
A Dynamic Logic Formalisation
of Inquiry-Oriented Dialogues∗

Raquel Fernández
Department of Computer Science

King’s College London
raquel@dcs.kcl.ac.uk

Abstract

In this paper we explore the possi-
bility of using the paradigm of Dy-
namic Logic (DL) to formalise in-
formation states and update pro-
cesses on information states. In
particular, we present a formalisa-
tion of Inquiry-Oriented Dialogues in
terms of Ginzburg’s dialogue game-
board. From a more general point of
view, we show that DL is specially
well suited to develop rigorous for-
mal foundations for an approach to
dialogue dynamics based on informa-
tion state updates.

1 Introduction

In communication modelling, one can identify
two main traditions: on the one hand, classical
Artificial Intelligence approaches, inspired by
ideas originated in analytical philosophy, are
built on general models of rational agency, em-
phasising the role of mental attitudes such as
knowledge, belief, desire, intention and so on.
In order to formalise these notions, these ap-
proaches (most typically the BDI1 framework;
see e.g. (Cohen and Levesque, 1990; Grosz
and Sidner, 1990; Sadek, 1991)) strongly rely
on detailed logical theories of rational action
based on modal logics with a possible worlds
semantics. On the other hand, one can distin-
guish a parallel line of research, following the
work of philosophers like (Lewis, 1979) and

∗Published in Proceedings of the 6th CLUK Collo-
quium, pages 17-24, Edinburgh, UK, 2003.

1Beliefs, Desires and Intentions.

(Stalnaker, 1979), which, instead of focusing
on the intentional attitudes of the interact-
ing agents, highlights the public and conven-
tional aspects of communication. Under this
perspective, a dialogue can be seen as a con-
versational scoreboard that keeps track of the
state of the conversation.

A particular development within this latter
tradition, which has received much attention
in recent dialogue modelling, is the use of in-
formation states to characterise the state of
each participant’s information as the conver-
sation proceeds. The information state ap-
proach to dialogue, as developed for instance
in the TRINDI project (e.g. (Bohlin et al.,
1999; Traum et al., 1999), assumes that some
aspects of dialogue management are best cap-
tured in terms of the relevant information that
is available to each dialogue participant at
each state of the conversation, along with a
full account of the possible update mechanisms
that change this information. Thus, unlike
classical, intentional accounts built on the ba-
sis of axiomatic theories of rational agency,
information state approaches tend to avoid
the use of logical frameworks and concentrate
on dialogue-specific notions such as common
ground, discourse obligations and questions
under discussion.

In this paper we explore the possibility of
using a modal logic paradigm, namely Dy-
namic Logic (Harel et al., 2000), familiar from
BDI approaches, to formalise not motivational
attitudes, but information states and update
processes on information states. In particu-
lar, we present a dynamic logic formalisation
of Inquiry-Oriented Dialogues (IODs), in the

sense of (Larsson, 2002), built on Ginzburg’s
dialogue gameboard (DGB), as introduced in
(Ginzburg, 1996; Ginzburg, ms). From a more
general point of view, we show that Dynamic
Logic is specially well suited to develop rig-
orous formal foundations for an approach to
dialogue dynamics based on information state
updates.

1.1 Overview

The structure of the paper is as follows: First,
we introduce the basic notions of First-Order
Dynamic Logic (DL), describing its syntax
and semantics. After briefly characterising the
structure of the DGB in Section 3, our formali-
sation is presented in Section 4. We define the
formal language and its semantic interpreta-
tion, and discuss how the different components
of the DGB have been modelled. In section 5,
we formalise conversational interaction as DL
programs and show how to specify the correct-
ness of a program that intends to characterise
the class of IODs. Finally, in section 6, we
present our conclusions and indicate some di-
rections for future research.

2 Dynamic Logic: Basic Notions

The formalisation we present in this paper is
based on the first-order version of Dynamic
Logic (DL) as it is introduced in (Harel et al.,
2000) and (Goldblatt, 1992). In short, DL is
a multi-modal logic with a possible worlds se-
mantics, which distinguishes between expres-
sions of two sorts: formulae and programs.
The language of DL is that of first-order logic
together with a set of modal operators: for
each program α there is a box [α] and a di-
amond <α> operator. The set of possible
worlds (or states) in the model is the set of
all possible assignments to the variables in the
language. Atomic programs change the values
assigned to particular variables. They can be
combined to form complex programs by means
of a repertoire of program constructs, such as
sequence ; , choice ∪, iteration * and test ?.

Originally, DL was conceived as a formal
system to reason about programs, formalis-
ing correctness specifications and proving rig-

orously that those specifications are met by a
particular program. From a more general per-
spective, however, it can be viewed as a for-
mal system to reason about transformations
on states. In this sense, it is particularly well
suited to provide a fine characterisation of the
dynamic processes that take place in dialogue
as updates on the information states of the di-
alogue participants.

In the remainder of this section, we formally
introduce the syntax and the semantics of DL.

2.1 Syntax

The language of first-order DL is built upon
First-Order Logic. It is generated by some
first-order vocabulary Σ made up of a set of
predicate symbols, a set of function symbols,
a set of constants and a set of variables. In
addition to the propositional connectives and
the universal and existential quantifier sym-
bols, the language also includes two modal op-
erators [] and <>, a set Π of programs α and
the program constructs ;, ∪, * and ?.

Formulae and Programs. Atomic formu-
lae ϕ are atomic, first-order formulae of the
vocabulary Σ, including > and ⊥. The set Φ
of well-formed formulae A is then defined as
follows:

A ::= ϕ | ¬A | A1 ∧A2 | A1 ∨A2 |A1→A2 |
∀xA | ∃xA | [α] A |<α>A

In the basic version of DL, atomic programs
π are simple assignments (x := t), where x
is an individual variable and t is a first-order
term. The set Π of programs α is defined
as follows, where ϕ is any quantifier-free first-
order formulae:

α ::= π | α1;α2 | α1 ∪ α2 | α∗ | ϕ?

2.2 Semantics

As usual in modal logic, the language is inter-
preted in a possible worlds semantical struc-
ture. A model is a structureM = {A, S, R, V }
where
• A = {D, I} is a first-order structure;
• S is a non-empty set of states;

M |=s ϕ iff A |= ϕ[v], for atomic formulae ϕ
M |= > > is always true
M 6|= ⊥ ⊥ is never true
M |=s (t1 = t2) iff vs(t1) equals vs(t2), for terms t1 and t2
M |=s ¬A iff M 6|=s A
M |=s (A1 ∧A2) iff M |=s A1 and M |=s A2

M |=s (A1 ∨A2) iff M |=s A1 or M |=s A2

M |=s (A1 → A2) iff M 6|=s A1 or M |=s A2

M |=s ∃xA iff there is an a ∈ D, s.t. s(x|a)s′ and M |=s′ A
M |=s ∀xA iff for all a ∈ D, if s(x|a)s′ then M |=s′ A
M |=s<α> A iff there is an s′ ∈ S, s.t. sRαs′ and M |=s′ A
M |=s [α] A iff for all s′ ∈ S, if sRαs′ then M |=s′ A

Table 1: Definition of truth

• R is a function assigning to each program
α ∈ Π a binary relation Rα ⊆ S × S;
• V is a function V : S → SA assigning to

each s ∈ S an A-valuation vs : Var→ D, i.e. a
mapping from the set of variables to elements
in the domain.

For s, s′ ∈ S, we will write s(x|a)s′ to mean
that vs′(x) = a and vs′(y) = vs(y) whenever
y 6= x.

Now we are ready to define the truth-
relation M |=s A of a formula A at state s
in model M. As usual in first-order logic, we
write A |= ϕ[v] to mean that ϕ is true in A un-
der valuation v. For conciseness, we will omit
the part dealing with the semantics of first-
order terms. The formal definition of truth in
a model is shown in Table 1.

From the relations Rα ⊆ S × S, we can in-
ductively define accessibility relations for the
compound programs. Table 2 shows the acces-
sibility relations for basic atomic programs and
compound programs for all states s, s′ ∈ S.

sRx:=ts
′ iff s(x|vs(t))s′

sRα;βs
′ iff ∃s′′ s.t. sRαs′′ and s′′Rβs′

sRα∪βs
′ iff either sRαs′ or sRβs′

sRα∗s
′ iff there are finitely many states

s1 . . . sn s.t. sRαs1 . . . snRαs
′

sRϕ?s
′ iff s = s′ andM |=s ϕ

Table 2: Accessibility relations

Stack Variables. Interesting variants of DL
arise from allowing auxiliary data structures
such as stacks and arrays. Following (Harel
et al., 2000), we will consider a version of
DL in which programs can manipulate some
variables as last-in-first-out stacks. Formally,
stacks are modelled as variables ranging over
finite strings of elements in the domain. To
manipulate these stack variables, two addi-
tional atomic programs X.pop and X.push(x)
are included. Here X is some stack variable (i.e.
a string of elements) and x is an element in
X. The accessibility relations for these two new
atomic programs are shown in Table 3, where,
for a string σ and an element a, tail(a ·σ) = σ
and head(a · σ) = a.

sRX.push(x)s
′ iff s(X | vs(x) · vs(X))s′

sRX.pops
′ iff s(X | tail(vs(X))s′

Table 3: push and pop programs

3 The Dialogue Gameboard

The dialogue gameboard (DGB) plays a cen-
tral role in the theory of context developed by
Ginzburg. It can be seen as the context rel-
ative to which conventionalised interaction is
assumed to take place. The DGB provides a
structured characterisation of the information
which the dialogue participants view as com-
mon in terms of three main components: a
set of facts, which the dialogue participants

take as common ground, a partial ordered set
of questions under discussion qud, and the
latest-move made in the dialogue. Inspired
by the notion of dialogue game (e.g. (Hamblin,
1970; Carlson, 1983)), Ginzburg assumes that
each move made by a dialogue participant de-
termines a restricted set of options for follow-
up in the dialogue, constraining what can be
said and how.

The framework has been used to provide an
account of the kind of context that licenses
elliptical responses in dialogue (Ginzburg,
1999; Ginzburg et al., 2001; Fernández and
Ginzburg, 2002) and has also been the starting
point of implemented dialogue systems such as
GoDiS (Cooper et al., 2001) and IBiS (Lars-
son, 2002).

4 A DL Formalisation of the DGB

To model context in dialogue as it is under-
stood in Ginzburg’s DGB, we will consider a
particular domain of interpretation which in-
cludes entities such as agents (the dialogue
participants), questions, propositions and dia-
logue moves. For the sake of simplicity, in this
paper we restrict ourselves to four dialogue
move types, namely ask, assert, clarification
request and acknowledge. The main strategy
to reason about the effects of conversational
interaction on the DGB, will be to represent
its main components as variables ranging over
different domains. In what follows, we intro-
duce the details of our formalism.

4.1 Introducing the Formalism

Let L be a first-order DL language with equal-
ity made up of unary predicates Q,P,G,DP ,
binary relations infl(uences) and ans(wers),
a ternary relation Utt, a function symbol
whether, constants a, b, ask, ass, clr and
ack, and an infinite set Var of variables x. Var
includes a set V1 = {LMa, LMb, UTT, turn,Goal}
of special individual variables and a set
V2 = {FACTS,QUDa, QUDb, PENDINGa, PENDINGb}
of stack variables.

Language L is interpreted over a first-order
structure A = {D, I}. The domain D of A
is made up of a set of dialogue participants

DPD = {a,b}, a finite set of questions QD,
a finite set of propositions PD, a set of dia-
logue moves M = {ask, ass, clr, ack}, a sin-
gleton set {1}, a binary relation infl on QD,
a binary relation ans between PD and QD, a
set of utterances UttD, that will be modelled
as triples (a,m, r) of a dialogue participant, a
dialogue move and either a propositions or a
question; and a function whether such that for
every proposition p, whether(p) ∈ QD. I is a
function such that,

I(Q) = QD I(G) = {1}
I(P) = PD I(ask) = ask

I(DP) = DPD I(ass) = ass
I(a) = a I(clr) = clr
I(b) = b I(ack) = ack

I(Utt) = UttD⊆DPD×MD×(PD∪QD)
I(infl) = infl
I(ans) = ans

I(whether) = whether :PD→ QD

Recall that stack variables range over strings
of elements in the domain. Let Q∗, P ∗, Utt∗

denote the set of all finite-length strings over
QD, PD and UttD, respectively. This will be
used later to model the stack variables in V2.

4.2 The DGB Components

As mention earlier, in DL transitions between
states are changes in variable assignment. We
therefore represent the dynamic aspects of the
information state as variables ranging over dif-
ferent domains. In particular, we use the vari-
able names FACTS, QUD and LM to represent the
three different components of the DGB. We
also include two additional variables UTT and
PENDING. New utterances are assigned to UTT
and, in case the addressee cannot ground their
content, they are also assigned to PENDING.
This allows to distinguish between two kinds
of grounding: content grounding (the value of
UTT is assigned to LM) and proposition ground-
ing (a proposition is incorporated onto FACTS).

To model content grounding we use a unary
predicate G and assume that G(x) only holds
when the addressee of a particular utterance
can ground its content. That is, according
to the formalisation introduce in Section 4.1,
G(x) will be true in all those states where

v(x) = 1. As an abbreviation, we will write
G when G(x) and v(x)=1, and ¬G otherwise.

Turn-taking is modelled by means of a vari-
able turn, ranging over the set of dialogue par-
ticipants. turn = i indicates that DP i is the
turn-holder, that is, that i is meant to be the
speaker of the next utterance. We also in-
troduce a special variable Goal, ranging over
propositions. The (fairly simple) idea is that
an IOD is driven by the goal of acquiring some
piece of information, namely the proposition
assigned to Goal.

One of the assumptions behind the DGB
is that a realistic characterisation of context
must allow for asymmetries between the in-
formation available to the different dialogue
participants at a given point in a conversa-
tion. Thus, although the DGB attempts to
represent the publicly accessible information
at each state of the dialogue, it does so in
terms of the collection of individual informa-
tion states of the participants. In the cur-
rent formalisation, however, only QUD, LM and
PENDING are relative to each dialogue partici-
pant, while FACTS and UTT are unique. This
is an obvious choice for the case of UTT, which
is just used to hold new contributions pub-
licly uttered by any dialogue participant. In
the case of FACTS, however, this is a simplifi-
cation motivated by the fact that the current
formalisation only attempts to model simpli-
fied situations where FACTS is assumed to be
empty at the initial state, and only proposi-
tions that have been commonly agreed on can
be integrated into it. Thus, there is no room
for disagreements in this respect, and the set
of FACTS is always the same for the two dia-
logue participants.

We model QUD and PENDING as stacks, in a
way that is very much inspired by qud’s actual
implementation in the GoDiS dialogue system
(Cooper et al. 2001). Although we think of
FACTS as a set,2 for technical reasons that will
become clear below, we also model FACTS as a

2Arguably, there are reasons to postulate some kind
of order within the set of facts. See (Ginzburg, 1997)
for an account of the restrictions on which contextually
presupposed facts can serve as antecedents for some
anaphoric elements.

stack. On the other hand, UTT and LM range
over utterances, i.e. triples (i,m, r), where i
is interpreted as the speaker of u, m is the
dialogue move performed by u and r represents
its content. Formally:

v(QUDa) ∈ Q∗ v(LMa) ∈ UttD

v(QUDb) ∈ Q∗ v(LMb) ∈ UttD

v(PENDINGa) ∈ Utt∗ v(UTT) ∈ UttD

v(PENDINGb) ∈ Utt∗ v(turn) ∈ DPD

v(FACTS) ∈ P ∗ v(Goal) ∈ PD

The main reason why FACTS is modelled as
a stack variable is that we want to be able
to check whether a particular element (typi-
cally, the proposition assigned to Goal) is in
FACTS. Modelling FACTS as a variable ranging
over strings of propositions allows us to use the
pop program to check whether some element
x belongs to FACTS or not: if x is in FACTS and
we pop the stack repeatedly, x will show up at
some point as the head of the stack. Thus, we
will use the notation x ∈ FACTS as an abbrevi-
ation for < FACTS.pop∗> head(FACTS) = x.

5 Representing Interaction in IOD

Our main aim here is to show that the for-
malisation outlined in previous sections can be
used to characterise the internal structure of
conversational interaction. In particular, we
restrict our account to Inquiry-Oriented Dia-
logues (IODs), in the sense of (Larsson, 2002).3

Fairly abstractly, IODs can be described as
(possibly discontinuous) question-answer se-
quences, typically driven by some information-
seeking goal.

To formalise these conversational exchanges,
we define complex DL programs (those shown
in Table 4 and Table 5). After having intro-
duced some abbreviations, in the remainder of
this section we explain the programs in detail.
Finally, we show how to specify the correctness
of a program that is meant to characterise the
class of IODs.

Abbreviations To simplify notation, the
following abbreviations are used, where for all
p q, P (p) and Q(q):

3More precisely, to non-negotiative IODs.

Aska(q) UTT := (a, ask, q); Clra(q) UTT := (a, clr, q);
LMa := UTT; LMa := UTT;
QUDa.push(q); QUDa.push(q);
UPPb; LMb := LMa; QUDb.push(q);
turn := b turn := b

Assa(p) UTT := (a, ass, p); Acka(p) UTT := (a, ack, r);
LMa := UTT; LMa := UTT;
QUDapush(whether(p)); LMb := LMa;
UPPb; FACTS.push(p);
turn := b QUDa.pop; QUDb.pop

Table 4: Moves

Ask(q) = Aska(q) ∪ Askb(q)
Ass(p) = Assa(p) ∪ Assb(p)
Clr(q) = Clra(q) ∪ Clrb(q)

Ack(p) = Acka(p) ∪ Acka(p)

AP = AP(p1) ∪ . . . ∪AP(pn)
QP = QP(q1) ∪ . . . ∪QP(qm)

UPPa = UPPa(q1) ∪ . . . ∪UPPa(qm)

Also, we use QP 6=q as the union of QP(qi)
for all qi such that Q(qi) excluding q.

5.1 Moves and Protocols

The current formalisation models three dif-
ferent scenarios: asking and responding to a
question, integrating a proposition into the
commonly agreed facts, and asking for clar-
ification when the content of an utterance
has not been grounded. Following Ginzburg’s
work, we model these scenarios in the form
of protocols: Querying Protocol (QP), Asser-
tion Protocol (AP), and Utterance Processing
Protocol (UPP). Protocols can be thought of
as means to characterise the range of possible
follow-ups in cooperative dialogue or, alterna-
tively, as a representation of the obligations
the dialogue participants are socially commit-
ted to (see (Traum and Allen, 1994; Kreutel
and Matheson, 1999)). In the formalisation we
present here, for instance, questions have to be
answered (possibly after additional question-
answer sub-dialogues) and propositions have
to be acknowledged before being introduced
into the commonly agreed facts.

As shown in Table 5, protocols are modelled
as complex programs performed by conversa-
tional moves. Each conversational move is also

represented by a compound program which de-
fines the effects of a particular utterance as
update operations on the DGB components.
Table 4 shows the programs corresponding to
our four dialogues moves for DP a.4

Following Ginzburg’s account, when a dia-
logue participant a utters an utterance u, LMa
is updated with u. When the content of LMa is
a question q, q is pushed onto QUDa (Ask(q)).
On the other hand, asserting a proposition p
raises the question whether p for discussion.
Thus, when the content of LMa is a proposi-
tion p, whether(p) will be pushed onto QUDa
(Ass(p)). At this stage, in Ask(q) and Ass(p)
UPP is called. UPP checks whether the ad-
dressee of u can ground its content. If that is
the case, then it updates her LM and QUD ac-
cordingly. Otherwise, if the addressee cannot
ground the content of u, u will be put aside
(i.e. pushed onto PENDING) and a clarification
question will be posited.

For simplicity, we assume that clarification
questions and acknowledgements are always
understood, so in Clr(q) and Ack(p) the ad-
dressee’s LM and QUD are updated accordingly,
without need to call UPP. As formalised in
Ack(p), uttering an acknowledgement has the
effect of incorporating a proposition p that was
under discussion into FACTS. Once p is pushed
onto FACTS, whether(p) can be downdated
from QUD.

The DL programs in Tables 4 and 5 can be

4The programs for DP b are defined accordingly,
(i.e. substituting a for b, and the other way round).
The same applies to UPPb.

AP(p) Ass(p);
Ack(p)

QP(q) Ask(q);
(AP ∪ (QP 6=q; AP));
QUDa.pop; QUDb.pop

UPPa(q) (G?; LMa := LMb;
QUDa.push(head(QUDb)) ∪

(¬G?; PENDINGa.push(UTT);
turn := a;
Clr(q); AP;
QUDa.push(head(PENDINGa));
PENDINGa.pop)

Table 5: Protocols

seen as a means to express the rules underlying
the structure of cooperative conversational in-
teraction in terms of update operations on the
DGB. However, we may also want additional
properties, not derivable form the programs,
to hold. For instance, according to QP(q), the
appropriate follow-ups after an Ask(q) move
are either an assertion (given that Ass(p) is
the first move within AP(p)) or a question
(given that Ask(q) is the first move within
QP 6=q). We may want to postulate that in
cooperative dialogue the assertion should be
an answer to the question, and that in case
we reply to a question with another question,
the second one should influence the first one.5

Once the programs are defined, we can use
them to formally write down these properties
as formulas that we postulate to be valid.

∀q (head(QUDa) = head(QUDb) = q →
∀p [AP(p)] ans(p, q))

∀q′ (head(QUDa) = head(QUDb) = q′ →
∀q [QP(q)] infl(q, q′))

The following formula provides a fairly sim-
ple formalisation of turn-taking:

∀ij (DP (i) ∧DP (j) ∧ (i 6= j) ∧ (turn = i) →
∀mr [UTT := (j,m, r)] ⊥)

5As is well known, the notion of answerhood and the
influences relation are two rather complex concepts.
This paper is not meant to provide any insights about
these notions.

5.2 Correctness Specification

A sequence of states that can occur from the
execution of a program α starting from a par-
ticular input state is called a trace. If we think
of a dialogue as a sequence of states, then the
set of all traces of a given program corresponds
to the class of dialogues characterised by that
program. In this sense, we can say that QP∗

characterises the class of IODs. In this section
we give a correctness specification for QP∗.

Typically, a specification of correctness con-
sists of a precondition ϕ and a postcondition
ψ. We say that a program is partially correct
with respect to a correctness specification ϕ/ψ
if, whenever the program is started in a state
satisfying ϕ then, if it halts, it does so in a
state satisfying ψ. A program is totally cor-
rect with respect to a specification ϕ/ψ if (i)
it is partially correct with respect to that spec-
ification, and (ii) it halts whenever it is started
in a state satisfying ϕ.

We call a state initial if all stacks are empty.
Let Init be a proposition which is true at
all those states s ∈ S such that valuation
vs assigns the empty string to all stack vari-
ables. Then, the following two formulas spec-
ify partial correctness (1) and termination (2)
of QP∗.

Init → [QP∗] Goal ∈ FACTS (1)
Init → <QP∗> > (2)

The conjunction of (1) and (2) specifies total
correctness of QP∗.

6 Conclusions and Future Work

In this paper we have explored the possibil-
ity of using DL to formalise IODs in terms
the of Ginzburg’s DGB. More specifically, we
have put forward a model where the compo-
nents of the DGB are represented by variables
ranging over different domains, while update
operations are brought about by program ex-
ecutions that involve changes in variable as-
signments. We have also given a correctness
specification for a program which is intended
to characterise the class of IODs.

Although this is still very much work in
progress, we believe that the formalisation,
even restricted to a particular kind of dia-
logues, shows that DL is an expressive and pre-
cise tool to formalise approaches to dialogue
modelling based on information state updates.

There are many issues that remain still
open, perhaps the most straightforward being
how to use the formalisation presented here
for instance to prove desirable properties of
actual dialogue systems. Work along these
lines has been done by Ljunglöf. In particular,
(Ljunglöf, 2000) presents a calculus for reason-
ing mathematically about the rule-based en-
gines developed within the TRINDI project.
We expect to show in our future research that
some version of DL can also be successfully
used to provide precise specifications of dia-
logue systems based on information state ap-
proaches.

Acknowledgements We wish to thank two
anonymous reviewers for CLUK6, Jonathan
Ginzburg and, especially, Ulle Endriss for very
helpful suggestions and discussion.

References

P. Bohlin, R. Cooper, E. Engdhal, and S. Larss-
son. 1999. Information states and dialogue
move engines. In Alexandersson, editor, IJCAI-
99 Workshop on Knowledge and Reasoning in
Practical Dialogue Systems.

L. Carlson. 1983. Dialogue Games. Synthese Lan-
guage Library. D. Reidel.

P. Cohen and H. Levesque. 1990. Rational in-
teraction as the basis for communication. In
P. Cohen, J. Morgana, and M. Pollack, editors,
Intentions in Communication. MIT Press.

R. Cooper, S. Larsson, J. Hieronymus, S. Erics-
son, E.Engdahl, and P. Ljunglof. 2001. Godis
and questions under discussion. In The TRINDI
Book.

R. Fernández and J. Ginzburg. 2002. Non-
Sentential Utterances: A Corpus Study. Traite-
ment automatique des languages, 43(2):13–42.

J. Ginzburg, H. Gregory, and S. Lappin. 2001.
SHARDS: Fragment resolution in dialogue. In
Proceedings of the Fourth International Work-
shop on Computational Semantics.

J. Ginzburg. 1996. Interrogatives: Questions,
facts, and dialogue. In S. Lappin, editor, Hand-
book of Contemporary Semantic Theory. Black-
well, Oxford.

J. Ginzburg. 1997. Structural mismatch in dia-
logue. In Proceedings of MunDial 97. Universi-
taet Muenchen.

J. Ginzburg. 1999. Ellipsis resolution with syntac-
tic presuppositions. In H. Bunt and R. Muskens,
editors, Computing Meaning: Current Issues in
Computational Semantics. Kluwer.

J. Ginzburg. ms. A semantics for inter-
action in dialogue. Forthcoming for CSLI
Publications. Draft chapters available from:
http://www.dcs.kcl.ac.uk/staff/ginzburg.

R. Goldblatt. 1992. Logics of Time and Computa-
tion. Lecture Notes. CSLI Publications.

B. Grosz and C. Sidner. 1990. Plans for discourse.
In P. Cohen, J. Morgana, and M. Pollack, edi-
tors, Intentions in Communication. MIT Press.

C. L. Hamblin. 1970. Fallacies. Methuen, London.

D. Harel, D. Kozen, and J. Tiuryn. 2000. Dynamic
Logic. Foundations of Computing Series. The
MIT Press.

J. Kreutel and C. Matheson. 1999. Modelling
questions and assertions in dialogue using obli-
gations. In Proceedings of Amstelog 99, the 3rd
Workshop on the Sematics and Pragmatics of
Dialogue, Amsterdam.

S. Larsson. 2002. Issue based Dialogue Manage-
ment. Ph.D. thesis, Gothenburg University.

D. Lewis. 1979. Score keeping in a language game.
Journal of Philosophical Logic, 8:339–359.

P. Ljunglöf. 2000. Formalizing the dialogue move
engine. In Proceedings of the Götalog Workshop.

M. D. Sadek. 1991. Dialogue acts as rational plans.
In Proceedings of the ESCA/ETR workshop on
multi-modal dialogue.

R. Stalnaker. 1979. Assertion. Syntax and Seman-
tics, 9. Academic Press.

D. Traum and J. Allen. 1994. Discourse obliga-
tions in dialogue processing. In Proceedings of
the 32nd annual meeting of the ACL.

D. Traum, J. Bos, R. Cooper, S. Larsson, I. Lewin,
C. Matheson, and M. Poesio. 1999. A model of
dialogue moves and information state revision.
In The TRINDI Book.

