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Abstract

In face-to-face meetings, assigning and
agreeing to carry out future actions is a fre-
quent subject of conversation. Work thus far
on identifying these action item discussions
has focused on extracting them from entire
transcripts of meetings. Here we investi-
gate a human-initiative targeting approach
by simulating a scenario where meeting par-
ticipants provide low-load input (pressing
a button during the dialogue) to indicate
that an action item is being discussed. We
compare the performance of categorical and
sequential machine learning methods and
their robustness when the point of user input
varies. We also consider automatic summa-
rization of action items in cases where indi-
vidual utterances contain more than one type
of relevant information.

1 Introduction

Regrettably, people do not always pay attention to
everything you say. In fact, research on lexical
change blindness suggests they miss more than you
might imagine (Sanford et al., 2006). But such
attention-constraining strategies can prove adaptive
in the face of so-called “information overload,” and
the myriad pressures on attention that arise from liv-
ing in the modern era (or, perhaps, any era). For ex-
ample, an effective attention strategy during a busi-
ness meeting might be to pay close attention to e-
mail on your laptop while processing the ongoing
meeting dialogue in a shallow way that picks up on
segments of interest to you, or in which it seems you
are about to be assigned some task. When those pat-

terns of dialogue arise, you then pay closer attention
to the dialogue, or even participate yourself. Such
strategies come second nature to us.

But this strategy of targeted listening can be em-
ployed in machine interpretation of meeting dia-
logue as well, using an approach to dialogue pro-
cessing we call targeted understanding. While a ma-
chine’s interpretation of semantics in multi-human
dialogue faces different obstacles from those faced
by a human—lacking the facility with context and
intentionality that we take for granted—the general
approach to interpretation can be similar: Only seg-
ments that contain certain patterns of dialogue are
identified as deserving close attention, followed by
a deeper semantic analysis of those segments for the
most relevant bits of information.

In this paper we briefly discuss how we use tar-
geted understanding to identify the tasks people
agree to in meetings (their action items) from multi-
party meeting dialogue. Work thus far on this en-
deavor has focused on extracting action items from
entire records of meetings (Purver et al., 2007; Ehlen
et al., 2008), relying on a machine-initiative ap-
proach that extracts all possible action item discus-
sions and then asks meeting participants to cull them
after the meeting is finished. Here we will steer
a slightly different tack, investigating the potential
of “human-initiative targeting” that allows partici-
pants in a meeting to give some indication of an area
of interest—by, say, pressing a button when an ac-
tion item is being discussed. We then use automatic
methods to extract the semantic properties of utter-
ances that are salient to that segment of dialogue,
and generate a readable summary.

In the next Section we describe previous work on
extracting action items. After that, in Section 3,



we present our approach and methodology for this
study. Sections 4 and 5 present our experiments
and results: First with respect to the task of detect-
ing those utterances that contain semantic informa-
tion related to action items; and second with respect
to extracting different kinds of properties from sin-
gle utterances that contain more than one type of
action item-related semantic information. We con-
clude with directions for future work in Section 6.

2 Targeted Understanding of Action Items

The process of assigning and agreeing to carry out
future actions frequently arises through some chan-
nel of communication, such as e-mails or dialogue.
They are often called action items or next actions
and arise as public commitments to undertake a task.
Several recent efforts have sought to utilize this
communicative channel to extract them automati-
cally, and to mine and summarize useful information
from them.

2.1 Action Items in Dialogue
How do people in meetings discuss action items?
Because the process of deciding what tasks will be
done and who will do them is a common and sig-
nificant interaction during meetings, their discussion
approximates an exemplary structure, adhering to
a recognizable pattern—even if that pattern comes
spread over several persons and multiple utterances.

(1) A: We should have a rerun of the three
of us sitting together

B: Sure
A: Some time this week again
C: OK
A: And finish up the values of this
B: Yeah

In the first place, there is usually some discussion
of the task that needs to be performed. In the ex-
ample above the sub-utterances “have a rerun of the
three of us sitting together” and “finish up the val-
ues” contribute to a task description. The first utter-
ance also includes a second component that is com-
monly found in action items, which is discussion
of who will be responsible for—or take ownership
of—the task to be performed (in this case, all partic-
ipants, or “we”). A third component is some desig-
nation of the timeframe in which the task should be

completed, in this case “some time this week”. Fi-
nally, because this is a public, joint commitment and
not a solitary one, one often hears some indication
of agreement from the participants agreeing to the
commitment (“Sure”, “OK”, “Yeah”) Because ac-
knowledgments like these help to glue together ver-
bal acts of coordination, agreement is an important
fourth component in such discussions.

Thus, a dialogue that discusses an action item
tends toward some approximation of this exemplary
structure, and includes utterances that play one or
more of these four roles at a time. Granted, the
structure is exemplary, so sometimes one of these el-
ements (such as the timeframe) may not be present.
But in general, the closer a round of dialogue comes
to representing these four types of dialogue moves—
task description, ownership, timeframe, and agree-
ment—the more likely we find that some future task
or action item is being discussed.

2.2 Structural Extraction Approach

This structural insight was fleshed out in Purver
et al. (2006; 2007). Others (Morgan et al., 2006;
Hsueh and Moore, 2007) had attempted a flat ap-
proach to action item detection in dialogue where
utterances were simply marked as either being rele-
vant to an action item discussion or not. Purver et
al. (2007) replaced this flat classification approach
with a structured, hierarchical one. They trained
four linear Support Vector Machine (SVM) classi-
fiers to detect utterances that correspond to each of
the four Action Item-related Dialogue Acts (AIDAs)
in Table 1. Then they used a super-classifier trained
with the hypothesized labels and confidence scores
of the four independent classifiers to detect clusters
of those sub-classes, which indicate probable discus-
sions of action items. On the task of detecting action
item discussions, this approach achieved an F-score
of 0.45, (using a criterion of at least 50% overlap be-
tween hypothesized and oracle action item discus-
sion), compared to 0.35 using a flat approach with
the same feature and data sets.

The strategy of attending to and targeting a spe-
cific dialogic structure exhibits a clear benefit over a
flat approach. But note that this approach to hierar-
chical classification does not presume any sequen-
tial dependencies in the utterances, since they are
classified separately and aggregated by window, thus



D description discussion of the task to be
performed

T timeframe discussion of the required
timeframe

O owner assignment of responsibility
(to self or other)

A agreement explicit agreement or com-
mitment

Table 1: Action item dialogue act (AIDA) classes.

ignoring any temporal organization that might exist
in the exemplary pattern of action item discussions.
This is one possibility we intend to investigate here.

2.3 Exploiting User Feedback

Another way to improve detection of action item dis-
cussions and their associated AIDAs is to involve a
person in the loop who can provide some feedback
about whether or not the detected utterances really
do correspond to discussion of an action item.

This possibility was explored by Ehlen et
al. (2007; 2008), who used a post-meeting browser
tool to present detected action items to meeting par-
ticipants taken from the DARPA CALO 2007 CLP
evaluation. After each meeting, participants could
review their action items, changing the task descrip-
tion (D), timeframe (T), and owner (O) entries in
ways that allowed feedback to three of the four cor-
responding AIDA sub-classifiers. When users added
action items to their to-do lists or rejected them,
feedback for the super-classifier was also harvested.

These data from human feedback were used to
re-train each of the targeted classifiers, allowing an
assessment of whether implicit user feedback could
help improve the models. Indeed, this type of feed-
back yielded F-score error reductions between 20
and 40% for different meeting sequences, indicating
that human feedback could be useful.

Results such as these bring up the question of
whether some other types of human input might
yield similar improvements. Instead of requiring
meeting participants to review action items after a
meeting is finished, perhaps they could “mark” rel-
evant segments of a meeting as they happen, by, for
example, pushing a button when something occurs
that corresponds to information they wish to recall

or have extracted. Our first experiment in Section 4
simulates just such a scenario.

2.4 Summarizing Action Items

There is a growing interest in dialogue summariza-
tion, with most approaches attempting to summarize
the content of entire dialogues (Zechner, 2002; Mur-
ray et al., 2005; Murray and Renals, 2007). The
most obvious application of identifying action item
discussions and their corresponding dialogue acts is
to produce a more structured and targeted meeting
summary by providing a descriptive record of the
tasks assigned, perhaps presented as an automati-
cally generated to-do list.

Purver et al. (2007) made a preliminary attempt
at generating extractive summaries of action items,
focusing on utterances tagged as performing one of
two AIDAs: either the task description (D) or the
timeframe (T) during which the task is to be per-
formed. Their approach involved parsing the word
confusion network (WCN) for each relevant utter-
ance using a general rule-based parser (Dowding et
al., 1993), which produced multiple short fragments
rather than one full utterance parse. An SVM classi-
fier was then trained to learn a model which ranked
these phrases according to their likelihood of ap-
pearing in a gold-standard extractive summary. Var-
ious features were used including WCN, parse, lex-
ical and temporal expression tags.

This approach produced mixed results. While
precision was higher than that of a baseline that
used the entire 1-best utterance transcription, only
the F-scores obtained for timeframe outperformed
the baseline. Besides yielding mixed results, this
prior work did not consider summarisation of ac-
tion items where utterances are tagged with multiple
AIDA classes. In such cases, it is necessary to deter-
mine which bits of information are related to which
dialogue act, and as a result the summarization task
becomes more complicated. Our second experiment
in Section 5 addresses this issue.

3 Approach & Methodology

The work of Purver et al. (2007) has shown that au-
tomatically identifying AIDAs in transcripts of full
meetings is a difficult task—achieving F-scores be-
low 0.25 (see Table 2). One reason is that AIDAs are



very sparse, making up only around 1.4% of utter-
ances in a meeting transcript. In the first of two ex-
periments, we want to investigate how on-line input
given by meeting participants can reduce the sparse-
ness problem and thus help in automatic identifica-
tion. If participants could indicate where an action
item is being discussed by, for instance, pressing a
button during the ongoing dialogue, such “human-
initiative targeting” could help the system to bypass
large sections of dialogue in favor of specific, rele-
vant regions.

We simulate participants’ input by selecting sec-
tions of dialogue that include discussion of action
items, and then use machine learning on the targeted
sections to identify the AIDAs. In doing so we ad-
dress a number of issues.

First, we investigate the degree to which human-
initiative targeting can improve classifier perfor-
mance by training only on windows of utterances
instead of full meetings. The average length of an
action item discussion is 7.8 utterances, and 92% of
action items are at most 15 utterances long. Hence
we allow the system to have access only to 15 utter-
ance windows.

Secondly, we compare the performance of a Sup-
port Vector Machine (SVM) categorical classifier,
as used by Purver et al. (2007), against a Hidden
Markov model (HMM). The HMM is a sequential
model, and so assuming that action item discussions
exhibit regularities in sequences of utterance types,
it may perform better.

Thirdly, we also investigate how robust classifier
performance is with regard to when the human input
is given. We first consider a case in which partici-
pants always press a button right at the end of an ac-
tion item discussion, and then look at a presumably
more realistic case in which participants may press
the button at different times in relation to the end of
an action item discussion. This allows us to inves-
tigate the extent to which performance degrades in
less systematic and more realistic situations.

Our second experiment is concerned with extract-
ing words from AIDAs that can be used to generate a
useful descriptive summary of an action item discus-
sion. As mentioned in the previous section, the fact
that utterances can be tagged with multiple AIDAs
complicates the task of extracting information for
summarization purposes, since we need to distin-

guish between bits of information related to different
AIDAs but contained within a single utterance. We
address this issue in Section 5, focusing on those ut-
terances that have been simultaneously tagged with
classes D and O. Again, we compare performance
of categorical (SVM) and sequential (HMM) classi-
fiers.

For our two experiments, we used the ICSI Meet-
ing Corpus (Janin et al., 2004), which contains
recordings and manual transcriptions of naturally
occurring research group meetings. In particu-
lar, we used the annotated sub-corpus of Purver et
al. (2007), which consists of 18 ICSI meeting tran-
scripts annotated using the AIDA classes shown in
Table 1. The annotations also include a summary
description for every instance of an AIDA class, cre-
ated by manual selection of words and phrases from
the gold-standard transcripts.

4 Experiment I: Targeted AIDA Detection

In this section we present our experiment on detect-
ing AIDAs from targeted regions of meeting tran-
scripts.

4.1 Data

The 18 ICSI meetings in our subcorpus have been
annotated with 190 action item discussions in total
(10.6 action items per meeting on average). To sim-
ulate user input, we generated two different data-sets
from this corpus: a systematic input data-set and a
non-systematic input data-set. The systematic input
data-set was generated by extracting 190 sections of
15 utterances, and for each the last utterance corre-
sponded to the last AIDA of an action item. This
data-set simulates a scenario where participants al-
ways press a button right at the end of an action item
discussion. The non-systematic data-set simulates
a more realistic situation where user input is given
at random points towards the end of an action item
discussion. Here we allow the system to look 10
utterances backwards and 5 forward from the point
when the input is given. The data-set was generated
by extracting 190 sections of 15 utterances, where
the input is assumed to be randomly given either im-
mediately after the last AIDA of an action item dis-
cussion, or 1, 2, 3 or 4 utterances earlier.

Targeting sections of dialogue that contain action



item discussions obviously reduces AIDA sparse-
ness considerably. Averaging over the systematic
and non-systematic input data-sets (which are very
similar in this respect), 13.7% of utterances (around
2 on average per window) are tagged with class D,
4.4% (around 0.6 per window) are tagged with class
T, 9.5% (around 1.4 per window) are tagged with
class O, and 14.6% (around 2.2 per window) are
tagged with class A.

4.2 Classifiers & Features
We use the linear-kernel support vector machine
classifier SVMlight (Joachims, 1999) and the struc-
tural support vector machine classifier SVMhmm
(Altun et al., 2003), which trains models that are iso-
morphic to hidden Markov models.

We train four individual SVM classifiers—one for
each AIDA class—and compare their performance
to that of one single HMM classifier that uses six
different labels for the model states: labels D, T, O,
and A for each of the AIDA classes, plus a label X
for utterances outside the action item discussion and
an insertion-class label I for those utterances inside
an action item discussion that do not belong to any
AIDA class. In all cases, we evaluate performance
using 18-fold cross-validation, with each fold con-
taining those 15-utterance windows that belong to
the same meeting.

To train the classifiers, we use similar features
to those of Purver et al. (2007), derived from the
properties of the utterances in context: lexical uni-
grams, durational features from the transcriptions,
dialogue act tags from the ICSI-MRDA annotations
(Shriberg et al., 2004), temporal expression tags us-
ing the MITRE TIMEX tool, as well as contextual
features consisting of the same features for the im-
mediately preceding and following 5 utterances.

4.3 Results
The results reported in Purver et al. (2007) for the
task of identifying AIDAs from whole meetings are
shown in Table 2. Using simulated participant input
to target regions of dialogue that contain action item
discussions, we are able to improve these baseline
results by more than 30% (see Table 3).

Table 3 shows the scores we obtained when simu-
lated participant input was provided, systematically
at the end of an action item discussion and non-

D T O A
Recall .19 .15 .21 .18
Precision .18 .46 .27 .16
F-score .19 .22 .24 .17

Table 2: SVMs trained on whole meeting transcripts

D T O A
Recall .66 .57 .66 .78
Precision .51 .45 .51 .49
F-score .57 .51 .57 .60
Recall .56 .52 .62 .82
Precision .45 .45 .50 .44
F-score .50 .48 .55 .57

Table 3: SVMs trained on targeted regions; system-
atic input (top) vs. non-systematic input (bottom)

systematically at any point in the second half of the
discussion. In this case the results for these two dif-
ferent data-sets are very similar. The non-systematic
input data-set yields slightly lower F-scores, but the
drop is only statistically significant for classes D and
A (p < 0.05 on a paired t-test). The slightly lower
results may be due to the fact that some AIDAs may
not fall into the 15 utterance window the classifier
is looking at (for instance, if the input is given at
the end of the action item and the discussion is more
than 10 utterance long, then since the classifier is
only looking 10 utterances back, the AIDA(s) at the
beginning of the action item discussion are not con-
sidered), which reduces the number of available pos-
itive examples.1

Table 4 shows the results we obtained when we
used a single HMM instead of four independent
SVM classifiers. While recall is significantly lower
for all classes (p < 0.05) leading to a drop of F-
scores, the sequential model is able to achieve good
precision results. In contrast to the SVMs, how-
ever, using the non-systematic input data-set with
the HMM classifier leads to a statistically significant
drop in performance, especially for classes A and D,
where both recall and precision decrease (p < 0.01).
This is perhaps not surprising, since the variability
of the non-systematic data-set disrupts the sequen-

1A possible way of compensating for this would be to in-
crease the size of the window. This however is not an optimal
solution since the bigger the window the sparser the AIDAs.



D T O A
Recall .48 .33 .45 .54
Precision .53 .52 .50 .53
F-score .50 .40 .48 .53
Recall .32 .22 .32 .38
Precision .45 .41 .46 .40
F-score .37 .29 .38 .39

Table 4: HMM trained on targeted regions; system-
atic input (top) vs. non-systematic input (bottom)

tial organization that drives this kind of model.
While lexical features were the most useful in all

cases, we observed that using the MRDA dialogue
act tags commitment and suggestion im-
proved precision significantly, especially for classes
O and D. TIMEX tags boost scores for class T, al-
though using targeted regions does not improve pre-
cision for this class.

In summary, using online input to target regions
of dialogue where an action item is being discussed
can improve AIDA detection substantially when
compared to a no-input approach, even if the input
is given randomly towards the end of the action item
discussion. Although the sequential model yielded
good precision scores, its performance was less ro-
bust to non-systematic user input. A possible reason
for its lower recall even with the systematic data-set
is that HMMs may not be so well suited when target
classes are sparse:2 if the model fails to hypothe-
size one AIDA where it should, it may then fail to
hypothesize subsequent AIDAs. SVMs do not have
this problem because each utterance is assessed in-
dependently.

5 Experiment II: Summarization of
Utterances Tagged with Multiple AIDAs

Having indentified the constituent utterances in an
action item, the next task is to summarize their ac-
tion item-related semantic content so that it can be
presented in a to-do list for the user. Here, we use
a different methodology from Purver et al. (2007)
that does not require a parser, and concentrate on
extracting summary-worthy words from utterances
that have been tagged with multiple AIDAs. While

2As mentioned in Section 4.1, AIDA classes in targeted re-
gions make up between 4.4% and 14/6% of utterances.

in general there is a large degree of independence be-
tween class distributions (with most cosine distances
below 0.3), classes D and O often overlap, yielding a
between-class cosine distance of 0.55 (where 1 rep-
resents exact correlation and 0 total independence).
Hence we concentrate on those utterances that have
been tagged as both ownership (O) and task descrip-
tion (D).

5.1 Methodology
In our 18 meeting corpus there are 162 utterances
that have been tagged as both D and O. These ut-
terances contain a total of 2697 words, 409 of which
have been annotated as summary-worthy for class O,
and 1015 as summary-worthy for class D. Example
(2) shows a D + O utterance with the gold-standard
summary-worthy phrases indicated in square brack-
ets.

(2) It would be great if [you]O could um not tran-
scribe it all but uh [pick out some stuff ]D

We use gold-standard extractive summaries as tar-
gets and train a classifier to decide whether or not
each word in the manual transcription of a D + O ut-
terance is summary-worthy for classes O and D, re-
spectively. This approach exploits the fact that crit-
ical phrases that contain summary-worthy informa-
tion for different AIDAs display characteristic syn-
tactic, semantic, and lexical features.

To train our classifiers we used lexical trigrams
(including the current word, and the immediately
preceding and following words) and Part-of-Speech
(PoS) tags generated by the Stanford PoS tagger
(Toutanova and Manning, 2000). In all cases, testing
was performed using 10-fold cross-validation. We
experimented with the following types of classifiers:

– SVM: Two independent classifiers each trained
to distinguish O and D words, respectively,
from other words.

– SVM (O/D): One classifier trained to distin-
guish between O, D, and other words.

– HMM (B/I): One classifier trained to distin-
guish between O words (beginning and inside
of sequence), D words (beginning and inside of
sequence), and other words.3

3The end of the sequence is labelled with the inside (I) tag.



5.2 Evaluation

We evaluated each classifier’s performance against
the manually-annotated summary descriptions. Re-
call was therefore the proportion of words in the
gold-standard summaries which overlapped with the
words extracted by the classifiers; precision was
the proportion of words extracted by the classifiers
which also appear in the gold-standard summaries.

The O and D classes are compared to different
baselines. Since the role of the O class is to assign
responsibilty for a task, a large number of utterances
tagged with O contain names or pronouns identify-
ing the responsible party. Hence it is reasonable to
use a baseline which tags all instances of first and
second person personal pronouns (I, you, we) as pos-
itive. For class D, there was no clear majority POS
class, so we settled on a baseline that tagged half of
all words in D utterances as positive, where this half
was selected randomly.

5.3 Results

Table 5 shows results for the different classifiers.
All of the classifiers achieved substantially higher F-
scores than the baseline for both ownership (O) and
task description (D).

Ownership Description
Model Re Pr F1 Re Pr F1
Baseline .39 .59 .47 .53 .38 .44
SVM .76 .56 .64 .80 .64 .71
SVM (O/D) .61 .67 .64 .74 .68 .71
HMM (B/I) .61 .69 .65 .74 .71 .73

Table 5: Extraction of summary-worthy O/D words

For O, all of the classifiers achieved very similar
F-scores. However a t-test shows that the HMM’s
score is significantly higher than the SVM(O/D)
(p < 0.005). For D, the HMM performed signifi-
cantly better than both the SVM(O/D) and SVM(D)
classifiers in terms of precision and F-score (p <
0.01). Its F-score of .73 is much higher than that
achieved by the best model of Purver et al. (2007):
.38, lower even than their baseline which was the en-
tire 1-best utterance transcription (see Section 2.4).
Although those results are not directly comparable
to ours, (since we used gold-standard transcriptions
rather than WCNs, and focused on utterances that

had been tagged with 2 rather than 1 AIDA class),
we believe they show that the general approach has
promise, and that the sequential model is well-suited
to this task.

6 Conclusions & Future work

We have simulated a “human-initiative targeting”
approach to action item detection where participants
provide input—e.g. by pressing a button—to indi-
cate that an action item is being discussed, which
allows a system to concentrate on relevant dialogue
regions. As a result we were able to improve the de-
tection of action item-related dialogue acts (AIDAs)
very substantially, obtaining F-scores that are twice
as high as when using whole meetings.

Categorical models (SVM) proved to be more
useful than sequential ones (HMM) for this task.
The HMM yielded good precision scores but signif-
icantly lower recall, and so the overall performance
was lower for this type of classifier. When we com-
pared systematic user input given at the end of an ac-
tion item discussion with less systematic input given
randomly at different points towards the end of the
action item, we found that the SVMs were more ro-
bust than the sequential model. This is not surpris-
ing since such unsystematic behavior disrupts the se-
quential organization which the HMM relies on.

We also addressed the task of extracting
summary-worthy information from utterances that
had been tagged with two AIDAs—ownership and
task description—and found sequential models to be
useful for this task, achieving F-scores of .65 and
.73, respectively.

In the future we plan to experiment with a two-
stage classification approach. This would involve
first using SVMs to make classifications and pro-
vide confidence scores independent of sequence, and
then second, giving this information to a sequential
model that makes the final classifcations. Combin-
ing the two different types of classifier in this way
may produce better results for both AIDA classifica-
tion and summarization.

Our findings with respect to targeted understand-
ing are useful, but of course, real user behavior dur-
ing actual meetings will differ in many respects,
and will surely prove more variable than what we
have simulated here. Bearing this in mind, fu-



ture work will involve conducting an experiment in
which we ask actual meeting participants to provide
live button-pushing input during meetings when it
occurs to them that an action item is being discussed.
Only then can we know whether the approach de-
scribed in this paper will be robust enough to handle
the vagaries of real human behavior.

Acknowledgements
This material is based upon work supported
by the Defense Advanced Research Projects
Agency (DARPA) under Contract No. FA8750-07-
D-01850004. Any opinions, findings and conclu-
sions or recommendations expressed in this material
are those of the authors and do not necessarily reflect
the views of the DARPA, or the Air Force Research
Laboratory.

References
Yasemin Altun, Ioannis Tsochantaridis, and Thomas

Hofmann. 2003. Hidden Markov support vector ma-
chines. In Proceedings of the 20th International Con-
ference on Machine Learning (ICML).

John Dowding, Jean Mark Gawron, Doug Appelt, John
Bear, Lynn Cherny, Robert Moore, and Douglas
Moran. 1993. GEMINI: a natural language system
for spoken-language understanding. In Proceedings of
the 31st Annual Meeting of the Association for Com-
putational Linguistics (ACL).

Patrick Ehlen, Matthew Purver, and John Niekrasz. 2007.
A meeting browser that learns. In Proceedings of the
AAAI Spring Symposium on Interaction Challenges for
Intelligent Assistants.

Patrick Ehlen, Matthew Purver, John Niekrasz, Kari Lee,
and Stanley Peters. 2008. Meeting adjourned: Off-
line learning interfaces for automatic meeting under-
standing. In Proceedings of the International Con-
ference of Intelligent User Interfaces, Canary Islands,
Spain.

Pey-Yun Hsueh and Johanna Moore. 2007. Automatic
decision detection in meeting speech. In Proceedings
of MLMI 2007, Lecture Notes in Computer Science.
Springer-Verlag.

Adam Janin, Jeremy Ang, Sonali Bhagat, Rajdip Dhillon,
Jane Edwards, Javier Marcı́as-Guarasa, Nelson Mor-
gan, Barbara Peskin, Elizabeth Shriberg, Andreas
Stolcke, Chuck Wooters, and Britta Wrede. 2004. The
ICSI meeting project: Resources and research. In Pro-
ceedings of the 2004 ICASSP NIST Meeting Recogni-
tion Workshop.

Thorsten Joachims. 1999. Making large-scale SVM
learning practical. In B. Schölkopf, C. Burges, and
A. Smola, editors, Advances in Kernel Methods – Sup-
port Vector Learning. MIT Press.

William Morgan, Pi-Chuan Chang, Surabhi Gupta, and
Jason M. Brenier. 2006. Automatically detecting ac-
tion items in audio meeting recordings. In Proceed-
ings of the 7th SIGdial Workshop on Discourse and
Dialogue, pages 96–103, Sydney, Australia.

Gabriel Murray and Steve Renals. 2007. Towards on-
line speech summarization. In Proceedings of INTER-
SPEECH 2007, Antwerp, Belgium.

Gabriel Murray, Steve Renals, and Jean Carletta. 2005.
Extractive summarization of meeting recordings. In
Proceedings of the 10th European Conference on
Speech Communication and Technology (INTER-
SPEECH - EUROSPEECH).

Matthew Purver, Patrick Ehlen, and John Niekrasz. 2006.
Detecting action items in multi-party meetings: Anno-
tation and initial experiments. In MLMI 2006, Revised
Selected Papers, Lecture Notes in Computer Science.
Springer.

Matthew Purver, John Dowding, John Niekrasz, Patrick
Ehlen, Sharareh Noorbaloochi, and Stanley Peters.
2007. Detecting and summarizing action items in
multi-party dialogue. In Proceedings of the 8th SIG-
dial Workshop on Discourse and Dialogue, Antwerp,
Belgium.

Alison J. S. Sanford, Anthony J. Sanford, Jo Molle, and
Catherine Emmott. 2006. Shallow processing and at-
tention capture in written and spoken discourse. Dis-
course Processes, 42(2):109–130.

Elizabeth Shriberg, Raj Dhillon, Sonali Bhagat, Jeremy
Ang, and Hannah Carvey. 2004. The ICSI Meeting
Recorder Dialog Act (MRDA) Corpus. In Proceed-
ings of the 5th SIGdial Workshop on Discourse and
Dialogue, pages 97–100, Cambridge, Massachusetts.

Kristina Toutanova and Christopher Manning. 2000. En-
riching the knowledge sources used in a maximum
entropy part-of-speech tagger. In Proceedings of the
Joint SIGDAT Conference on Empirical Methods in
Natural Language Processing and Very Large Corpora
(EMNLP/VLC-2000).

Klaus Zechner. 2002. Automatic summarization of
open-domain multiparty dialogues in diverse genres.
Computational Linguistics, 28(4):447–485.


