
Annotation Guidelines

The following contains the full guidelines for manual annotation of candidate
corrective feedback utterance pairs. Clarification questions were also marked,
as these constitute another parental reaction to a child’s grammatical mistake
which might indicate the presence of an error to the child. They can thus
be interesting to investigate later on.

1 Main Procedure

1. First choose $COF, $CLQ or $NOT:

$COF If the preceding adult utterance contained corrective feedback
i.e. the child utterance contained an error and the adult utterance
contains the corrected form of exactly the erroneous expression,
possibly embedded in a longer sentence.

$CLQ If the preceding adult utterance contained a clarification question
i.e. the child utterance is picked up and part of it is rephrased as
a wh- or disjunctive question.

$NOT If neither of the two above applies.

Note that while both $COF and $CLQ imply that the child utterance
contained an error, neither of these markers are explicitly related to
the child error.
Also, despite errors often being acceptable in spoken language (such
as subject and verb omission if these are clear from the context) this
does count as an error if it gets corrected.
In some transcriptions errors are corrected using the wrong form [:
corrected form] notation. Unfortunately programs running on CHAT
look only at the form in the brackets, in this case the corrected form.
Thus in this case the error needs to be ignored.

2. Next, code possible errors in the child utterance.

• In case $COF or $CLQ were marked before, code only those
errors which were corrected / led to the question, respectively.
These two markers expect a following explanation of the child
error. For clarification questions, sometimes no error is visible

1

(for example if pronunciation is unclear, but the transcription is
correct). Then $ERR = 0 should be chosen.

• In case several errors were picked up by corrective feedback in the
same utterance, mark all errors separately.

• In case several errors were picked up in the same utterance, one
by corrective feedback and the other by a clarification question,
mark both, making sure to mention the corresponding errors right
after the $COF and $CLQ labels.

• In case $NOT was marked in the previous step errors can but do
not need to be coded.

To code errors, chose

(a) The linguistic level of the error, according to the most specific
item available in the following list:
General Specific
Syntax Subject

Main Verb
Object
Other

Noun morphology Possesive -’s
Regular plural -s
Irregular plural
Other

Verb morphology 3rd person singular -s
Regular past -ed
Irregular past
Other

Unbound morphology Determiner
Preposition
Auxiliary verb
Present progressive auxiliary
Other

Other -
0 -

Pick this location according to what should correctly be there
(e.g. the irregular past tense form of the verb).

(b) Then chose the type of error, according to what the child did
wrong, from the following list:

• Omission
• Addition
• Substitution

2

• Other
Omission and addition should be clear, chose substitution if the
erroneous form was substituted for another form, possibly from
another linguistic level (e.g. regular past tense construction).

Be sure to match both the location and the type to the actual error.
Thus, for example, an error of word choice in the object position is
not a syntactic error and must thus be classified as other – substitution
and not as syntax:object – substitution.

The following shows the decision tree used for the annotation. Blue nodes
represent decisions, red nodes the corresponding annotation.

Corrective Feedback

Clarification Question Clarification Question

$COF $CLQ $COF $CLQ $NOT

$ERR = [level of error];

$TYP=[type of error]

yes no

yes no yes no

repeat if necessary

2 Additional Notes

Annotation was done using the provided coder mode in CLAN. To do this,
the following steps were taken:

1. Choose one of the files from the "data" folder for annotation

2. Open it in CLAN

3. Make sure you are in editor mode and CHAT mode, i.e. the line at the
bottom of the window reads date[E|CHAT]*linenumber
if this is not the case change using the "Mode" dropdown menu

3

4. Click at any position in the line containing the first utterance which
to annotate

5. Enter coder mode by holding esc-e

6. Chose codescof.cut as the codes file

7. At the very bottom of the file the possible tier which to use (%cof) is
depicted

8. Press enter

The annotation is organised hierarchically, thus first the tier is chosen
(only one possible option here), then the comment, afterwards the
entry for the comment (only applies to ERR comments)

9. The possible comments are listed

10. choose one of
$COF (preceding exchange contains corrective feedback)
$CLQ (preceding exchange contains a clarification question)
$NOT (preceding exchange contains neither of the two)
using the arrow keys

11. Press enter

Now there are two possible ways to continue. If the child utterance
contained an error follow the next steps, else skip them and go imme-
diately to 14. If the exchange contains corrective feedback list only
those errors which get corrected.

12. Choose $ERR using the arrow keys, press enter

13. Choose the linguistic level of the error (see above), press enter

14. Choose the type of the error, press enter

15. Repeat for all errors (keep in mind the restrictions applying to COF
and CLQ instances)

To end annotating one utterance and go to the next one:

16. If the current level of the annotation hierarchy is not the top one (i.e.
not the list of comments starting with $) hold esc-c to go up. This
should not occur, as it implies incomplete annotation.

17. Hold ctrl-t twice to get to the next adult utterance

18. To correct mistakes, exit coder mode, remove the complete tier con-
taining the erroneous annotation manually, and re-enter coder mode
to fill in the correct annotation

4

Important Remark: In the CHAT format used in the transcripts the
notation 0word [*] means the word was not said, but the transcriber thought
it belonged into the sentence and thus put it in the transcript for better
understanding.

5

