff (2000) that even if the comparison class is identified,
the meaning of the adjective might still depend on context. Graff (2000) ob-
serves, for instance, that with a sentence like ‘Fido is old for a dog’, where
the comparison class is made explicit, one can not only attribute elderliness to
Fido, but also extreme longevity.34

‘Tall’ is known as a one-dimensional adjective. Kamp (1975) calls an ad-
jective is one-dimensional if we can associate with the adjective a unique mea-
surable aspect that membership depends upon. Examples of one-dimensional
adjectives are ‘tall’, ‘heavy’ and ‘hot’. For the adjective ‘tall’, for instance,
this aspect is ‘height’, for ‘heavy’ it is ‘weight’, and for ‘hot’ it is ‘tempera-
ture’. These adjectives can easily be modified by adverbs of degree like ‘very’
and ‘quite’: ‘very tall’, ‘quite heavy’; easily undergo comparative formation
(‘taller’, ‘heavier’, ‘warmer’), and superlative formation (‘tallest’, ‘heaviest’,
‘hottest’). One-dimensional adjectives have only one contrary predicate: its
antonym. According to Kamp (1975), most adjectives are more-dimensional.
The extensions of color adjectives like ‘blue’, for instance, are determined by
three dimensions: its brightness, hue, and saturation. This is still relatively
unproblematic. For other more-dimensional adjectives, things are less clear.
There is no unique way to determine, for instance, whether John is cleverer
than Mary: it doesn’t depend only on the ability of solving problems, and even
if it did, it is not clear how the problem solving abilities in different contexts
should be weighed against each other. Adjectives like ‘large’ and its antonym
‘small’ behaves just like ‘clever’: it is unclear whether it is its height, its vol-
ume, or its surface, or a combination of these which decides whether an object
is large.

Important for us is that for more-dimensional adjectives P , the assumption
that the comparative ‘P -er than’ is almost-connected is problematic. The rea-
son is that such adjectives induce orderings that give rise to incomparability

33In terms of the analysis of value judgments sketched in section 3, one might think of
each context structure M as a precise valuation function. Although all these structures give
rise to the same ordering relation, they give the predicate that gives rise to this ordering
relation different extensions with respect to the same comparison classes.

34As argued by many opponents of analyses like ours, making the meaning of the adjective
context dependent doesn’t eliminate its vagueness. The phrase ‘old for a dog’ is just as vague
as the adjective ‘old’ is. Thus, making the meaning of P , the positive form, dependent on
both a comparison class and a structure M is not enough. We will come back to this in
section 5.
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(cf. Klein, 1980),35 and thus do not have a unique antonym.36 Let us assume,
for the sake of argument, that there are only two properties/dimensions as-
sociated with being clever: an ability to manipulate numbers, and an ability
to manipulate people. Let us say that John is cleverer than Mary iff John is
better both in manipulating numbers and in manipulating people. But now
consider Sue. Sue is worse than John in manipulating numbers but better in
manipulating people. Thus, neither John is cleverer than Sue, nor Sue is clev-
erer than John. For the cleverer than-relation still being almost connected, it
has to be the case that Sue is cleverer than Mary. But it is well possible that
although Sue is better in manipulating people than Mary (and John), Mary
is better than Sue in manipulating numbers. Thus, if one doesn’t fix a partic-
ular dimension, one cannot claim that ‘cleverer than’ denotes a relation that
is almost connected. To solve this problem one could simply claim that the
comparative can only be used if one fixes a particular dimension. According
to two other proposals, we can also compare in a multi-dimensional way, but
if we do so, almost connectedness is not valid anymore. We can make sense
of that by either giving up constraint (UD) and try to replace it with another
one that still guarantees that ‘>P ’ behaves transitive. Another way to give up
almost connectedness would be to give up the assumption that C consists of
all finite subsets of I, but to demand for all c, c′ ∈ C that if c and c′ have a
non-empty intersection, then their union is an element of C as well.37

4.5 Degrees and measures

Remember that Arrow (1959) and Van Benthem (1982) showed that given
their constraints on context structures, the comparative as defined by Klein
(1980) and others is (i) irreflexive, (ii) transitive, and (iii) almost connected,
where R is almost connected iff ∀x, y, z : xRy → (xRz ∨ zRy). Relations
with these properties are well-known in semantics: Lewis’ (1973) relation of
comparative similarity is one of them. It is also well-known that such relations
R can be turned into linear orderings R∗ of equivalence classes of individuals

35The standard way to make the distinction between indistinguishability and incompa-
rability is by starting with a structure like 〈I,>P ,∼P 〉 where I is a set of objects, ‘>P ’
a primitive preference relation, and ‘∼P ’ a primitive indistinguishability relation. Given
such a structure, and the natural definition of ‘<P ’ in terms of ‘>P ’, it is possible that
>P ∪ ∼P ∪ <P 6= I × I. Thus, it is possible that for two elements x and y of I, it is neither
the case that x >P y, nor y >P x, nor x ∼P y. In that case, we call x and y incomparable.
Now it is easy to rule out incomparability: just demand that >P ∪ ∼P ∪ <P = I × I.

36For more-dimensional predicates, comparative formation is arguably more difficult as
well. Kamp (1975), for instance, claims that ‘This is bluer than that’ is most of the time
not a meaningful statement.

37See van Rooij (2009) for making precise these two approaches.
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that are connected (∀v, z : vR∗z ∨ zR∗v). First, say that x is R-equivalent to
y, x ∼R y, iffdef neither xRy nor yRx. Take [x]∼R to be the equivalence class
{y ∈ I|y ∼R x}. Then we say that [x]∼R

R∗[y]∼R
iffdef xRy. Linear orderings

like R∗ form the basic input for any form of quantitative measurement, i.e., of
degrees!

The idea of measurement theory (Krantz et al, 1971) is that we repre-
sent properties of and relations between elements of certain abstract ordering
structures in terms of properties of and relations between real numbers that
we already understand much better. A quantitative measure based on a lin-
ear ordering like 〈I, >∗〉 is a representation of the qualitative ordering relation
(like taller than, represented by ‘>∗’) in terms of the quantitative ordering re-
lation greater than , ‘>’, between real numbers. This measurement is defined
in terms of a (homomorphic) function f that assigns each element of I to a
real number such that ∀x, y ∈ I : x >∗ y if and only if f(y) > f(z). In general,
there are many alternative mappings to f that would numerically represent
the qualitative relation >∗ equally well. However, this mapping f is unique
up to a certain group of transformations. For instance, the mappings f and
g to the (ordered) set of real numbers represent the same (ordinal) ordering
structure 〈I,>∗〉 in case they can be related by a monotone transformation:
for any x, y ∈ I : f(x) > f(y) iff g(x) > g(y). To faithfully represent more
informative ordering structures, the different mappings should be unique up
to a more limited group of transformations. For instance, suppose that the or-
dering structure can make sense not only of sentences like ‘x is taller than y’,
but also of things like ‘x is taller than y by more than v is taller than w’. For
a mapping f to represent this latter type of information, it should be the case
that f(x) − f(y) > f(v) − f(w). Two mappings f and g faithfully represent
the same such an ordering structure, iff f and g are the same up to a positive
linear, or affine, transformation, i.e., for any x ∈ I : g(x) = α(f(x)) + β,
where α, β are real numbers, and α > 0. Indeed, it are linear transformations
that preserve such differences.38 The number α represents the fact that the
unit of measurement is arbitrary. The number β represents the fact that the
ordering structure doesn’t have a fixed zero-point. Quantitative measures that
are unique up to such linear transformations are called intensional magnitudes.
The best known intensional magnitude is ‘warmth’. We can measure it in terms
of degrees Celsius and degrees Fahrenheit, and it is well-known that we can
transform the one to the other by means of a linear transformation: x degrees
Celsius is 32 + 9

5
x degrees Fahrenheit. Notice that one degree Celsius warmer

is not the same as one degree Fahrenheit warmer (but 9
5

degrees Fahrenheit

38Such mappings not only preserve differences, but also ratios between differences:
f(x)−f(y)
f(v)−f(w) = g(x)−g(y)

g(v)−g(w) .
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warmer), and that 0 oC is not at all the same as 0 oF , but rather as 32 oF .
To account for measure phrases like ‘John is 1.80 meter tall’, we need a

theory of degrees that involves addition. Standard measurement theory gives
us that for so-called extensional or additive magnitudes. Ordering structures
that give rise to extensional measurement must come with an operation of
concatenation, a specified procedure for joining two objects, denoted by ‘◦’.
Thus, the ordering structures must be of the form 〈I, >∗, ◦〉, where operation
‘◦’ satisfies certain conditions, like associativity. For mapping f to faithfully
represent such an ordering structure it must be the case that for all ∀x, y ∈ I :
f(x◦y) = f(x)+f(y) (of course, it must also holds that x >∗ y iff f(x) > f(y)).
Just as before, this mapping is unique up to a certain group of transformations.
The group of transformations are now all of the form g(x) = αf(x), with α > 0.
The existence of α means that the unit of measurement is still arbitrary, but
the disappearance of the constant β used in intensional magnitudes reflects
the idea that the zero is not arbitrary anymore.

A striking fact about natural language is that certain adjectives combine
well with measure phrases while others do not. For instance, it is ok to say
that John is 1.80 meters tall, but it is not good to say that Mary is 5 degrees
happy. A natural explanation of this is to claim that while ‘tall’ denotes an
additive magnitude, ‘happy’ denotes only an ordinal one. A more interesting
example is a negative adjective like ‘short’. The antonyms of positive adjectives
generally don’t allow for measure phrases in their ‘bare’ use (to say ‘John is 1.80
meters short’ is inappropriate), but they combine well with measure phrases
in comparatives: ‘Mary is 2 cm shorter than John’, and then they mean the
same as ‘John is 2 cm taller than Mary’. Sassoon (2008) has recently given
an appealing explanation of this fact by claiming that negative adjectives like
‘short’ are not extensional, but intensional magnitudes. This makes a lot of
sense: if l is a mapping from individuals to their height, one can define a
mapping s from individuals to their ‘shortness’ in terms of it by means of a
linear (though not positive) transformation: ∀x ∈ I : s(x) = αl(x) + β. The
existence of the β reflects the idea that ‘shortness’ doesn’t have a zero-point. If
one sets α to -1 – as one intuitively should –, this means that s(x) = β − l(x),
which explains many, if not all, of the striking linguistic data involving ‘short’
discussed by Kennedy (1999). But why does ‘shortness’ not have a zero-point?
A natural answer would be that zero-point β is simply the height of the longest
object or individual, and that we don’t know this height.39

39Schwarzchild (2006) noted that measure terms occur with some, but not all positive
‘measure’ adjectives. They occur in English with adjectives like ‘old’, ‘tall’, ‘high’, and
‘thick’, but not with ‘warm’, ‘heavy’, and ‘big’. We can say, for instance, ‘John is 5 years
old’, and ‘The ice was 5 cm thick’, but we don’t say in English ‘The water was 75 degrees
warm’, ‘The suitcase is 20 kilos heavy’, or ‘The apartment is 1000 square feet big’. We
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5 Tolerance and the Sorites paradox

In section 4.2 we have argued that the meaning of P , the positive form, is de-
pendent on a context dependent comparison class and on the context structure
M . It is standardly argued, however, that this double context dependence is
not enough. It still fails to explain the fact that the positive form of the pred-
icate allows for tolerance and gives rise to the Sorites paradox. This problem
will be addressed in this section.

5.1 Semi-orders

Consider a long series of people ordered in terms of their height. Of each
of them you are asked whether they are tall or not. We assume that the
variance between two subsequent persons is always indistinguishable. Now,
if you decide that the first individual presented to you, the tallest, is tall, it
seems only reasonable to judge the second individual to be tall as well, since
you cannot distinguish their heigths. But, then, by the same token, the third
person must be tall as well, and so on indefinitely. In particular, this makes
also the last person tall, which is a counterintuitive conclusion, given that it
is in contradiction with our intuition that this last, and shortest individual, is
short, and thus not tall.

This so-called Sorites reasoning is elementary, based only on our intuition
that the first individual is tall, the last short, and the following inductive
premise, which seems unobjectable:

[P] If you call one individual tall, and this individual is not visibly
taller than another individual, you have to call the other one tall
too.

Our above Sorites reasoning involved the predicate ‘tall’, but that was
obviously not essential. Take any predicate P that gives rise to a complete

might try to account for this by saying that while adjectives like ‘old’ work on additive
magnitudes, an adjective like ‘warm’ does not. Unfortunately, we can say things like ‘It
is twice as warm in Amsterdam as it is in Berlin’. Moreover, there are cross-linguistic
differences. In German some of the counterparts of the inappropriate examples above are
acceptable: ‘Das Konzert war nur 40 Minuten lang’, ‘Der Koffer ist 20 Kilo schwer’, and ‘Die
Wohnung ist 90 Quadratmeter gross’ are all appropriate. To account for this, Schwarzchild
(2006) proposes a syntactic solution, but one might wonder whether a pragmatic solution is
not more suitable. It seems that it is for some measure phrases much more natural to use the
relative adjective than for others. It doesn’t make a lot of sense for mph, or degrees, or kilos,
because saying that John went 50 mph doesn’t leave much room for the relevant (relative)
adjective. The same for ‘It is 50 degrees’, and ‘The suitscase is 20 kg’. It is different with
centimeters, because there are many adjectives measured in terms of centimeters, so adding
tall, or wide, makes perfect sense.
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ordering ‘being at least as P than’. Let us assume that ‘∼P ’ is the indifference
relation between individuals with respect to predicate P . Now we can state
the inductive premise somewhat more formally as follows:

[P] For any x, y ∈ I : (P (x) ∧ x ∼P y) → P (y).

If we assume that it is possible that ∃x1, . . . , xn : x1 ∼P x2 ∧ · · · ∧ xn−1 ∼P

xn, but P (x1) and ¬P (xn), the paradox will arise. Recall that if P (x1) and
¬P (xn), it is required that x1 >P xn. In section 4.2 we have defined the
relation ‘>P ’ in terms of the behavior of predicate P : x >P y iff x ∈ P ({x, y})
and y 6∈ P ({x, y}) and we will assume that x ∼P y holds iffdef neither x >P y
nor y >P x. We can assure that ‘>P ’ and ‘∼P ’ behave natural by putting
constraints on the behavior of P across comparison classes. The constraints
discussed in sections 4.3 and 4.4, however, did not allow for the possibility that
∃x1, . . . , xn : x1 ∼P x2∧· · ·∧xn−1 ∼P xn, but P (x1) and ¬P (xn). Fortunately,
there is a well-known ordering with this property. According to this ordering
the statement ‘x >P y’ means that x is significantly or noticeably greater than
y, and the relation ‘>P ’ is irreflexive and transitive, but need not be almost
connected. The indistinguishability relation ‘∼P ’ is reflexive and symmetric,
but need not be transitive. Thus, ‘∼P ’ does not give rise to an equivalence
relation. The structure that results is what Luce (1956) calls a semi-order. A
structure 〈I, R〉, with R a binary relation on I, is a semi-order just in case R is
irreflexive (IR), satisfies the interval-order (IO) condition, and is semitransitive
(STr).40

Definition 2.
A semi-order is a structure 〈I, R〉, with R a binary relation on I that satisfies
the following conditions:
(IR) ∀x : ¬R(x, x).
(IO) ∀x, y, v, w : (R(x, y) ∧R(v, w)) → (R(x, w) ∨R(v, y)).
(STr) ∀x, y, z, v : (R(x, y) ∧R(y, z)) → (R(x, v) ∨R(v, z)).

Just as weak orders, also semi-orders can be given a measure theoretical
interpretation. If P is the predicate ‘tall’, one can think of R as the semi-order
relation (significantly) ‘taller than’, and say that ‘x >P y’ is true iff the height
of x is higher than the height of y plus some fixed (small) real number ε. In
the same way ‘x ∼P y’ is true if the difference in height between x and y is
less than ε. In case ε = 0, the semi-order is a weak order.41

40Any relation that is irreflexive and satisfies the interval-order condition is called an
interval order. All interval orders are also transitive, meaning that they are stronger than
strict partial orders.

41cf. Scott & Suppes (1958).
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5.2 Contextual solutions to the Sorites paradox

Because it is such an age-old problem, there exist many proposed solutions
to the Sorites paradox. It is fair to say that within linguistics, the so-called
contextualist’ solution is most popular. The contextualist’ solution is really a
whole family of solutions, but in all of its versions it is crucially based on the
assumption that the meaning (or extension) of vague expressions depends on
context. As such, it is in line with standard linguistic accounts of comparatives
(whether they be degree-based, or comparison class-based). The contextualist
solution to the Sorites paradox was first proposed by Kamp (1981). Other pro-
ponents of this type of solution include Bosch (1983), Pinkal (1984), Veltman
(1987), van Deemter (1994), Raffman (1994, 1996), Gaifman (1997), Soames
(1999), Graff (2000), and Shapiro (2006). In the following I will first discuss
the central ideas of most of these contextualist’ solutions, and the problems
they give rise to, in a rather condensed way. Afterwards, I will discuss my
favorite contextual solution in somewhat more detail.

The standard reaction to the Sorites paradox taken by proponents of fuzzy
logic and/or supervaluation theory is to say that the argument is valid, but
that the inductive premise [P] (or one of its instantiations) is false. But why,
then, does it at least seem to us that the inductive premise is true? According
to the standard accounts of vagueness making use of fuzzy logic and superval-
uation theory, this is so because the inductive premise is almost true (in fuzzy
logic), true in almost all complete valuations (in supervaluation theory), or
that almost all its instantiations are true.

Linguists (e.g. Kamp, 1975; Klein (1980), Kamp & Partee, 1995; Pinkal,
1995) typically don’t like the fuzzy logic approach to vagueness, because they
can’t account for what Fine (1975) called ‘penumbral’ connections. The stan-
dard objection of supervaluationalists to the analysis of vagueness in terms of
(standard) fuzzy logic is that ‘John is P or he is not P ’ and ‘John is P and he
is not P ’ are not predicted to be tautological and contradictory, respectively.
But this objection is less than convincing: if John is a borderline case of a tall
man, what is wrong with saying, for instance, that he is to a certain extent
tall and to a certain extent not tall? But other objections that also involve
the assumed truth functionality are more serious: Suppose ‘Bert is tall’ is true
to degree 0.5 and ‘Fred is tall’ is true to degree 0.4. This can only be the
case, intuitively, if Bert is taller than Fred. Now consider (a) ‘Fred is tall and
Bert is tall’ and (b) ‘Fred is tall and Bert is not tall’. Adopting the standard
fuzzy logic-treatment of negation, these sentences are predicted to have the
same value (0.4, if also the standard ‘min’-analysis of conjunction is adopted).
But it seems that this is false: (a) can be true (to some extent), but if Fred is
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shorter than Bert, sentence (b) can, intuitively, be true to no positive degree.42

The treatment of vagueness and the Sorites paradox in supervaluation the-
ory is not unproblematic either. It doesn’t seem to have a good answer to the
question what it means that the negation of [P],∃d, d′[d ∼P d′∧P (d)∧¬P (d′)],
is predicted to be supertrue. This statement seems to deny that there are bor-
derline cases, and why aren’t we able to say which one (or more) of its instances
is not true.43 This problem is related to Dummett’s (1975) complaint: the use
of complete refinements in supervaluation theory assumes that we can always
make sharp cutoff-points: vagueness exists only because in daily life we are
too lazy to make them. But this assumption seems to be wrong: vagueness
exists, according to Dummett (1975), because we cannot make such sharp
cutoff-points even if we wanted to. In terms of what we discussed above, this
means that the relation ‘>P ’ should be thought of a semi-order, rather than
as a weak order. But if this view is adopted, it is unnatural to claim that [P]
is false.

Indeed, in contrast to the fuzzy logic and supervaluation theory treatments,
the contextualist’ solution of the Sorites paradox is based on the idea that [P]
must be true, because this is a principle in accordance with the way we use lan-
guage. We can think of [P] either as one universal sentence, or as a collection
of individual conditional premises. Normally, this doesn’t make any difference:
the one universal sentence is classically equivalent with the collection of the
individual instances. For many proponents of the contextualist’ solution, how-
ever, this distinction is crucial. I will call [P] read as one universal sentence
its collective reading. If [P] is really seen as a set of individual conditional
premises, I will call it the distributive reading.

In his classic article, Dummett (1975) claimed that inductive premise [P]
(in both of its readings) should be considered to be true, and not just indefinite
or ‘near to truth’, because the corresponding inferences are essential for our
reasoning with natural language concepts. Dummett’s conclusion was that

42As another example: consider the conditionals (c) ‘If Fred is tall, Bert is tall’ and (d)
‘If Fred is tall, Bert is not tall’. If the values of these sentences depend only on the values
of their parts, they should have the same value. But this prediction is wrong: while (c)
is plausibly true, (d) is certainly wrong. In defense of fuzzy logic, one might claim that
conjunction and negation should not be analyzed as standardly assumed by Lakoff (1973),
for instance. In fact, there exist many alternative ways to analyze the connectives in fuzzy
logic. Arguably, however, these alternatives are less natural than the standard one (cf.
Dubois & Prade, 1980).

43Williamson (1994) proposed that we should replace [P] by the weaker statement [Pw]:
For any x, y ∈ I : (2P (x) ∧ x ∼P y) → P (y), where ‘2ϕ’ means that ϕ is known. But, as
Graff (2000) points out, this proposal does not explain why we are so inclined to believe [P].
Shapiro (2006) proposed to weaken [P] in yet another way. Making a difference between a
classical ‘¬’ and a three-valued ‘¬̇’ negation, his principle of tolerance [Pws] says that for
any x, y ∈ I : (P (x) ∧ x ∼P y) → ¬¬̇P (y). I believe we want something stronger than this.
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thus natural language is inconsistent. Kamp (1981) follows Dummett’s claim
with respect to the distributive reading of [P], but not his conclusion. To
get around inconsistency, he (i) makes use of a sophisticated mechanism of
context change and (ii) adopts a non-truth conditional analysis of conditional
sentences, and proposes a weak, but non-standard notion of entailment. The
idea of context change is that once it is explicitly accepted within the discourse
that x has property P , for any vague predicate, the initial contextually given
valuation function V changes into (possibly) new valuation function V ′ such
that indistinguishable, or at least sufficiently similar individuals to x must be
counted as having property P as well according to new valuation function (and
context) V ′. In other words, what Kamp proposes is that each of the inductive
premises is true in case its antecedent is verified, because of context change.

Although they can be seen as improvements on Kamp’s initial proposal,
the approaches by Pinkal (1984), Raffman (1994, 1996) and Soames (1999) are
still very similar, in that they essentially assume that the interpretation of a
vague predicate systematically changes as we proceed along a Sorites series.
Stanley (2003) has argued that such contextual solutions to the Sorites paradox
break down in its ‘elliptical’ version. In the sentence ‘John likes you, and Bill
does too’, the occurrence of ‘you’ in the Verb Phrase ellipsis (henceforth, VP
ellipsis) must be interpreted as referring to the same person picked out by the
overt ‘you’ in the first clause. This fact not only holds for the pronoun ‘you’,
but for all context dependent expressions. According to Stanley (2003) this
means that if we assume that the content of a vague predicate changes as we
proceed along a sorites series, the contextualist’s solution cannot handle the
paradox stated in its ‘elliptical’ version:

(15) If that1 is tall, that2 one is too, and if that2 is, that3 is too, . . . , thatn

is too.

If the meaning of the word ‘tall’ is context dependent, it cannot shift its deno-
tation in any of the different conditionals in (15), which means – according to
Stanley (2003) – that the standard formulation of the contextualist’s solution
can’t solve all versions of the Sorites paradox.

In his argumentation, Stanley (2004) crucially assumes that ‘context-dependence’
means ‘indexical’. But there exists a well-known argument due to Klein (1980)
that the context dependence of the meaning of a word like ‘tall’ should not be
indexical. Counterintuitive predictions result, Klein argued, if we would make
that assumption. Look at the following example (16-a) due to Ludlow (1989):

(16) a. That elephant is large and that flea is too.
b. That elephant is large for an elephant and that flea is large for an

elephant.
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In case the adjective ‘large’ is treated as an indexical, the intuitively natural
sentence (16-a) would be interpreted as something like (16-b), which is absurd.
Klein (1980) and Ludlow (1989) conclude that the meaning of the adjective
should not (in general) remain constant under VP ellipsis. Together with the
assumption that VP ellipsis remains constant for indexical expressions, one
has to conclude that adjectives like ‘tall’ and ‘large’ are not indexical.44 But
if the meaning of the adjective is not purely indexical, what is the property
that remains constant under VP-ellipsis? One proposal would be that the
comparison class with respect to which the adjective is interpreted can be de-
pendent on the subject term involved. Thus, in (16-a) the property could be
λx.L(x, f(x)), where x is an individual variable, while f is a context dependent
function from individuals to comparison classes.45 Confronted with a Sorites
series of objects x1, ..., xn as in example (15), the constant meaning of the pred-
icate is λx.T (x, f(x)), and the context-dependent (partial) function f could be
recursively defined as follows: f(x1) = {x1, xn}, and f(xi+1) = f(xi)∪ {xi+1}.

While most contextualists follow Kamp in validating the distributive read-
ing of [P] by means of context change, they normally seek to improve on (ii)
by making the resulting logic more classical. The latter is normally done by
changing the notions of context and indistinguishability that are involved. One
proposal along these lines is sketched by Veltman and Muskens (described in

44This means that comparison classes are not scope-less (cf. Ludlow, 1989). Soames
(1999) treats gradable adjectives as indexical, nevertheless. But also he might have good
reasons for doing so, because even for indexicals constancy under VP ellipsis is disputable.
Ellis (2004) gave the following example suggesting that this is not the case:

Thirty friends are standing in the middle of a very large field. One of them has
the following idea: ‘Why don’t we each go and stand in any place we choose,
and see where everyone goes. Jill, you go first.’. Jill walks a good distance
away from the group and shouts, ‘I’m going to stand here!’ It’s Tom’s turn
next, and being the tag-along Tom is, he goes straight for Jill and stands right
next to her. Jill exclaims humorously, ‘And I guess Tom is too!’ Sally then
goes and stands on the other side of Jill, who now says And apparently, so is
Sally!’ Then Bill goes and stands behind Jill (‘and so is Bill’), and then Ann
stands in front of Jill (‘and Ann’). Each of the other twenty-nine people walks
towards Jill and stands as close to her as s/he can without touching anyone
else. In each case, Jill amusingly shouts ‘And so is s-and-so!’
In this case, the interpretation of ‘here’, which appears in VP ellipsis, varies.

45This suggestion is close to one proposed by Kennedy (1999). He notes that something
like this is needed to account for the intuition that for ‘Everybody in my family is tall’ to
be true, we compare different members of my family to different sets: we compare men with
other men, women with other women, and children with other children. Peter Bosch (p.c.)
gave also the following example, which makes the same point: ‘Everything in America is
big: The cars, the buildings, and even the Turkeys.’
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Veltman, 1987). They make use of a construction first mentioned by Russell
(1940), and elaborated by Luce (1956), Goodman (1966) and Dummett (1975),
that makes the notion of ‘indistinguishability’ context dependent. According
to this idea, a context can be modeled by a comparison class, and the ele-
ments of such a comparison class can be used by an observer as resources to
distinguish between, for instance, the heigths of individuals. If x is indistin-
guishable from y, which in turn is indistinguishable from z, it might still be
that x is distinguishable from z (i.e., the notion of ‘indististinguishability’ is
not transitive). What is proposed is that if z is available in context, it can be
used to indirectly distinguish x from y: because in contrast to y, x is (directly)
distinguishable from z. Thus, it might be that in one context, x and y are not
distinguishable, while they are so in a larger context. (The notion of ‘indirectly
distinguishability’ is transitive, and gives rise to an equivalence relation.) Now
Veltman & Muskens propose that [P] is true under its distributive reading,
but only with respect to their new notion of indirect indistinguishability.

To use this construction to solve the Sorites paradox, they propose that
in each point in the discourse, a unique comparison class is relevant for the
interpretation of a sentence, and thus predicate, at that point. For each sen-
tence (formula) this unique class is simply the set of individuals mentioned by
this sentence. Now consider any instance of [P] of the form ‘P (x) → P (y)’
with x and y not directly distinguishable. Because only x and y are mentioned
by this sentence, the relevant comparison class is just {x, y}. But with re-
spect to this class, x is not indirectly distinguishable from y either, and thus
the premise is predicted to be true. This holds for all inductive premises, if
treated separately.46 But this doesn’t mean that we can derive a contradic-
tion. In order to do that we would have to conjoin all inductive premises into
one large inductive premise. But by the way the comparison classes relevant
for each sentence are determined, the relevant comparison class of this large
conjoined premise will contain many individuals. In fact, it will contain more
than enough individuals such that at least for some set {x, y} whose elements
are indistinguishable in context {x, y}, its elements will be distinguishable in
this larger context. Thus, what is wrong in the Sorites reasoning, on this ac-
count, are not the individual inductive premises, but the way these premises
have been put together to produce a contradiction.

Van Deemter (1995) highlights that what Veltman & Muskens (1987) ef-
fectively propose is that inductive premise [P] (on both its collective and its
distributive reading) is actually ambiguous between two readings. According
to one reading, we should read the premise as [P1]:

46In this respect, their analysis is very similar to the proposals of Raffman (1994, 1996)
and Graff (2000).
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[P1] For any x, y ∈ I, c ∈ C : (P (x, c)∧x ∼{x,y}
P y∧y ∈ c) → P (y, c).

It is clearly the case that if we formalize the inductive premise as [P1] and
read it collectively, the Sorites paradox will arise. Thus, [P1] should be rejected
on its collective reading. However, we can also read [P] in a different way such
that it doesn’t give rise to a contradiction. In fact, Van Deemter (1995) claims
that [P] seems so natural because we don’t read it as [P1], but rather as [P2]:

[P2] For any x, y ∈ I, c ∈ C : (P (x, c) ∧ x ∼c
P y) → P (y, c).

Notice that the only difference between [P1] and [P2] is that whereas [P1]
assumes that the similarity, or indistinguishability relation only considers x
and y, while for [P2] it might involve (many) more objects. We assume that
x ∼c

P y is true for x, y ∈ c if and only if the following statement is true:
x ∈ P (c) iff y ∈ P (c). Notice that if c is a proper superset of {x, y}, i.e.

c ⊃ {x, y}, it might be that x ∼{x,y}
P y, but x 6∼c

P y. Comparison class c might
have enough individuals available such that we can indirectly distinguish x
from y. Now it is easy to see that this ‘small’ switch from x ∼{x,y}

P y to
x ∼c

P y makes a crucial distinction: in contrast to [P1], [P2] is analytically
true. Assume that the two statements in the antecedent of [P2] are true:
x ∈ P (c) and x ∈ P (c) iff y ∈ P (c). From this we can conclude immediately
that y ∈ P (c), which is what the consequent says. Thus, [P2] is true, because
its antecedent is false for at least one pair of directly indistinguishable objects.
Now, why does this new reading of the inductive premise not give rise to
the Sorites paradox? The reason is obvious: it doesn’t give any information
on top of the first premise that P (x1) and ¬P (xn), so we cannot derive a
contradiction. According to the above reasoning, the Sorites paradox arises
due to an equivocation of comparison classes.

Appealing as this analysis might be, it is perhaps not exactly what we are
looking for. The main worry is that the notion of ‘indistinguishability’ that
Veltman & Muskens and Van Deemter propose is disputable. One might argue
that Dummett’s (1975) and Kamp’s (1981) argument in favor of [P] is crucially
based on the assumption that ‘distinguishability’ should really be directly dis-
tinguishability. It is doubtful whether reading [P2] of [P] really implements
Dummett’s (1975) conviction that the latter is a regulative principle of our
use of language.47 We don’t seem to hold [P] to be true if we are confronted
with a Sorites series, just because its antecedent is false for at least one pair
of objects. For it to be a substantial regulative principle of the way we use

47In a very real sense, the solution Veltman & Muskens propose is based on the same in-
tuition as the solution proposed by supervaluationalists: the Sorites paradox arises, because
we equivocate ‘similarity’ with ‘sameness’. But Dummett’s point was to take the former
notion more seriously.
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our language, it seems that we should read [P] as [P1]. But both Veltman
& Muskens (1987) and Van Deemter (1995) predict that [P1] on its collective
reading is false.48 But if we want to obey this principle, how, then, can we be
saved from contradiction?

Dummett (1975) is mostly known for suggesting a rather pessimistic, or ni-
hilistic, conclusion: real vagueness gives rise to contradiction. But in line with
Wittgenstein’s radically pragmatic solution to the problem posed by vagueness
in his Philosofische Untersuchungen49 he also suggests that in practice contra-
diction is avoided. In normal discourse, we talk about relatively few objects,
all of which are easily discernible from the others. In those circumstances, [P]
will not give rise to inconsistency, but serves its purpose quite well. Only in
exceptional situations i.e., when we are confronted with long sequences of pair-
wise indistinguishable objects — do things go wrong. But in such situations,
we should not be using vague predicates like ‘tall’ but precisely measurable
predicates involving, in this case, millimeters. We will discus how a weak ver-
sion of this reaction can be formalized naturally in terms of comparison classes.
The idea is that it only makes sense to use a predicate P in a context – i.e.
with respect to a comparison class –, if it helps to clearly demarcate the set
of individuals that have property P from those who don’t. Following Gaifman
(1997), we will implement this idea by assuming that any subset of I can only
be an element of the set of pragmatically appropriate comparison classes C just
in case the gap between the last individual(s) that have property P and the
first that do(es) not must be between individuals x and y such that x is clearly
P -er than y.50 This is not the case if the graph of the relation ‘∼P ’ is closed
in c× c.51 Indeed, it is exactly in those cases that the Sorites paradox arises.

How does such a proposal deal with the Sorites paradox? Well, it claims
that in all contexts in which P can be used appropriately, [P1] is true (in
both its distributive and its collective reading). If we assume in addition that
the first element x1 of a Sorites series is the absolute most P -individual, and
the last element xn the absolute least P -individual, it also claims that in all
contexts c in which it is appropriate to use predicate P in combination with
x1 and xn, ‘P (x1, c)’ is true and ‘P (xn, c)’ is false. Thus, in all appropriate

48For a related recent critique of contextualist’s solutions to the Sorites paradox, see Keefe
(2007).

49See in particular section 85-87: ‘A rule stands like a signpost ... The signpost in order in
in normal circumstances it fulfils its purpose. See also Waismannn’s (1968) notion of ‘open
texture’.

50Also Graff (2000) has argued that not all sets of individuals can figure as appropriate
comparison classes. Her reasoning, however, is quite different from ours. She argues, for
instance, that comparison classes need to form a kind.

51Notice that also in discrete cases the relation ‘∼P ’ can be closed in c×c. In just depends
on how ‘∼P ’ is defined.
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contexts, the premises of the Sorites argument are considered to be true. Still,
no contradiction can be derived, because using predicate P when explicitly
confronted with set of objects that form a Sorites series is inappropriate. Thus,
in contrast to the original contextualist approaches of Kamp (1981), Pinkal
(1984), and others, the Sorites paradox is not avoided by assuming that the
meaning (or extension) of the predicate changes as the discourse proceeds.
Rather, the Sorites paradox is avoided by claiming that the use of predicate
P is inappropriate when confronted with a Sorites series of objects.52 As a
result, Stanley’s problem for earlier contextualist’ solutions does not arise.53,54

In our approach, we analyze adjectives like ‘tall’ with respect to a compari-
son class. But neither in this nor the previous sections have we discussed how a
sentence like P (x) should be interpreted with respect to model M and compar-
ison class c in case ‘x’ does not denote an individual in c. One proposal would
be to declare such a sentence neither true nor false. Another proposal would
be to interpret the sentence not w.r.t. c but rather w.r.t. c∪{x}. According to
a yet different proposal, P (x) should be true if there is a y ∈ PM(c) such that
M |= x >P y, and false otherwise. Now consider comparison class c = {x, y, z}
with x ∼P y and y >P z. According to our account, we predict that x and
y are considered to be P -individuals in c, while z is not. But now consider
object v 6∈ c. Suppose that x >P v, but y ∼P v and v ∼P z. Should we count

52Although Graff (2000) seems to adopt a version of the standard contextualist’ approach
to vagueness, her analysis can be thought of as being close to our pragmatic analysis as
well. She makes two claims: (i) there exists cutoff-points, but (ii) if x is significantly P -er
than z, x >!

P z, and y is similar to x, it must be the case that y is significantly P -er than
z as well, y >!

P z. Although the similarity relation Graff (2000) seems to assume behaves
like the similarity relation used in semi-orders, the relation ‘>!

P ’ can obviously not be the
corresponding relation of a semi-order. Instead, the relation ‘>!

P ’ should have the properties
of a weak order. In fact, if we start with a semi-order 〈I,>〉, we can define a weak order
〈I∗, >∗〉 that behaves just like the one Graff (2000) seems to assume. Given that ‘∼’ is
defined in terms of ‘>’ as usual, we can define a new relation ‘≈’ in terms of it: x ≈ y iffdef

∃~z ∈ In : x ∼ z1 ∼ · · · ∼ zn ∼ y. Obviously, ‘≈’ is an equivalence relation. In terms of ‘≈’
we define equivalence classes like [x]≈ as usual, and take I∗ to be the set {[x]≈ : x ∈ I}.
Now we define the order relation >∗ between the elements of I∗ as follows: X >∗ Y iffdef

X 6= ∅ ∧ Y 6= ∅ ∧ ∀x ∈ X : ∀y ∈ Y : x > y. One can show that ‘>∗’ indeed is a weak
order. Now, why is (our reformulation of) Graff’s analysis close to our pragmatic analysis?
The reason is that in order to assume that the first element of a Sorites series has property
P but the last one has not, she has to assume (if our reformulation of her ideas is faithful)
that I is not closed under ‘∼P ’, and thus that the series allows for a cutoff-point.

53On this proposal, Stanley’s elliptical conjunction is claimed to be inappropriate. Or
better, if we assume that [P] holds and that the property that remains constant under VP-
ellipsis is λx.T (x, f(x)), where f was defined as f(x1) = {x1, xn} and f(xi+1) = f(xi) ∪
{xi+1}, it is predicted that the sentence at the one but last step in the Sorites series is
inappropriate.

54It turns out to be possible to characterize semi-orders in terms of the way relative
adjectives behave with respect to appropriate comparison classes (see Van Rooij, 2009).
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‘P (v)’ true with respect to M and c, or not? According to the second proposal
mentioned above, we should not. But in that case, M, c |= P (y) ∧ ¬P (v), al-
though y ∼P v. Notice that this is consistent with our approach, if we assume
that pragmatic appropriateness conditions are independent of semantic truth
conditions:55 although ‘P (y) ∧ ¬P (v)’ is true, it is not appropriate to assert
it.

We have seen above that each context structure M = 〈I, C, V 〉 gives rise to
a relation of ‘indistinguishability’. Now I would like to argue that this latter
notion should be considered more generally: x ∼P y iff there is no relevant
difference between x and y concerning property P .56 But, obviously, whether
the P -distinction between x and y is relevant or not depends on context: on
the goals of the participants of the discourse. Graff (2000) even suggests that
the existence of vagueness in natural language is partly a consequence of the
vagueness of our purposes. To argue in favor of this view, she points out that
it depends on Smith’s purpose whether we are inclined to accept the following
sorites sentence: ‘For any n, if n grains of coffee are enough for Smith’s pur-
pose, then so are n− 1.’ Normally we are, but if very fine distinctions may tip
the balance, things differ.57 This suggests that in case fine distinctions matter,
fewer individuals should be considered to stand in the tolerance relation ‘∼P ’,
while the relation ‘>P ’ should contain more pairs of individuals. We will see in
section 6 that what Graff (2000) has in mind is closely related to many other
phenomena.

5.3 Boundaryless concepts and higher order vagueness

Vagueness is traditionally defined by the possession of borderline cases. More
recently, it has been argued that this is not sufficient: a predicate might have
borderline cases without being vague. What characterizes predicates as being
vague, according to this alternative view, is the fact that these predicates have
no clear borderline cases. A predicate is vague, if it lacks sharp boundaries.
One way to model such boundaryless concepts is by making use of semi-orders.
Just assume that the relation ‘∼P ’ is closed under I × I. In such a case, the
topmost P individuals would semantically (definitely) fall under the extension
of P , while the bottommost P -individuals would semantically (definitely) not

55This is generally assumed in two-dimensional theories of presuppositions and conversa-
tional implicatures.

56Luce’s (1956) intention was not to just model the notion of ‘indistinguishability’, but
rather that of a more general notion of ‘indifference’. Also Pinkal (1995) and others have
argued that tolerance should be based on ‘indifference’ rather than ‘indistinguishability’.

57See Pinkal (1984, 1995) for a similar argument.
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fall under the extension of P .58 But whenever we want to look for the dividing
line between the P - and the ¬P individuals, we can’t find it: For any two
consecutive individuals x and y, if we focus on only those two individuals, we
won’t find a significantly enough difference between them to draw here the
dividing line. But this is not only true for the dividing line between P and ¬P
individuals, but also for dividing lines between, for instance, the definitely P
individuals and the not definitely P individuals, etc.

The view that vague concepts are boundaryless is closely related with the
view that vague expressions give rise to higher-order vagueness.59 According
to this view, there is not only no clear (1st-order) borderline between the
(clearly) P versus the (clearly) non P -individuals, there is also no clear (2nd-
order) borderline between the clearly P versus the 1st-order borderline cases
of P individuals, etc. This phenomenon is known as higher-order vagueness.
Williamson (1994) and others have argued that one can account for higher-
order vagueness within a modal logic, if one takes the accessibility relation
in terms of which one defines the meaning of ‘definitely’ or ‘clearly’ to be
reflexive and symmetric, but not transitive. Making use of semi-orders, it is
quite easy to do this. Let us assume that W is the set of worlds, and that
‘>P ’ is an ordering between the elements of W such that 〈W, >P 〉 is a semi-
order. One can think of w >P v to be true iff the cutoff-point for being a
P -individual in w is (significantly) higher than that cutoff-point in v. Now
define an accessibility relation R between worlds as follows: v is accessible
from w, i.e. wRv, iff neither w >P v nor v >P w. From section 5.1 we know
that relation R must be reflexive, and symmetric, but need not be transitive.
Intuitively, we can say that wRv iff the cutoff-points according to which one
has property P in w and v differ in at most a fixed margin ε. Let us now add
a definitely operator ‘4’ to the language. We say that ‘4ϕ’ is true iff ‘ϕ’ is
true on all R-accessible worlds. Now we say that x is a 1st-order borderline
case of P -ness iff ‘¬4 P (x) ∧ ¬4 ¬P (x)’ is true. Similarly, we say that x is
a 2nd-order borderline case of P -ness if ‘¬44P (x) ∧ ¬4 ¬4 P (x)’ is true,
etcetera.

Fine (1975) and Keefe (2000) propose a rather different account of higher-
order vagueness. They suggest that to account for higher-order vagueness we
have to realize that what counts as an admissible (total) valuation is itself
vague. I just want to suggest a very simple – and no doubt simplistic – way

58I have argued above that in such a case it doesn’t make sense to use predicate P in
context I. This doesn’t rule out, of course, that P can be used appropriately with respect to
comparison classes smaller than I.

59Whether the assuming that predicate P give rise to (unlimited) higher order vagueness
fully captures the intuition that the concept denoted by P is boundaryless is controversial,
however.
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to implement their basic idea.
Fine (1975) and Keefe (2000) make use of both partial and total valuations

functions. Recall that both partial and total valuation functions are inter-
pretation functions of a language with respect to a domain of quantification.
Suppose that a language L contains individual constants of all and only all
individuals of domain I. In contrast to the partial valuation function, the
total valuation functions do not allow for gaps – i.e., individuals in I that nei-
ther have property P nor property ¬P . Each individual that can be referred
to by an individual constant, or quantified over, has property P or has not.
Thus, according to each total valuation, there is a clear borderline between the
individuals that have and the individuals that do not have property P . But
now suppose that we (slightly) adjust the model by extending its domain, and
that we adjust the language accordingly by introducing some new individual
constants that can refer to those individuals. Now it will be the case that a
valuation function that was total with respect to L and I is only partial with
respect to the new language L′ and new domain I ′. Of course, these new partial
functions can in turn be extended by new total functions, or valuations. But
now the same game can be played again, and perhaps so indefinitely. Perhaps
the most natural way to extend a domain, is to think of (some of) its elements
as (something like) measures, or degrees. According to one model, we measure
the height of individuals up to a decimeter precise, while at another up to a
centimeter, or a millimeter precise. You will object that in this way we are not
really talking about vagueness anymore, but about levels of granularity. But,
then, perhaps vagueness is crucially related with granularity.

6 Vagueness and granularity

In a series of papers (e.g. Hobbs, 1985) Hobbs argues that both in reasoning
and in natural language use it is crucial that we conceptualize and describe
the world at different levels of granularity. A road, for instance, can be viewed
as a line, a surface, or a volume. The level of granularity that we make use
of depends on what is relevant. When we are planning a trip, we view the
road as a line. When we are driving on it, we view it as a surface, and when
we hit a pothole, it becomes a volume to us. In our use of natural language
we even employ this fact by being able to describe the same phenomenon at
different levels of granularity within the same discourse. Thus, we sometimes
explicitly shift perspective, i.e., shift the level of granularity to describe the
same situation. This is perhaps most obviously the case when we talk about
time and space. Consider examples (17) and (18):

(17) It is two o’clock. In fact, it is two minutes after two.
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(18) The point of this pencil is actually an irregular surface with several
peaks. (Asher and Vieu, 1995).

In (17) we shift to describing a time-point in a more specific way, while in (18)
we shift from a description of a pencil point as a point to its being a surface.

6.1 Absolute terms revisited

At the end of section 4.3 we have suggested that with the positive use of
absolute adjectives like ‘full’, ‘flat’, and ‘straight’, the only relevant comparison
class can be the set of all objects, i.e. I. In this way, we can also account for
the fact that in contrast to relative adjectives like ‘tall’, absolute adjectives
don’t give rise to the Sorites paradox with distinguishable objects, because the
second premise is quite naturally judged to be false (cf. Kennedy, 2007).

(19) a. P1. A theater in which every seat is occupied is full.
b. P2. Any theater with one fewer occupied seat than a full theater

is full.
c. C. Therefore, any theater in which half of (none of, etc.) the seats

are occupied is full.

It also accounts for Kennedy’s (2007) observation that just like measure phrases,
but in contrast to relative adjectives, absolute adjectives allow for natural pre-
cisifications.

(20) a. We need a 10 meter long rod for the antenna, but this one is 1
millimeter short of 10 meters, so unfortunately it won’t work.

b. The rod for the antenna needs to be straight, but this one has a
1 millimeter bend in the middle, so unfortunately it won’t work.

c. ??We need a long rod for the antenna, but since long means ‘greater
than 10 meters’ and this one is 1 millimeter short of 10 meters,
unfortunately it won’t work.

An unfortunate consequence of this analysis, or so it seems, is that we have
to conclude that absolute adjectives can hardly ever be used. This, however,
seems to contradict actual practice. Moreover, the analysis cannot explain
why absolute adjectives like ‘flat’ and ‘full’ allow for valuable interpretation
and give rise to the Sorites paradox: just how bumpless should a table be to
be called ‘flat’?, and how much liquid should a bottle contain before it can
be called ‘full’? Thus, the puzzle then is to explain our daily use of absolute
terms, and why they give rise to vagueness. We will take over Lewis’s (1979)
suggestion here:
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Peter Unger has argued that hardly anything is flat. Take some-
thing you claim is flat; he will find something else and you get to
agree that it is even flatter. You think the pavement is flat – but
how can you deny that your desk is flatter? But “flat” is an ab-
solute term: it is inconsistent to say that something is flatter than
something that is flat. Having agreed that your desk is flatter than
the pavement, you must concede that the pavement is not flat after
all. Perhaps you now claim that your desk is flat; but doubtless
Unger think of something that you will agree is even flatter than
your desk. And so it goes.

[...] The right response to Unger, I suggest, is that he is changing
the score on you. When he says that the desk is flatter than the
pavement, what he says is acceptable only under raised standards
of precision.

Lewis suggests that although Holland has hills, a sentence like ‘Holland is
flat’ can still be used truly and appropriately in daily conversations, because
whether the sentence can be used appropriately or not might depend on a
contextually determined standard of precision.

6.2 Standards of precision

Until now we have assumed that the comparison-class account always works
with a fixed model, or context structure M = 〈I, C, V 〉. We have seen that on
the basis of such a context structure we can define an ordering relation, like
‘P -er than’ or ‘>P ’, between individuals, and in terms of the relation ‘being
as P as’ or ‘∼P ’. In a different context structure M ′, however, the relations
‘>P ’ and ‘∼P ’ might come out very differently. In particular, it might be that
according to a different context structure, the resulting comparative relation
‘>P ’ is more fine-grained.60

60In section 4 we have assumed that although statements involving predicates like ‘tall’
occurring positively are vague, comparatives are not. The vagueness of ‘tall’ was accounted
for by interpreting sentences where the predicate is used positively with respect to a contex-
tually given comparison class. Comparatives were not vague, because for their interpretation
we existentially quantified over comparison classes. It is quite common among linguists to
assume that comparatives are not vague. Philosophers like Kamp (1975), Williamson (1994)
and Keefe (2000), however, have claimed otherwise. Kamp (1975) noted already that com-
paratives associated with more-dimensional predicates – for example ‘cleverer than’ – are
typically vague. They have borderline cases: pairs of people about whom there is no fact of
the matter about who is cleverer, or whether they are equally clever. This is particularly
common when comparing people who are clever in different ways. Keefe (2000), argues
that there can also be borderline cases of one-dimensional comparatives. She argues that
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Let us now look at a set of context structures M. Let us say that in
all context structures M, M ′ of M, the set of individuals, I, and the set of
contexts, C, is the same: IM = IM ′ and CM = CM ′ . This means that M and
M ′ of M only differ with respect to their valuation functions, VM 6= VM ′ . Now
we can define a refinement relation between models M and M ′ as follows: we
say that model M ′ is a refinement of model M with respect to predicate P
only if ∃x, y ∈ I, M |= x ∼P y, but M ′ 6|= x ∼P y. So, M ′ is more fine-grained
than M with respect to predicate P iff there is at least one pair of individuals
equally P in M that is not equally P in M ′. There is a natural constraint
on the ordering between models: if Mary is taller than Sue, but shorter than
John in fine-grained model M ′, it cannot be the case that John and Sue are
counted as equally tall in the more coarse-grained model M , but still taller
than Mary. Formally: M ′ is a refinement of M w.r.t. P only if ∀x, y, z ∈ I :
if M ′ |= x ≥P y ∧ y ≥P z and M |= x ∼P z, then M |= x ∼P y ∧ y ∼P z. This
follows if we define refinements w.r.t. predicate P as follows: M ′ is a refinement
of M with respect to P , M ≤P M ′, iff VM(>P ) ⊆ VM ′(>P ). Notice that if
VM(>P ) ⊆ VM ′(>P ), it follows that VM(∼P ) ⊇ VM ′(∼P ), which is what we
desired. Moreover, it follows that in more coarse-grained models, the relation
‘being at least as P ’ will be larger: M ≤P M ′ only if VM(≥P ) ⊇ VM ′(≥P ).

Consider now the following two sentences.

(21) a. John is 2 meters tall.
b. John is exactly 2 meters tall.

Both sentences are true if and only if the (maximal) height of John is the height
denoted by the phrase ‘2 meters tall’. Intuitively, however, (21-a) would count
in more contexts as being true, or appropriate, than (21-b), if John is a little
bit more than 2.00 meters tall, e.g. if he is 2.02 meters tall. The question is
how we should account for this latter difference. Part of the answer to this
question involves the issue whether even (21-a) can be true in case John is 2.02
meters tall, or whether in such a case, (21-a) is (strictly speaking) false, but
still appropriate, because close enough to the truth.61

although there is a single dimension of height, people cannot always be exactly placed on
it and assigned an exact height. For what exactly should count as the top of one’s head?
Consequently there may also be borderline cases of taller than. Even more interesting from
our point of view is the fact that taller than can also be vague due to indeterminacy over
exactly what should count as a point (or an equivalence class) in the tallness ordering: in-
dividuals whose height is 2 micro-millimeter apart normally count as equally tall, although
this would not be the case in contexts in which every micro-millimeter is important.

61In a recent paper, Sauerland & Penka (2007) studied the difference between modifiers
like ‘exactly’ and ‘definitely’. Both could be used to modify measure phrases, but they
do so in different ways: ‘exactly’ says something about how precise the measure phrase
should be interpreted, while ‘definitely’ measures the speaker’s epistemic certainty. This is
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Lasersohn (1999) argues that in case John is 2.02 meters tall, (21-a) is
false. In fact, (21-a) and (21-b) are claimed to be semantically equivalent.
Still, sentence (21-a) can be used felicitously, because minor kinds of falsehood
are pragmatically permissible. The distinction between 2.00 meters and 2.02
meters may not be relevant to the purposes of our discourse, so we can ignore it,
counting the sentence as close enough to the truth for its context, even though
not really true. But if (21-a) is true iff John is 2.00 meters tall, how should
we then account for the above mentioned contrast between (21-a) and (21-b)?
Lasersohn proposes that the function of ‘exactly’ is to put higher demands on
the situations under which a sentence is pragmatically felicitous, i.e., under
which circumstances (21-a) – the sentence without the word ‘exactly’ – counts
as close enough to the truth.

To formally account for this idea, Lasersohn associates with each expression
not only its denotation, but also a context dependent set of items understood
to differ from the denotation only in ways which are pragmatically ignorable in
that context. This set is called the pragmatic halo of the item. The pragmatic
halo of a complex expression is determined compositionally from the pragmatic
halos of its parts62 Assuming that we should analyze pragmatic vagueness in
terms of pragmatic halos, (if α is an element of the pragmatic halo of expression
A of type 〈b, a〉, and β an element of the pragmatic halo of expression B of
type b, then α(β) is an element of the pragmatic halo of expression AB of type
a). Obviously, the actual denotation, or meaning, of an expression is also an
element of the expression’s pragmatic halo, and for some types of expressions
(e.g. logical words, presumably) this is the only element of the set. The result
of this is that a sentence might be ‘true’ in its halo, although the sentence is
actually (in its denotation) false. Now Lasersohn says that ϕ is close enough
to the truth in a context iff one of the elements of ϕ’s pragmatic halo in this
context is true. To account for the distinction between (21-a) and (21-b),
Lasersohn (1999) claims that the function of ‘exactly’ is to contract the halo.
The result of this contraction is that if the proposition expressed by ‘John is
2.02 meters tall’ is an element of the pragmatic halo of (21-a), this proposition
need no longer be an element of the pragmatic halo of (21-b). As a result,
although (21-a) will be false, but true enough in the context, (21-b) is neither
true, nor true enough in that context.

Lasersohn (1999) assumes that (21-a) is true iff John is exactly 2.00 me-
ters tall. He assumes that the phrase ‘2 meters’ has a context-independent
semantic interpretation, such that semantically this is never compatible with

corroborated by the fact that the adjective ‘tall’ can be modified by ‘definitely’ but not by
‘exactly’.

62It is questionable whether compositionality should be assumed here, and it contrasts
standard Gricean treatments of other pragmatic phenomena.
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2.02 meters. But what is this context-independent semantic interpretation of
‘2 meters’? Presumably, or at least the only one that seems consistent with
his general methodology, Lasersohn’s answer would be that this interpretation
can never be compatible with 1 millimeter, or even 1 micro-millimeter, higher
than 2.00 meters. Lasersohn assumes a context independent fixed measure of
height, which is such that it is practically, or even physically, impossible to
refine it. But this means that measure phrases like ‘2 meters’ denote (phys-
ically) non-extensive points, which has the result that a sentence like (21-a)
is (almost) necessarily false (on an exactly-reading of the measure phrase).
On this line of reasoning, the actual denotation of an expression in the end
doesn’t really count, and the only thing that matters is the pragmatic halo.
This conclusion suggests that the assumptions Lasersohn makes are question-
able. But it gives rise to an empirical problem as well: Suppose that up to
the minimal point we can measure, John and Mary are equally tall. There is
nothing incomprehensible about my saying: ‘but had we had a better measure-
ment instrument, we would have found out after all that John is taller than
Mary’. Because Lasersohn predicts it be incomprehensible, he seems to make
an empirically incorrect prediction.

Lasersohn crucially assumes that measure phrases are interpreted with re-
spect to a fixed underlying structure of heights. The obvious alternative – an
alternative assumed by Lewis (1979) and I guess by most semanticists –, is to
assume that the underlying height-structure is not fixed in advance, but deter-
mined by context. One context can require a more fine-grained measurement
than another, and what counts as a particular height in one context, counts
as an interval of heights in a context that requires more fine-grained measure-
ments. On this alternative view, context determines the underlying measure
structure, or level of fine-grainedness, with respect to which sentences should
be interpreted, and there is no need for pragmatic halos. Pragmatics is not
independent of semantics, but rather helps to determine whether a sentence
is true or false. But this means that (21-a) can be true in one context where
John is 2.02 meters, but false at another. Now, what is the function of the
word ‘exactly’ in (21-b)? Like Lasersohn (1999), we would like to claim that
its function is most of all pragmatic. But where for Lasersohn its function is
to contract the pragmatic halo, we claim that it is an indication of the fine-
grainedness of the underlying structure. If (21-a) is true with respect to an
underlying structure where 2.02 meters is not distinguished from 2.00 meters
tall, the use of ‘exactly’ in (21-b) may indicate that the speaker has a richer
measurement structure in mind.

We have assumed that in a more coarse grained model, measure phrases
denote intervals rather than points of a more fine-grained model. But how do
the intervals denoted by different measurement phrases relate to each other?
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Until now we have assumed the simplest view – perhaps suggested by the
phrase ‘granularity’. Also in the coarse-grained model, a measure phrase de-
notes an equivalence class, but such an equivalence class now contains more
elements of I than in a fine-grained model. Thus, just like the fine-grained
model, also the coarse-grained model is a weak order. This picture might be
somewhat simplistic, though. In section 2 we saw already that in physics one
assumes that measure phrases allow for a margin of error. But then one can
assume that these phrases denote intervals, and this almost immediately means
that the denotations of two different measure phrases might overlap, and that
there are areas where it is unclear which of two measure phrases can be truly
attributed to the points in this area, if not both. Assuming that all measure
phrases allow for the same margin of error, the resulting structure will be a
semi-order. If different measure phrases might allow for different margins of
error, the resulting structure will be an interval order. A structure 〈I, R〉, with
R a binary relation on I, is an interval order just in case R is irreflexive (IR)
and satisfies the interval-order (IO) condition.

Definition 3.
An interval order is a structure 〈I, R〉, with R a binary relation on I that
satisfies the following conditions:
(IR) ∀x : ¬R(x, x).
(IO) ∀x, y, v, w : (R(x, y) ∧R(v, w)) → (R(x, w) ∨R(v, y)).

In section 6.2 we have defined the refinement relation between models with
respect to relation R as follows: M ′ is an R-refinement of M iff VM(R) ⊂
VM ′(R). We have seen that this works in case ‘R’ denotes a weak order in
both models M and M ′. However, it is the appropriate definition as well in
case it denotes, for instance, an interval order in both models, or if it denotes
an interval order in model M and a semi-order, or a weak order in model
M ′. It is well-known that we can think of a linear order as a refinement of a
weak order: every linear order is a weak order, but not every weak order is
a linear order. But in the same way, interval orders are refinements of strict
partial orders, semi-orders are refinements of interval orders, and weak orders
are refinements of semi-orders.

Interval orders are relevant for the analysis of vagueness. In most dis-
cussions on vagueness where an indifference, or margin of error principle is
involved, this indifference, or margin of error, is standardly taken to be the
same for all expressions.63 Jerry Hobbs and Manfred Krifka have recently ar-
gued that we should give up this assumption. Hobbs (2000) observes that if
there are 920 people at the meeting, the following sentence is intuitively false,

63But see Williamson (1994) for some discussion.
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if X = 980, but possibly true, in case X = 1000:

(22) There are about X people at the meeting.

This is surprising, because ‘1000’ is higher than ‘980’, and the latter instanti-
ation of X seems thus closer to the truth. To account for these intuitions, also
Hobbs suggests that different objects in the same model need not necessarily
have the same grain-size. This is exactly what we see in interval orders. Krifka
(2007) has argued that something very similar happens even without the use
of an approximator like ‘about’.

It is well-known that (21-a) allows for much more variation than (23):

(21-a) John is 2 meters tall.

(23) John is 2.02 meters tall.

Whereas (21-a) can be true (or appropriate) in case John is exactly 2.03 meters
tall, (23) cannot. Krifka (2007) argues that because ‘2.02 meters’ is a more
complex expression than ‘2 meters’, it has a more complex meaning (derived by
Horn’s division of pragmatic labor). One way to account for this observation
is to assume that the complexity of the meaning involves the fine-grainedness
of the underlying structure of measurement. Although the denotations of ‘2
meters’ and ‘2.02 meters’ each denotes a point in the measure system used for
the interpretation of the sentence (21-a) and (23), respectively, what denotes
a point in the measurement system underlying (21-a) denotes an interval (i.e.,
a set of more fine-grained points) in the measuring system underlying (23).
That’s why, according to this analysis, the expression ‘2 meters’ is more vague
than the expression ‘2.02 meters’. On this analysis, the underlying ordering
relation is always a weak order. But there is another way to account for the
same intuition. According to this alternative analysis, both ‘2 meters’ and
‘2.02 meters’ have a denotation in the same (coarser-‘grained’) model M ′ such
that (21-a) is true in case John is exactly 2.03 meters tall, while (23) is not.
This can be accounted for by assuming that numbers denote intervals, but that
some intervals might be proper parts of others, i.e., that we look at interval
orders. In our case, what is denoted by ‘2.02 meters’ in coarse-‘grained’ model
M ′ is an interval that is a proper part of the interval denoted by the phrase ‘2
meters’ in model M ′.

6.3 Granularity and relevance

Our way to relate different models in terms of a coarsening relation made
use of a standard technique. We assume an ordering relation and define an
equivalence relation in terms of it. In a coarser-grained model we just let an
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equivalence class of individuals of the fine-grained model be represented by a
single individual. We did this (in sections 4.5 and 6.2) by means of the ordering
taller than. Another classical case (e.g. Kamp, 1979) is to define intervals as
equivalence classes of simultaneous events defined in terms of the temporal
inclusion relation. To define a coarsening relation between models, however,
we don’t need to start with such an ordering.

Hobbs (1985) argues that to represent or conceptualize the world at a
coarser-grained level, we can just restrict ourselves by looking only at the
relevant predicates of our original language. Consider a model M = 〈I, V 〉 for
the first-order language L, and take L′ to be a sublanguage of L containing
only its ‘relevant’ predicates. In terms of the monadic predicates of L′ we can
now define an equivalence relation ‘∼L′ ’ with respect to language L′ : a ∼L′ b iff
a, b ∈ IM and for all monadic predicates P of L′ : M |= P (a) ⇔ M |= P (b). In
terms of this equivalence relation, Hobbs (1985) proposed to construct a coarse-
grained model M ′ as follows: (i) the domain IM ′ is just the set of equivalence
classes IM ′ = {{y ∈ I : y ∼L′ x} : x ∈ IM}, and (ii) the valuation function is
such that for all monadic predicates P ∈ L′, M ′ |= P ([a]) iff M |= P (a), where
[a] denotes the equivalence class containing a ∈ IM .64 Except for examples like
(17) and (18), Hobbs (1985) suggests that in this way we can also account for
some examples discussed by Nunberg (1985).

Nunberg (1985) has argued that an account of definite reference and the use
of the phrase ‘the same’ is greatly simplified if we assume that people construct
models of what is going on at different levels of granularity. An intuitive
account of definite reference says that ‘my P’ refers to the unique (relevant)
individual with property P owned by me. An example like ‘My leg hurts’
seems an obvious counterexample, however, because people have (usually) two
legs. Nunberg (1985) suggests that the distinction between the two legs is
not pragmatically relevant and can be represented by a single object in a more
coarse-grained model, and thus satisfying the uniqueness requirement after all.
Perhaps slightly less controversial is his proposed use of levels of granularity
to give a semantics for ‘the same’. It is obvious that we can use this phrase to
denote not only token-identity, but type-identity as well. Thus, we can say

(24) I own a Ford Falcon. The same car is owned by Enzo.

meaning that Enzo and I owned the same type of car, not the same token.
Nunberg (1985) and Hobbs (1985) suggest to account for type-identity as iden-
tity at a more coarse-grained level of description. In this way, they propose,
we can account for the fact that we cannot say ‘A Ford Falcon was heading

64Van Lambalgen (2001) noted that this construction needs to be generalized, because it
does not generalize to predicates of higher arity.
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south on U.S. 101, went out of control, and crashed into the same car’ to mean
that it hit another Ford Falcon. The reason is that type-level identity is just
indistinguishability, but only restricted to distinguishable predicates that are
relevant.65

Hobbs’ suggestion is very appealing. Unfortunately, Lasersohn (2000)
showed that the truth definition at the coarse-grained level proposed by Hobbs
(1985) does not capture the intuitive motivation. It is clear that discourse (24)
should be interpreted with respect to a coarse-grained model. According to
Hobbs’ construction, M ′ ≤ M just in case if for every monadic predicate
P ∈ L′, if P ([a]) is true in coarse-grained model M ′, it has to be the case that
P (b) is true in fine-grained model M , for every b ∈ [a]. However, it is clear
that in (24) the predicates ‘Owned by me’ and ‘Owned by Enzo’ are relevant,
and thus part of L′. Because in M ′ it is the same car that has both of these
properties, Hobbs’ construction predicts that every token of this car should
have both properties in M as well. This, however, is obviously not the case.
Lasersohn (2000) concludes that we should thus not account for the type-token
distinction in terms of levels of granularity. Lasersohn might well be right with
this conclusion, but this doesn’t mean that Hobbs’ (1985) project could not be
saved by modifying Hobbs’ ordering relation between models of different grain.
Instead of making use of universal quantification as proposed by Hobbs (1985),
we could make use of existential quantification. In that case we should not de-
fine the domain of the coarse-grained model M ′ in terms of equivalence classes
of M as suggested by Hobbs, but rather take it to be a primitive domain.
Moreover, we assume a surjective function f from the domain of M , IM , to
the domain of coarser-grained model M ′, IM ′ ,66,67 that preserves (but not nec-
essarily anti-preserves) each relevant predicate P : if x ∈ PM , then f(x) ∈ PM ′ ,
but if x 6∈ PM , it need not be that f(x) 6∈ PM ′ .68 The other direction, however,
follows by contraposition: if x 6∈ PM ′ , then there is no y ∈ f−1(x) such that
y ∈ PM . In this case it is not problematic that the predicates ‘Owned by me’
and ‘Owned by Enzo’ are relevant, and thus part of L′. It is just important
that their negatives like ‘Not owned by me’ and ‘Not owned by Enzo’ are not
part of L′. To capture the idea of simplification, or coarsening, it is natural
to assume that f is not injective: it might be that f(x) = f(y), although
x 6= y. Of course, we want refinements to preserve all the predicates and

65According to Tim Williamson (p.c.), a sentence like ‘Enzo owns two of the same car’ is
ok. This would be problematic for the Nunberg/Hobbs proposal.

66A function f from D to D′ is surjective iff the range of f is D′.
67If one desires, one can think of this function as a counterpart function used in quantified

modal logic.
68Technically, f is just a homomorphism from M to M ′. In general, homomorphisms

don’t preserve negative sentences.
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relations of the restricted language L′, but this preservation is now stated as
follows: M ′ ≤L′ M just in case if x ∈ PM ′ , then ∃y ∈ f−1(x) ∈ PM , for each
P ∈ L′.69 To a certain extent, the refinement relation used here is similar to
the refinement relation used in supervaluation theory. But these refinement
relations are obviously not the same: in contrast to what we assumed now, in
supervaluation theory one assumes a one-to-one relation between the objects
that exist in the different models.70

The question how to relate the truth conditions of the same sentence with
respect to models of different levels of granularity is a deep one, and I am
not aware of any general satisfying answer. The question is closely connected
with the issue in tense logic how to relate truth conditions of sentences with
respect to intervals or events, to that of models that take instants to be basic.
For ‘John slept’ to be true in interval i, is it enough that he slept at some
instant in i, or should he have been sleeping in most, or even all instants in i?
Although the first proposal seems very weak, Kamp (1979) convincingly argued
that the latter proposal is much too strong for a sentence like ‘John wrote an
article’. Kamp concludes that we should not reduce judgments about intervals
to judgments about instants. More in general, according to a tradition going
back to Russell (1914) and Wiener (1914), and taken up by Kamp (1979), van
Benthem (1984), and Thomason (1984), we should rather try to reduce our talk
about instants to talk about intervals and events: absolute time does not exists
independently of our experiences and is at best a construction our of them.71

Notice how much this view differs not only from Lasersohn’s (1999) position,
but also from all those analyses that propose to account for the meaning of
‘tall’ in terms of exact cutoff-points.

7 Conclusion

In this paper I focussed my discussion on relative adjectives. The meaning of
a relative adjective is context dependent. I accounted for this context depen-
dence by assuming that such adjectives should be interpreted with respect to

69In general, the truth conditions of sentences in course-grained model M ′ are defined in
terms of their truth conditions in fine-grained model M as follows:
M ′, g |= P (x) iff ∃d ∈ f−1([[x]]M

′,g) : M, g[x/d] |= P (x)
M ′, g |= ¬ϕ iff M ′, g 6|= ϕ
M ′, g |= ϕ ∧ ψ iff M ′, g |= ϕ and M ′, g |= ψ
M ′, g |= ∀xϕ iff for all d ∈ IM ′ : M ′, g[x/d] |= ϕ.
Notice that M ′, g |= ¬P (x) iff ∀d ∈ f−1([[x]]M

′,g) : M, g[x/d] 6|= P (x).
70Instead, the system described here is much closer to the ‘inverse system’ used by Van

der Does and Van Lambalgen (2000) to account for the logic of vision.
71In fact, this tradition goes back all the way to Leibniz. Technically, the actual world,

the ding an sich, is seen as the inverse limit.
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so-called comparison classes. In terms of the interpretation of adjectives with
respect to comparison classes, I characterized the difference between relative
and absolute adjectives in terms a difference of constraints these two types of
adjectives have to fulfill. More importantly, I have argued that the notion of
‘tolerance’ can be accounted in terms of Luce’s semi-orders. Semi-orders, in
turn, can be characterized in terms of constraints on comparison classes as
well. I have argued that the level of tolerance a predicate allows for depends
on the context of use.72 If the stakes are higher, a predicate allows for less
tolerance. The level of tolerance, in turn, determines how precise one can be.
In this way, the discussion in section 6 is linked closely to the discussion in
section 5.

In this paper I focussed on the context dependence and vagueness of ad-
jectives, and tried not to make use of numbers, like degrees, or probabilities.
I suggested that many other vague expressions can be analyzed by make use
of the same tools, but I don’t think it can do all of the work. The most nat-
ural way to account for vague quantifiers like ‘many’ and ‘few’ (cf. Fernando
& Kamp, 1996), and the use of adjectives in exclamatives like ‘How tall you
are!’ (Graff, 2000), for instance, seems to be by making use of probabilities.
Whether we are forced to take probabilities into account to account for such
cases remains to be seen.
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