
Vagueness, Signaling & Bounded Rationality
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Tübingen, Germany

2 Universiteit van Amsterdam & ILLC
Amsterdam, The Netherlands

Abstract. Vagueness is a pervasive feature of natural language, but indeed one
that is troubling for leading theories in semantics and language evolution. We
focus here on the latter, addressing the challenge of how to account for the emer-
gence of vague meanings in signaling game models of language evolution.

Keywords: vagueness, signaling games, language evolution, bounded rational-
ity, fictitious play, categorization, quantal response equilibrium

1 Introduction

Vagueness is a pervasive feature of natural language that challenges linguistic theory
in manifold ways. For example, according to truth conditional semantics —the most
successful and productive linguistic theory of meaning we know so far— the meaning
of a declarative sentence is identified with the conditions, or circumstances under which
the sentence is true. The phenomenon of vagueness challenges this view. Even if we
know that John’s height is 1.80 meters, it is still not clear whether we should count
‘John is tall’ as being true or as being false.

A traditional way of thinking about vagueness is in terms of the existence of bor-
derline cases. John is a borderline case of a tall man, if the sentence ‘John is a tall man’
is neither (clearly) true nor (clearly) false. The three-valued logic account of vague-
ness, as well as supervaluation theories without something like Kit Fine’s [4] treatment
of higher-order vagueness, are based on exactly this idea. Consequently, these theories
assume that predicates like ‘tall’ and ‘bald’ do give rise to a three-fold partition of ob-
jects: the positive ones, the negative ones, and the borderline cases. But it is generally
assumed that the existence of borderline cases is inadequate to characterize vagueness:
although by assuming a three-fold instead of a two-fold distinction one rightly rejects
the existence of a clear border between the positive and the negative cases, one still
assumes the existence of an equally unnatural border between, for instance, the posi-
tive and the borderline cases. What seems to characterize vagueness, instead, is the fact
that the denotation of vague terms lacks sharp boundaries. In the words of Sainsbury
[27], they are ‘boundaryless’: there is no sharp boundary that marks the things which
fall under it from the things that do not, and no sharp boundary which marks the things
which do definitely fall under it from those which do not definitely, and so on. Instead,
all these boundaries are blurred.

??Author names appear in alphabetical order.
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Much of what is said in language is vague. Members of almost any lexical category
can be vague. This raises the question why vagueness is so pervasive in natural lan-
guages. Interestingly enough, this is a typical question an economist would pose, and
she would seek to answer this question in terms of information transmission. It seems
obvious that sharing more factual information is always preferred in a cooperative com-
munication setting, meaning that vagueness cannot have an advantage over preciseness.
The problem, then, is to explain the prevalence of vague terms in natural language. The
aim of this paper is to explain this prevalence.

On closer look, the question after the prevalence and origin of vagueness presents
itself as a technical problem for our presently best formal models of the evolution
of meaning. David Lewis [16] defined the notion of a (cheap talk) signaling game in
order to explain how linguistic meaning can arise merely from repeated interaction
without assuming any pre-existing semantic code. However, in his paper Why is lan-
guage vague? [17], Barton Lipman presents a convincing case that standard signal-
ing game models cannot give a plausible explanation of vagueness’ prevalence. Briefly
put, he shows that under natural assumptions, a vague language will always be Pareto-
dominated by a non-vague one, provided the communicators are rational. The main
technical question that this paper adresses therefore is: under what reasonable (but con-
servative) changes to the signaling games framework do vague meanings arise?

2 Signaling games

A signaling game is an extensive game of imperfect information between a sender S and
a receiver R. S observes the actual state t ∈ T , but R only knows that state t ∈ T occurs
with probability Pr(t) > 0. S can send a message m ∈ M to R, after the observation of
which R needs to chose an action a ∈ A. The utilities of players US ,R : T × M × A→ R

map each outcome, i.e., each triple 〈t,m, a〉 that constitutes one round of playing the
game, on a numeric payoff for both players. Lewis’ [16] showed that although messages
may initially be meaningless, repeated interaction of sender and receiver may establish
a common code in equilibrium play of the game.

To make this more concrete, fix a pure sender strategy s as a function from T to
M that specifies which messages S would send in each state. Similarly, a pure receiver
strategy r is a function from M to A that specifies how R would react to each message.
Mixed strategies, denoted by σ and ρ respectively, are probability distributions on the
set of pure strategies. (Pure strategies can also be regarded as degenerate cases of mixed
strategies.) The expected utility for i ∈ {S ,R} of playing mixed strategiesσ and ρ against
each other is defined as:

EUi(σ, ρ) =
∑
t∈T

∑
m∈M

∑
a∈A

Pr(t) × σ(m|t) × ρ(a|m) × Ui(t,m, a) .

A (mixed) Nash equilibrium (ne) of a signaling game is a pair of (mixed) strategies
〈σ∗, ρ∗〉 where neither agent would gain from unilateral deviation. Thus, 〈σ∗, ρ∗〉 is an
ne iff ¬∃σ : EUS (σ, ρ∗) > EUS (σ∗, ρ∗) and ¬∃ρ : EUR(σ∗, ρ) > EUR(σ∗, ρ∗). An
ne is strict if any unilateral deviation strictly diminishes the deviating agent’s expected
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utility. Strict nes correspond to evolutionary stable states: stable resting points of gradual
processes of bi-lateral optimization.

Equilibria of a signaling game can explain the emergence of meaning as follows.
Suppose for simplicity that the signaling game has only two states T = {t1, t2}, two
messages M = {m1,m2} and two actions A = T that correspond to the states. Assume
further that US ,R(t,m, t′) = 1 if t = t′ and 0 otherwise. We call signaling games where
US = UR and where receiver actions have to match the states for optimal payoff to
sender and receiver signaling games for type matching. There are only two strict nes in
this particular game for type matching. In both of these only pure strategies are used.
The two nes are given by the only two bijections from T to M as the sender strategy,
and the respective inverse thereof as the receiver strategy.

Generally speaking, a strict ne 〈σ, ρ〉 determines the descriptive meaning of an ex-
pression m as the posterior probability distribution over states after observing m induced
by σ. It also determines the imperative meaning of m as the probability distribution
over actions that the signal induces given ρ. This is easy for simple cases like the above
example. Here, descriptive and imperative meanings coincide, and we may moreover
abstract from probabilities: the meaning of a m is the set of all states in which m gets
send: [[m]]σ = {t ∈ T : ∃s : s(t) = m ∧ σ(s) , 0}. In the present example, the two
strict nes would give rise to two sets of meanings of messages: one in which m1 denotes
{t1} and m2 denotes {t2}, and one in which m1 denotes {t2} and m2 denotes {t1}.

The meanings that evolve in this game are crisp: there is no overlap between de-
notations, no borderline cases, just a clear meaning distinction between messages with
disjoint denotations. So, when would this approach give rise to a vague meaning? The
most obvious idea to try are mixed strategies: we could hypothesize that a stable state
gives rise to vague meanings iff it involves mixed strategies whose denotations are par-
tially overlapping, indeed blending continuously into each other. But this is excluded
for the simple signaling example above: the only stable states involve pure strategies.

It is tempting to think that this is due to the overly simplistic game we have assumed:
after all, many perceptual categories (think: color, pitch, pressure, visual perception of a
person’s height etc.) involve a large, if not infinite state space that is continuous ordered
by some psychophysical measure of similarity. This could be modelled, in some due
approximation, by assuming that the state space T is given by the unit interval [0; 1].
The set of messages is finite and as before A = T . Assume further that payoffs are
not all-or-nothing but related to a notion of similarity: for concreteness, assume that
US ,R(t,m, t′) is identified with similarity between t and t′ which in turn is given by a
Gaussian function of their Euclidean distance:

sim(t, t′) = exp(−(t − t′)2/2σ2) . (1)

Similar games of this variety have been studied by, inter alia, [14], [12] and [13]
where it is shown that nes of these games are characterized by strategy profiles where (a)
the imperative meanings of the signals are prototypes, i.e., designated points of the type
space, and (b) the indicative meanings are the Voronoi tesselations that are induced by
these prototypes. This is an encouraging result because it directly corresponds to several
findings of cognitve semantics (cf. [6]). But would this more realistic set-up give rise
to stable states that are “blurry Voronoi tessellations” that look less like political maps
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with country boundaries, and more like a geographic map where hills blend into valleys
blend into hills and so on?

The discouraging answer is: no, it wouldn’t. This is what Lipman’s argument tells
us [17]. The crux of the argument is that any non-degenerate mixed strategy is never
strictly better than any of the pure strategies in its support. Hence we cannot hope to
uniquely single out a mixed strategy profile as the unique best ne. Hence, in what-
ever way we construct the utility function, it will not help to explain the prevalence
of vagueness of natural language as meanings that arise uniquely and rationally under
continuously overlapping mixed strategies.

More concretely, Lipman’s argument takes the following form. Let V be the ex-
pected utility of the best sender-receiver strategy pair: V = maxσ,ρ EU(σ, ρ). It is easy
to see that if there is a pair of strategies 〈σ, ρ〉 such that the maximum V is attained, then
every pair of pure strategies 〈s, r〉, such that s and r are in the support of σ and ρ re-
spectively, is a pure ne in which V is the expected payoff. But this means that vagueness
cannot have an advantage over specificity and, except in unusual cases, will be strictly
worse.

3 Re-Rationalizing Vagueness

Lipman’s argument implies that we need to rethink some of the implicit assumptions
encoded in the signaling game approach to language evolution if we want to explain
how vague meanings can emerge from signaling interaction. Any changes to the model
should of course be backed up by some reasonable intuition concerning the origin and,
perhaps, the benefit of vagueness in language. Fortunately, such intuitions abound, and
we should review some of the obvious and some of the recent proposals.

To begin with, it is sometimes argued that it is useful to have vague predicates like
‘tall’ in our language, because it allows us to use language in a flexible way. Obviously,
‘tall’ means something different with respect to men than with respect to basketball
players, which means that it has a very flexible meaning. This does not show, however,
that vagueness is useful: vagueness is not the same as context-dependence, and the
argument is consistent with ‘tall’ having a precise meaning in each context.

A valid economic suggestion is based on the idea that our vague, or indirect, use of
language might be partly explained by our intention that some of our messages be di-
versely interpretable by cooperative versus non-cooperative participants. Indeed, using
game theoretical ideas one can show (e.g. [22], [11], [1]) that once the preferences of
speaker and listener are not completely aligned, we can sometimes communicate more
with vague, imprecise, or noisy information than with precise information. Interesting
as this might be, it cannot explain the prevalence of vagueness in cooperative commu-
nication.

But occasionally it may be beneficial for both the speaker and the hearer to some-
times describe the world at a more coarse-grained level (see for instance [10] and [15]):
for the speaker, deciding which precise term to use may be harder than using an impre-
cise term; for the listener, information which is too specific may require more effort to
analyze. Another reason for not always trying to be as precise as possible is that this
would give rise to instability. As stressed by [24], for instance, in case one measures the
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height of a person in all too much detail, this measure might change from day to day,
which is not very useful. Though all these observations are valid, we don’t feel they
explain why so many, if not all, observational predicates of our language are vague.

In a more recent paper, Kees van Deemter [3] proposes that many natural language
concepts are vague, because vagueness facilitates search. It is argued that due to its
vagueness, ‘tall’ partitions the set of (relevant) individuals into three instead of just two
classes: the tall ones, the not tall (or short) ones, and the ones of average length. If we
are now informed that ‘x is tall’, we only have to check one-third of the cases, instead
of half of them. This argument is valid, but it has nothing to do with vagueness: the
argument only establishes that more fine-grained classifications are preferred (in this
respect) to coarse-grained ones. In particular it strongly suggests that it is better never
to be vague, and always to be very precise, up to very precise degrees. Thus, we feel
that van Deemter’s argument favors preciseness rather than vagueness.

It is natural to assume that the existence of vagueness in natural language is un-
avoidable. Our powers of discrimination are limited and come with a margin of error,
and it is just not always possible to draw sharp borderlines. This idea is modeled in
Williamson’s [29] epistemic treatment of vagueness, and given a less committed formu-
lation in [26] using Luce’s [18] preference theory. This suggests to explain vagueness in
terms of a theory of bounded rationality. In particular, we would like to investigate the
following two hypotheses: signaling games can model the emergence of vague meaning
if (i) interlocutors face memory constraints, or (ii) agents play stochastic best responses
(because there is noise in their perception of the payoff-relevant distinctions). To test
these hypotheses, section 4 presents a signaling model in which agents best respond to
a belief derived from a limited sequence of the opponent’s last n choices, and Section 5
finally presents a model in which agents play a stochastic best choice because there is
predictable noise either in the games payoff structure, or in the agents’ calculation of
expected utilities.

4 Limited Memory Fictitious Play

Fictitious play in normal form games. Humans acquire the meanings of natural lan-
guage signals (and other conventional signs) by learning, i.e., by strategically exploiting
past experience when making decisions. A standard model of learning in games is ficti-
tious play (see [2]). In its simplest incarnation, two players play the same game against
each other repeatedly an unlimited number of times. Each player has a perfect recall of
the behavior of the other player in previous encounters, which makes for a loose parallel
of this dynamics with exemplar-based theories of categorization (cf. [23]). The players
operate under the assumption that the other player is stationary, i.e., he always plays the
same —possibly mixed— strategy. The entire history of the other player’s behavior is
thus treated as a sample of the same probability distribution over pure strategies. Using
Maximum Likelhood Estimation, the decision maker identifies probabilities with rela-
tive frequencies and plays a best response to the estimated mixed strategy. Most of the
research on this learning dynamics has focused on normal form games. There it can be
shown that strict nes are absorbing states. This means that two players who played ac-
cording to a certain strict ne will continue to do so indefinitely. Also, any pure-strategy
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steady state must be an ne. Furthermore, if the relative frequencies of the strategies
played by the agents converge, they will converge to some (possibly mixed strategy) ne.
For large classes of games (including 2x2 games, zero sum games, and games of com-
mon interest) it is actually guaranteed that fictitious play converges (see [5], Chapter 2,
for an overview of the theory of fictitious play and further references).

Limited memory. This result rests on the unrealistic assumption that the players have an
unlimited memory and an unlimited amount of time to learn the game. In a cognitively
more realistic setting, players only recall the last n rounds of the game, for some finite
number n. We call the ensuing dynamics the limited memory fictitous play (lmf) dy-
namics. For the extreme case of n = 1, lmf dynamics coincides with so-called Cournot
dynamics in strategic games (see Chapter 1 of [5]).

In strategic games lmf dynamics preserves some of the attractive features of ficti-
tious play. In particular, strict nes are absorbing states here as well. Also, if lmf con-
verges to a pure strategy profile, this is a ne. However, the memories of the players need
not converge at all, as soon as a game has more than one ne. To see why, assume that
n = 1 and the sequence starts with the two players playing different strict nes. Then
they will continue to alternate between the equilibria and never converge to the same
ne. Neither is it guaranteed that the relative frequencies of the entire history converge
to an ne, even if they do converge. To illustrate this with a trivial example, consider the
following coordination game:

L R

T 1;1 0;0
B 0;0 2;2

If the dynamics starts with the profile (B, L), the players will alternate between this
profile and (T,R) indefinitely. The empirical frequencies will thus converge towards
( 1/2 ,

1/2 ), which is not an ne of this game.

LMF in Signaling games. There are various ways how to generalize lmf dynamics to
signaling games. Observing a single run of an extensive game does not give information
about the behavioral strategies of the players in information sets off the path that has
actually been played. In some versions of extensive form fictitious play, it is assumed
that players also have access to the information how the other player would have played
in such unrealized information sets (see [9] for motivation of this decision and techni-
cal exploration of the consequences). Here we pursue the other option: each player only
memorizes observed game histories. We furthermore assume that receivers know the
prior probability distribution over types and are Bayesian reasoners. Finally, we assume
that both players use the principle of unsufficient reason and use a uniform probability
distribution over possible actions for those information sets that do not occur in mem-
ory.

To make this formally precise, let s̄ ∈ (T × M)n be a sequence of type-signal pairs
of length n. This models the content of the receiver’s memory about the sender’s past
action. Likewise r̄ ∈ (M × T )n models the sender’s memory about the receiver’s past
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action. We write s̄(k) and r̄(k) for the kth memory entry in s̄ or r̄. These memories define
mixed strategies as follows:3

σ(m|t) =

 |{k|s̄(k)=〈t,m〉}|
|{k|∃m′:s̄(k)=〈t,m′〉}| if divisor , 0
1
|M| otherwise

ρ(t|m) =

 |{k|r̄(k)=〈m,t〉}|
|{k|∃t′:r̄(k)=〈m,t′〉}| if divisor , 0
1
|T | otherwise.

When computing the posterior probability µ(t|m) of type t given signal m, the re-
ceiver uses Bayes’ rule and the principle of insufficient reason. (As before, Pr(·) is the
prior probability distribution over types.)

µ(t|m) =

 σ(m|t) Pr(t)∑
t′ σ(m|t′) Pr(t′) if divisor , 0

1
|T | otherwise.

Best response computation is standard:

BRS (t; ρ) = arg max
m

∑
t′∈T

ρ(t′|m) × US (t,m, t′) ,

BRR(m; µ) = arg max
t

∑
t′∈T

µ(t′|m) × UR(t′,m, t) .

Characterization & Results. How does the lmf dynamic look like in signaling games
for type matching? Consider the basic 2-state, 2-message game, with its two strict nes.
It turns out that these equilibria are absorbing states under fictitious play with unlimited
memory. However, this does not hold any longer if memory is limited and the game
has more than two types. In that case, the learner’s generalizations are more prone to be
influenced by the possible partiality of their observations.

For illustration, assume a signaling game for type matching with three types, t1, t2
and t3, and three forms, m1, m2 and m3. Suppose furthermore that at a certain point
in the learning process, both players have consistently played according to the same
equilibrium for the last n rounds — say, the one where ti is associated with mi for
i ∈ {1, 2, 3}. With a positive probability, nature will choose t1 n times in a row then,
which will lead to a state where s̄ contains only copies of 〈t1,m1〉, and r̄ only copies of
〈m1, t1〉. If nature then chooses t2, both m2 and m3 will have the same expected utility
for the sender, so she may as well opt for m3. Likewise, t2 and t3 have the same expected
utility for the receiver as reaction to m3, so he will choose t2 with probabilty 1/2 . If this
happens, the future course of the game dynamics will gravitate towards the equilibrium
where t2 is associated with m3, and t3 with m2.

Such transitions can occur between any two signaling systems with positive proba-
bility. Thus the relative frequencies of actions, if averaged over the entire history, will
converge towards the average of all signaling systems, which corresponds to the pooling
equilibrium. If the size of the memory is large in comparison to the number of types,

3Notice that in signaling games mixed strategies can be equivalently defined as probability
distributions on choices for each choice point. That’s what we do here.
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Fig. 1: Long-time average of lmf dynamics

this may hardly seem relevant because the agents will spend most of the time in some
signaling system, even though may they switch this system occasionally. However, if
the number of types is large in comparison to memory size, lmf dynamics will never
lead towards the vicinity of a strict equilibrium, even if such equilibria exist.

This observation is not really surprising. In an ne of a signaling game for type match-
ing, the best response to one type does not carry information about the best response to
another type (beyond the fact that these best responses must be different). If the agents
only have information about a subset of types available in their memory, there is no way
how to extrapolate from this information to unseen types.

However, if the type space has a topological structure, as in the class of games we
wish to consider here, it is actually possible to extrapolate from seen to unseen types to
some degree. Similar types lead to similar payoffs. Therefore the information about a
certain type is not entirely lost if it intermittently drops out of memory. Likewise, lmf
players are able to make informed guesses about the nature of types that have never
been observed before. Consequently lmf dynamics performs far better in these games.
It does not converge towards a strict equilibrium, but somewhere into the proximity of
a strict equilibrium, thus ensuring a high degree of efficiency.

Figure 1 depicts the outcome of a simulation of the lmf dynamics. In simulations
continuous space needs to be approximated, and in the present case the type space con-
sisted of 500 types that were spaced evenly over the unit interval, and we assumed three
signals. As described in Section 2, the utilities were similarity-sensitive, expressed by
a Gaussian function of their Euclidean distance, as in Equation (1). The simulation
assumed σ = 0.1 and a memory size n = 200. The graphics depicts the relative fre-
quencies between the 10,000th and the 20,000th iterations of the game, starting from an
initial state where the memories of the agents contain random associations. The sender
strategies induce a partition of the type space into three categories, one for each mes-
sage. In the long run, these categories partition the type space into three continous inter-
vals of about equal size. These intervals are largely stable, but the boundaries shift back
and forth somewhat over time. Averaging over a longer period thus leads to categories
with blurred boundaries. The prototypes of the categories, i.e., the receiver’s interpre-
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tation of the three signals, fall into the center of the corresponding category. Again we
observe a certain amount of indeterminacy. Over time, the prototypes are distributed
according to a bell shaped curve in the center of the corresponding category.

Interpretation. If we look at the properties of the language that emerges under lmf
dynamics over a longer course of time, we find that the emerging categories indeed
have non-sharp boundaries, and that they blend seamlessly into one another. On this
level of abstraction, the model derives some of the crucial features of vagueness that
standard signaling models preclude. But is this the right level of analysis?

The down-side of this model seems to be that although the time-averaged language
shows the relevant vagueness properties, the beliefs and the rational behavior of agents
at each time step do not. For instance, at a fixed time step the sender would use message
mi for all states in the half-open interval [0; x) and another message mj for any state > x.
The point-value x would be an infinitesimal borderline case.4 The residual problem
here is that the notion of a rational best response to a belief —be it obtained from
finite observations or otherwise— will always yield sharp boundaries and point-level
borderline cases. To overcome this problem, and to derive vague meanings also in the
beliefs and behavior of individual agents it therefore seems that we need to scrutinize
the notion of a rational best response in more detail. The following section consequently
discusses a model in which agents play stochastic best responses.

5 Quantal Response Equilibria

Stochastic choice rules have been studied in psychology, but have recently been inte-
grated into models of (boundedly-rational) decision making from economics. We start
by providing a sketch of the relevant background, then discuss the notion of a quantal
response equilibrium, and finally report on simulation data showing how equilibria of
stochastic choices give rise to vague meanings.

Background: From Stochastic Choice & Categorization. Standard theories of choice
assume that strict preference can be modeled by a weak order: an order that is irreflex-
ive, transitive, and negatively transitive.5 But when faced with a choice among several
alternatives, people often do not know what to select or behave inconsistent: at one
time prefer i to j and at the other time preferring j to i. That is, people are often not
sure which alternative they should select, nor do they always make the same choice un-
der seemingly identical conditions. In order to account for the observed inconsistency
and the reported uncertainty, choice behavior has been viewed as a probabilistic pro-
cess. The idea is that there is a pattern to these inconsistencies, and that although the
choosing subject is not absolutely consistent, she is still probabilistically consistent.

4This is not entirely correct parlor, since the simulation only approximates a continuous state
set. But the point should be clear nonetheless.

5An order > is negatively transitive iff ∀x, y, z : (x ≯ y ∧ y ≯ z)→ x ≯ z.
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The general idea is this.6 Suppose we force subjects to repeatedly make binary
choices between options i and j under otherwise identical conditions. This could be
either a choice what to buy for dinner or, more plausibly, a perceptual choice: which
of i or j is louder, heavier, more greenish . . . ? The question then is what should we,
as outside observers who know the objective physical properties of i and j, make of
subjects’ inconsistent choices? In very rough terms, the idea is that we find the consis-
tency somewhere else: we assume that each time the subject makes a choice between i
and j the system is shocked systematically, i.e., we assume that our subjects do never
actually observe i but rather i+ ε where ε is a systematic “tremble” drawn from a partic-
ular probability distribution. We can then explain subjects’ choice behavior as rationally
consistent with what they observe, if we factor in that each of their choices is subject
to such systematic noise. Depending on the probability distribution of the trembles, we
will find that the “mistakes” that subjects make in choosing consistently between i and
j depend on the actual values of i and j: for example, if i and j are nearly identical
fragrances, the probability of mix-up is higher than when one is Channel No. 5 and the
other is the smell of a freshly cooked steak.

Quantal Response Equilibrium. Such stochastic choice models are not confined to per-
ceptual decision making. From work in behavioral game theory it is known that real
people are not perfectly rational utility maximizers. The decisions of actual people,
when faced with a choice, are similarly noisy, in a way that is nevertheless related to the
utility of the options in question. If we assume that the “trembles” with which agents
can perceive the quality of their choices are drawn from an extreme-value distribu-
tion (roughly: small trembles very frequent, large trembles highly unlikely), then their
choice behavior can be modeled by a so-called logit probabilistic choice rule which
states that the probability P(i) of selecting a given decision i is an exponential function
of i’s utility ui (see [20], [21] and [7] for details):

P(i) =
exp(λui)∑
j exp(λu j)

. (2)

Here, λ is a non-negative parameter that measures the degree of rationality of the deci-
sion maker. λ = 0 corresponds to a completely irrational agent that picks each action
with equal probability regardless of utility. As λ increases to∞, the probability of non-
optimal choices converge to 0, and all optimal choices have equal probability.

The connection to perceptual classification is obvious: when stimuli (such as the
agent’s own information state, her action choices etc.) are clearly discernible, i.e., when
λ is big, the agent will make decisions that are on average more in conformity with hard-
edged, classical rationality. But if an agent’s perception is error-prone, i.e., when λ is
small, her decisions will on average diverge more severely from standard rationality.

This much concerns a single agent. But if the source of imperfection in decision
making is systematic, then it may also systematically alter the structure of equilibria

6We do not mean to suggest that we are faithful to the vast statistical literature on this topic,
but we merely wish to motivate our modeling approach in accessible terms. The interested reader
is referred to the classics, such as [28] or [19].
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that ensue in strategic situations where all players choose with a globally fixed λ.7 If
in a strategic setting all players use rule (2) with the same value for λ, and all players
are correct in assessing the probabilities of each other’s behavior, the mixed strategies
of the players form a so-called logit equilibrium. It can be shown that in games with
finitely many strategies, such an equilibrium (also called quantal response equilibrium
(qre) in this case) always exists [20,21,8].8

Example. Consider 2-state, 2-message signaling game for type-matching with, for sim-
plicity, a uniform prior. We represent a mixed sender strategy as a 2×2 matrix P, where
pi j gives the relative probability that the sender will send signal m j if she has type ti.
Likewise, a mixed receiver strategy is represented by a 2×2 matrix Q, with qi j being the
probability that the receiver will choose action a j upon observing signal mi. For (P,Q)
to form a qre, it must hold that:

pi j =
exp(λq ji)∑
k exp(λqki)

and qi j =
exp(λp ji)∑
k exp(λpki)

.

Using these equations and the fact that P and Q are stochastic matrices, it can be shown
by elementary calculations that p11 + p21 = 1 and q11 + q21 = 1, and hence that p11 =

p22, p12 = p21, q11 = q22, and q12 = q21. From this it follows that p11 = fλ(q11) and
q11 = fλ(p11), where

fλ(x) =
exp(λx)

exp(λx) + exp(λ(1 − x))
. (3)

Now suppose p11 < q11. fλ is strictly monotonically increasing. Hence fλ(p11) = q11 <
p11 < fλ(q11), and vice versa. These are contradictions. It thus follows that p11 = q11,
i.e. P = Q. The entire equilibrium is thus governed by a single value α, where α =

p11 = p22 = q11 = q22. α is a fixed point of f , i.e., α = fλ(α).
For λ ∈ [0, 2], there is exactly one fixed point, namely α = 0.5. This characterizes a

babbling equilibrium where each message is sent with equal probability by each type,
and each action is taken with equal probability regardless of the message received. If
λ > 2, α = 0.5 continues to be a fixed point, but two more fixed points emerge, one
in the open interval (0, 0.5) and one in (0.5, 1). As λ grows, these fixed points converge
towards 0 and 1 respectively. They correspond to two noisy separating equilibria. Even
though each message is sent with positive probability by each type in such a qre (and
each action is induced by each signal with positive probability), there is a statistical cor-
relation between types, messages and actions. In other words, in these qres information
transmission takes place, even though it is imperfect.

Generalization. This simple example already illustrates the crucial features needed for
an account of vagueness. Both the descriptive meanings and the imperative meanings
of signals show a number of welcome properties: they place positive probability on
all possibilities, and thus do not define a sharply delimited set of types/actions as their
meaning. Of course, the simple 2-state case is rather trivial in this respect. But it turns

7See [25] for a model that dispenses with the homogeneity of λ among players.
8As λ goes to infinity, qres converge to some ne, the borderline case of perfect rationality.
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Fig. 2: Babbling equilibrium

out that if we attend to a more interesting case with a topological state space, as de-
scribed in Section 2, logit equilibria indeed give rise to continuously blended category
boundaries of the relevant kind.

This can be shown by simulation. We assumed a game with 100 states that are ar-
ranged in the unit interval with equal distances. We considered three signals, and chose
the value σ = .2. For this, simulations show behavior that is similar to the example
discussed above. If λ is small, there is only a babbling equilibrium. It is depicted in
Figure 2. The left hand side shows the sender strategies. For each type, all three sig-
nals are equally likely. The right hand side shows the receiver strategies. Each signal
is interpreted as the same probability distribution over types. This distribution is bell
shaped and centered at 0.5. For values of λ above approximately 4, separating equilib-
ria emerge. Figure 3 shows such an equilibrium for λ = 20. Here the sender strategy
roughly partitions the type space into three categories of about equal size. Crucially, the
boundaries between the categories are blurred; category membership smoothly changes
from (almost) 1 to (almost) 0 as one moves into a neighoring category. The left half
of the figure shows the receiver strategy, i.e., the location of the prototypes. These are
not sharply defined points within conceptual space either. Rather, the location of the
prototypes can be approximated by a normal distribution with its mean at the center
of the corresponding category. In other words, we not only find continuously blended
category boundaries in the declarative meaning of signals, but also “graded protoypes”
in the imperative meaning. This is as we would like it to be for an account of vagueness,
and, as far as we can tell, especially this latter aspect has received little attention so far.

Conclusion. We can thus conclude that vague interpretations of signals emerge with
necessity if the perfectly rational choice rule of classical game theory is replace by a
cognitively more realistic probabilistic choice rule like the logit choice rule. Unlike for
the finite memory model from Section 4, this holds true also for any momentary belief
and behavior of individual agents. The more general reason why this model gives rise to
vague meanings is also natural: the sender may only imperfectly observe the state that



Vagueness, Signaling & Bounded Rationality 13

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

type

se
nd

er
 s

tr
at

eg
y

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

type

re
ce

iv
er

 s
tr

at
eg

y

Fig. 3: Separating equilibrium

she wants to communicate, or she may not know whether too much precision is actually
needed; similarly for the receiver.

Of course, the qre raises a number of fair questions too. Even if we accept that
all natural language expression are vague, then it is still not necessarily the case that all
natural language expressions are vague in the same way: terms like ‘red’, ‘wet’ or ‘prob-
able’ are more readily vague, so to speak, than terms like ‘cd-rom’, ‘dry’ or ‘certain’. In
further research it would be interesting to relate these properties of meanings with more
nuanced topological properties of the space given by T and the utility function U. E.g.,
what happens if some elements of T are clearly distinguishable from all others, while
some others are not? Further issues for future research are to extend the two-agent mod-
els to more realistic multi-agent models and to take the step from simulation to more
analytic results where possible.
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