
A Dynamic Logic Formalisation
of the Dialogue Gameboard

Raquel Fernández
Department of Computer Science

King’s College London
raquel@dcs.kcl.ac.uk

Abstract

This paper explores the possibility of
using the paradigm of Dynamic Logic
(DL) to formalise information states and
update processes on information states.
In particular, we present a formalisa-
tion of the dialogue gameboardintro-
duced by Jonathan Ginzburg. From a
more general point of view, we show
that DL is particularly well suited to de-
velop rigorous formal foundations for an
approach to dialogue dynamics based on
information state updates.

1 Introduction

A particular development that has received much
attention in recent work on dialogue modelling is
the use ofinformation statesto characterise the
state of each dialogue participant’s information as
the conversation proceeds. The information state
approach to dialogue, as developed for instance
in the TRINDI project (e.g. (Bohlin et al., 1999;
Traum et al., 1999)), assumes that some aspects of
dialogue management are best captured in terms of
the relevant information that is available to each
dialogue participant at each state of the conver-
sation, along with a full account of the possible
update mechanisms that change this information.
Unlike classical Artificial Intelligence approaches
built on the basis of axiomatic theories of rational
agency,1 information state accounts tend to avoid

1See e.g. (Cohen and Levesque, 1990; Grosz and Sidner,
1990; Sadek, 1991).

the use of logical frameworks and concentrate on
dialogue-specific notions such as common ground,
discourse obligations and questions under discus-
sion.

In this paper we explore the possibility of us-
ing a modal logic paradigm, namely Dynamic
Logic (Harel et al., 2000), originally conceived
as a formal system to reason about computer pro-
grams, to formalise information states and up-
date processes on information states. In partic-
ular, we present a dynamic logic formalisation
of Ginzburg’sdialogue gameboard(DGB) as in-
troduced in (Ginzburg, 1996; Ginzburg, ms) and
(Larsson, 2002). From a more general point of
view, we show that Dynamic Logic is particularly
well suited to develop rigorous formal foundations
for an approach to dialogue dynamics based on in-
formation state updates.

1.1 Overview

The structure of the paper is as follows: First,
we introduce the basic notions of First-Order Dy-
namic Logic, describing its syntax and semantics.
After briefly characterising the structure of the di-
alogue gameboard in Section 3, our formalisation
is presented in Section 4. We define the formal
language and its semantic interpretation, and dis-
cuss how the different components of the dialogue
gameboard have been modelled. In Section 5, we
show how the rules of conversational interaction
can be expressed within the formalism and explain
some examples in detail. Finally, in Section 6, we
present our conclusions and indicate some direc-
tions for future research.

M |=s ϕ iff A |= ϕ[v]s, for atomic formulaeϕ
M |= > > is always true
M 6|= ⊥ ⊥ is never true
M |=s (t1 = t2) iff vs(t1) equalsvs(t2), for termst1 andt2
M |=s ¬A iff M 6|=s A
M |=s (A1 ∧A2) iff M |=s A1 andM |=s A2

M |=s (A1 ∨A2) iff M |=s A1 orM |=s A2

M |=s (A1 → A2) iff M 6|=s A1 orM |=s A2

M |=s ∃xA iff there is ana ∈ D, such thats(x|a)s′ andM |=s′ A
M |=s ∀xA iff for all a ∈ D, if s(x|a)s′ thenM |=s′ A
M |=s<α> A iff there is ans′ ∈ S, such thatsRαs′ andM |=s′ A
M |=s [α] A iff for all s′ ∈ S, if sRαs′ thenM |=s′ A

Table 1: Definition of truth

sRx:=ts
′ iff s(x|vs(t))s′

sRα;βs
′ iff ∃s′′ such thatsRαs′′ ands′′Rβs′

sRα∪βs
′ iff sRαs

′ or sRβs′

sRα∗s
′ iff there are finitely many statess1, s2, . . . , sn such that

s1Rαs2, s2Rαs3, . . . , sn−1Rαsn ands = s1 ands′ = sn
sRϕ?s

′ iff s = s′ andM |=s ϕ

Table 2: Accessibility relations

2 Dynamic Logic: Basic Notions

The formalisation we present in this paper is based
on the first-order version of Dynamic Logic (DL)
as it is discussed in (Harel et al., 2000) and (Gold-
blatt, 1992). In short, DL is a multi-modal logic
with a possible worlds semantics, which distin-
guishes between expressions of two sorts:formu-
lae andprograms. The language of DL is that of
first-order logic together with a set of modal op-
erators: for each programα there are a box[α]
and a diamond<α> operator. The set of possi-
ble worlds (or states) in the model is the set of all
possible assignments to the variables in the lan-
guage. Atomic programs change the values as-
signed to particular variables. They can be com-
bined to form complex programs by means of a
repertoire of program constructs, such assequence
; , non-deterministic choice∪, iteration * and test
?.

Originally, DL was conceived as a formal sys-
tem to reason about programs, formalising cor-
rectness specifications and proving rigorously that
those specifications are met by a particular pro-

gram. From a more general perspective, however,
it can be viewed as a formal system to reason about
transformations on states. In this sense, it is par-
ticularly well suited to provide a fine characteri-
sation of the dynamic processes that take place in
dialogue as updates on the information states of
the dialogue participants.

In the remainder of this section, we formally in-
troduce the syntax and the semantics of DL.

2.1 Syntax

The language of first-order DL is built upon First-
Order Logic. It is generated by some first-order
vocabularyΣ made up of a set of predicate sym-
bols, a set of function symbols, a set of constants
and a set of variables. In addition to the proposi-
tional connectives and the universal and existential
quantifier symbols, the language also includes two
modal operators [] and<>, a setΠ of programs
α and the program constructs;, ∪, * and ?.

Formulae and Programs. Atomic formulaeϕ
are atomic, first-order formulae of the vocabulary
Σ, including> and⊥. The setΦ of well-formed

formulaeA is then defined as follows:

A ::= ϕ | ¬A | A1 ∧A2 | A1 ∨A2 |A1→A2 |
∀xA | ∃xA | [α] A |<α>A

In the basic version of DL, atomic programsπ
are simple assignments(x := t), wherex is an
individual variable andt is a first-order term. The
setΠ of programsα is defined as follows:

α ::= π | α1;α2 | α1 ∪ α2 | α∗ | ϕ?

2.2 Semantics

As usual in modal logic, the language is in-
terpreted in a possible-worlds based semantical
structure. A model is a structure

M = {A, S, R, V }

where
• A = {D, I} is a first-order structure;
• S is a non-empty set of states;
• R is a function assigning to each programα ∈

Π a binary relationRα ⊆ S × S;
• V is a functionV : S → SA assigning to

eachs ∈ S anA-valuationvs : Var → D, i.e. a
mapping from the set of variables to elements in
the domain.

For s, s′ ∈ S, we will write s(x|a)s′ to mean
that vs′(x) = a and vs′(y) = vs(y) whenever
y 6= x.

Now we are ready to define thetruth-relation
M |=s A of a formulaA at states in modelM.
As usual in first-order logic, we writeA |= ϕ[v]
to mean thatϕ is true inA under valuationv. For
conciseness, we will omit the part dealing with the
semantics of first-order terms. The formal defini-
tion of truth in a model is shown in Table 1.

From the relationsRα ⊆ S × S, we can induc-
tively define accessibility relations for the com-
pound programs. Table 2 shows the accessibility
relations for basic atomic programs and compound
programs for all statess, s′ ∈ S.

Stack Variables. Interesting variants of DL
arise from allowing auxiliary data structures such
as stacksand arrays. Following (Harel et al.,
2000), we will consider a version of DL in which
programs can manipulate some variables as last-
in-first-out stacks. Formally, stacks are modelled

as variables ranging over finite strings of elements
in the domain. To manipulate thesestack vari-
ables, two additional atomic programsX.pop and
X.push(x) are included. HereX is some stack
variable (i.e. a string of elements) andx stands
for the element to be pushed ontoX. The accessi-
bility relations for these two new atomic programs
are shown in Table 3, where, for a stringσ and an
elementa, tail(a · σ) = σ.

sRX.push(x)s
′ iff s(X | vs(x) · vs(X))s′

sRX.pops
′ iff s(X | tail(vs(X))s′

Table 3:pushandpop programs

3 The Dialogue Gameboard

Following the pioneering work of philosophers
like (Lewis, 1979) and (Stalnaker, 1979), the the-
ory of context developed by Jonathan Ginzburg
joins a line of research which, instead of focusing
on the intentional attitudes of the dialogue partic-
ipants, highlights the public and conventional as-
pects of communication. Under this perspective,
a dialogue can be thought of as aconversational
scoreboardthat keeps track of the state of the con-
versation.

The dialogue gameboard(DGB), Ginzburg’s
particular version of theconversational score-
board, plays a central role in his theory of con-
text. It can be seen as the context relative to which
conventionalised interaction is assumed to take
place. The DGB provides a structured characteri-
sation of the information which the dialogue par-
ticipants view as common in terms of three main
components: a set ofFACTS, which the dialogue
participants take as common ground, a partially
ordered set of questions under discussionQUD,
and theLATEST-MOVE made in the dialogue. In-
spired by the notion ofdialogue game(e.g. (Ham-
blin, 1970; Carlson, 1983)), Ginzburg assumes
that each move made by a dialogue participant de-
termines a restricted set of options for follow-up
in the dialogue, constraining what can be said and
how.

The framework has been used to provide an ac-
count of the kind of context that licenses elliptical
responses in dialogue (Ginzburg, 1999; Fernández

and Ginzburg, 2002; Fernández et al., 2003) and
has also been the starting point of implemented
dialogue systems such as GoDiS (Cooper et al.,
2001) and IBiS (Larsson, 2002).

4 A DL Formalisation of the DGB

To model context in dialogue as it is understood
in Ginzburg’s DGB, we will consider a particular
domain of interpretation which includes entities
such as agents (the dialogue participants), ques-
tions, propositions and dialogue moves.2 For the
sake of simplicity, in this paper we restrict our-
selves to four dialogue move types, namelyask,
assert, clarification requestandacknowledge. The
main strategy to reason about the effects of conver-
sational interaction on the DGB, will be to repre-
sent its main components as variables ranging over
different domains. In what follows, we introduce
the details of our formalism.

4.1 Introducing the Formalism

Let L be a first-order DL language with equality
made up of unary predicate symbolsQ,P,G,DP ,
binary predicate symbols infl (uences) and
ans(wers), a ternary predicate symbolUtt, a
function symbolwhether, constantsa, b, ask ,
ass , clr andack , and an infinite setVar of vari-
ablesx. Var includes a setV1 = {LMa,LMb,UTT}
of special individual variables and a setV2 =
{FACTS,QUDa,QUDb,PENDINGa,PENDINGb}
of stack variables. We also introduce a function
symbolheadto be applied to stack variables.

The set of variable symbolsVar also includes
symbolsi, j which range over the set of dialogue
participants, symbolsq, q′ andp, p′ ranging over
questions and propositions respectively, symbols
r, r′ ranging over propositions or questions, sym-
bolsm,m′ ranging over moves, and symbolsu, u′

ranging over utterances.
LanguageL is interpreted over a first-order

structureA = {D, I}. The domainD of
A is made up of a set of dialogue participants
DPD = {aI , bI}, a set of questionsQD, a set of
propositionsPD, a set of dialogue movesM =

2Note that both propositions and questions are first-class
entities in the domain. While this is not the standard ap-
proach, it is familiar from situation theoretic work and makes
the current formalisation simpler.

{ask I ,ass I , clr I ,ack I}, and an element 1
which is used to interpret the predicate symbolG,
i.e. we setI(G) = {1}. A number of relations are
declared overD: infl is interpreted as a binary re-
lation onQD, ansas a binary relation betweenPD

andQD, andUtt as a set of utterancesUttD, that
will be modelled as triples(i,m, r) of a dialogue
participant, a dialogue move and either a proposi-
tion or a question. The function symbolwhether
is interpreted as a functionwhether such that for
every propositionp, whether(p) ∈ QD. Finally,
head is interpreted as a function that maps every
string to its first element.

Recall that stack variables range over strings of
elements in the domain: LetQ∗, P ∗, Utt∗ denote
the set of all finite-length strings overQD, PD and
UttD, respectively. This will be used later on to
model the stack variables inV2.

4.2 The DGB Components

As mention earlier, in DL, transitions between
states are changes in variable assignment. We
therefore represent the dynamic aspects of the in-
formation state as variables ranging over different
domains. In particular, we use the variable names
FACTS, QUDand LM to represent the three dif-
ferent components of the DGB. We also include
two additional variablesUTTandPENDING. New
utterances are assigned toUTT and, in case the
addressee cannot ground their content, they are
also assigned toPENDING. This allows to distin-
guish between two kinds of grounding: content
grounding (the value ofUTT is assigned toLM)
and proposition grounding or acceptance (a propo-
sition is incorporated ontoFACTS).

To model content grounding we use a unary
predicateG and assume thatG(x) only holds
when the addressee of a particular utterance can
ground its content. That is, according to the for-
malisation introduced in Section 4.1,G(x) will
be true in all those states wherev(x) = 1. As
an abbreviation, we will writeG whenG(x) and
v(x) = 1, and¬G otherwise.

One of the assumptions behind the DGB is that
a realistic characterisation of context must allow
for asymmetries between the information avail-
able to the different dialogue participants at a
given point in a conversation. Thus, although the

DGB attempts to represent the publicly accessible
information at each state of the dialogue, it does so
in terms of the collection of individual information
states of the participants. In the current formali-
sation, however, onlyQUD, LMandPENDINGare
relative to each dialogue participant, whileFACTS
and UTT are unique. This is an obvious choice
for the case ofUTT, which is just used to hold
new contributions publicly uttered by any dialogue
participant. In the case ofFACTS, however, this
is a simplification motivated by the fact that the
current formalisation only attempts to model sim-
plified situations whereFACTSis assumed to be
empty at the initial state, and only propositions
that have been commonly agreed on can be inte-
grated into it. Thus, there is no room for disagree-
ments in this respect, and the set ofFACTSis al-
ways the same for the two dialogue participants.

We model QUDand PENDINGas stacks, in
a way that is very much inspired byQUD’s ac-
tual implementation in the GoDiS dialogue system
(Cooper et al. 2001). Although we think ofFACTS
as a set,3 for technical reasons that will become
clear below, we also modelFACTSas a stack. On
the other hand,UTTandLMrange over utterances,
i.e. triples(i,m, r), wherei is interpreted as the
speaker ofu, m is the dialogue move performed
by u andr represents its content. Formally:

v(FACTS) ∈ P ∗

v(QUDa) ∈ Q∗

v(QUDb) ∈ Q∗

v(PENDINGa) ∈ Utt∗

v(PENDINGb) ∈ Utt∗

v(LMa) ∈ UttD

v(LMb) ∈ UttD

v(UTT) ∈ UttD

The reason whyFACTSis modelled as a stack
variable is that we want to be able to check
whether a particular element (i.e. some proposi-
tion) is in FACTS, and we want to be able to
express this in the object language. Modelling
FACTSas a variable ranging over strings of propo-
sitions allows us to use thepop program to check
whether a particular elementx belongs toFACTS
or not: if x is in FACTSand we pop the stack re-
peatedly,x will show up at some point as the head

3Arguably, there are reasons to postulate some kind of or-
der within the set of facts. See (Ginzburg, 1997) for an ac-
count of the restrictions on which contextually presupposed
facts can serve as antecedents for some anaphoric elements.

of the stack. Thus, we will use the notationx ∈
FACTSas an abbreviation for< FACTS.pop∗ >
head(FACTS) = x.

5 Constraining the Model

Our main aim in this section is to show that the
formalism outlined previously can be used to ex-
press the rules underlying cooperative conversa-
tional interaction in terms of update operations on
the DGB. The current formalisation attempts to
model three different scenarios: asking and re-
sponding to a question, integrating a proposition
into the commonly agreed facts, and asking for
clarification when the content of an utterance has
not been grounded.

In (Ferńandez, 2003) these scenarios were mod-
elled in the form of complex DL programs corre-
sponding to conventional protocols. From an ab-
stract point of view, protocols can be thought of as
a way to characterise the range of possible follow-
ups in cooperative dialogue or, alternatively, as a
representation of the obligations the dialogue par-
ticipants are socially committed to (see (Traum
and Allen, 1994; Kreutel and Matheson, 1999)).
In the present paper, however, we opt for a differ-
ent strategy: our aim here is to describe the appro-
priateness conditions for each particular scenario
by means of a set of axioms, that is, a set of for-
mulas we postulate to be valid in the model. The
aim of these formulas is to restrict the operations
that can be performed on the DGB components. In
this sense, they can be seen as constraints charac-
terising the appropriateness conditions of simple
programs likeUTT := (i, clr , r) (asking a clari-
fication question) orFACTS.push(x) (integrating
an item into the common ground).

In what follows we are going to present a few
examples in detail.

5.1 Asking for Clarification

Following Ginzburg’s account, we assume that
when a dialogue participanta utters an utterance
u, LMa is updated withu. If the content ofLMa
is a questionq, q is pushed ontoQUDa. Asserting
a propositionp raises the questionwhether pfor
discussion. Thus, if the content ofLMa is a propo-
sition p, whether(p) will be pushed ontoQUDa.
At this stage, if the addressee ofu can ground its

∀u (u = (a,m, r) ∧ (UTT= LMa = u) ∧
((Q(r) ∧ head(QUDa) = r) ∨ (P (r) ∧ head(QUDa) = whether(r))) ∧ ¬G→
<PENDINGb.push(u)> > ∧ ∀x [PENDINGb.push(x)] (x = u))

∀u (u = (a,m, r) ∧ (head(PENDINGb) = UTT= u)→
(∃q Q(q)∧ <UTT := (b, clr , q)> >) ∧
(∀im′q [UTT := (i,m′, q)] (i = b) ∧ (m′ = clr) ∧Q(q)))

Table 4: Asking for Clarification

∀up (u = (i,ack , r) ∧ (LMa = LMb = u) ∧
P (p) ∧ head(QUDa) = head(QUDb) = whether(p) ∧ p 6∈ FACTS→
<FACTS.push(p)> > ∧ ∀x [FACTS.push(x)] (x = p))

∀p P (p) ∧ (p ∈ FACTS) ∧ (head(QUDa) = head(QUDb) = whether(p))→
< QUDa.pop; QUDb.pop > >

Table 5: Accepting a Proposition

content, she updates herLMandQUDaccordingly.
On the other hand, if the addressee cannot ground
the content ofu, thenu will be put aside and a
clarification question will be posited.

Table 4 shows the axioms formalising this latter
possibility. Let us have a closer look at the first
formula. The antecedent describes an information
state where an utteranceu with contentr is the
value of UTT and LMa, the head ofQUDa is ei-
therr (in caser is a question) orwhether(r) (in
caser is a proposition), andG does not hold. This
means that the utteranceu has just been posited
by dialogue participanta and that the addressee
b has not been able to ground its content. In
such a situation the information state should be up-
dated by pushing that utteranceu ontoPENDINGb.
This is expressed in the consequent of the implica-
tion, firstly by a diamond formula which guaran-
tees that the update operation is actually being per-
formed, and secondly by a box formula which en-
sures that no utterance other thanu can be pushed
ontoPENDINGb.

In the second formula, the antecedent describes
a situation where an utteranceu with speakera is
the value of bothUTT and PENDINGb. That is,
an utterance that has just been posited by speaker
a is pendingin b’s information state. This situa-
tion triggers a request for clarification that should
be performed by speakerb. This is expressed in

the consequent of the formula again by means of a
diamond and a box formula, which ensure that the
information state will be updated by assigning to
UTTan utterance(b, clr , q) such that its speaker
is dialogue participantb, its content is a question
q, and the dialogue move performed isclr .

5.2 Proposition Acceptance

In the current formalisation, all propositions have
to be acknowledged before being introduced into
the commonly agreed facts. Only once an asser-
tion has been acknowledged it is considered to be
accepted by the two dialogue participants.

The axioms formalising the integration of a
proposition intoFACTS are shown in Table 5.
The formulas follow the pattern already described
in the previous subsection. In this case, the an-
tecedent of the first formula describes a situation
where an utteranceu performing anack dialogue
move is both the value ofLMa andLMb, the head’s
value ofQUDa andQUDb is whether(p), wherep
is a proposition, andp is not inFACTS. This is the
situation that licenses the integration of a proposi-
tion into the common ground. This is expressed
by the consequent of the axiom which, again by
means of a diamond and a box formula, ensures
that propositionp is pushed ontoFACTS.

Oncep belongs toFACTS, whether(p) can be
downdated fromQUD. The second formula for-
malises precisely this situation.

∀q (Q(q) ∧ (head(QUDa) = head(QUDb) = q) ∧ (¬∃p (P (p) ∧ (p ∈ FACTS)) ∧ ans(p, q))→
∃imr (<UTT := (i,m, r)> >) ∧
∀imr ([UTT := (i,m, r)] ((m = ass) ∧ P (r) ∧ ans(r, q) ∧ (r 6∈ FACTS)) ∨

((m = ask) ∧Q(r) ∧ infl(r, q))))

∀pq P (p) ∧Q(q) ∧ (head(QUDa) = head(QUDb) = q) ∧ (p ∈ FACTS) ∧ ans(p, q)→
< QUDa.pop; QUDb.pop > >

Table 6: Addressing a Question

5.3 Addressing a Question

Our last example concerns appropriate responses
to a question under discussion. In cooperative
dialogue, the optimal follow-ups after a question
has been asked are either answering that question
or responding with another question which influ-
ences the first one. The first formula in Table 6
formalises this observation.

The antecedent of the formula describes an in-
formation state where a questionq is the head’s
value of bothQUDa and QUDb, and q has not
yet been answered. The consequent of the for-
mula expresses what the appropriate responses are
in this situation. This is achieved by means of
a diamond formula which guarantees that there
is a state reachable by assigning some utterance
(i,m, r) to UTT, and a box formula which ensures
that the utterance assigned toUTTwill only be ei-
ther an answer to the question under discussion or
a question which influences it.

Once a question under discussion has been an-
swered, it can be popped fromQUD. The second
formula in Table 6 formalises this situation. The
antecedent of this formula has to be understood
as describing an information state reached after a
proposition uttered to answer a question has been
acknowledged and, according to axioms in Table
5, introduced intoFACTS. OnceFACTScontains
a proposition which is an answer to the question
currently under discussion, this question can be
downdated fromQUD.

6 Discussion and Future Work

In this paper we have explored the possibility
of using DL to formalise the main aspects of
Ginzburg’s DGB. More specifically, we have put
forward a model where the components of the

DGB are represented by variables ranging over
different domains, while update operations are
brought about by program executions that involve
changes in variable assignments.

The use of DL for linguistic matters is of course
not new. Several authors have observed strong
parallels between the execution of computer pro-
grams and the dynamic view on discourse inter-
pretation. The idea underlying the dynamic logic
approach to the semantics of programming lan-
guages, i.e. that the meaning of a program can
be captured in terms of a relation between states,
has indeed been successfully applied in natural
language semantics, for instance, by Groenendijk
and Stokhof’sDynamic Predicate Logic(Groe-
nendijk and Stokhof, 1991). Although the aims
of DPL, mostly restricted to anaphorical relations
across sentence boundaries, are rather different
from ours, its guiding idea (i.e. that the meaning of
a natural language sentence does not lie in its truth
conditions, but rather in its potential to change
context) is in line with the perspective taken in this
paper. One could view the DGB as a semantics for
utterances where each utterance is interpreted as a
pair of states, i.e. as the change it brings about in
the DGB.

As mention in the introduction, the current for-
malisation is intended as a first step towards the
development of rigorous formal foundations for an
approach to dialogue dynamics based on informa-
tion state updates. Although this is still very much
work in progress, we believe that the formalisation
presented here shows that DL is an expressive and
precise tool particularly well suited for this task.

From a more general point of view, we are
interested in the interaction patterns that char-
acterise different types of dialogue. In this re-
spect, a formalisation along the same lines as the

one outlined in the present paper has been used
in (Ferńandez, 2003) to characterise the internal
structure of Inquiry-Oriented Dialogues.

There are many issues that remain still open,
perhaps the most straightforward being how to use
the current formalisation for instance to prove de-
sirable properties of particular dialogue systems.
In fact, some resemblances can be found between
the axioms presented in Section 5 and the up-
date rules described in (Ljunglöf, 2000), where
the author presents a calculus for reasoning math-
ematically about the rule-based engines developed
within the TRINDI project. We expect to show in
our future research that some version of DL can
also be successfully used to provide precise speci-
fications of dialogue systems based on information
state approaches.

References

P. Bohlin, R. Cooper, E. Engdhal, and S. Larssson.
1999. Information states and dialogue move en-
gines. In IJCAI-99 Workshop on Knowledge and
Reasoning in Practical Dialogue Systems.

L. Carlson. 1983.Dialogue Games. Synthese Lan-
guage Library. D. Reidel.

P. Cohen and H. Levesque. 1990. Rational interac-
tion as the basis for communication. In P. Cohen,
J. Morgana, and M. Pollack, editors,Intentions in
Communication. MIT Press.

R. Cooper, S. Larsson, J. Hieronymus, S. Ericsson,
E.Engdahl, and P. Ljunglof. 2001. Godis and ques-
tions under discussion. InThe TRINDI Book.

R. Ferńandez and J. Ginzburg. 2002. Non-Sentential
Utterances: A Corpus Study.Traitement automa-
tique des languages, 43(2):13–42.

R. Ferńandez, J. Ginzburg, H. Gregory, and S. Lap-
pin. 2003. SHARDS: Fragment Resolution in Di-
alogue. In H. Bunt and R. Muskens, editors,Com-
puting Meaning, volume 3. Kluwer. To appear.

R. Ferńandez. 2003. A Dynamic Logic Formalisation
of Inquiry-Oriented Dialogues. InProceedings of
the 6th CLUK Colloquium, pages 17–24, Edinburgh,
UK.

J. Ginzburg. 1996. Interrogatives: Questions, facts,
and dialogue. In S. Lappin, editor,Handbook of
Contemporary Semantic Theory. Blackwell, Oxford.

J. Ginzburg. 1997. Structural mismatch in dia-
logue. InProceedings of MunDial 97. Universitaet
Muenchen.

J. Ginzburg. 1999. Ellipsis resolution with syntactic
presuppositions. In H. Bunt and R. Muskens, edi-
tors, Computing Meaning: Current Issues in Com-
putational Semantics. Kluwer.

J. Ginzburg. ms. A semantics for interaction in di-
alogue. Forthcoming for CSLI Publications. Draft
chapters available from: http://www.dcs.kcl.ac.uk/
staff/ginzburg.

R. Goldblatt. 1992.Logics of Time and Computation.
Lecture Notes. CSLI Publications.

J. Groenendijk and M. Stokhof. 1991. Dynamic pred-
icate logic. Linguistics and Philosophy, 14(1):39–
100.

B. Grosz and C. Sidner. 1990. Plans for discourse.
In P. Cohen, J. Morgana, and M. Pollack, editors,
Intentions in Communication. MIT Press.

C. L. Hamblin. 1970.Fallacies. Methuen, London.

D. Harel, D. Kozen, and J. Tiuryn. 2000.Dynamic
Logic. Foundations of Computing Series. The MIT
Press.

J. Kreutel and C. Matheson. 1999. Modelling ques-
tions and assertions in dialogue using obligations.
In Proceedings of Amstelog 99, the 3rd Workshop
on the Sematics and Pragmatics of Dialogue, Ams-
terdam.

S. Larsson. 2002.Issue based Dialogue Management.
Ph.D. thesis, Gothenburg University.

D. Lewis. 1979. Score keeping in a language game.
Journal of Philosophical Logic, 8:339–359.

P. Ljungl̈of. 2000. Formalizing the dialogue move en-
gine. InProceedings of the G̈otalog Workshop.

M. D. Sadek. 1991. Dialogue acts as rational plans. In
Proceedings of the ESCA/ETR workshop on multi-
modal dialogue.

R. Stalnaker. 1979. Assertion.Syntax and Semantics,
9. Academic Press.

D. Traum and J. Allen. 1994. Discourse obligations
in dialogue processing. InProceedings of the 32nd
annual meeting of the ACL.

D. Traum, J. Bos, R. Cooper, S. Larsson, I. Lewin,
C. Matheson, and M. Poesio. 1999. A model of
dialogue moves and information state revision. In
The TRINDI Book.

