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Abstract

This thesis combines corpus work with symbolic and statistical techniques to offer an
account of non-sentential utterances in dialogue. These are utterances that do not have
the form of a full sentence according to most traditional grammars, but that neverthe-
less convey a complete sentential meaning. The approach taken analyses non-sentential
utterances as radical context-dependent expressions, and formalises them as functions
from the current information state to the type of the next information state. The thesis is
grounded in a corpus study that provides evidence about the occurrence of non-sentential
utterances in conversation. This is used to put forward a data-driven taxonomy of classes
of non-sentential utterances, which are then paired with a formal specification of their
resolution requirements formulated in Type Theory with Records. In order to identify the
right class, which will determine the appropriate resolution procedure, machine learning
methods are employed, which can be used to boost the automatic processing of dialogue.
The thesis also proposes a hierarchy of models for dialogue protocols, defined in terms
of abstract machine models, that is based on a variety of structural features of dialogue
that are also related to properties of non-sentential utterances. This suggest a link be-
tween dialogue dynamics on the one hand, and formal language theory and the theory
of computation in the other.
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1 Introduction

In the last twenty-five years, formal semantics has experienced a journey from classic
approaches whose object of study was the isolated sentence (Montague 1974), to a
broader dynamic view of meaning, first concerned with the analysis of discourse (Heim
1982, Groenendijk and Stokhof 1991, Kamp and Reyle 1993) and, more recently, also
applied to the study of dialogue (e.g. Piwek 1998, Asher and Lascarides 2003, Ginzburg
forthcoming). It is well known that through this process—which has constantly shaken
the border between semantics and pragmatics—context dependence and context change
have become central notions in the formal study of meaning. Besides the central role of
context, the shift towards dialogue as the most natural form of language use brings in
some idiosyncratic features that are typically absent from monologue settings. One of
these is the pervasive presence of non-sentential utterances—like those in bold face in the
dialogue below—which are primarily a dialogue phenomenon.

(1) A: How long has this man been living in the churchyard?
B: Oh, four or five years.
A: Four or five years?
B: Yes, yes.
C: I’ve been there four, and he was there a year before, so it’s five years.
A: Five years.
B: There you are, you see.
A: Yes.
[BNC: KRL 2892–2990]

The aim of this thesis is to investigate and analyse non-sentential utterances in dialogue,
in order to achieve a better understanding of the forms they can take and the meanings
they can convey, while shedding some light on the interplay between grammar and the
dynamics of dialogue context. In the remainder of this introductory chapter I shall exem-
plify the main issues raised by non-sentential utterances and outline the approach taken

1



2 Chapter 1. Introduction

in this thesis. I conclude with a systematic overview of the thesis, briefly summarising
the content of each chapter.

1.1 Non-Sentential Utterances

What are non-sentential utterances? In a broad sense, non-sentential utterances—or
NSUs, as I shall be calling them in the remainder of this thesis—are utterances that do
not have the form of a full sentence according to most traditional grammars, but that
nevertheless convey a complete sentential meaning, usually a proposition or a question.
The following are two prototypical examples taken from the transcripts of the British
National Corpus (Burnard 2000):

(2) a. A: Who wants Beethoven music?
B: Richard and James.
[BNC: KB8 1024–1025]

b. A: It’s Ruth’s birthday.
B: When?
[BNC: KBW 13116–13117]1

One of the most important issues in the analysis of NSUs concerns their resolution, i.e.
the recovery of a full clausal meaning from a form which is standardly considered non-
clausal. In the first of the examples above, the NSU in bold face is a typical “short an-
swer”, which despite having the form of a simple NP would most likely be understood as
conveying the proposition “Richard and James want Beethoven music”. The NSU in (2b) is
an example of what has been called “sluice”. Again, despite being realised by a bare wh-
phrase, the meaning conveyed by the NSU could be paraphrased as the question “When
is Ruth’s birthday?”. Thus, to a large extent, the problem of resolving NSUs amounts to
bridging the gap between their non-clausal form and their sentential interpretation.

This makes NSUs particularly interesting in two respects. First, as a challenge for
standing theories of grammar, which should take positions with respect to the gram-
matical status they ascribe to these constructions—should they be considered proper
sentences per se, or should they be regarded as deviations of more conventional sen-
tences? Second, as the form of NSUs typically is that of a word or phrase with no clausal
interpretation, the resolution process is bound to make critical use of contextual informa-
tion. The intrinsic context-dependence of NSUs then serves to inform theories of context
by providing evidence as to what elements these theories should contain. For instance,
while most theories of context and context change tend to be formulated exclusively

1This notation indicates the name of the file and the sentence numbers in the British National Corpus.



1.1 Non-Sentential Utterances 3

in semantic terms, the constraints governing the well-formedness of some NSUs indi-
cate that context must contain hybrid information. In (3a) and (3b) below, we can see
that the grammatical case of the NSU needs to match that of the contextual wh-phrase
(genitive in the first example and nominative in the second). While (3c) shows that a
clarification NSU that intends to convey the question “Who is Leo?” must be identical in
form to the constituent that is being clarified. A phonologically distinct clarification NSU
like “Your neighbour?” is also well-formed, but it conveys a different question—roughly
“Is Leo your neighbour?”.

(3) a. A: Whose bike did you ride?
B: Leo’s/ #Leo.

b. A: Who owes the bike you rode?
B: #Leo’s/ Leo.

c. A: Leo lent me his bike.
B: Leo? / #Your neighbour?
[Intended meaning: “Who is Leo?”]

Thus, a proper analysis of NSUs must be rooted in a theory of context that is rich enough
to account for both their semantic interpretation and their structural dependencies.

NSUs are not only a challenging problem for linguistic theories and for theories of
context, but also for implemented systems, which in order to handle natural human-
computer interactions or to summarise dialogue data need to be able to process and un-
derstand NSUs. However, due to their concise form and their highly context-dependent
meaning, NSUs are often potentially ambiguous. For instance, B’s response in (4a) is
readily understood as a short answer. In (4b), on the other hand, the NSU would most
likely be interpreted as some sort of correction (or a helpful rejection, as I shall call these
NSUs later on in the thesis); while the NSU in (4c), depending on whether it is uttered
with raising intonation or not, would play the role of either a clarification question or an
acknowledgement.

(4) a. A: When are they going to open the new main station?
B: Tomorrow

b. A: They are going to open the station today.
B: Tomorrow

c. A: They are going to open the station tomorrow.
B: Tomorrow
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Distinguishing between different kinds of NSUs is not an easy task for a system. Conse-
quently, in order to resolve NSUs appropriately, systems need to be equipped in the first
place with the capability of identifying the intended kind of NSU.

1.2 Approach and Contributions

The approach taken in this thesis combines experimental, symbolic and statistical tech-
niques to offer an account of NSUs in dialogue that is empirically founded, theoretically
sound, and usable in computational processing.

The empirical work consists of a corpus study that provides evidence about naturally-
occurring NSUs. This confirms that NSUs are an important phenomenon in dialogue,
making up around 9% of all utterances. The study serves to put forward a data-driven
taxonomy of NSU classes that offers a comprehensive inventory of the kinds of NSUs that
can be found in conversation. This experimental data is then used in conjunction with
machine learning techniques to train an automatic classification model that identifies the
right NSU class. The stochastic techniques I employ are well-known, but their application
to the automatic classification of NSUs is an original contribution of this thesis. As the
NSU class determines the appropriate resolution procedure, the classifier can be used to
boost the automatic processing of NSUs.

The theoretical part of this thesis is concerned with the resolution of NSUs. My ap-
proach to this issue derives from the one proposed by Ginzburg and Sag (2001), which
in turn is based on the theory of context developed by Jonathan Ginzburg (1996, 1999,
forthcoming). Ginzburg and Sag (2001) take NSUs to be first-class grammatical con-
structions whose resolution is achieved by combining the contribution of the NSU phrase
with contextual information—concretely, with the current question under discussion or
QUD, which roughly corresponds to the current conversational topic.

The simplest way of exemplifying this strategy is perhaps to consider a direct short
answer to an explicit wh-question, like the one shown in (5a).

(5) a. A: Who’s making the decisions?
B: The fund manager.
[BNC: JK7 119–120]

b. QUD: ?(x).Make decision(x)
Phrasal content of NSU: fm
Resolution: ?(x).Make decision(x)(fm) ≡ Make decision(fm)

In this dialogue, the current QUD corresponds to the wh-question “Who’s making the
decisions?”. Assuming a representation of questions as lambda abstracts, the resolution
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of the short answer simply amounts to applying this question to the phrasal content
of the NSU, as shown in (5b) in an intuitive notation. Ginzburg and Sag (2001) also
consider another contextual element, a salient sub-utterance of the current QUD, that
provides parallelism conditions for the NSU phrase. In the present example, this would
correspond to the wh-phrase “Who”, and appropriate dependencies like case matching
could be established between this and the NSU phrase.

Thus, taking the approach of Ginzburg and collaborators as point of departure, the
view I adopt is to see NSUs as context-dependent expressions like for instance deictics—
i.e. as functions whose domain determines the contextual coordinates relevant for their
resolution, and whose range specifies how these are used to resolve their sentential
content and partially determine their form.

While Ginzburg and Sag (2001) couch their analysis in terms of Head-driven Phrase
Structure Grammar, to formalise the main classes in the NSU taxonomy I explore the use
of Type Theory with Records—an extension of Martin-Löf’s type theory with records and
record types. In line with the dynamic semantics tradition and inspired, in particular,
by recent work by Robin Cooper (2006b) on the formalisation of update rules in com-
putational dialogue modelling, I model NSU types—and utterance types in general—as
families of information state types. These are functions whose output is the type of the
information state after an utterance has taken place, and whose input is the current in-
formation state, which is constrained to contain the contextual coordinates required for
interpretation.

As will be shown throughout this thesis, not all NSUs require the same contextual
background. One of the factors that distinguishes NSUs in this respect is the distance
from their antecedent—i.e. the contextual utterance used for resolution. While most
NSUs are adjacent to their antecedent, it is well-known that some NSU classes like short
answers can appear several turns away. In Ginzburg’s theory, this observation motivates
the definition of QUD as an ordered set of questions under discussion, which makes
available potential non-adjacent antecedents.

Another factor that distinguishes different NSU classes, which we have already en-
countered in example (3), is the nature of the contextual information on which NSUs
depend. This is varied, and can range from being purely semantic to including syntactic
and phonological material. Yet a related aspect is the strategy by means of which the
required contextual information becomes available. For instance, the current question
under discussion can arise by several means. Often this question is raised explicitly, like
in (5a) above. But it can also be accommodated, like in (6), where we can see B’s reply
as presupposing the question “Who’s making the decisions?”, which in this case has not
explicitly been raised.
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(6) A: Is the president making the decisions?
B: The fund manager.

Thus, factors like adjacency vs. distance, the nature and extent of the dependencies
observed, and the mechanism by means of which antecedents become available allow
us to establish a ranking of NSU classes relative to the complexity of the information
state and the mechanisms required for resolution.

This is connected to an additional contribution of the thesis, a hierarchy of abstract
models for dialogue protocols. Dialogue protocols encode frequently reoccurring se-
quences of utterance types, like questions being followed by answers, or assertions being
either acknowledged, discussed or elaborated upon. As such, they characterise the range
of preferred or less-marked follow-ups in particular dialogue situations, thus reflecting the
expectations of dialogue participants given a particular contribution. In this thesis I pro-
pose a hierarchy of abstract communication protocols based on the expressive power of
well-known machine models from the theory of computation, taking as a starting point
protocols based on deterministic finite automata. As the protocols in the hierarchy differ
on the information manipulated at each state by an abstract machine model, some cor-
relations can be established between the hierarchy of protocols and the ranking of NSU
classes. I believe this opens the door to a novel and interesting synthesis between formal
language theory and dialogue semantics.

1.3 Thesis Outline

The structure of the thesis is as follows:

• Chapter 2: A Corpus-based Taxonomy of NSUs
In this chapter I present a taxonomy of NSUs based on the outcomes of corpus
work carried out using the dialogue transcripts of the British National Corpus. The
taxonomy contains 15 classes, which are described in detail. The chapter also
reports on the particulars of two corpus studies, one covering the full range of NSU
classes and the other focussing on sluices.

• Chapter 3: Some Previous Approaches
This chapter reviews some existing approaches to NSUs, namely the Higher Or-
der Unification account of ellipsis by Dalrymple et al. (1991) and Pulman (1997);
the logic-based approach by Dekker (2003a,b); the minimalist analysis of Mer-
chant (2004); the SDRT-based theory of Schlangen (2003), and the approaches of
Ginzburg and Sag (2001) and Ginzburg and Cooper (2004). In the same chapter I
also introduce my own previous proposal based on Dynamic Logic.
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• Chapter 4: A Type-theoretical NSU Grammar
This chapter defines grammatical types for the main NSU classes in the taxonomy
put forward in Chapter 2. These are formalised in terms of Type Theory with
Records and are modelled in a way akin to update rules in computational dialogue
modelling (Cooper 2006b). I start by introducing the formalism, and then group
the different NSU types according to the complexity of the information state and
the kind of information required for the resolution process.

• Chapter 5: Abstract Models for Dialogue Protocols
In this chapter I focus on the formal properties of dialogue protocols, identifying
a variety of features that have an impact on the complexity of the dialogue struc-
ture. This motivates a hierarchy of protocols based on the expressive power of
well-known machine models from formal language theory and the theory of com-
putation. The chapter also highlights correlations between this hierarchy and the
different groups of NSU classes identified in Chapter 4.

• Chapter 6: Automatic Classification of NSUs
This chapter addresses the task of automatically classifying NSUs using machine
learning techniques. After identifying a collection of features that capture relevant
properties for NSU classification, I report the results of two sets of experiments
performed using several machine learners. In analogy to Chapter 2, the first exper-
iment covers the full range of NSU classes, while the second one concentrates on
sluices.

• Chapter 7: Conclusions
In this final chapter I present my conclusions, briefly summarising the main contri-
butions made and providing an outlook on possible future extensions of the work
presented in this thesis.

• Appendices
This thesis has three appendices. Appendix A presents a generalisation of the
PABAK measure for inter-annotator agreement for any number of categories and
coders. Appendix B gives the full details of the formal definitions of Type The-
ory with Records. Finally, Appendix C contains a grammar fragment based on the
representations presented in Chapter 4.



8 Chapter 1. Introduction

1.4 Publications

This thesis is, in part, based on the following publications:

• Raquel Fernández and Jonathan Ginzburg. Non-sentential utterances: A corpus
study. Traitement automatique des languages. Dialogue, 43(2):13–42, 2002.

• Raquel Fernández. A dynamic logic formalisation of inquiry-oriented dialogues. In
Proceedings of the 6th CLUK Colloquium. Edinburgh, 2003.

• Raquel Fernández. A dynamic logic formalisation of the dialogue gameboard. In
Proceedings of the 10th Conference of the European Chapter of the Association for
Computational Linguistics. Student Research Workshop. Budapest, 2003.

• Raquel Fernández and Ulle Endriss. Towards a hierarchy of abstract models for
dialogue protocols. In Proceedings of the 5th International Tbilisi Symposium on
Language, Logic and Computation. Tbilisi, 2003.

• Matthew Purver and Raquel Fernández. Utterances as update instructions. In
Proceedings of the 7th Workshop on the Semantics and Pragmatics of Dialogue (Dia-
Bruck). Saarbrücken, 2003.

• Raquel Fernández and Matthew Purver. Information state update: Semantics or
pragmatics? In Proceedings of the 8th Workshop on the Semantics and Pragmatics of
Dialogue (Catalog). Barcelona, 2004.

• Raquel Fernández, Jonathan Ginzburg, and Shalom Lappin. Classifying ellipsis in
dialogue: A machine learning approach. In Proceedings of the 20th International
Conference on Computational Linguistics (COLING 2004). Geneva, 2004.

• Raquel Fernández, Jonathan Ginzburg, and Shalom Lappin. Automatic bare sluice
disambiguation in dialogue. In Proceedings of the 6th International Workshop of
Computational Semantics (IWCS-6). Tilburg, 2005.

• Raquel Fernández, Jonathan Ginzburg, and Shalom Lappin. Using machine learn-
ing for non-sentential utterance classification. In Proceedings of the 6th SIGdial
Workshop on Discourse and Dialogue. Lisbon, 2005.

• Raquel Fernández. The dynamics of utterances: grounding and update in Type
Theory with Records. In Proceedings of the Workshop on Discourse Domains and
Information Structure (ESSLLI 2005). Edinburgh, 2005.



2 A Corpus-based Taxonomy of
Non-Sentential Utterances

In this chapter I introduce a taxonomy of NSUs created on the grounds of an empirical
study carried out using the British National Corpus (Burnard 2000). The taxonomy
contains 15 classes, which will be described in detail in Section 2.1. After some remarks
on some existing classifications of NSUs in Section 2.2, I will present the results of two
corpus studies—one covering the full range of NSU classes in Section 2.3, and another
one centered around sluices (i.e. bare wh-phrases) in Section 2.4.

2.1 The Taxonomy

The taxonomy of NSUs I present in this chapter is based on a corpus study performed
using a portion of the ∼10 million word dialogue transcripts of the British National
Corpus (BNC), a ∼100 million word corpus of current British English compiled by the
Oxford University Text Archive (Burnard 2000). I will first say a few words on the
methodology and rationale governing the classification, and then proceed to describe
the NSU classes in it.

2.1.1 Design and Methodology

The present taxonomy of NSUs emerged after manual examination of ten dialogue tran-
scripts randomly chosen from the BNC. These were exhaustively analysed in order to
capture the maximal number of phenomena. In particular, this involved systematic read-
ing of two transcripts of completely unrestricted, free conversation (files KST and KSV),
three transcripts of informal interviews (files K68, K69 and JA2), two transcripts of more
formal interviews (files K6K and K65), two transcripts of seminars (file JJ7 and JK1),
and one transcript of a public county council meeting (file J9T).

From an empirical point of view, the current taxonomy is constrained by the par-
ticular instances of NSUs that were encountered in the analysed corpus, although the

9
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ontological choices one can take from there are of course rather open territory. In this
respect, the kinds of fragments covered by Ginzburg and Sag (2001)—namely short an-
swers, direct and reprise sluices, clarification fragments and propositional lexemes like
“yes” and “no”—serve as the ground of the present classification. The decisions made
from this starting point will become clear when I describe in detail the different NSU
classes in the next section. But before I turn to this task, a word about potential NSUs
that were not considered as such is in order.

To start with, I do not consider NSUs fragmentary utterances resulting from interrup-
tions or overlaps. In the BNC utterances split by interruptions are transcribed as different
items and are given a different identifier number.1 In (7), for instance, A’s utterance is
interrupted by B’s cough, which overlaps with part of A’s contribution. Even though the
fragment “about this” is marked up as a different sentence unit in the corpus, I do not
consider these fragments proper NSUs, and hence they are not covered by the present
taxonomy.

(7) A: Now then <pause> I don’t know if she talked to you
B: <cough>
A: about this.
[BNC: KSN 1621–1622]

More substantially, the current taxonomy does not include greetings and closings like
“Hello” and “Bye”. I regard these utterances as explicit performatives with no associated
descriptive content. This means that the main property of NSUs, namely the fact that
(part of) their descriptive content has to be resolved contextually, does not hold for these
utterances, as the illocutionary relation that constitutes their main predicate does not
select for any message argument. The meaning of “Hello” can be informally represented
as in (8a). This contrasts, for instance, with plain acknowledgements like “mhm” and
“aha”, which I do consider NSUs. The illocutionary relation associated with this kind of
utterances selects for a message type—a proposition—which constitutes its descriptive
content and which has to be recovered from context.

(8) a. Hello → Greet(speaker, addressee)

b. Mhm → Acknowledge(speaker, addressee, P )

1More on the BNC sentence mark-up and the transcription of speech overlaps will be said in Section
2.3.4, where I report the results of measuring the distance between NSUs and their antecedents—i.e. the
contextual utterances with respect to which NSUs are resolved. I shall use underlining to indicate speech
overlap. When underlining is not used, utterances take place sequentially.
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2.1.2 Rationale

As mentioned at the onset, the present taxonomy contains 15 different NSU classes.
These can be grouped into three main families, roughly corresponding to speech act
types: acknowledgements, questions, and statements—the latter being further split into
answers and extensions.2 I also use a term completions, that somehow falls outside of
this general scheme—it is concerned with collaborative utterances. My account of the
resolution of NSUs, that will be presented in Chapter 4, focuses on acknowledgements,
questions, and answers. Table 2.1 shows an overview of the full range of NSU classes
included in the taxonomy.

It is now finally time to turn to the presentation of the classes included in the taxon-
omy. In what follows I describe them in detail and give some corpus examples of each
class.

2.1.3 The NSU Classes

2.1.3.1 Plain Acknowledgement

The class plain acknowledgement refers to NSUs like e.g. “yeah”, “mhm”, “ok” that give
explicit positive evidence that the previous contribution, typically an assertion, was
understood and/or accepted. It is important to take into account that acknowledge-
ments and acceptances are distinct acts: the former involves evidence of understanding,
whereas the latter indicates that an assertion is accepted. A form like the one in (9a),
for instance, seems to indicate little more than mere understanding, while that in (9b)
seems to be closer to an acceptance. However, since often acknowledgements in the form
of NSUs simultaneously signal acceptance, the current taxonomy conflates the two acts
within the same class.

(9) a. A: I know that they enjoy debating these issues.
B: Mhm.
[BNC: KRW 146–147]

b. A: We should get off and interview Anna.
B: Oh yes.
[BNC: KP4 4079–4080]

2Borrowing the terminology employed in the DAMSL markup scheme (Allen and Core 1997), the main
distinction between these two groups can be taken to be that answers have a backward-looking function,
while extensions don’t. Also note that statements acts as a cover term for different more fine-grained speech
acts, like assertions, exclamations etc. Short answers, for instance, are typically assertions, while factual
modifiers are perhaps better characterised as exclamations.
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Acknowledgements:

• Plain Acknowledgement

• Repeated Acknowledgement

Questions:

• Clarification Ellipsis

• Direct Sluice

• Check Question

Answers:

• Short Answer

• Plain Affirmative Answer

• Repeated Affirmative Answer

• Propositional Modifier

• Plain Rejection

• Helpful Rejection

Extensions:

• Factual Modifier

• Bare Modifier Phrase

• Conjunct

Completions:

• Filler

Table 2.1: Overview of the taxonomy of NSU

2.1.3.2 Repeated Acknowledgement

I distinguish plain acknowledgements from repeated acknowledgements that consist of
a verbatim repetition or a reformulation of (a constituent of) the antecedent utterance,
which as mentioned above is typically an assertion. The following are some examples of
this NSU class:

(10) a. A: I’m at a little place called Ellenthorpe.
B: Ellenthorpe.
[BNC: HV0 383–384]
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b. A: [. . . ] he’s <unclear> in the theater, his favourite is musical
B: Yes, musical.
[BNC: JSN 189–190]

c. A: She was questioning.
B: Questioning yes.
[BNC: JYM 282–283]

d. A: Oh so if you press enter it’ll come down one line.
B: Enter.

That big key on the side.
[BNC: G4K 102–104]

Assuming that there is a continuum of different strengths of positive feedback, a re-
formulation like that in (10d) may provide stronger evidence of understanding than a
verbatim repetition, which in turn is stronger than a plain acknowledgement. However,
as pointed out in (Allen and Core 1997), repeated acknowledgements “do not necessar-
ily make any further commitment as to whether the responder agrees with or believes
the antecedent”.

There is the issue of whether the focus-ground structure of the antecedent affects the
felicity of a repeated acknowledgement, as seems to be the case with repeated affirmative
answers (see Subsection 2.1.3.8 below). However the tendency seems to be to repeat just
the most recent constituent, i.e. the last one. In connection to this, Ginzburg and Cooper
(2004) note that a repeated acknowledgement “need not be understood as involving an
intention to highlight [the repeated] constituent”. They give the following example to
illustrate the point:

(11) (Context: B is a waitress in an Edinburgh diner)
A: I’ll be having chips and beans and a capuccino.
B: And a capuccino, OK. (attested example)
[from (Ginzburg and Cooper 2004), p.50]

2.1.3.3 Clarification Ellipsis (CE)

I use the category Clarification Ellipsis (CE) to classify all non-sentential clarification
requests (CRs). As has been noted for the whole range of CRs (elliptical and otherwise),3

non-sentential CRs also present a variety of surface forms. Some of these are illustrated
by examples (12a)-(12d) below. In general the class CE covers all NSUs that indicate
that some sort of understanding problem with a previous utterance has occurred.

3 See (Purver 2004b) for an extensive study, but also e.g. (Schlangen 2004), (Rodŕıguez and Schlangen
2004) and (Larsson 2003).
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(12) a. A: Where was this?
B: Oh what we call Waterhall.
A: Waterhall?
B: Yeah, where you come down that hill from the boy’s grave.
[BNC: HDH 46–49]

b. A: [. . . ] You lift your crane out, so this part would come up.
B: The end?
A: The end would come up and keep your load level on the ground you see.
[BNC: H5H 27–29]

c. A: Yeah cos, my mates were telling me the other day <pause> what’s Gilly said?
B: Who?
A: Marcus <name>.
[BNC: KSR 151–153]

d. A: What about in days gone by?
B: What?
A: What about in days gone by?
[BNC: HDH 350–352]

One of the most common forms of CE is the one exemplified in (12a), where a constituent
in the antecedent utterance is echoed with interrogative intonation.4 This form of clari-
fication NSU is referred to as elliptical literal reprise by Ginzburg and Sag (2001), clarifi-
cation ellipsis by Ginzburg and Cooper (2004), and reprise fragment by Purver (2004b).
Although usually there is a phonological parallelism between this form of CE and the
clarified constituent, as shown in (12b) this does not always occur. In (12b) the phrase
“this part” in A’s first utterance is reprised by the bare phrase “the end” in B’s response.
Rodŕıguez and Schlangen (2004) distinguish between CEs like (12a) and (12b) by clas-
sifying the former as repetition and the latter as reformulation. However, even when the
CE is not a verbatim repetition of the clarified phrase, the meaning of the CE and the
antecedent constituent are intended to be co-referential. That is, in (12b) the reference
of “this part” and “the end” are intended to be the same.

4In fact, the intonation pattern of these kind of fragments is not always unambiguously interrogative.
Rodŕıguez and Schlangen (2004) report that “raising boundary tones [are less common] than expected
to clarify reference resolution problems”, which are one of the most common understanding problems
addressed by fragments like (12a) and (12b). Unfortunately precise results are not given on this front
as the authors only present a confusion matrix that shows correlations between raising/falling tones and
the source of the understanding problem. No concrete results are reported on the correlation between
boundary tones and the other attributes characterising CR forms.
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(12c) shows a CE realised by a bare wh-phrase, which is used to reprise a constituent
in the antecedent utterance. Ginzburg and Sag (2001) refer to this kind of CE as reprise
sluice. A conventionalised bare what-phrase can also be used to clarify a whole utterance,
like in (12d), indicating that a complete failure in communication has taken place.

2.1.3.4 Direct Sluice

Not all bare wh-phrases are used to request clarification. The present taxonomy distin-
guishes bare wh-phrases like the ones in (12c) and (12d) above from a different kind
of non-sentential wh-questions, which following Ginzburg and Sag (2001) I refer to as
Direct Sluices. These, unlike CE wh-questions, are not due to a communication break-
down, but instead ask for further information that was explicitly or implicitly quantified
away in the antecedent utterance. The following examples show three instances of this
NSU class:

(13) a. A: I know someone who’s a good kisser.
B: Who?
[BNC: KP4 511–512]

b. A: Who did you interview?
B: Benjamin.
A: When?
B: Last night.
[BNC: KE0 138–141]

c. A: Anyway Jim so you’re off to Australia?
B: Yeah.
A: Where?
B: Er Melbourne.
[BNC: HV0 1015–1018]

As pointed out above, direct sluices query for additional information that has been quan-
tified away. The quantificational context needed for a direct sluice can be made available
in a variety of ways. The most obvious one is by means of an utterance that contains
an explicit quantifier. This is the case in (13a), where the source utterance contains the
quantifier “someone” that acts as the antecedent constituent of the direct sluice “Who?”.
The sluice in (13b), on the other hand, is requesting additional temporal information
that was implicitly quantified away in the antecedent utterance by means of tense.5

5I take the antecedent utterance, which is also a fragment, to convey the proposition I interviewed Ben-
jamin. The past tense can be understood as quantifying over all time points or intervals which precede the
utterance time.
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(13c) shows an interesting example where the location “Australia”, which serves as the
antecedent constituent of the bare where-sluice, is taken as quantifying over a set of
possible sub-locations.

The term “sluicing” used to refer to elliptical wh-phrases dates back to Ross (1969),
who offered the first detailed description of the phenomenon. His discussion is restricted
to embedded sluices like the following, considered out of any dialogue context.

(14) They want to hire someone, but they don’t know who.

Ginzburg and Sag (2001) take a wider perspective which, besides embedded environ-
ments, also takes into account bare wh-phrases in dialogue. This allows them to distin-
guish between two main types of sluices: reprise sluices as the one we have seen above
in (12c) for instance, and direct sluices like those in (13a)-(13c). The main differences
between these two kinds of sluices they point out are (i) intonational: reprise sluices are
accented while direct ones are not; (ii) contextual: direct sluices require the presence in
context of a quantified utterance of some sort, while reprise sluices do not; (iii) finally,
reprise and direct sluices also differ on whether they can appear in embedded clauses or
not. These points are illustrated by the examples below.

(15) a. A: Jo phoned.
B: WHO?/#Who?

b. A: Did anyone phone for me?
B: Yes.
A: Aha. Who?/#WHO?

c. A: Many doctors want to join up.
B: I wonder who.

d. A: Merle saw Mo.
B: #Jo also wonders WHO. (= Jo also wonders who you claim saw Mo.)
[from (Ginzburg and Sag 2001), p.113]

(15a) shows that a direct sluice is not felicitous in the context of a non-quantified utter-
ance. In (15b), since the acknowledgement indicates that A did not have any problem
understanding B’s utterance, only a direct, non-accented sluice is appropriate. (15c)
and (15d) show that direct sluices can appear in embedded environments, while reprise
sluices cannot, even though a sentential paraphrase of their intended content seems fe-
licitous as an embedded clause.

Given the variety of interpretations that bare wh-phrases can convey, exemplified
here by the reprise-CE/direct sluice dichotomy, my empirical investigation includes an
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additional corpus study focused on this form of NSU (which does not correspond to
a unique class in the taxonomy), to examine further its possible interpretations and
functions, and to provide a basis for its disambiguation. The sluicing corpus study and
the results obtained with it are presented in Section 2.4.

2.1.3.5 Check Question

Finally, I turn to the last kind of NSUs used to ask questions. This NSU class, dubbed
Check Question, refers to short queries, usually realised by rather conventionalised forms
like “alright?” and “okay?”, that are requests for explicit feedback from the addressee. A
couple of randomly picked-up examples are shown in (16).

(16) a. A: [. . . ] this dimension is about er where you prefer to focus your attention and
where you get your psychological energy from.
Okay?

B: Oh, right.
[BNC: G3Y 162–164]

b. A: So <pause> I’m allowed to record you.
Okay?

B: Yes.
[BNC: KSR 5–7]

The antecedent utterance of a check question expresses a proposition that has not yet
been explicitly grounded. The check question then denotes a polar question which asks
the addressee to give explicit feedback on whether s/he understood/accepted the source
proposition.

It is worth noting that the term “check question” is sometimes used for a different
phenomenon. Larsson (2003) for instance, uses this term for NSUs like the one in (17),
which according to him “indicate understanding but lack of confidence in that under-
standing”:

(17) A: I want to go to Paris.
B: To Paris?
[from (Larsson 2003), p.77]

In (17) B asks for confirmation that his/her understanding of A’s utterance was as in-
tended, whereas in (16) A asks for confirmation of B’s understanding of A’s previous
utterance. In the present taxonomy NSUs like (17) fall under the class CE.
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2.1.3.6 Short Answer

“Short answer” is a wide cover term commonly used for fragments that occur in the
context of a response to a query. In the present taxonomy this denomination is used
only to designate non-sentential short answers which are responses to wh-questions.
Affirmative and negative answers to polar questions are covered by other classes that
will be introduced shortly. Short answers are perhaps the type of fragments that have
received most attention in the literature (see e.g. Morgan 1973, Barton 1990, Ginzburg
and Sag 2001, Schlangen and Lascarides 2002, Merchant 2004) and indeed, as we will
see below, they are one of the most frequent NSUs found in corpora. The following are
some examples extracted from the BNC:

(18) a. A: Who’s this book by?
B: Luhmann L U H M A double N.
[BNC: G4V 132–133]

b. A: What, what are you talking about John?
B: Oh, erm, terminal illness.
[BNC: JK8 177–178]

c. A: Now the triangle adds up to how many degrees?
B: <pause> Hundred and eighty.
[BNC: KND 48–49]

d. A: Can you tell me where you got that information from?
B: From our wages and salary department.
[BNC: K6Y 94–95]

As the examples in (18) show, typically short answers have as antecedent a question
containing a wh-phrase. This, which can be thought of as the antecedent constituent of
the fragment, can appear in situ (18c) or be part of an embedded clause (18d). However,
the contextual background of a short answer does not always explicitly contain a wh-
phrase. This is often the case when a short answer is used to reply to a CE question
which conveys a wh-question but, because of its non-sentential nature, does not contain
an overt wh-phrase. In (19a), B’s clarification question, which acts as antecedent of the
short answer, could be paraphrased with a wh-question close to “what did you utter after
‘vague’?”.

(19) a. A: [. . . ] they’re intolerant towards vague ideas and people.
B: Vague and?
A: Vague ideas and people.
[BNC: JJH 65–66]
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b. A: Are you right or left handed?
B: Right handed.
[BNC: G3Y 96–97]

Something similar applies to short answers used to respond to alternative questions like
(19b). Despite not having an overt wh-phrase, (19b) can be analysed as denoting the wh-
question “What are you, left-handed or right-handed?”, that is a question λX.X(addr)
where X ranges over the restricted domain provided by the disjunction.6

2.1.3.7 Plain Affirmative Answer

I now turn to NSUs that have as contextual background a polar question. The first
class I consider are plain affirmative answers like (20a). Again, the question which the
NSU is an answer to can be a CE query that despite exhibiting a non-canonical syntactic
structure nevertheless conveys a polar question. An example of this is given in (20b),
where A’s CE can be paraphrased as “Did you just say ‘hard’?” or “Did you mean/say that
the school was HARD?”.

(20) a. A: Did, did you know that Spinal Tap was a film before the band came out?
B: Yes.
[BNC: KP4 4153–4154]

b. A: What was the school like?
B: Hard.
A: Hard?
B: Yes.
[BNC: H5G 73–75]

2.1.3.8 Repeated Affirmative Answer

I distinguish plain affirmative answers like the ones above from a different kind of NSUs
that also convey a positive answer to a polar question. This class, dubbed Repeated
Affirmative Answer, is exemplified in (21):

6Some questions with a disjunction combine a reading as alternative (wh-)questions with a polar question
reading:

(i) A: Did Maggi have coffee or tea?
(= Is it the case that Maggi had one of these two things, coffee or tea?)

B: No, she just had a piece of cake.
The two readings seem to correlate with different intonational patterns of the disjuncts.
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(21) a. A: Did you shout very loud?
B: Very loud, yes.
[BNC: JJW 571-572]

b. A: The one three six three goes out through the Sutton on Forest, does it?
B: Sutton on Forest, yeah.
[BNC: J9T 311–312]

Repeated affirmative answers are NSUs that achieve the “affirmative answer” effect by
a verbatim repetition or reformulation of a sub-utterance of the source question. Note
that the perception that the utterer of the NSU has of the focus-ground structure of the
antecedent polar question may affect the felicity of repeated affirmative answers. If a
constituent is clearly focussed, then the answer sounds felicitous only if it is a repetition
of the focussed constituent:

(22) A: Did you SHOUT very loud?
B1: #Very loud, yes.
B2: Shout, yes.

2.1.3.9 Propositional Modifier

The class Propositional Modifier refers to modal adverbs like those in (23), which can
function as NSUs conveying a complete message. In their stand-alone uses, such adverbs
take as an argument a contextual proposition—either from an assertion under discussion
or from a polar question in the context—which they modify.

(23) a. A: They wanted to come back even further didn’t they?
B: They did.
A: Recently.
[BNC: K69 22–24]

b. A: I wonder if that would be worth getting?
B: Probably not.
[BNC: H61 81–82]

2.1.3.10 Plain Rejection

This NSU class can be considered the dual of plain affirmative answers. Typically the
NSUs that fall under this class are plain negative answers to polar questions like those in
(24).
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(24) a. A: [. . . ] is there a spider in my hair?
B: No.
[BNC: KP4 15443–1544]

b. A: You starving?
B: No way.
[BNC: 152–153]

However, in a way similar to propositional modifiers, I also classify as plain rejections
negative responses to assertions, like those in the following examples: 7

(25) a. A: You’re joking.
B: No.
[BNC: J8B 1443–1444]

b. A: I think I left it too long.
B: No no.
[BNC: G43 26–27]

2.1.3.11 Helpful Rejection

When a polar question is answered negatively or when an assertion is rejected, a cooper-
ative speaker will often accompany the rejection with an NSU that provides a contrasting
alternative to the rejected proposition (assuming, of course, that such alternative exists
and is known to the speaker.) I call this kind of NSUs “Helpful Rejections”, after Eng-
dahl et al. (2000) who call them “helpful answers”. The following are some examples of
instances that fall under this NSU class:

(26) a. A: So there’d be two clerks and two lads?
A: No, one clerk.
[BNC: HDK 1776–177]

b. A: Well I felt sure it was two hundred pounds a, a week.
B: No fifty pounds ten pence per person.
[BNC: K6Y 112–113]

7I do not follow the same strategy with affirmative answers though. This is justified because a rejection
of a proposition p implies understanding + rejecting p, whereas not all positive responses to assertions that
p imply understanding + accepting p. Since the difference between degrees of “positiveness” (e.g. between
backchannel, acceptance, agreement, etc.) can often be uncertain, I choose to classify non-sentential pos-
itive feedback to assertions with the classes “Plain Acknowledgement/Repeated Acknowledgement” (Sec-
tions 2.1.3.1 and 2.1.3.2) distinct from Plain Affirmative Answer/Repeated Affirmative Answer. Negative
feedback is of course accounted for by the class CE.
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c. A: A bigger pipe has got m more resistance. [. . . ]
B: Less resistance.
[BNC: GYR 318–320]

d. A: How much do you think?
B: Three hundred pounds.
C: More.
B: A thousand pounds.
A: More.
[BNC: G4X 44–48]

Note that in fact the “no” can be dispensed with, as illustrated by (26c) and (26d).
This seems to be more common when the antecedent is an assertion, although it is also
possible with interrogative antecedents, as the following constructed example shows:

(27) A: Would you like some red wine?
B: White please.

As with Repeated Affirmative Answers, the focus-ground structure of the antecedent
utterance seems to affect the acceptability of the helpful rejection.

(28) A: Are you FLYING to London?
B1: No.
B2: No, (I’m) SAILING.
B3: No, #I’m sailing to LONDON.
[from (Engdahl et al. 2000), p.33]

However, when there is no clear focus-ground partition of the antecedent utterance, any
constituent can act as antecedent:

(29) A: John is flying to London.
B: (No,) Mary / sailing / to Edinburgh.

2.1.3.12 Factual Modifier

I will now describe those NSU classes that can be thought of as extensions or continua-
tions of the dialogue. These NSUs express statements which go on with the dialogue ei-
ther by modifying some contextually available entity or by adding information by means
of a conjuncted fragment.

The first of these NSU classes is that of factual modifiers, whose members are ex-
clamative factual adjectives that express an attitude of the speaker towards some con-
textually presupposed fact. A couple of examples of these factual modifiers are given in
(30).
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(30) a. A: There’s your keys.
B: Oh great!
[BNC: KSR 137–138]

b. A: So we we have proper logs? Over there?
B: It’s possible.
A: Brilliant!
[BNC: KSV 2991–2994]

2.1.3.13 Bare Modifier Phrase

A related class of NSUs is that of bare modifier phrases, which behave like non-sentential
adjuncts modifying a contextual utterance. As the instances in (31) show, they are typi-
cally phrases headed by prepositions or adverbs.

(31) a. A: . . . they got men and women in the same dormitory!
B: With the same showers!
[BNC: KST 992–996]

b. A: It’s the sickness, it just, you seem to take in every kind of sickness with it.
B: That’s right.
A: Even with the wee tablet.
[BNC: H60 33–35]

c. A: [. . . ] you got the stables shut up before it got dark at four o’clock.
B: Mm in the winter time mm.
[BNC: HDH 130–131]

2.1.3.14 Conjunct

The last class of NSUs which act as extensions do so by connecting a fragment to the
dialogue context by means of a conjunction. Of course the relation between the fragment
and the contextual entity to which it gets connected will be determined by the semantic
properties of the conjunction involved. The following are a couple of examples of this
NSU class:

(32) A: Alistair erm he’s, he’s made himself coordinator.
B: And section engineer.
[BNC: H48 141–142]

A: If it’d been me and I were gonna put it there, I would have put a window there
<pause> to look out of.
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B: Or a door there.
[BNC: KB1 4419–4420]

2.1.3.15 Filler

Finally the last class in the current taxonomy of NSUs refers to fragments used to com-
plete a previous unfinished utterance. I call this class of NSUs ‘Fillers’.8

(33) a. A: [. . . ] twenty two percent is er <pause>
B: Maxwell.
[BNC: G3U 292–293]

b. A: And the second one is a book by
B: Beardsmoor [sic] and he <unclear> [. . . ]
[BNC: G4V 121–122]

2.2 Other Taxonomies

Although NSUs have not received a major attention in the literature, there are some
existing taxonomies of fragments. A well known classification within the Artificial In-
telligence tradition is that of Carberry (1990), who categorises NSUs according to the
speaker’s plans and intentions. From a perhaps more linguistic perspective, there is also
the classification offered by Barton (1990), who also resorts heavily to intentions, distin-
guishing NSUs according to the kind of inference needed for their resolution. My focus
on this section, however, will be on a more recent taxonomy of NSUs, namely that pre-
sented in (Schlangen 2003), where the interested reader can find short reviews of the
other aforementioned classifications.

Schlangen’s taxonomy of fragments is shaped by the theory of discourse interpre-
tation that the author employs as a framework to explicate the resolution of NSUs, to
wit Segmented Discourse Representation Theory or SDRT (Asher 1993, Asher and Las-
carides 2003). I will expand on this theory in the next chapter, in Section 3.3.1, where
I review in more detail Schlangen’s approach to NSU resolution. Here it suffices to say
that SDRT focuses on the rhetorical relations by means of which different discourse units
are connected to one another. These relations are seen as determining the coherence of
a discourse or dialogue, and are non-monotonically inferred via a combination of several
sources of information, ranging from lexical semantics to world knowledge. With SDRT
as background, Schlangen classifies NSUs along two dimensions. The first dimension

8The antecedent of a filler is of course fragmentary by definition, although accidentally so. It will there-
fore not be an NSU, as it does not convey a full message.
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concerns the SDRT rhetorical relation in which the NSU stands to its antecedent utter-
ance. The second dimension, which I will address in more detail in the next chapter, has
to do with the source of the information needed to resolve the content of the fragment.
Here Schlangen distinguishes between NSUs that can be resolved by means of material
that is present in the antecedent utterance (what he calls resolution-via-identity NSUs)
and NSUs that are resolved by means of inferential processes that typically involve world
knowledge and plans (resolution-via-inference NSUs).

Schlangen identifies 24 rhetorical relations by means of which NSUs can be con-
nected to the previous context. These include, amongst others, different versions of
Question-Answer-Pair, Explanation, Elaboration, Narration etc. Several relations can hold
of a single NSU. For instance, what in our NSU taxonomy are Helpful Rejections, like the
already seen example in (34), would presumably require at least two rhetorical relations
in Schlangen’s system—Question-Answer-Pair and Correction or Contrast.

(34) A: So there’d be two clerks and two lads?
B: No, one clerk.
[BNC: HDK 1776–177]

One limitation of this taxonomy is that overall the notion of metacommunicative interac-
tion is neglected. In particular, those NSUs used to request clarification of a problematic
utterance are not identified separately as instances of a distinguished category, but are
instead mixed up with other kinds of questions. For instance, the NSU in (35a), which
Schlangen describes as asking “for more details about the event described in α [the an-
tecedent]”, is classified together with the NSU in (35b), which Schlangen himself para-
phrases as “Who is Shmul?”. In our taxonomy the first of these NSUs would be classified
as a Direct Sluice, while the second one would be an instance of CE. The distinction
between direct sluices and clarification NSUs, argued for in Section 2.1.3.4 above, is not
captured by Schlangen’s taxonomy, where these two NSUs are considered instances of
the single relation Explanationq.9

(35) a. A: It’s a microphone. Recording conversations.
B: With who?

b. A: Did Shmul call?
B: Schmul?

In order to test his taxonomy, Schlangen also conducts a corpus study. Unfortunately
however, the empirical investigation only covers the dimension regarding the rhetorical

9The examples in (35) are extracted from (Schlangen 2003) p. 31.
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relations of NSUs to elements in the context. The resolution-via-identity/resolution-via-
inference dichotomy is not explored empirically. Thus, despite the fact that this is an
interesting distinction, we are left to wonder what percentage of NSU in the data can be
resolved with each of the resolution strategies. As for the results of the corpus study he
obtains, the rate of NSUs found is higher that ours (19.4% vs. 9%) while the coverage of
the taxonomy is slightly lower (96.1% vs. 98.8%). The results of our corpus investigation
of NSUs are presented in detail in the coming section.

2.3 The NSU Corpus Study

In order to know the frequency of the NSU classes identified and to test the coverage
of the taxonomy presented in Section 2.1, a corpus study was carried out using the
dialogue transcripts of the BNC.10 In this section I describe the corpus investigation and
the results obtained. In Section 2.4,I will present an additional corpus study which, as
announced earlier, focuses on a particular form of NSU, namely bare wh-phrases or so
called sluices. These two corpus studies supply the annotated data sets used in Chapter
6 for the machine learning experiments designed to guide the automatic disambiguation
of NSU classes.

2.3.1 The Corpus

The present corpus of NSUs includes and extends the sub-corpus used in (Fernández and
Ginzburg 2002). It was created by manual annotation of a randomly selected section of
200-speaker-turns from 54 BNC files. Of these files, 29 are transcripts of conversations
between two dialogue participants, and 25 files are multi-party transcripts. The total of
transcripts used covers a wide variety of domains, from free conversation to meetings,
tutorials and training sessions, as well as interviews and transcripts of medical consulta-
tions.

The examined sub-corpus contains 14,315 sentences. Sentences in the BNC are iden-
tified by the CLAWS segmentation scheme (Garside 1987) and each unit is assigned an
identifier number. Within this sub-corpus we found a total of 1299 NSUs. These were
labelled according to the taxonomy of NSUs presented in the previous section together
with an additional class ‘Other’ introduced to catch all NSUs that did not fall in any of
the classes in the taxonomy. All NSUs that could be classified with the taxonomy classes
were additionally tagged with the sentence number of their antecedent utterance.

10The portion of the BNC used in this testing phase was of course different from the set of files used to
construct the taxonomy (see Section 2.1.1).
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2.3.2 Reliability

The labelling of the entire corpus of NSUs was done by the author. To assess the reli-
ability of the taxonomy, a small study with two additional, non-expert annotators was
conducted. These annotated a total of 50 randomly selected instances (containing a
minimum of 2 instances of each NSU class as labelled by the expert annotator) with the
classes in the taxonomy. The agreement obtained by the three annotators is reasonably
good, yielding a kappa score of 76%. The non-expert annotators were also asked to iden-
tify the antecedent sentence of each NSU—i.e. the contextual sentence with respect to
which the NSU is resolved. Using the expert annotation as a gold standard, they achieve
96% and 92% accuracy in this task.

2.3.3 Results

A total of 1299 NSUs were found, which make up 9% of the total of sentences in the
sub-corpus. These results are in line with the rates reported in other recent corpus
studies of fragments: 11.15% in (Fernández and Ginzburg 2002), 10.2% in (Schlangen
and Lascarides 2003), 8.2% in (Schlangen 2005). In the following sections I discuss the
coverage of the taxonomy, the distribution of NSU classes and the results regarding the
distance of the NSUs from their antecedents.

2.3.3.1 Coverage

Of the total of NSUs found—1299 instances—1283 could be classified with one of the
classes in our taxonomy. The NSUs not covered by the classification only make up 1.2%
(16 instances) of the total of NSUs found. The coverage of the taxonomy is therefore
satisfactory. Table 2.2 shows a summary of the results.

Total of sentences 14,314

NSUs 1299 9%
Covered 1283 98.8%
Other 16 1.2%

Table 2.2: Summary of results

The highlighted NSU in example (36) is one of the instances not covered by our
taxonomy. The NSU “Good fun?”—which presumably resolves to the question “Was to
chase up all the leads afterwards good fun?”—is not easily captured by any of the NSU
categories that denote questions (Direct Sluice, CE, and Check Question), and therefore
was classified as Other.
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(36) A: I used to go to all the erm exhibitions Olympia and GMEX and all of those.
Erm and then it was my job to chase up all the leads afterwards.

B: Right. Good fun?
[BNC: JEA 212–216]

I should stress however that most of the utterances classified as Other were not entirely
comprehensible utterances. In a dialogue fragment like (37), for instance, it is not pos-
sible to know what is going on due to the amount of utterances transcribed as unclear.
The highlighted NSU could only be classified as Other.

(37) A: I’m not quite sure, I think most organisations have a certain amount of sum of
money if I can remember from the workshops <unclear>.

B: Other than <unclear>.
A: <unclear>
C: Public sector.
A: That’s right.
B: Yeah they get financed.
[BNC: G4X 74–78]

Thus, with a rate of 98.8% coverage, the present taxonomy offers a satisfactory coverage
of the data.

2.3.3.2 Distribution

The distribution of NSU classes that emerged after the annotation of the sub-corpus is
shown in detail in Tables 2.3 and 2.4. The first of these table shows total numbers and
percentages of each NSU class; the second one shows the distribution of the different
NSU super-classes or families. By far the most common class can be seen to be Plain
Acknowledgement, which together with Repeated Acknowledgement account for more
than half of all NSUs found. This is followed in frequency by answers, with Short Answer
(14.15%) and Plain Affirmative Answer (8%) being the most common classes within this
group. Questions make up 9.6% of all NSUs, from which more than 73% constitute
non-sentential clarification requests (i.e. 92 NSUs classified as CE out of 125 question
NSUs). Extensions form 3.8% of the total, most of which are Factual Modifiers. Finally
Completions make up 1.4% of all NSUs found.
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NSU Class Total %

Plain Acknowledgement 599 46.1
Short Answer 188 14.5
Plain Affirmative Answer 105 8.0
Clarification Ellipsis 92 7.0
Repeated Acknowledgement 86 6.6
Plain Rejection 49 3.7
Factual Modifier 27 2.0
Repeated Affirmative Answer 26 2.0
Helpful Rejection 24 1.8
Check Question 22 1.7
Filler 18 1.4
Bare Modifier Phrase 15 1.1
Propositional Modifier 11 0.8
Direct Sluice 11 0.8
Conjunct 10 0.7

Other 16 1.2

Total 1299 100

Table 2.3: Distribution of NSU classes

NSU Family Total %

Acknowledgements 704 52.7
Answers 403 31.3
Questions 125 9.6
Extensions 48 3.8
Completions 18 1.4

Table 2.4: Distribution of NSU families
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2.3.4 NSU-Antecedent Separation Distance

In this section I report the results obtained regarding the distance between the NSUs
encountered and their antecedent utterances. A general picture of the results is shown
in Table 2.5, where each NSU class is sorted by distance.

NSU Class Total D1 D2 D3 D4 D5 D6 D>6

Plain Acknowledgment 599 582 15 2
Short Answer 188 105 21 16 6 5 7 28
Plain Affirmative Answer 105 100 5
Clarification Ellipsis 92 76 13 2 1
Repeated Acknowledgement 86 80 2 4
Plain Rejection 49 48 1
Factual Modifier 27 23 2 1 1
Repeated Affirmative Answer 26 25 1
Help Rejection 24 18 5 1
Check Question 22 15 7
Filler 18 16 1 1
Bare Modifier Phrase 15 10 4 1
Direct Sluice 11 10 1
Propositional Modifier 11 10 1
Conjunction Phrase 10 5 4 1

Total 1283 1123 82 26 10 6 7 28

Percentage 100 87.5 6.4 2 0.8 0.5 0.6 2.2

Table 2.5: Total of NSUs sorted by class and distance

As mentioned above, in order to be able to measure the distance between the NSUs
encountered and their antecedents, all classified NSUs were tagged with the sentence
number of their antecedent utterance. In the BNC annotation, each sentence unit is as-
signed a sentence number. By default it is assumed that sentences are non-overlapping
and that their numeration indicates temporal sequence. When this is not the case be-
cause speakers overlap, the tagging scheme encodes synchronous speech by means of
an alignment map used to synchronize points within the transcription. However, even
though information about simultaneous speech is available, overlapping sentences are
annotated with different sentence numbers. The reported distance is therefore measured
in terms of sentence numbers. It should however be noted that taking into account syn-
chronous speech would not change the data reported in Table 2.5 in any significant way,
as manual examination of all NSUs at more than distance 3 reveals that the transcrip-
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tion portion between antecedent and NSU does not contain any completely synchronous
sentences in such cases.

Sometimes plain acknowledgements are uttered in response to a turn that contains
several utterances labelled with different sentence numbers. In these cases I assume that
the full turn is being acknowledged and, by convention, take the antecedent utterance to
be the last sentence in that turn. Something similar applies to check questions. Typically
check questions appear at the end of a turn that may contain several sentences (possibly
with an acknowledgement given by the addressee between the end of the turn and the
check question). The last sentence uttered by the speaker of the check question is the
one labelled as its antecedent.

2.3.4.1 Distance Across Categories

The last row in Table 2.5 shows the distribution of NSU-antecedent separation distances
as percentages of the total of NSUs found. This allows us to see that more than 87% of
NSUs have a distance of 1 sentence (D1—i.e. the antecedent was the immediately pre-
ceding sentence), and that the vast majority (about 96%) have a distance of 3 sentences
or less.

One striking result exhibited in Table 2.5 is the uneven distribution of long distance
NSUs across categories. With a few exceptions, NSUs that have a distance of 3 sentences
or more are exclusively short answers. Not only is the long distance phenomenon almost
exclusively restricted to short answers, but the frequency of long distance short answers
stands in strong contrast to the other NSUs classes; indeed, over 44% of short answers
have more than distance 1, and over 24% have distance 4 or more, like the last answer
in the following example (part of which we have already seen in (26d) in connection to
helpful rejections):

(38) A: How much do you think?
B: Three hundred pounds.
C: More.
B: A thousand pounds.
A: More.
D: <inhales> <unclear>
A: Eleven hundred quid apparently, just that.
[BNC: G4X 44–49]

2.3.4.2 Distance Asymmetry in Dialogue and Multilogue

Although the proportion of NSUs found in dialogue and multilogue is roughly the same
(see Table 2.6), when taking into account the distance of NSUs from their antecedent,
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the proportion of long distance NSUs in multilogue increases radically: the longer the
distance, the higher the proportion of NSUs that were found in multilogue. These differ-
ences are statistically significant (χ2 = 62.5, p ≤ 0.001). In fact, as Table 2.7 shows, NSUs
that have a distance of 6 sentences or more appear exclusively in multilogue transcripts.

NSUs BNC files

Dialogue 710 29
Multilogue 573 25

Total 1283 54

Table 2.6: Total of NSUs in dialogue and multilogue

Long Distance Short Answers Long distance short answers seem to be primarily an
effect of multi-party interaction. Table 2.8 shows the total number of short answers
found in dialogue and multilogue respectively, and the proportions sorted by distance
over those totals. From this data it emerges that short answers are more common in
multilogue than in dialogue—134 (71%) v. 54 (29%). Also, the distance pattern ex-
hibited by these two groups is strikingly different: Only 18% of short answers found in
dialogue have a distance of more than 1 sentence, with all of them having a distance of
at most 3, like the short answer in (39).

(39) A: [...] cos what’s three hundred and sixty divided by seven?
B: I don’t know.
A: Yes I don’t know either!
B: Fifty four point fifty one point four.
[BNC: KND 197–200]

Group Size As Table 2.8 shows, all short answers at more than distance 3 appear in
multilogues. Following (Fay et al. 2000), I distinguish between small groups (those
with 3 to 5 participants) and large groups (those with more than 5 participants). The
size of the group is determined by the amount of participants that are active when a
particular short answer is uttered. I consider active participants those that have made
a contribution within a window of 30 turns back from the turn where the short answer
was uttered.

Table 2.9 shows the distribution of long distance short answers (distance > 3) in
small and large groups respectively. This indicates that long distance short answers
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Short Answers Total # D1 D2 D3 D>3

Dialogue 54 83 9 8 0
Multilogue 134 44 11 8 37

Table 2.8: % over the totals found in dialogue and multilogue

Group Size D>3 D≤3 Total

≤5 20 (22%) 73 (78%) 93
>5 26 (63%) 15 (37%) 41

Table 2.9: Long distance short answers in small and large groups

are significantly more frequent in large groups (χ2 = 22.17, p ≤ 0.001), though still
reasonably common in small groups.

Large group multilogues in the corpus are all transcripts of tutorials, training sessions
or seminars, which exhibit a rather particular structure. The general pattern involves a
question being asked by the tutor or session leader, the other participants then taking
turns to answer that question. The tutor or leader acts as turn manager. She assigns
the turn explicitly usually by addressing the participants by their name without need
to repeat the question under discussion. The following example, extracted from the
transcript of a training session, is an example of this interaction pattern:

(40) A: Kim, what would you like?
B: Erm, waiver of premiums.
A: Waiver of premiums, crafty. Er, Shirley?
C: Flexibility.
A: Flexibility, oh that was the one you gave me, yes. Er, Janet?
D: Unit linking.
A: Unit linking. Sue?
E: Selected period.
[BNC: JK8 104–114]

Conversations amongst small groups on the other hand have a more unconstrained struc-
ture: after a question is asked, the participants tend to answer freely. Answers by differ-
ent participants can follow one after the other without explicit acknowledgements nor
turn management, like in (41a) (taken from a meeting transcript) and (41b) (extracted
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from a transcript of free conversation):

(41) a. A: Which country is er the biggest single supplier of coffee to this country?
B: Kenya.
C: Yemen.
D: Brazil.
A: It’s Uganda.
[BNC: G3U 255-258]

b. A: Are they bigger than me?
B: No.
C: Yes.
D: No. Same size really.
[BNC: KP4 1565–1569]

I will not discuss further the differences between dialogue and multilogue here, which
deserve a thesis on their own. For the formulation and discussion of some benchmarks
that characterise dialogue and multilogue interaction extracted from the data presented
above I refer the reader to (Ginzburg and Fernández 2005a).

2.4 The Sluicing Corpus Study

I now turn to describe a second corpus investigation focused on bare wh-phrases or
sluices, a form of NSU that cuts across two classes in the present taxonomy—Direct Sluice
and CE—which potentially indicates that sluices are a highly ambiguous NSU form. The
study aims at providing an empirical ground for sluice disambiguation by investigating
the different interpretations sluices can convey and establishing possible correlations
between these interpretations and particular sluice types. Parts of the work presented in
this section were originally published in (Fernández et al. 2004).

The next two sections describe the corpus and the annotation scheme used. The
reliability of the annotation is discussed in detail in Subsection 2.4.3. In Section 2.4.4, I
report the results obtained.

2.4.1 The Corpus

Because sluices have a well-defined surface form—they are bare wh-words—in this case
it was possible to use an automatic mechanism to construct the sub-corpus. The sub-
corpus of sluices was created using SCoRE (Purver 2001), a tool that allows one to
search the BNC using regular expressions.



36 Chapter 2. A Corpus-based Taxonomy of Non-Sentential Utterances

The dialogue transcripts of the BNC contain 5183 bare sluices (i.e. 5183 sentences
consisting of just a wh-word). I distinguish between the following classes of bare sluices:
what, who, when, where, why, how and which. Given that only 15 bare which were found,
I also considered sluices of the form which N. Including which N, the corpus contains a
total of 5343 sluices, whose distribution is shown in Table 2.10.

what why who where which N when how which Total
3045 1125 491 350 160 107 50 15 5343

Table 2.10: Total of sluices in the BNC

Two different samples of sluices extracted from the total found in the dialogue tran-
scripts of the BNC were selected. The samples were created by arbitrarily selecting 50
sluices of each class (15 in the case of which). The first sample includes all instances of
bare how and bare which, making up a total of 365 sluices. The second sample contains
50 instances of the remaining classes, making up a total of 300 sluices.

Note that the samples do not reflect the frequency of sluice types found in the full
corpus. The inclusion of sufficient instances of the lesser frequent sluice types would have
involved selecting much larger samples. Consequently it was decided to abstract over
the true frequencies and create balanced samples whose size was manageable enough
to make the manual annotation feasible. I will later return to the issue of the true
frequencies in Section 2.4.4.

2.4.2 The Annotation Procedure

The annotation procedure consisted in classifying the two samples of sluices according to
a set of categories—drawn from the theoretical distinctions introduced by Ginzburg and
Sag (2001) and referred to in Section 2.1.3.4—corresponding to different sluice inter-
pretations. The typology reflects the basic direct/reprise divide and incorporates other
categories that cover additional readings, including an unclear class intended for those
cases that cannot easily be classified by any of the other categories. The classification
was done independently by 3 different annotators.

The following categories were used to classify the sluices in the first sample of the
sub-corpus:

Direct This category corresponds to the NSU class Direct Sluice discussed in Section
2.1.3.4. Sluices conveying a direct reading are not triggered by a communication prob-
lem: they query for additional information that was quantified away in the antecedent,
which is understood without difficulty. The sluice in (42) is an example of a sluice with
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direct reading: it asks for additional temporal information that is implicitly quantified
away in the antecedent utterance.

(42) A: I’m leaving this school.
B: When?
[BNC: KP3 537–538]

Reprise I have already referred to this reading in Sections 2.1.3.3 and 2.1.3.4. Sluices
conveying a reprise reading emerge as a result of an understanding problem and are
therefore classified as CE in the NSU taxonomy. They are used to clarify a particular
aspect of the antecedent utterance corresponding to one of its constituents, which was
not correctly comprehended. In (43) the reprise sluice has as antecedent constituent the
pronoun “he”, whose reference could not be adequately grounded.

(43) A: What a useless fairy he was.
B: Who?
[BNC: KCT 1752–1753]

Clarification As reprise, this category also corresponds to a sluice reading that falls
in the NSU class CE. In this case the sluice is used to request clarification of the entire
antecedent utterance, indicating a general breakdown in communication often at the
acoustic level. The following is an example of a sluice with a clarification interpretation:

(44) A: Aye and what money did you get on it?
B: What?
A: What money does the government pay you?
[BNC: KDJ 1077–1079]

Unclear I use this category to classify those sluices whose interpretation is difficult to
grasp, possibly because the input is too poor to make a decision as to its resolution, as in
the following example:

(45) A: <unclear> <pause>
B: Why?
[BNC: KCN 5007]

After annotating the first sample, it emerged that there was a distinguished class of sluice
readings that did not fall in any of the above categories. Because of this, it was decided
to add a new category to the above set. The sluices in the second sample were then
classified according to a set of five categories, including the following:
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Wh-anaphor This category is used for the reading conveyed by sluices like (46). These
are characterised by having as antecedent utterance a (possibly embedded) wh-question,
whose wh-phrase acts as the antecedent of the sluice—hence the denomination “wh-
anaphora”. The sluice is then resolved to the wh-question in the antecedent utterance.

(46) A: We’re gonna find poison apple and I know where that one is.
B: Where?
[BNC: KD1 2370–2371]

2.4.3 Reliability

Although the kappa coefficient has been the standard measure for evaluating inter-coder
agreement in computational linguistics since (Carletta 1996), several authors have iden-
tified difficulties related to its interpretation (see e.g. Cicchetti and Feinstein 1990). Re-
call that the kappa score for a set of classifications is computed as

κ =
P (A)− P (E)

1− P (E)

where P (A) is the proportion of actual agreements and P (E) is the proportion of ex-
pected agreement by chance. The denominator is the total proportion less the proportion
of chance expectation.

There are two main problems that affect κ. These are the bias problem, which arises
when the coders differ in assessing of the frequency of instantiation for the categories
used, and the prevalence problem, which occurs when the distributions for categories
are skewed (highly unequal instantiation across categories.). The prevalence problem
arises because skewing the distributions of categories in the data increases P (E), and
the larger the value of P (E), the lower the value of κ.

Even though the bias problem does not seem to affect the present annotation, the
kappa scores obtained are strongly affected by prevalence. The reason for this will be-
come clear in the next section when I describe the distribution patters for each type of
sluice. Therefore, following Di Eugenio and Glass (2004), I will report two measures of
reliability for the sluice annotations: κ and an additional measure PABAK (prevalence-
adjusted bias-adjusted kappa). PABAK was originally introduced by Byrt et al. (1993)
to adjust κ to control for differences in prevalence and for bias among observers.11 The

11In fact, (Di Eugenio and Glass 2004) propose to report three measures: κ computed according to (Cohen
1960) (κCo), κ computed according to (Siegel and Castellan 1988) (κC&S), and PABAK . κCo and κC&S

only differ in the computation of P (E). As (Di Eugenio and Glass 2004) point out, κC&S is not affected
by bias (the value of κCo adjusted for bias turns out to be the same as κC&S). In the present study κCo

and κC&S are equal, showing that our data is not affected by the bias problem. I therefore report only two
measures: κ (computed as κC&S) and PABAK , which highlights and corrects the effect of prevalence.
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formula to compute PABAK given in (Byrt et al. 1993) is restricted to a dichotomous
classification. I use a generalisation of that formula for n categories. A brief description
of this generalisation is given in Appendix A.

2.4.3.1 The First Sample

The agreement on the coding of the first sample of sluices was moderate (κ = 52,
PAPAK = 56)12. There were important differences amongst sluice classes: The low-
est agreement was on the annotation for why (κ = 29, PABAK = 36), how (κ = 32,
PABAK = 40) and what (κ = 32, PABAK = 41) , which suggests that these categories
are highly ambiguous. Examination of the coincidence matrices shows that the largest
confusions were between reprise and clarification in the case of what, and between
direct and reprise for why and how. On the other hand, the agreement on classifying
who was substantially higher (κ = 71, PABAK = 77), with some disagreements between
direct and reprise. The effect of prevalence is clearly seen in the case of which N. Al-
though in the annotation of which N the actual agreement was high (P (A) = 84), the
fact that the coders used basically only two categories, direct and reprise, choosing
one of them (reprise) more than 70% of the time, makes the percentage of expected
agreement by chance very high (P (E) = 65), which in turn lowers the kappa coefficient
(κ = 55). Prevalence of this kind is corrected by PABAK , which in this case is substan-
tially higher than κ (PABAK = 79). See Table 2.11 for a summary of κ and PABAK
scores for the annotation of both samples.

First Sample Second Sample

kappa PABAK kappa PABAK

General 52 56 61 67

what 32 41 39 50
why 29 36 52 69
who 71 77 62 84
where 38 54 35 49
when 44 57 62 70
which N 55 79 64 76
which 36 61 — —
how 32 40 — —

Table 2.11: Agreement amongst the 3 coders

12All values are shown as percentages.
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2.4.3.2 The Second Sample

Agreement on the annotation of the 2nd sample was considerably higher, although still
not entirely convincing (κ = 61, PABAK = 67). Overall agreement improved in all
classes, except for where and who. The case of who provides another example of the
prevalence problem. The actual agreement was high (P (A) = 87). However, the propor-
tion of chance agreement was also high (P (E) = 66) due to the fact that most uses of this
sluice were classified as reprise. This resulted in a kappa much lower than the actual
agreement (κ = 62). Once this score is adjusted for prevalence, we obtain a significantly
higher coefficient (PABAK = 84).

Agreement on what improved slightly (κ = 39, PABAK = 50), and it was substan-
tially higher on why (κ = 52, PABAK = 69), when (κ = 62, PABAK = 70) and which N
(κ = 64, PABAK = 76).

2.4.3.3 Discussion

Although the three coders may be considered experts, their training and familiarity with
the data were not equal. This resulted in systematic differences in their annotations.
Two of the coders (coder 1 and coder 2) had worked more extensively with the BNC
dialogue transcripts and, crucially, with the definition of the categories to be applied.
Leaving coder 3 out of the coder pool increases agreement very significantly (see Table
2.12). The agreement reached by the more expert pair of coders was high and stable and,
I believe, provides a solid foundation for the current classification. The improvement of
scores for the full triple of coders in the second sample also indicates that it is not difficult
to increase annotation agreement by relatively light training of coders.

First Sample Second Sample

kappa PABAK kappa PABAK

70 75 71 80

Table 2.12: Agreement between coder 1 and coder 2

One of the main points of disagreement encountered was the unclear category,
which was used not only when the transcript was too poor to determine the resolution of
the sluice, but also when the interpretation was ambiguous or the coder was uncertain
about which category to choose. Disagreement was general amongst the three coders,
suggesting that it might be useful to partition this category into unclear and ambiguous.

Regarding the prevalence problem and the computation of PABAK , one could argue
that the fact that prevalence lowers kappa follows from the kappa definition, and that it is
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not unreasonable that the value of an agreement coefficient should be smaller when the
instantiation of the categories is not uniform. However, like Di Eugenio and Glass (2004),
I think that this effect undermines the credibility of kappa as a metric of agreement for
a coding scheme. A distribution pattern that kappa treats as poor reliability can be the
result of high prevalence and so reflect the nature of the data rather than a defect of
the observation method. In our test samples prevalence is a symptom of the fact that
different sluice types show clear preferences for particular readings, as we will see in the
next section.

This is why I use an additional agreement metric that corrects for prevalence to
complement kappa.

2.4.4 Results: Distribution Patterns

In this section I report the results obtained from the sluicing corpus study described
in previous sections. The study shows that the distribution of readings is significantly
different for each class of sluice.

The distribution of interpretations for each class of sluice is shown in Table 2.13.
The distributions are presented as row counts and percentages of those instances where
at least two annotators agree, labelled taking the majority class and leaving aside the
unclear cases. Distributions are similar over both samples, suggesting that corpus size
is large enough to permit the identification of repeatable patterns. For clarity’s sake, in
Table 2.13 the results of the two samples are conflated.

Sluice Direct Reprise Clarification Wh-anaphor

what 7 (9.60%) 17 (23.3%) 48 (65.7%) 1 (1.3%)
why 55 (68.7%) 24 (30.0%) 0 (0%) 1 (1.2%)
who 10 (13.0%) 65 (84.4%) 0 (0%) 2 (2.6%)
where 31 (34.4%) 56 (62.2%) 0 (0%) 3 (3.3%)
when 50 (63.3%) 27 (34.1%) 0 (0%) 2 (2,5%)
which 1 (8.3%) 11 (91.6%) 0 (0%) 0 (0%)
whichN 19 (21.1%) 71 (78.8%) 0 (0%) 0 (0%)
how 23 (79.3%) 3 (10.3%) 3 (10.3%) 0 (0%)

Table 2.13: Distribution patterns

Table 2.13 reveals significant correlations between sluice classes and preferred in-
terpretations (χ2 = 438.53, p ≤ 0.001). The most common interpretation for what is
Clarification, making up more than 65%. Why sluices have a tendency to be Direct
(68.7%). The sluices with the highest probability of being Reprise are who (84.4%),
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which (91.6), which N (78.8%) and where (62.2%). On the other hand, when (63.3%)
and how (79.3%) have a clear preference for Direct interpretations.

As explained in Section 2.4.1, the samples used in the corpus study do not reflect the
overall frequencies of sluice types found in the BNC. Now, in order to gain a complete
perspective on sluice distribution in the full corpus, it is therefore appropriate to combine
the percentages in Table 2.13 with the absolute number of sluices contained in the BNC.
The number of estimated tokens is displayed in Table 2.14.

whatcla 2040 whichNrep 135

whydir 775 whendir 90

whatrep 670 whodir 70

whorep 410 wheredir 70

whyrep 345 howdir 45

whererep 250 whenrep 35

whatdir 240 whichNdir 24

Table 2.14: Sluice class frequency (estimated tokens)

For instance, the combination of Tables 2.13 and 2.14 allows us to see that although
almost 70% of why sluices are Direct, the absolute number of why sluices that are Reprise
exceeds the total number of when sluices by almost 3 to 1. Another interesting pattern
revealed by this data is the low frequency of when sluices, particularly by comparison
with what one might expect to be its close cousin—where. Indeed the Direct/Reprise
splits are almost mirror images for when v. where. Explicating the distribution in Table
2.14 is important in order to be able to understand among other issues whether we
would expect a similar distribution to occur in a Spanish or Mandarin dialogue corpus;
similarly, whether one would expect this distribution to be replicated across different
domains.

I will not attempt to provide an explanation for these patterns here. The reader is
invited to check a sketch of such an explanation for some of the patterns exhibited in
Table 2.14 in (Fernández et al. 2004).

2.5 Summary and Conclusions

In this chapter I have presented a comprehensive taxonomy of NSUs based on corpus
work performed using part of the dialogue transcripts of the BNC. The proposed tax-
onomy of NSUs, which has a coverage of over 98%, distinguishes amongst 15 different
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classes that can be grouped into acknowledgements, questions, answers, extensions, and
completions.

Several results emerge from this empirical study. To start with, the study shows that
NSUs are an important phenomenon in dialogue, making up 9% of all utterances in the
sub-corpus under investigation. The distribution of NSU classes shows that acknowledg-
ments are the most common kind of NSUs, followed by answers, and next by questions.
The study has also provided data concerning the distance between NSUs and their an-
tecedent. Although in general the antecedent is the immediately preceding utterance,
there are important differences between the various NSU classes, as well as between
dialogue and multilogue. In summary, Short Answer is the only NSU class that exhibits
significant long-distance effects, and these seem to be primarily an effect of multi-party
interaction. In the last part of the chapter I have presented an additional corpus study
focussed on sluices, which has shown that there are significant correlations between
interpretation and sluice class.

The NSU and sluicing corpus studies presented in this chapter supply the data for the
machine learning experiments undertaken to address the task of automatically disam-
biguating between NSU classes. These will be reported in Chapter 6. The following two
chapters are concerned with the resolution of NSUs. First, I will review some existing
approaches, and then in Chapter 4 present my own formalisation of the NSU classes,
limiting myself to acknowledgments, questions and answers.





3 Some Previous Approaches

In this chapter I review some existing approaches to the resolution of NSUs. In the litera-
ture about ellipsis, it is common to distinguish between different approaches in terms of
the level of information at which they assume that the resolution of ellipsis takes place,
be it syntax, semantics or pragmatics. As NSUs have more often than not fallen under
the denomination “ellipsis”, I shall follow this line as well, starting with two accounts
formulated exclusively in semantic terms. The first one is based on Higher Order Unifi-
cation (Dalrymple et al. 1991, Pulman 1997); the second one is the logic-based approach
of Paul Dekker (2003a,b). In Section 3.2, I will look into the minimalist account of Mer-
chant (2004), whose proposal mostly relies on syntax. After this, in Section 3.3, I will
turn to three approaches that make use of hybrid contextual information and grammat-
ical constructions, namely Ginzburg and Sag (2001), Ginzburg and Cooper (2004), and
Schlangen (2003). The three of them offer an account of NSUs couched in the formalism
of Head-driven Phrase Structure Grammar (HPSG).

I end the current chapter describing my own previous approach in Section 3.4. This
is built on the Dynamic Logic formalisation presented in (Fernández 2003a,b) and de-
veloped in collaboration with Matthew Purver (Purver and Fernández 2003, Fernández
and Purver 2004). As we shall see, this work contains some of the underlying ideas at
the core of the proposal that will be presented in the next chapter.

3.1 Semantic-based Approaches

I shall devote this first section to reviewing a couple of approaches that make use of
purely semantic information.

45
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3.1.1 Higher Order Unification

The first approach I will look into uses higher order unification (HOU) to resolve the
meaning of elliptical expressions. The approach was not developed with the resolution
of NSUs in mind, but it rather originated as an account of some intrasentential elliptical
constructions, like most notably VP ellipsis. I will nevertheless review its main features
here, because its elegant semantic-based formulation can easily be applied to some NSU
classes like e.g. repeated acknowledgements and helpful rejections.

The most influential HOU-based account of ellipsis is perhaps that of Dalrymple et al.
(1991). The main idea of this account is that the resolution of ellipsis amounts to recov-
ering a property from context such that when it is applied to the meaning of the ellipsis
target, it resolves the interpretation of the elliptical construction. Typically the property
in question derives from a contextual antecedent or source clause. The recoverability of
a suitable property is tied to the assumption that some sort of parallelism exists between
source and target. The to-be-recovered property is then such that, when it is applied to
the parallel element in the source, it is equivalent to the interpretation of the full source
clause. An example will help clarify things here. Consider an instance of VP ellipsis like
the following:

(47) Paul hates Yoko, and George does too.

In this example the source is the complete clause Paul hates Yoko, while the target is
the elliptical sentence George does too, with Paul and George being parallel elements.
Now, assuming that the interpretation of the source clause is hates(paul, yoko) and the
interpretation of the parallel element in this clause is paul, finding a suitable property P
that will resolve the VP ellipsis in the target amounts to finding solutions to the following
higher order equation, where P is a variable ranging over properties:

(48) P (paul) = hates(paul, yoko)

The obvious solution to this equation, which will make identical the two terms in the
expression, is given in (49a).1 The semantics of the VP ellipsis is then resolved by pred-
icating P of the interpretation of the parallel element in the target, namely george, as
shown in (49b). The semantics of the whole sentence is then as in (49c).

(49) a. P = λx.hates(x, yoko)

b. P (george) 7→ λx.hates(x, yoko)(george) 7→ hates(george, yoko)

1Other less obvious, and less interesting solutions like λy.(λx.hates(x, yoko))(y) are also possible. I
ignore them here, as they are all alternative variants of (49a).
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c. hates(paul, yoko) ∧ hates(george, yoko)

As equations solved by HOU typically yield alternative solutions, the approach can ac-
count for ambiguities generated by certain elliptical constructions. In sentence (50a) for
instance, the ambiguity between what has been called a strict reading (Paul likes George’s
guitar) and a sloppy reading (Paul likes Paul’s guitar) of the target clause is explained in
terms of the solutions (50c) and (50d), respectively, to the equation in (50b).

(50) a. George likes his guitar, and Paul does too

b. P (george) = likes(george, guitar of(george))

c. P = λx.(likes(x, guitar of(george))
P (paul) 7→ λx.(likes(x, guitar of(george))(paul) 7→ likes(paul, guitar of(george))

d. P = λx.(likes(x, guitar of(x))
P (paul) 7→ λx.(likes(x, guitar of(x))(paul) = likes(paul, guitar of(paul))

This approach relies heavily in correctly establishing the parallelism between source and
target. Only when the parallel elements are detected, it is possible to set up the relevant
equation and apply its solutions to the target. Dalrymple et al. (1991) do not address this
task however, claiming that it is advantageous to keep separate a theory of parallelism
in order for it not to be restricted to purely syntactic techniques. Arguably this two-
stage strategy boosts the flexibility of the approach in the sense that nothing prevents
semantic and/or pragmatic information to be used in determining the relevant contex-
tual property. Examples like the following (from Webber 1978), where the antecedent
is not overtly expressed and has to be inferred pragmatically, could therefore potentially
be treated.

(51) Irv and Mary want to dance together but Mary can’t [dance with Irv] since her
husband is here.

Despite the potential advantages of this distribution of labour, the fact is that the task of
finding candidate parallel elements is not tackled by the authors.

Pulman (1997) offers a slightly different approach. Instead of considering the identi-
fication of parallelism and the resolution of ellipsis as two different stages, he regards the
process of generating appropriate parallel elements as simultaneous to finding solutions
to the higher order equation. He uses a functor ellipsis whose meaning is given by the
following conditional:2

2For simplicity’s sake, I formulate the conditional equivalence using only one argument for the ellipsis

functor, although it can of course be generalised to multiple arguments without difficulty. See (Pulman
1997), p.17.
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(52) ellipsis(A) ⇔ P (A)
if
antecedent(C) and
P (B) = C and
parallel(A,B)

According to this conditional equivalence, the elliptical target ellipsis(A) will be inter-
preted as P (A) provided that some contextual conditions are satisfied. The first condition
has to do with the identification of an antecedent or source C. The second condition sets
up the higher order equation, decomposing C into a property P and an element B. Fi-
nally, the third condition requires elements A in the target and B in the source to be
parallel. If these conditions hold, an instantiation for P can be found, which will provide
the interpretation of the ellipsis once it is substituted in on the right hand side of the
equivalence. In the following example,3 for instance, the availability of two candidate
parallel elements to bill (john and mary) generates two solutions (53d) to the equation
in (53c), leading to the two possible interpretations of the ellipsis given in (53e):

(53) a. John likes Mary and Bill too.
ellipsis(bill) ⇔ P (bill)

b. antecedent(likes(john,mary))

c. P (B) = likes(john,mary)

d. parallel(bill,mary) 7→ B = mary , P = λx.likes(x,mary)
parallel(bill, john) 7→ B = john , P = λx.likes(john, x)

e. P (bill) 7→ λx.likes(x,mary)(bill) 7→ likes(bill,mary)
P (bill) 7→ λx.likes(john, x)(bill) 7→ likes(john, bill)

Thus in this approach candidate parallel elements are generated as part of the solution to
the equation. Again, however, the problem of deciding what elements count as parallel
is not directly addressed. Parallel elements are stipulated rather than computed, which
weakens the predictive power of the system.

The computation of parallelism is precisely the focus of attention of some follow-
up approaches to HOU, like (Gardent and Kohlhase 1997, Gardent 1999). In order to
compute parallel elements, Gardent and colleagues combine HOU with an abductive
calculus. This computes the parallelism of two logical forms on the basis of the sortal
properties of their subconstituents, defined in a domain-specific sort hierarchy or seman-
tic ontology. I will not go into the details of this approach here, but just note that it does

3Adapted from (Pulman 1997) p.18.
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seem to be able to predict semantic parallelism, as well as a related notion of contrast or
contrastive parallelism.

Turning now to NSUs, it seems clear that HOU combined with a systematic theory of
parallelism like the one just mentioned could be applied to some NSU classes, like Re-
peated Acknowledgements and Helpful Rejections, for instance.4 Their resolution could
be modelled as the recovery of a property from context whose application to the frag-
ment resolves its clausal content. Consider the following example, where (54b) is a
Repeated Acknowledgement and (54c) a Helpful Rejection:

(54) a. A: Mark plays football.

b. B: Football.

c. B: (No,) tennis.

To resolve these NSUs, first we need to compute the parallelism between the fragments
and the elements in the source. If our semantic ontology is set up correctly, the shortest
path in this ontology between football in (54b) and tennis in (54c) respectively, and the
denotations of the constituents in the source will predict that, in both cases, the parallel
element is football .5 This will set up the higher order equation in (55a), with solution
(55b), and corresponding resolutions in (55c):6

(55) a. P (football) = plays(mark, football)

b. P = λx.plays(mark, x)

c. P (football) 7→ λx.plays(mark, x)(football) 7→ plays(mark, football)
P (tennis) 7→ λx.plays(mark, x)(tennis) 7→ plays(mark, tennis)

HOU seems therefore able to assign plausible interpretations to the NSUs in (54). How-
ever it becomes less viable when it is faced with helpful rejections like the following:

(56) A: Does Mark play football?
B: Tennis.

4The reader will find an approach to non-elliptical corrections in terms of HOU in (Gardent et al. 1996).
5Typically, repeated acknowledgements would involve shorter paths (or no path at all if there is identity)

than helpful rejections, which by definition involve a contrast and therefore more distance in a semantic sort
hierarchy.

6Note that the interpretation assigned to (54c) should make clear that the NSU counts as a rejection,
i.e. that the fragment is associated with some sort of contrastive focus. When an explicit negation is
present, this is straightforward—“No” can be interpreted as ¬C, where C is instantiated to the source
plays(mark, football).
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It is obvious that the equational formulation of the approach requires that the type of
the source clause be of the same type as the type of the target. However in the case of
helpful rejections to polar questions like (56) the antecedent is of type question, while
the NSU denotes a proposition. The same is true for short answers, and vice versa for
direct sluices. Hence, this blocks an extension of the approach to this kind of NSUs, as
the higher order equation cannot be set up.7

In the next section I briefly present a semantic approach that proposes a treatment of
short answers.

3.1.2 A Compositional Semantics for Short Answers

In this section I will give a general impression of the logic-based approach to short an-
swers presented in (Dekker 2003a,b).

In Dekker’s work questions are built up from formulae φ by prefixing an operator ?
followed by a sequence of variables ~x. Intuitively, questions ?~xφ can be seen as inquisitive
expressions asking about those sequences of individuals such that, when they act as
values for the variables ~x in φ, φ is true.

This is a representation of questions similar to the one adopted in the so-called struc-
tured meaning tradition (e.g. Krifka 1999, Ginzburg 2005) where questions are modelled
as lambda abstracts. However Dekker stays in line with propositional approaches (Groe-
nendijk and Stokhof 1997) in that he identifies the interpretation of a question with the
set of its answers.

That the interpretation of questions is equivalent to answerhood can be seen more
precisely in the semantics given for question expressions. He defines a satisfaction rela-
tion that holds between a model M , a variable assignment g and a sequence of answers
(or individuals) α. For simplicity’s sake, (57) shows the satisfaction definition for polar
and unary wh-questions only, where 1 and 0 denote the truth values true and false, and
Λ denotes the empty sequence

(57) Satisfaction of polar and unary wh-questions

• M, g,1 |=?φ iff (M, g,Λ |= φ iff M, g,0 6|=?φ)

• M, g, α |=?xφ iff α = {d |M, g[x/d],Λ |= φ}

The first clause in (57) roughly says that an answer to a polar question ?φ is the truth
value 1 (true) if φ is true. The second clause is related to wh-questions: α is the set of

7To avoid this problem, Pulman (1997) opts for associating interrogative clauses with propositional
contents. Although, as suggested by the formal semantic literature on interrogatives (Groenendijk and
Stokhof 1997), this move can be regarded as semantically problematic, it allows him to treat constructions
like e.g. “Mary came to the party, but with whom?”, where a proposition and a question are coordinated.
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answers to a unary question ?xφ if it contains individuals d such that if variable x in φ is
substituted by d, φ is true.

Dekker employs techniques independently motivated by the phenomenon of topically
restricted quantification to analyse short answers. Topically restricted quantification oc-
curs when a quantified term is restricted by a sequence of contextually salient individu-
als. In the following example, for instance, “all tennis players” is restricted to the domain
or topic of Swedish tennis players.

(58) Swedes are funny. All tennis players look like Björn Borg.

Dekker uses the notation M, g, α |=?~xφ ∃~zψ to interpret topically restricted quantified
expressions, where ?~xφ is an n-place topic restricting the values of ~z = z1 · · · zn in ψ. The
same idea can be used to provide an interpretation of short answers, which is contextu-
ally restricted by a salient question. This is mediated by an operator ANS which behaves
as follows:

(59) Topic constituent answer to unary wh-questions

M, g, α |=?xφ ANS (∃zPz) iff α = {d |M, g[d/z], α |= Pz ∧M, g[x/d],Λ |= φ}

This can be better understood with an example. Consider the dialogue in (60a). Assum-
ing that A’s question is represented as ?xPhone(x) and B’s answer as ∃zStudent(z), the
truth conditions of the short answer are as in (60b). In words, B’s answer is true if there
is an individual d such that when variables x and z (in the question and the answer,
respectively) are substituted by d, both question and answer are true.

(60) a. A: Who phoned?
B: A student.

b. M, g, α |=?xPhone(x) ANS (∃zStudent(z)) iff

α = {d |M, g[z/d],Λ |= Student(z) ∧M, g[x/d],Λ |= Phone(x)}

Thus this approach allows for a compositional interpretation of short answers, which
is usually difficult to obtain in propositional approaches to questions like that of Groe-
nendijk and Stokhof (1997). However, it is not clear whether this account could be
scaled up to other kinds of NSUs. I will not speculate here about how this could be done,
although presumably this would involve defining additional operators on top of ANS .

In any case, the issue that has raised most of the objections to semantic approaches
like this one and the HOU-based presented in the previous section is that they cannot ac-
count for the structural constraints that seem to govern elliptical constructions as well as
NSUs, to which I have already refered to in the introduction. The following examples—
(61b) from (Morgan 1973)—show that the well-formedness of the target or the NSU
depends on the syntactic properties of the source or the antecedent.
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(61) a. Klaus malte einen Menschen und Petra {einen Baum/*einem Baum}
Klaus painted [a person]acc and Petra {[a tree]acc/*[a tree]dat}

b. A: What does John think?
B: That Tricia has given birth to a 7-pound chin. /

*Tricia’s given birth to a 7-pound chin. /
*For Tricia to have given birht to a 7-pound chin.

This kind of dependencies cannot be accounted for by HOU nor by a logic-based account
which acts exclusively on denotations.8 The presence of syntactic connectivity has moti-
vated a body of approaches (like e.g. Morgan 1973, Chung et al. 1995, Merchant 1999)
that essentially view the resolution of ellipsis as a process of recovering syntactic material
from an antecedent clause. In the next section I review a recent account of some classes
of NSUs that follows this line.

3.2 Ellipsis as Deletion: a Syntactic Account

Within the generative grammar tradition there is a line of research, which regarding
NSUs can be traced back to Morgan (1973)’s analysis of short answers, that views ellipti-
cal constructions as involving unpronounced syntactic structure. I will concentrate here
on one recent approach within this trend, namely that presented in (Merchant 2004).

Building on previous work (Merchant 2001) on the nature of embedded sluicing and
ellipsis in general, Merchant (2004) offers an analysis of short answers from a Minimalist
perspective. His account rests on two main ideas: (i) that non-sentential utterances
involve ellipsis, i.e., according to the author, deletion of syntactic structure; and (ii) that
they involve movement to a peripheral position in the clause’s syntactic representation.

The first of these points essentially corresponds to the ellipsis generation approach ad-
vocated for in (Morgan 1973). This is based on the observation that often elliptical con-
structions show the same grammatical connectivity as their non-elliptical counterparts.
Merchant provides extensive cross-linguistic data to support this. The examples are all
in the lines of the phenomena already observed by Morgan (1973, 1989), like case-
matching—where the fragment bears the same morphological case that it would bear in
a sentential answer, as in (62a) for Russian—and binding and correference effects—as
shown in (62b) for the distribution of reflexives, for instance.9

8Note, however, that Pulman’s predicate parallel could in principle be used to encode dependencies of
varied nature.

9The examples are adapted from (Merchant 2004).
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(62) a. A: Komu pomogla Anna? B: Ivanu/*Ivan/*Ivana.
A: whodat helped Anna? B: Ivandat/*Ivannom/*Ivanacc

A: Who did Anna help? B: Ivan.

b. A: Who does John1 like?
B: Himself/*Him1.
(John1 likes himself/*him1.)

These phenomena seem to support the idea that the same mechanisms operate uniformly
in both NSUs and complete sentences, and are taken as evidence that the NSU is gen-
erated as a full clause, which is then subjected to a deletion operation. However, as
pointed out by Ginzburg (1999), Ginzburg and Sag (2001) and others, there are impor-
tant divergences between NSUs and their sentential correlates that would invalidate this
claim:10

(63) A: Who appeared to be the cause of John and Mary’s problems?
B: Each other.
*Each other appeared to be the cause of John and Mary’s problems.

Merchant assumes that elliptical structures bear a feature E, which is responsible for all
those properties that distinguish them from their non-elliptical counterparts. The idea
is that syntactic heads bearing E license the ellipsis of their complements (provided that
some feature-feature matching requirements are met). A scheme of his proposal is given
in (64).

(64) FP

qqqqqqq
MMMMMMM

[DP John]2 F′

qqqqqqq
MMMMMMM

F
[E]

<TP>

qqqqqqq
MMMMMMM

she saw t2

PP

The feature E informs the phonological component of the grammar that its
complement—which in (64) corresponds to the clause [She saw t2]—should go unpro-
nounced. As for the semantics, the feature E demands that the elided proposition bears

10The data in this respect is varied and often seems to point in different directions. Nevertheless, I take
(63)—taken from (Ginzburg and Sag 2001)—to be a clear example of no correlation between the NSU form
and its full-sentence counterpart. For some counterexamples I refer the reader to Merchant (2004).



54 Chapter 3. Some Previous Approaches

the property of e-givenness, which seems to boil down to the requirement that the elided
material must have an appropriate antecedent.

According to the scheme in (64), the fragment moves to a specifier position of a func-
tional projection11 prior to the deletion. This movement is in part introduced to explain
certain phenomena that were puzzling for earlier deletion-based approaches like that of
Morgan (1973). One such phenomenon is, for instance, the presence of a complemen-
tizer in some short answers, which is ungrammatical in the presumed underlying full
sentential structure, as shown in (65a). This is a problem for theories that take elliptical
constructions and full sentences as being generated by the same mechanisms. However,
as frequently noted in previous literature (e.g. Stowell 1981, Bresnan 1994), as well as
by Merchant himself, if the complement does not occupy its canonical position like in
(65b), the sentential version containing the complementizer is felicitous.

(65) a. A: What are you ashamed of?
B: *(That) I ignored you.
*I’m ashamed of that I ignored you.

b. *(That) I ignored you, I’m ashamed of.

Merchant takes this parallelism between focused phrases (or clauses) and short answers
as ratifying his approach to NSUs as involving movement to a peripheral position. The
reader has probably noted however that this argument relies on the theory-specific as-
sumption of generative grammar according to which so-called dislocated phrases like
that in (65b) involve movement from their original syntactic position. Of course other
analysis of these phrases are possible in movement-free linguistic theories based on sur-
face syntax,12 and hence this cannot be considered as evidence of movement for NSUs.
What these examples do show however is that—not surprisingly—a parallelism should
be drawn between short answers and focused constructions, and that it is likely that the
same mechanisms that explain the complementizer pattern in one case do so as well for
the other one.13 In any case, movement does not seem to solve the problems posed by
examples like (63) above.

Leaving movement aside, it is worth pointing out that Merchant’s account differs from
previous approaches that view ellipsis as a reconstruction/deletion procedure whereby
contextually available syntactic structure is copied from an antecedent clause (like e.g.
Chung et al. 1995). In contrast, Merchant’s account is somehow more semantic (or
pragmatic) in nature. The property of e-giveness acts as an anaphoric or presuppositional

11Merchant is not precise about this and simply suggests that the functional projection in question could
perhaps be a so-called Focus Phrase.

12See e.g. the analysis of unbounded dependencies in Chapter 5 of (Ginzburg and Sag 2001).
13See (Schlangen 2003) §5.5.1.2–5.5.1.3 for some discussion of this issue.
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device, which licenses a deleted proposition if it can be semantically recovered from
context.14 This allows the author to treat fragments which lack a linguistic antecedent,
similar in nature to example (51) in the previous section.

(66) a. [Abby and Ben are at a party. Abby sees an unfamiliar man with Beth, a mutual
friend of theirs, and turns to Ben with a puzzled look in her face. Ben says:]

Some guy she met at the park.

b. [FP some guy she met at the park1 <[TP he’s t1]>]

The structure proposed for the fragment in (66a) is that in (66b), where a demonstrative
pronoun and the copula are elided. The assumption is that in this case the context is rich
enough to license the e-giveness property, as it contributes suitable non-linguistic refer-
ents for the anaphoric expressions involved in the elided proposition—in the example
below, a salient guy as antecedent of the pronoun he, as well as some implicit question
that would make the predicate be salient. Antecedents are therefore semantic rather than
syntactic.

Summarising, in Merchant’s system NSUs are not ratified as grammatical construc-
tions per se, but are seen as deviations of full sentences. The author postulates that
NSUs are generated as full syntactic sentences, which are deleted after the fragment
has moved to a peripheral position. This allows him to account for syntactic connectiv-
ity, although it leaves unexplained some divergences between NSUs and their sentential
counterparts. Resolution in this system is however essentially semantic, as the entities
that act as potential antecedents (and that are denoted by the elided expressions) do not
necessarily have to be syntactically present in context. Yet, according to his approach, the
context dependent material of an NSU must be fully generated at the syntax/semantics
interface. The issue then arises as to how the syntactic structures subjected to deletion
are determined. To restrict the space of generation of these syntactic structures Merchant
proposes what he calls a “limited ellipsis” analysis. This assumes that only demonstrative
pronouns or expletives and the existential predicate can be part of the elided structure
of NSUs, as they can generally be taken for granted in most contexts.

This may be true for examples similar to those in (66) above, but it is certainly
not enough to account for more complex NSUs, as demonstrated by the examples in
(67a) from Ginzburg and Sag (2001) and (67b) from Schlangen (2003), which will be
considered in more detail in subsequent sections. In these cases, the linguistic form of
the material needed for resolution is not present in the context, and a “limited ellipsis”
analysis would clearly be insufficient.

14The same notion of e-giveness is employed by Merchant (2001) to account for sluices. For some com-
ments on the merits and pitfalls of his analysis see (Ginzburg and Sag 2001) §8.1.7.
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(67) a. A: Go home Billie!
B: Why? (= Why are you ordering me to go?)

b. A: Why did Peter leave so early?
B: Exams. (= He has/has to mark/... exams.)

3.3 Constructionist Approaches

In contrast to sententialist analysis of NSUs exemplified here by Merchant’s work, the
approaches that will be presented in this section—namely (Ginzburg and Sag 2001,
Ginzburg and Cooper 2001, 2004) and (Schlangen 2003)—see NSUs not as deviations
of canonical sentences, but as fully grammatical structures that are a proper part of the
grammar. Another point shared by these approaches is that they are all couched in the
formalism of HPSG. Grammatical analysis in HPSG are characterised by avoiding the
need of empty elements and dispensing with movement and deletion operations. In the
aspect that interests us here, this is achieved by the use of constructions (Sag 1997),
phrasal types that may introduce material that is not strictly present in the lexical ele-
ments they include. This somehow unorthodox mapping between syntax and semantics
has been proved to be useful to analyse different grammatical phenomena like relative
and interrogative clauses (Sag 1997, Ginzburg and Sag 2001). In the same line, NSUs
can be analysed as sentential constructions whose only constituent is a non-sentential
phrase.

Instead of following the chronological order in which the approaches reviewed in this
section were developed, I will start by reviewing Schlangen’s work, which is partially
inspired by (Ginzburg and Sag 2001). I will then turn to the proposals of Ginzburg and
collaborators on which my own work is based.

3.3.1 Fragments and SDRT

I have already referred to Schlangen’s (2003) work on NSUs in the previous chapter,
where I discussed the taxonomy of fragments he adopts. In this section I will concentrate
on the strategies employed by the author for representing and resolving NSUs, which
combine an underspecified semantics of fragments with SDRT (Asher 1993, Asher and
Lascarides 2003).

Inspired by Ginzburg and Sag (2001), Schlangen adopts a constructionist approach
to the syntax of NSUs, revamping fragments to the status of sentences by means of
HPSG constructions. I forgo giving the HPSG matrices here; it will suffice to say that his
constructions encode the following informal rule:15

15The rule is taken from (Schlangen 2003) §7.3, p. 171.
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(68) S[frag ] → (ADV )XP

This rule takes possibly modified phrases ((ADV )XP) to the level of sentences. Fol-
lowing Ginzburg and Sag (2001), this is achieved by specifying the root sign of an NSU
construction (S[frag ] in the informal rule above) as having the same general semantic
type of clauses, namely message, as well as the same syntactic features of a sentence, like
the same categorical type of verbs.

The semantic representations built up by these syntactic constructions are under-
specified descriptions of logical forms. Because Schlangen uses the English Resource
Grammar (Flickinger et al. 2000), these underspecified representations are encoded in
the formalism of Minimal Recursion Semantics (MRS) (Copestake et al. 1999), which is
in fact used as a short-hand for a more detailed underspecification language employed in
(Asher and Lascarides 2003). We do not need to go into the details of these formalisms,
as they are not significant for our purposes here. More important is the general idea be-
hind the use of underspecification for NSUs’ semantics. This is indeed quite simple and
elegant: NSUs are seen as denoting an unknown (i.e. underspecified) message or relation
(corresponding to a proposition, a question or a request), which is crucially restricted to
involve in some way or other the entity denoted by the phrase used in the NSU. For
example, a declarative NSU consisting of the NP “Peter” will denote a proposition (and
therefore an eventuality in a Neo-Davidsonian approach), which involves the entity de-
noted by the phrase, namely ‘Peter’ in this case. This can be formulated as follows, where
P denotes an unknown relation in which x (the denotation of “Peter”) plays some role:

(69) ∃e∃x P (e, x) ∧ named(x,Peter) ∧ P =?

This underspecified representation describes a potentially infinite number of logical
forms, one for each proposition that the NSU can denote. The role of the resolution
procedure will then be to resolve this underspecification by choosing the pragmatically
preferred reading given the context. And here is where SDRT comes into play.

Originated as an extension of DRT (Kamp and Reyle 1993), SDRT focuses on how
DRSs corresponding to semantic representation of sentences are combined into larger
semantic representations of discourses. While in classical DRT this is assumed to be a
simple operation of merging DRSs, in SDRT this is done by introducing rhetorical re-
lations, which act as the means to connect new sentences with the previous discourse.
These rhetorical relations are computed by means of a non-monotonic logic that, besides
lexical semantics and other sources of information, critically uses defeasible pragmatic
knowledge. The pragmatically preferred interpretation of a sentence in a given context
is computed by means of a constraint update that has access to different kinds of infor-
mation and that, given a new sentence β, describes all possible ways in which β can
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connect to the context. This is then filtered by a principle called Maximise Discourse Co-
herence, which is formulated as a coherence ordering that e.g. prefers a maximal number
of rhetorical relations between two items.

As already explained in Section 2.2 of the previous chapter, Schlangen distinguishes
between resolution-via-identity and resolution-via-inference NSUs. The unknown predi-
cate of a res-via-id NSU is resolved to a relation explicitly present in its antecedent. If the
fragment plays an argumental role in this relation, some syntactic requirements must be
met.

In order to account for the syntactic connectivity exhibited by the res-via-id NSUs,
Schlangen modifies the constraint update so that it is sensitive to some syntactic infor-
mation. This is done by adding a relation G-parallel (for generalised parallel),16 which
holds when a fragment is semantically and structurally very similar to its antecedent
(i.e. it is a resolution-via-identity fragment). The idea is then that G-parallel triggers a
syntactic constraint that must be satisfied as well. This syntactic constraint is formulated
as follows:

(70) Syntactic Constraint on G-Parallel

syn-constr(α, β) ↔

a) There is a partial isomorphism between the DRS-structure of Kα and that of
Kβ, and

b) no argument of a predicate in Kβ has a syntactic category-specification different
from what the arg-st-specification of that predicate demands

Here α is the potential antecedent of an NSU β, whileKα andKβ are the DRSs represent-
ing the content of the antecedent and the NSU, respectively. Clause (a) thus has to do
with the required similarity between NSU and antecedent. Clause (b), on the other hand,
makes sure that the argumental specifications of all predicates in the resolved content of
the fragment are met. From the infinite set of resolutions described by the underspecified
meaning of the fragment, those that trigger G-parallel will be validated only if syn-constr
holds. This of course requires that some syntactic specifications are visible or accessible
to the logic computing the rhetorical relations, and this is what Schlangen assumes is the
case, thereby modifying standard versions of SDRT and blurring its modularity.

With this syntactic constraint in place, Schlangen can account for the connectivity
effects of (61) as well as for the optionality of prepositions in short answers like (71). If
the NSU is a PP, this is taken as satisfying the subcategorisation requirements of the verb
“rely”, while if it is an NP it satisfies the requirements imposed by the preposition “on”.

16G-parallel is a variant of the SDRT relation Parallel, which is inferred when its arguments are semanti-
cally very close.
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(71) A: Who can we rely on?
B: (On) Sandy.

Thus in (71) the fact that G-parallel holds and that syn-constr is satisfied will trigger the
rhetorical relation Question Answer Pair (QAP). Sometimes however, there are no well-
formed representations that satisfy G-parallel, like in (72), where the semantic type of
the answer does not match that of the wh-phrase. In such cases inference is needed.

(72) A: Why did Peter leave so early?
B: Exams.

As the name indicates, resolving resolution-via-inference fragments involves inferring
some material not explicitly present in the antecedent utterance. Indeed, what licenses
an inference to QAP in (72) is a rather complicated inferential process: it involves as-
suming that the representation of A’s question includes a presupposition p and a question
‘Why p?’, which are connected by the relation Explanationq,17 and inferring that the frag-
ment is connected to p by Explanation. If these inferences are validated, then it is possible
to infer that the NSU is an answer to ‘Why p?’. Although Schlangen is not explicit on this
point, presumably in these cases the unknown relation is left underspecified.

One of the problems of this approach is that, as it is formulated, it can only ac-
count for the syntactic properties of NSUs that derive from the subcategorisation require-
ments of the resolved unknown predicate, whenever this is also present in the antecedent
clause—i.e. whenever the NSUs is res-via-id. Consider, however, the following example,
where the interpretation of the NSU “Her?” can be roughly paraphrased as one of the
options in (73b–73d).

(73) a. A: Leo saw her.
B: Her? / #She?

b. Who are you referring to with your utterance “her”?

c. Did you just say “her”?

d. You saw HER, of all people?

Presumably G-parallel would not hold here, especially in cases (73b) and (73c), where
the predicate that resolves the unknown relation is not explicitly present in the an-
tecedent. Hence these NSUs would not fall under the denomination resolution-via-
identity and syn-constr would not apply. Even if it did, however, the form of the NSU

17The relation Explanationq holds between a proposition p and a question q if all answers to q are expla-
nations of p.
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in (73) cannot be explicated in terms of the argumental role it plays within the resolved
relation. As pointed out by Ginzburg and Cooper (2004), NSUs like (73a) with readings
(73b) and (73c) are utterance anaphoric—they refer to a constituent whose content has
not been understood to ask about that content. And they do so by means of a phrase that
must be identical (categorically and phonologically) to the to-be-clarified constituent.

In order to explain the constraints on utterance anaphoric NSUs within Schlangen’s
framework one could either extend G-parallel and the notion of res-via-id NSUs, or alter-
natively introduce structural constraints for res-via-inf NSUs. Any of these ways forward,
however would obscure—if not invalidate—the distinction between res-via-id and res-
via-inf NSUs, and certainly blur even further the boundaries of the different modules of
the theory.

3.3.2 Ginzburg and Sag (2001)

The approach of Ginzburg and Sag consists in analysing NSUs by means of different
construction types, whose sentential content is derived not only from their constituent
lexical items, but via combination with context. The basic structure in HPSG is the sign,
a combination of semantic, syntactic and contextual information modelled as a feature
structure and represented as an attribute value matrix. The CONTEXT attribute is mod-
ified to integrate dialogical notions like questions under discussion (QUD). In particular,
the authors assume that CONTEXT contains two additional features:

• Maximal Question Under Discussion MAX-QUD, whose value is a semantic object of
type question and represents the most prominent issue currently under discussion,
and

• Salient Utterance SAL-UTT, which takes as its value sets of elements of type sign
and represents a focal constituent in the utterance that has given rise to MAX-QUD.

The instantiation of MAX-QUD follows the basic ideas of Ginzburg’s theory of context as
presented for instance in (Ginzburg 1996), where both asking a question q and asserting
a proposition p raise a question under discussion. In the former case this is just q, while
in the latter it is the polar question whether p. Ginzburg and Sag view questions as
λ-abstracts over propositions. They simulate this in HPSG by a type question which
includes two features, PARAM(ETER)S and PROP(OSITION), where the value of PARAMS

represents those elements that are abstracted away from the propositional core, i.e. those
variables bound by the λ operator. For instance, a wh-question like “Who left?”, which
could be formalised as the λ-abstract λx.Leave(x), in Ginzburg and Sag’s HPSG would
be represented by the structure in (74). Polar questions on the other hand are seen as
empty abstracts, which are represented with an empty value for the feature PARAMS.
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(74)


question

PARAMS


INDEX 1

REST
{

person( 1 )
}


PROP



proposition

SIT s

SOA


QUANTS 〈 〉

NUCL

leave-rel

LEAVER 1







The feature SAL-UTT has a function akin to the parallel element in the HOU approaches
we have seen in Section 3.1.1. But, since SAL-UTT is of type sign, it offers access to
information beyond semantics, thereby making it easy to define constraints involving
different kinds of linguistic material. This is used by Ginzburg and Sag to account for
syntactic connectivity effects that could not be captured by a purely semantic approach
like HOU. Moreover the authors offer a recipe for computing the value of SAL-UTT: this
corresponds to the (sub)utterance associated with the role bearing widest scope within
MAX-QUD.

Let us see how this works in more detail. The various fragments Ginzburg and Sag
analyse18 are subtypes of the construction type headed-fragment-phrase, governed by the
constraint in (75).

(75) hd-frag-ph:

HEAD

v

VFORM fin


CTXT|SAL-UTT


CAT 1

CONT|INDEX 2


HD-DTR

CAT 1

[
HEAD nominal

]
CONT|INDEX 2




This constraint has two significant effects. First, it takes a nominal daughter19 to a clausal
phrase. This is done by constraining the mother of the phrase to be of the same category

18I concentrate on their analysis of short answers and direct and reprise sluices here, and leave clarifica-
tion fragments for Section 3.3.3.

19Note that they limit their approach to NPs and case-marking PPs, i.e. phrases whose head is of type
nominal.
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as finite verbs, which will allow such phrases to serve as stand-alone clauses, i.e. to be
embedded as the daughter of root-clauses,20 and also to function as the complement of
verbs that select for finite sentential clauses. Second, the constraint ensures that the
category of the head daughter is identical to that specified by the contextually provided
SAL-UTT, and coindexes the two of them.

Short answers are analysed by means of the type declarative-fragment-clause (decl-
frag-cl), a subtype of hd-frag-ph. In addition to inheriting the information in (75), this
latter type is governed by the constraint in (76):

(76) decl-frag-cl:

HEAD
[

IC +
]

CONT


proposition

SIT 2

SOA

QUANTS order( Σ3 ) ⊕ A

NUCL 5




STORE Σ1

MAX-QUD



question

PARAMS neset

PROP


proposition

SIT 2

SOA

QUANTS A

NUCL 5






HD-DTR

[
STORE Σ3 ∪ Σ1 set(param)

]


The content of this phrasal type is a proposition, which is constructed for the most part
from MAX-QUD. This provides the concerned situation and the nucleus, whereas if the
fragment is (or contains) a quantifier, that quantifier must outscope any quantifiers al-
ready present in the contextually salient question.

The combined effect of (75) and (76) is better appreciated with an example. (77)
shows a (somehow simplified) representation of the NSU “John” as a short answer to the
question “Who left?”. The content of this question provides the value of MAX-QUD, which
is the contextual source from which the propositional content of the short answer is de-
rived. The index of the NP “John” is unified with that of the SAL-UTT, which corresponds

20The type root-clause corresponds to the start symbol of Ginzburg and Sag’s grammar. This is the type of
utterances and its content is an illocutionary proposition. More will be said about this in Section 3.3.3.
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to the sign representing the wh-phrase “who”. Note that the content of this sign is in the
PARAMS set of MAX-QUD, which in turn identifies “John”’s index with the LEAVER role in
MAX-QUD. Finally the category of the NP “John” is identified with the CAT value of the
SAL-UTT. As in this case the sign in SAL-UTT (i.e. the wh-phrase “who”) is an argument of
the verb “leave”, its category is constrained by the subcategorisation requirements of the
predicate in question. Therefore the categorical identity between SAL-UTT and the head
daughter NP enforces that the latter also meets these requirements.

This explains why the syntactic form of the fragment NP is similar to the the form
it would exhibit in a full sentence, without need of postulating any underlying syntactic
structure. Furthermore, the fact that SAL-UTT is a sign, opens the door to further paral-
lelisms that go beyond the subcategorisation requirements of predicates, thus offering a
more flexible account than that of Schlangen (2003).
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(77)


HEAD
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PARAMS


INDEX 1
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{
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}



PROP
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QUANTS 〈 〉
NUCL 3






SAL-UTT


CAT 4

CONT|INDEX 1


HD-DTR


PHON john

CAT 4 NP

CONT|INDEX 1





Similarly to short answers, to deal with direct sluices Ginzburg and Sag posit an addi-
tional subtype of hd-frag-ph called sluiced-interrogative-clause, that like decl-frag-cl has its
content partially determined by the dialogue context. They argue that the context for
sluicing involves QUD-maximality of a polar question whether p, where p is a quantified
proposition.

The content of the sluice is resolved to a wh-question obtained by λ-abstracting over
a quantified element of MAX-QUD. The SAL-UTT is in this case derived from the sign
whose content had the widest scope in MAX-QUD. Again, coindexation of index and cat-
egory between the SAL-UTT and the wh-phrase head-daughter account for the semantic
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resolution and the syntactic matching conditions. I forgo showing the constraint for the
type slu-int-cl and instead give an example—(78) shows the representation of the direct
sluice “Who?” as a follow-up to the utterance “A student phoned”.

(78)


slu-int-cl

CONT



question

PARAMS 2


INDEX 1

REST
{

person( 1 )
}


PROP



proposition

SIT 4

SOA


QUANTS 〈 〉

NUCL 3

phone-rel

PHONER 1







STORE {}

MAX-QUD



question

PARAMS {}

PROP



proposition

SIT 4

SOA


QUANTS

〈
some-rel

INDEX 1

REST
{

student( 1 )
}

〉

NUCL 3






SAL-UTT


CAT 5

CONT|INDEX 1



HD-DTR


PHON who

CAT 5 NP

CONT|INDEX 1

STORE 2





3.3.3 Grounding and Clarification

Ginzburg and Cooper (2004) follow up the approach offered by Ginzburg and Sag (2001)
and extend it to account for clarification NSUs—those NSUs classified as CE in the taxon-
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omy of Chapter 2, like the reprise sluice in (79b) and the clarification fragment in (79c).
As seen in the previous chapter, these NSUs are related to the grounding process inher-
ent to dialogue. A sound analysis of clarification NSUs therefore must be paired with a
model of the grounding process itself—a model that tell us what this process involves
and, more importantly in this case, what happens when it fails.

(79) a. A: Did Bo leave?

b. B: WHO?

c. B: Bo?

The view of grounding that underpins Ginzburg and Cooper (2004) approach to clari-
fication is based on the classic notion of meaning as a function from context to content
introduced by Montague (1974) and Kaplan (1989). Ginzburg and Cooper (2004) and
Purver (2004b) implement this idea by representing utterances as λ-abstracts over a set
of contextual parameters. The set of contextual parameters of an utterance gives a char-
acterisation of the context-dependent and hence potentially problematic elements of the
utterance content. The grounding process of an utterance then involves instantiating
its contextually dependent parameters in the current context in order to derive a fully-
fleshed content. According to this model, clarification questions are triggered by the
inability to ground one or more contextual parameters in the current context.

This can be formulated as a set of instructions—the Utterance Processing Protocol
(UPP)—for a dialogue participant to update her information state, leading either to
grounding or clarification.

(80) Utterance Processing Protocol (simplified version)

1. Add U to PENDING
2. Attempt to ground U by instantiating each contextual parameter i in U
3. If successful:

(a) remove U from PENDING;
(b) add content(U) to LATEST-MOVE;
(c) if content(U) = assert(p): push whether(p) onto QUD
(d) if content(U) = ask(q): push q onto QUD

4. Else: form clarification question about i

According to the simple version of the protocol shown in (80), utterances are first added
to a field PENDING for the grounding process. Failure to identify the relevant contextual
parameters in context leads to the formation of a clarification question relevant to that
parameter. Success leads to removal from PENDING and addition to LATEST-MOVE. In the
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case of assertions, a question related to the asserted proposition is also added to QUD; in
the case of ask moves, the asked question is added to QUD.

To represent utterances in a way which is compatible with this conception of ground-
ing and clarification, Ginzburg and Cooper (2004) adopt the HPSG grammar of Ginzburg
and Sag (2001) introducing two basic modifications. Firstly, they substitute the feature
C-INDICES (contextual indices), which was standardly used to include information about
speaker, addressee and utterance time, by the feature C-PARAMS (contextual parameters),
which encodes the entire inventory of contextual parameters of an utterance. Secondly,
given that it is perfectly possible to ask for clarification of any expression of a given
utterance, in order to have access to all phrasal constituents they introduce a new fea-
ture CONSTITS (constituents), whose value is the set of all constituents (immediate and
embedded) of a given sign.

In Ginzburg and Sag’s grammar, utterances are analysed by the type root-clause,
which includes the direct illocutionary force of an utterance as part of its semantic rep-
resentation. Root clauses denote illocutionary propositions, whose NUCLEUS is an illocu-
tionary relation (assert, ask, order,. . . ) that holds between a speaker, an addressee and
a message (a proposition, a question, an outcome,. . . ). Illocutionary relations constrain
the type of message they take as argument, with ask relations taking questions, assert re-
lations taking propositions, etc. The inclusion of illocutionary force into the grammatical
representation of utterance is particularly useful to analyse CE as the content of these
NSUs often involves the illocutionary force of the utterance being clarified. For instance,
one of the readings of the clarification question “Bo?” in (79c) could be paraphrased as
“Are you asking if BO (of all people) left?”.

Given this and the modifications introduced by Ginzburg and Cooper, the utterance
“Did Bo leave?” would be represented by the sign in (81). Here the relevant contextual
parameters include the speaker and the addressee, the utterance time and a referent for
the name “Bo”.
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(81)


root-cl

PHON did bo leave

CAT V[+fin]

C-PARAMS



INDEX i

REST
{

spkr(i)
}
,
INDEX j

REST
{

addr(j)
}
,

INDEX k

REST
{

utt-time(k)
}
,
INDEX t

REST
{

precedes(t,k)
}
,

INDEX s

REST
{}
,
INDEX b

REST
{

named(Bo,b)
}




CONTENT



ask-rel

ASKER i

ASKED j

MSG-ARG



question

PARAMS
{}

PROP


SIT s

SOA


leave-rel

AGT b

TIME t








CONSTITS


[

PHON did
]
,
[

PHON bo
]
,
[

PHON leave
]
,[

PHON did bo leave
]




Successful grounding implies finding appropriate values for the contextual parameters
of the utterance. When the available contextual assignment is defective, i.e. the context
available to the dialogue participant does not contain all the information needed to in-
stantiate the contextually dependent parameters, a partial update of the existing context
with the successfully grounded components of the utterance takes place.

Ginzburg and Cooper (2004) propose a range of coercion operations that explicate the
partially updated context required for the interpretation of non-sentential clarification
questions. Such operations have as input the original utterance, where a problematic
contextual parameter i is singled out. The output of the operation is then the partially
updated context with the information needed to resolve elliptical clarification questions.
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The first of these operations of partial update they consider, however, does not in-
volve positing a clarification question. Given a problematic parameter, speakers might
decide to just existentially quantify over the referent that cannot be found in context,
if this is sufficient for current purposes. Israel and Perry (1990) point out that in such
situations dialogue participants update their context with pure content (i.e. content with
no intervention of contextual resources) by extracting existential information from the
utterance. In (Ginzburg and Cooper 2004) this is formalised in terms of the coercion
operation in (82). Given an utterance with a contextual parameter i, this rule allows
one to construct a sign where i is quantified away with widest possible scope. Thus a
dialogue participant who finds a contextual parameter i problematic can use this rule to
construct a contextually less dependent meaning where i is existentially quantified.

(82) Contextual existential generalisationi

root-cl

C-PARAMS 1

{
. . . i . . .

}

CONTENT



prop

SIT s

SOA

QUANTS
〈〉

NUCL 3






⇒



root-cl

C-PARAMS 1 \
{

i
}

CONTENT



prop

SIT s

SOA


QUANTS

〈∃-rel

i

〉

NUCL 3






The other two coercion operations introduced by Ginzburg and Cooper (2004) are used
in the interpretation of elliptical clarification questions like those in (79), repeated here
in (83b) together with their possible interpretations in (83c) and (83d).

(83) a. A: Did Bo leave?

b. B: WHO? / Bo?

c. Whoi are you asking if i left? / Are you asking if BO left?

d. Who is Bo?

The interpretation of B’s response given in (83c) is accounted for by the rule in (84).
In the partially updated context created by the application of the rule, the constituent
associated with the problematic parameter becomes the salient utterance. The maximal
QUD is coerced to a question formed by abstracting over the problematic parameter from
the original content.
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(84) Parameter focusingi

root-cl

C-PARAMS 1

{
. . . i . . .

}
CONSTITS

{
. . . 2

[
CONT i

]}
CONTENT 3


⇒



root-cl

CONTEXT



SAL-UTT 2

MAX-QUD


question

PARAMS
{

i
}

PROP 3







Applying (84) to (83a) yields to a context where MAX-QUD is a question paraphrasable
as “Whob named Bo are you asking if b left?”, whereas SAL-UTT is the sub-utterance of
“Bo”. Clarification questions like those in (83b) can then be analysed as a short answer
to the maximal QUD using the type decl-frag-cl shown above in (76). This construction is
then the head daughter of a type called direct-insitu-interrogative-clause, which basically
constructs a polar question out of the propositional content of its head daughter. The
parameter which constitutes the content of the wh-phrase WHO is retrieved by the direct-
insitu-interrogative-clause type to yield the wh-question reading given in (83c), while the
absence of an interrogative parameter yields the polar reading “Are you asking if BO left?”.

The other coercion operation proposed by Ginzburg and Cooper (2004) is shown in
(85). Again, when the rule is applied, the problematic constituent becomes the salient
utterance. In this case however MAX-QUD is a question asking about the content of
the problematic sub-utterance as intended by the speaker. To resolve the clarification
questions in (83b) according to the reading in (83d) a type utterance-anaphoric-phrase
is introduced, which enables anaphoric reference to the phonologically identical SAL-
UTT. This is then the head daughter of yet a new clausal type constituent-clarification-
interrogative-clause, which identifies the content of the clarification question with the
MAX-QUD, yielding the reading in (83d).
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(85) Parameter identificationi
root-cl

C-PARAMS 1

{
. . . i . . .

}
CONSTITS

{
. . . 2

[
CONT i

]
. . .
}


⇒

root-cl

C-PARAMS
{

. . . k:addr(k) . . .
}

CONTEXT



SAL-UTT 2

MAX-QUD



question

PARAMS
{

i
}

PROP | SOA


spk-meaning-rel

SPK k

CONST 2

CONT i









3.4 A Dynamic Logic-based Approach

Perhaps with the exception of Schlangen, who simply assumes that his semantic rep-
resentations are interpreted dynamically, the approaches reviewed in previous sections
are all concerned with a static notion of interpretation. Since dialogue is inherently dy-
namic, i.e. cannot be analysed in terms of isolated sentences, and since NSU resolution
clearly depends on the preceding dialogue, this seems to be a shortcoming. In this sec-
tion I present the main ideas of an approach that, in line with the dynamic semantics
tradition, attempts to overcome this limitation by combining, in this case, HPSG and
Dynamic Logic.

I first summarise the basic notions of Dynamic Logic, and then introduce the for-
malisation presented in (Fernández 2003a,b), which is the starting point of the core
approach, described in Section 3.4.3.

3.4.1 Dynamic Logic: Basic Notions

The formalisation presented in (Fernández 2003a,b) is based on the first-order version
of Dynamic Logic (DL) as it is introduced in (Harel et al. 2000) and (Goldblatt 1992).
In short, DL is a multi-modal logic with a possible worlds semantics, which distinguishes
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between expressions of two sorts: formulae and programs. The language of DL is that
of first-order logic together with a set of modal operators: for each program α there is
a box [α ] and a diamond <α> operator. The set of possible worlds (or states) in the
model is the set of all possible assignments to the variables in the language. Atomic
programs change the values assigned to particular variables. They can be combined to
form complex programs by means of a repertoire of program constructs, such as sequence
; , choice ∪, iteration * and test ?. The set of programs α is defined as follows, where ϕ is
any quantifier-free first-order formulae:

α ::= π | α1;α2 | α1 ∪ α2 | α∗ | ϕ?

In the basic version of DL, atomic programs π are simple assignments (x := t), where x
is an individual variable and t is a first-order term.

The language is interpreted in a possible worlds model M = {A, S,R, V } where A
is a first-order structure; S is a non-empty set of states; R is a function assigning to each
program α a binary relation Rα ⊆ S × S; and V is a function V : S → SA assigning
to each s ∈ S a mapping vs from the set of variables to elements in the domain. The
definition of the truth-relation M |=sA of a formula A at state s in model M is standard.
For conciseness, I give only the semantics of modal formulae. For s, s′ ∈ S, I write
s(x|a)s′ to mean that vs′(x) = a and vs′(y) = vs(y) whenever y 6= x.

(86)
M |=s<α> A iff there is an s′ ∈ S, such that sRαs

′ and M |=s′ A

M |=s [ α ] A iff for all s′ ∈ S, if sRαs
′ then M |=s′ A

From the relations Rα ⊆ S × S, we can inductively define accessibility relations for the
compound programs. (87) shows the accessibility relations for basic atomic programs
and compound programs for all states s, s′ ∈ S.

(87)

sRx:=ts
′ iff s(x|vs(t))s′

sRα;βs
′ iff ∃s′′ s.t. sRαs

′′ and s′′Rβs
′

sRα∪βs
′ iff either sRαs

′ or sRβs
′

sRα∗s
′ iff there are finitely many states s1 . . . sn such that sRαs1 . . . snRαs

′

sRϕ?s
′ iff s = s′ and M |=s ϕ

Interesting variants of DL arise from allowing auxiliary data structures such as stacks
and arrays. Following (Harel et al. 2000), I consider a version of DL in which programs
can manipulate some variables as last-in-first-out stacks. Formally, stacks are modelled as
variables ranging over finite strings of elements in the domain. To manipulate these stack
variables, two additional atomic programs X.pop and X.push(x) are included. Here X is
some stack variable (i.e. a string of elements ) and x is an element in X. The accessibility
relations for these two new atomic programs are shown in (88), where, for a string σ
and an element a, tail(a · σ) = σ and head(a · σ) = a.
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(88)
sRX.push(x)s

′ iff s(X | vs(x) · vs(X))s′

sRX.pops
′ iff s(X | tail(vs(X))s′

3.4.2 A DL Formalisation of the Dialogue Gameboard

Originally, DL was conceived as a formal system to reason about computer programs,
formalising correctness specifications and proving rigorously that those specifications
are met by a particular program. From a more general perspective, however, it can be
viewed as a formal system to reason about transformations on states. In this sense, it is
particularly well suited to provide a fine characterisation of the dynamic processes that
take place in dialogue as updates on the information states of the dialogue participants.

In Fernández (2003a,b) I use DL to formalise a notion of IS based on Ginzburg’s
Dialogue Gameboard (DGB) (Ginzburg 1996). The DGB provides a structured character-
isation of the information which the dialogue participants view as common in terms of
three main components: a set of FACTS, which the dialogue participants take as common
ground, a partially ordered set of questions under discussion QUD, and the LATEST-MOVE

made in the dialogue.

As mentioned earlier, in DL transitions between states are changes in variable as-
signment. I use the variable names FACTS, QUD and LM to represent the three dynamic
components of the DGB. I model QUD as a stack, in a way that is very much inspired
by QUD’s actual implementation in the GoDiS dialogue system (Larsson et al. 2000).
LM ranges over utterances, m(i, c), where i is interpreted as the speaker of the utter-
ance, m is the dialogue move performed, and c represents its content. Although FACTS

is assumed to be a (possibly ordered) set, for technical reasons I also model FACTS as
a stack. This is so because we want to be able to check whether a particular element
(i.e. some proposition) is in FACTS, and we want to be able to express this in the object
language. Modelling FACTS as a variable ranging over strings of propositions allows us
to use the pop program to check whether a particular element x belongs to FACTS or
not: if x is in FACTS and we pop the stack repeatedly, x will show up at some point as
the head of the stack. Thus, I shall use the notation x ∈ FACTS as an abbreviation for
< FACTS.pop∗> head(FACTS) = x.21

The formalisation outlined above can be used to characterise the internal structure
of conversational interaction in several ways. In (Fernández 2003b) it is used to con-
strain the model by means of a set of axioms that restrict the operations that can be
performed on the DGB, and ensure that certain desirable properties hold. In (Fernández
2003a) an alternative approach is presented whereby interaction patterns of particular

21Note that, according to the semantics of modal formulae given in (86) above, the FACTS stack does not
have to be actually popped for <FACTS.pop∗> head(FACTS) = x to hold. The formula holds iff it is possible
to find x on the top of the stack by repeatedly popping it.
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communicative exchanges, like asking and responding to a question or acknowledging
a proposition, are characterised by means of conventional protocols defined in terms of
complex DL programs. Although interesting, the details of these formalisations are not
important for current purposes. Hence, I forgo giving them here, and refer the reader to
(Fernández 2003a,b) for further particulars.

3.4.3 Utterances as Update Instructions

On the basis of the formal system outlined in the previous section, (Purver and Fernández
2003, Fernández and Purver 2004) develop a follow-up approach whereby utterances are
associated with DL programs assigned by an HPSG grammar.

The basic idea of the approach is to view utterances and their subconstituents as
instructions for contextual update. This is achieved by associating them with complex
DL programs that by definition denote a transition between states s U−→ s′. Under this
view, processing an utterance U amounts to executing its utterance program. As long
as the program contains all relevant instructions for updating the information state, the
Utterance Processing Protocol (UPP) of Ginzburg and Cooper (2004) (given earlier in
(80), and repeated here in (89) for convenience) no longer needs to be specified as a
separate set of instructions. Instead, one can merely say that an information state s can
integrate an utterance U iff M |=s<U > > (i.e. U succeeds for the current information
state).

(89) Utterance Processing Protocol (simplified version)

1. Add U to PENDING
2. Attempt to ground U by instantiating each contextual parameter i in U
3. If successful:

(a) remove U from PENDING;
(b) add content(U) to LATEST-MOVE;
(c) if content(U) = assert(p): push whether(p) onto QUD
(d) if content(U) = ask(q): push q onto QUD

4. Else: form clarification question about i

The most basic form an utterance program can take is LM := m(i, c), thus assigning
a conversational move m(i, c) to LM, as per part 3(b) of the original UPP. The effects
of parts 3(c,d) of the UPP are achieved by more complex programs for questions and
assertions, which are sequences of atomic programs, as in (90):

(90) LM := ask(a, q); QUD.push(q)
LM := assert(a, p); QUD.push(whether(p))
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The effect of the above programs can be visualised as a transition between information
states: [

LM = m(i , c)0
QUD = qud0

]
U //

[
LM = ask(a, q)
QUD = q ◦ qud0

]

This approach also allows programs which achieve the same effect as (Ginzburg and
Cooper 2001)’s formulation of utterances as functions from context to content. The pro-
gram associated with an expression which introduces a contextual parameter must be a
program which finds an instantiation of the parameter in context (i.e. that succeeds only
when a referent is present). Given the current formalism, this will be a test program
(t ∈ FACTS)?, which checks that t ∈ FACTS holds in the current state. A suitable repre-
sentation for the sentence “John snores”, in which a referent for “John” must be found in
context, might be the following complex program:22 23

(91) (name(x, john) ∈ FACTS)?;
LM := assert(snore(x));

QUD.push(whether(snore(x)))

It is possible to distinguish between given referents which must be found in context as
with the proper name “John” above, and new referents (e.g. indefinites) which should
be added to the context, by associating indefinites with a program which introduces a
new referent (thus following the dynamic semantic tradition of (Heim 1982, Kamp and
Reyle 1993, Groenendijk and Stokhof 1991), and subsequent DRT-based dialogue theory
such as (Poesio and Traum 1998)). As shown in (92), the program associated with a
sub-utterance with a given referent tests for existence in the current state, while that for
a new referent involves a state change introducing that referent.24

(92) a. the dog : (dog(x) ∈ FACTS)?

b. a dog : FACTS.push(dog(x))

22Here I take x to be a variable ranging over a finite set of people. In this case the test program
(name(x, john) ∈ FACTS)? would succeed only if there is a john in FACTS and x happens to be assigned
to john in the current world. With this move I am thus narrowing down the set of possible assignment
functions to those that have this property.

23In fact, for proper names and definites, it will not be enough to require that there is a known referent:
we need there to be a unique/most salient referent. The statement of a suitable test program will depend on
one’s theory of definiteness, but this should not affect the general approach presented here.

24In fact, Purver and Fernández (2003) propose more complex programs for expressions that introduce
contextual parameters, that account for their clarification potential as specified in part 4 of the utterance
processing protocol in (89). More details on this can be found in the original paper.
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The approach assumes that DL programs are assigned to utterances by the sentence
grammar. The HPSG grammar used is similar to that of Ginzburg and Sag (2001), with
the utterance programs assigned to a new feature C(ONTEXTUAL)-PROG(RAMS), which
replaces the feature C-PARAMS of Ginzburg and Cooper (2004). By default, this feature is
built up by phrases, by linear combination of the programs associated with their syntactic
daughters, using the sequence operator as shown in (93).

(93)
C-PROG A; . . . ;B

DTRS 〈 [C-PROG A], . . . , [C-PROG B] 〉


The default program associated with a phrase is therefore a purely sequenced combi-
nation of the programs contributed by its daughters, but this default is overwritten for
particular phrase types which by their nature make their own contributions to the overall
program (this is what the use of constructions affords us). For example, the clause type
root-clause is specified to add the sub-program which updates LM:

(94)


root-clause

CONT 1

[
illoc-rel

]
C-PROG A; LM := 1

HEAD-DTR | C-PROG A


Clauses of type declarative (which have propositions as their semantic content) and in-
terrogative (which denote questions) add the sub-program which updates QUD:

(95)


declarative

CONT 1

[
proposition

]
C-PROG A; QUD.push(whether( 1 ))

HEAD-DTR | C-PROG A


(96)


interrogative

CONT 1

[
question

]
C-PROG A; QUD.push( 1 )

HEAD-DTR | C-PROG A


Phrases which contribute given or new referents are specified in an entirely parallel way.
Given referents such as those associated with definite NPs and proper names contribute
sub-programs which express restrictions on the type of state to which the utterance pro-
gram can be successfully applied—to wit, that the state contain a suitable antecedent, as
specified in (97) for a definite NP.
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(97)


definite

CONT 1

[
parameter

]
C-PROG A;B; ( 1 ∈ FACTS)?

DTRS 〈 [C-PROG A], [C-PROG B] 〉


NSUs can also be seen in this way: as being licensed only in certain types of context,
and therefore as expressing conditions on the kind of state to which their programs can
apply. Thus, in this approach, NSUs are regarded as introducing sub-programs which
must ensure that the contextual information required for resolution is present in the
current state, and by finding it, fully instantiate their content. The grammatical approach
directly follows that of Ginzburg and Sag (2001). The content of a short answer is taken
to be a proposition which must be associated with the current maximal question under
discussion; the referential index of its head daughter must be identified with that of a
SAL-UTT utterance which is also constrained to be syntactically parallel to it.

(98)


decl-frag-cl

CONTENT 1

HEAD-DTR

CAT 2

CONT | INDEX 3



CONTEXT


MAX-QUD | PROP 1

SAL-UTT

CAT 2

CONT | INDEX 3





Now, the only change that must be made is that root clauses, besides adding the sub-
program which updates LM, must add sub-programs which require the specified contex-
tual information to be found, as shown in (99). Note that the order of the programs is
important: the contextual information must be identified in the initial state, before it is
changed by the utterance program (which may of course update QUD), and of course be-
fore the LM state variable can be set to the fully specified move, i.e. the overall utterance
content.

This seems to make the status of this contextual information clearer than in either
Ginzburg and Sag (2001) or Schlangen (2003) approaches. In the former, the utterance
is left underspecified by the grammar, and we must assume separately specified prag-
matic routines as given by Ginzburg’s theory of context to fill it in; in the latter, this
underspecification is replaced by an unknown anaphorical relation essentially unaccom-
panied by information about possible antecedents, which must be identified by pragmatic
inference. In the present DL approach, not only is the method of content specification
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fully defined by the grammar as a program, the source of the antecedents (particular
state variables) is also made clear.

(99)


root-clause

CONT 1

[
illoc-rel

]
CONTEXT

MAX-QUD 2

SAL-UTT 3


C-PROG head(QUD) = 2 )?; (head(UTT) = 3 )?;A; LM := 1

HEAD-DTR | C-PROG A



3.5 Summary and Conclusions

This chapter has reviewed several approaches to the resolution of NSUs. These range
from purely semantic approaches like those based on HOU and Dekker’s proposal, to
more syntactic accounts like that of Merchant. Semantic approaches are elegant and
include valuable ideas like parallelism and the salience of a property or question in con-
text, that are then implemented in different ways in the hybrid approaches of Section 3.3.
Their main problem is, however, that they cannot account for the structural dependencies
exhibited by NSUs. The approach of Merchant, on the other hand, is able to explicate
some of these dependencies, but it does so at the cost of treating NSUs as hidden full
sentences, which undermines their status of proper grammatical utterances and brings
in several complications derived from the mismatches between full sentences and NSUs.

In contrast to this, the HPSG-based approaches presented in Section 3.3 see NSUs as
first class grammatical constructions, and offer a more balanced account of syntax and
semantics. At the level of grammatical representation, the approach of Schlangen is very
similar to that of Ginzburg and colleagues. Although only the former uses an explicit un-
derspecified semantics, HPSG constraints—being partial descriptions—are in themselves
underspecified representations. Hence, at the end of the day, both approaches make use
of underspecification to account for the semantic content of NSUs. At the dynamic level,
the role played by Ginzburg’s theory of context in Ginzburg and Sag’s model is played
by SDRT in Schlangen’s. We have seen however that Schlangen offers an account of
the structural dependencies of NSUs that is limited to subcategorisation requirements of
predicates.

The Dynamic Logic approach presented in the last section goes one step further in
that the representation of utterances incorporates their dynamic import. The main idea
of this approach, which builds on Ginzburg and Sag (2001) and Ginzburg and Cooper
(2004), is to see utterances as dynamic logic programs that act as update instructions,
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concretely as a sequence of tests on the current state followed by a sequence of updates
that take us to the next state. This is the idea I take as point of departure for the proposal
I shall present in the next chapter. It will be formulated in Type Theory with Records,
which will allow us to combine aspects from HPSG and Dynamic Logic in one single
formalism.





4 A Type-theoretical NSU
Grammar

This chapter presents a formal analysis of the main NSU classes identified in Chapter 2.
The analysis builds on the ideas presented in Section 3.4 of the previous chapter, but
instead of being encoded in a combination of HPSG and Dynamic Logic, here I propose
a formalisation in terms of Type Theory with Records. This will be shown to bring in
several advantages, most notably perhaps a more consistent notation that allows for a
smooth transition between grammar and dialogue processes. I will start by introduc-
ing Type Theory with Records rather informally (more precise and formal definitions
are given in Appendix B). In Section 4.2, I will then use the formalism to put forward
a grammatical representation of utterances akin to update rules in dialogue modelling.
This will provide the basis for the representation of the main NSU types, classified ac-
cording to the complexity of the information state and the kind of information required
for the resolution process.

4.1 Type Theory with Records

Constructive Type Theory is a proof-theoretic framework developed in the seventies by
the Swedish logician Per Martin-Löf with the aim, shared with the intuitionistic tradition,
to provide a foundation for constructive mathematics. Since the early nineties there has
been an interest in using Constructive Type Theory for linguistics, attested for instance by
Ranta’s monograph (Ranta 1994). The theory has been used mostly as a framework for
natural language semantics. Indeed work by researchers like Krahmer and Piwek (1998)
or Fernando (2001) has shown that it can be an efficient tool to develop accounts of
semantic phenomena like presupposition, quantification and anaphora, often with strong
connections with DRT approaches.1

Here I shall use a particular version of this theory, namely Type Theory with Records
(TTR), which is an extension of the basic system with records and record types due to

1See for instance (Ahn and Kolb 1990) for a reformulation of early DRT with Constructive Type Theory.
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Betarte and Tasistro (1998). In particular, I draw extensively on recent work by Robin
Cooper, who demonstrated the viability of using TTR for linguistic purposes. Cooper’s pi-
oneering work (Cooper 2000, 2006a) pointed out significant connections between TTR
and Situation Theory (Barwise and Perry 1983), and showed how TTR amalgamates
several desirable features of other frameworks like DRT (Kamp and Reyle 1993) and
Montague semantics (Montague 1974). Together with Ginzburg (Cooper and Ginzburg
2002, Cooper 2005), he has also shown that there are interesting similarities between
TTR and HPSG. In addition, as we will see later on in this chapter, he has recently ex-
plored the possibility of using TTR to formalise update rules in issue-based dialogue man-
agement (Cooper 2006b). Without any doubt, this body of foundational work by Cooper
and colleagues has been a very valuable source of inspiration for the formalisation I shall
present here.

The following subsections are devoted to introducing the basic notions of the frame-
work.

4.1.1 Basics of TTR

4.1.1.1 Typing Judgements

The most basic idea underlying any type theory is that objects can be classified as being
of different types. Thus, one of the most fundamental notions of TTR is the typing
judgement. Typing judgements are of the form x : T (read as “x is of type T ”), where
x is a variable standing for some object of type T . Consider for instance the following
sentence:

(100) A spy procrastinates.

Assuming a system that includes a basic type Ind as the type of individuals or entities
and predicates Spy and Procrastinate, the content of the sentence in (100) could be
modelled by the following judgements:

(101) x : Ind , y : Spy(x) , z : Procrastinate(x)

Here variable x stands for an arbitrary object of type Ind(ividual), while the types Spy(x )
and Procrastinate(x ) can be regarded as propositions, or in TTR terminology as proof
types.2 For an object y to be of type Spy(x ) means that y is a proof of the proposition
Spy(x ), i.e. a proof that the object assigned to x is a spy.3 Thus when applied to basic

2As we will see below, they are in fact families of proof types, whose elements depend on the objects
assigned to x. I ignore this for now and return to it in Subsection 4.1.1.5 where dependent record types are
introduced.

3This is in fact the idea at the core of the propositions-as-types proofs-as-objects paradigm (Curry and Feys
1958), under which propositions are equated with the set (or the type) of its proofs.



4.1 Type Theory with Records 83

types, the colon in x : Ind can be read as set membership. When applied to proof types
like in y : Spy(x ) however, it is more naturally read as “proves”.

4.1.1.2 Records and Record Types

Besides objects, basic types and proof types, in TTR we also have records and record
types. In a general sense, records are mathematical objects consisting of finite sets of
pairs 〈l, v〉 of labels l and values v called fields. They are usually represented graphically
as a matrix: 

l1 v1
...
ln vn


Record types are records whose fields correspond to typing judgements. Judgements in a
record type are therefore pairs of labels (variables) and types. Given this, the content of
sentence (100) can be represented by the following record type:

(102)

 x : Ind
y : Spy(x)
z : Procrastinate(x)


One can say that a type is true if it is inhabited or witnessed, i.e. if it is the case that there
is at least one object of that type. The inhabitants of record types are records. Records
are sequences of fields which are pairs of labels l and objects a, written as l = a. A record
r is of type ρ if all typing judgements in ρ are satisfied by r. More precisely,

Definition 1 (Record Typehood) A record r is of type ρ iff for each field 〈l, T 〉 in ρ there
is a field 〈l, a〉 in r such that a : T .

Hence, record type (102) is inhabited if we can find a record like (103), such that a : Ind ,
p1 : Spy(a) and p2 : Procrastinate(a). Which in turn means finding an individual who
is a spy and who procrastinates. Therefore record types can be considered truth-bearing
objects, and thus we obtain an effect of existential quantification like in DRT (Cooper
2000).

(103)

 x = a
y = p1

z = p2


It is in fact hard to miss that there is a parallelism between record types like (102) and
DRSs. Indeed fields of the form l : Ind in a record type can be seen as corresponding to
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discourse referents in a DRS, while fields of the form l : ProofType (where ProofType is
the type of proof types) would correspond to DRT conditions.4 Record type (102) could
thus be “transformed” into the following DRS:

(104)
x

spy(x)
procrastinate(x)

Going back to the definition of typehood in Definition 1, note that according to it, record
(103) could have additional fields and still be of type (102). Indeed, record (103) is of
all the types in (105).

(105) a.

[
x : Ind
y : Spy(x)

]
b.
[

x : Ind
]

c. [ ]

This leads to the following definition of the type inclusion (or subtyping) relation v
between types:

Definition 2 (Subtyping) T1 v T2 iff a : T1 implies a : T2.

In words, type T1 is a subtype of type T2 just in case any object of type T1 is also of type
T2. In the case of record types, ρ1 v ρ2 holds just in case for each field 〈l, T2〉 in ρ2

there is a field 〈l, T1〉 in ρ1 such that T1 v T2. The type inclusion relation is reflexive and
transitive.

For the examples above it holds that (102) v (105a) v (105b) v (105c). All records
are of the empty record type (105c), the type which imposes no constraints. Hence it
follows that all record types are subtypes of the empty record type [ ].

4.1.1.3 Nested Records and Paths

Records and record types can be nested, i.e. values in a record can be records themselves
(and accordingly for record types). Such recursivity makes records and record types
strikingly similar to the attribute-value matrices (AVMs) familiar from constraint-based
formalisms, like the AVMs used to represent feature structures in HPSG. Like them, they
are useful means of encoding different kinds of information in a structured manner.
Although the examples used so far look pretty much like logical forms, the information
encoded in a record does not have to be restricted to semantics. Nothing stops us from
using records and record types to model other kinds of linguistic (and non-linguistic!)
information. For instance, assuming a type Phon as the type of phonological strings and

4Note however that, as pointed out by Stephen Pulman (p.c.) while DRSs denote world entities, record
types are inhabited by records, which act as an additional level of representation.
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a type Cat as the type of syntactic categories, our sentence in (100) could be modelled
by the record type in (106):

(106)


phon : Phon
syn : Cat

sem :

 x : Ind
y : Spy(x)
z : Procrastinate(x)




Here I have used the labels ‘phon’, ‘syn’ and ‘sem’ to encode phonological, syntactic and
semantic information respectively in one relational structure, as it is common in HPSG
grammars. Note that the value of label ‘sem’ , representing the content of the sentence
(or a simplified version thereof), is the record type in (102).

This example allows me to introduce some useful notation. I will use r .l to denote
the value of label l in record r. To refer to values in nested records, I will use sequences
of labels or paths.

Definition 3 (Paths) A path π in a record r (written as r.l1.l2. . . . .ln) is a sequence of
labels l1, l2, · · · , ln such that l1 is a label in a field in r and for any label lk+1, the value of lk
is a record r′ and lk+1 is a label in r′.

Thus, in a record r of type (107) for instance, we can refer to the value of label x with
the path r .sem.x, which will denote the object assigned to x in r. If r is the record in
(108), then r .sem.x denotes object a.

(107)


syn : Cat

sem :

 x : Ind
y : Ind
z : Greet(x, y)




(108)


syn = S

sem =

 x = a

y = b

z = p1




4.1.1.4 Type Constructors

So far we have seen that the system of TTR includes basic types, proof types and record
types. From this ground, we can recursively build up the universe of types with the help
of several type construction operations.
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The singleton type This type constructor allow us to raise objects to the level of types,
by creating types with a single object as inhabitant. More precisely, for any element a of
type T , we can create the singleton type Ta such that only a is of type Ta. Building on
the concept of singleton types, Coquand et al. (2004) introduce the notion of manifest
field. A manifest field in a record type is a field whose value is a singleton type. For
convenience, manifest fields like for instance x : Ta will be written as x = a : T .

Singleton types and manifest fields can be used to further specify record types.
For instance, assuming (as I did above) that our model includes linguistic objects
S,NP,VP,N, . . . of type Cat , record type (109) is also a type for record (108)—a more
specific type than (107). In particular it holds that (109) is a subtype of (107).

(109)


syn = S : Cat

sem :

 x : Ind
y : Ind
z : Greet(x, y)




List types As is common in type theory, TTR also provides us with list types. Given a
type T we can create the list type 〈T 〉, i.e. the type of lists of elements of type T . L is of
type 〈T 〉 only if L is a list and whenever a is an element of L then a : T . I shall use the
symbol ⊕ as the concatenation operator for lists.

Lists and list types can be used for instance to model phrasal structure—in a way
familiar from HPSG, we can use a list type to represent the daughters of a phrase. In
(110) I use a label dtrs for this purpose. Its value is required to be of type 〈Rec〉, i.e. a
list of records (elements of type Rec) corresponding to the daughters of the phrase.

(110)


phon : Phon
syn : Cat
sem : Type
dtrs : 〈Rec〉


Function types The next type constructor I will introduce is perhaps the most basic
one in any type theory—the constructor that generates function types. Application of the
function type constructor to types T1 and T2 results in the function type T1 → T2, i.e. the
type of functions from elements of type T1 to elements of type T2. In TTR functions are
assumed to be total. Therefore a function f is of type (T1 → T2) if f is a function whose
domain is {a | a : T1} and whose range is a subset of {a | a : T2}.

The availability of function types provides us with all the tools from the lambda
calculus. Thus, as is common in Montague-style formal semantics, we can use functions
to represent e.g. the denotations of verbs and VPs, and then use functional application
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and β reduction to compositionally build up the content of complex structures in the
standard way.

Simplifying somewhat, we can take the content of verbs to be functions of type
Ind → ProofType (roughly equivalent to Montague’s type 〈e, t〉) and NPs to denote el-
ements of type Ind. The content of a transitive VP can then be constructed by applying
the denotation of the verb to that of the complement NP. This is what the following
record type achieves, where I have used @ to represent functional application.

(111)


syn = VP : Cat
sem : d1.sem@d2.sem

dtrs =

〈
d1 :

[
syn = V : Cat
sem : Ind → ProofType

]
,d2 :

[
syn = NP : Cat
sem : Ind

]〉
: 〈Rec〉


This constitutes a genuine advantage over HPSG unification-based semantic representa-
tions, where typically the semantic content of a phrase is identified with that of its head
daughter by a head feature principle. Hence, when a head is accompanied by a com-
plement, as in the case of transitive VPs, the semantic type assigned to the head already
includes the contribution of the complement. In contrast, TTR allows us to assign a much
more intuitive content to heads, making explicit their contribution to the semantic type
of the mother.

Boolean operations on types Finally, new types can be constructed by means of basic
boolean operations. Given a type T , its negation ¬T is the type T → ⊥. We can also
create new types by conjunction and disjunction of existing types. If T1 and T2 are types,
so are T1 ∧ T2 and T1 ∨ T2. A witness of a type T1 ∧ T2 is a pair 〈a, b〉 such that a : T1 and
b : T2. A witness of a type T1 ∨ T2 is an element a such that a : T1 or a : T2.

4.1.1.5 Families of Types and Dependent Record Types

There is more in a record type like (102), repeated here as (112), than what I have so
far pointed out. Note that the proof types in this record type (i.e. the values of labels
y and z) are somehow not fully determined, as they depend on the individual objects
assigned to x. If x = a the value of y is the proof type Spy(a), whose witness is a proof
that individual a is a spy. If x labels a different individual b, then y necessarily labels
a different type, namely Spy(b), whose witness in this case is a proof that b is a spy.
Thus Spy(x) and Procrastinate(x) in (112) do not denote single types but rather sets or
families of types. These are functions λ(x : T ).T ′ from elements x of some type T to
types T ′ dependent on x such that applying λ(x : T ).T ′ to any element a of type T yields
T ′[x→a], i.e. a type which is identical to T ′ except that all occurrences of x have been
substituted by a.
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(112)

 x : Ind
y : Spy(x)
z : Procrastinate(x)


Record type (112) is therefore a dependent record type, i.e. a record type some of whose
types depend on the choice of objects satisfying the judgements in preceding fields. De-
pendent record types have the following general form:5

(113)


l1 : T1

l2 : T2(l1)
...
ln : Tn(l1, l2, . . . , ln−1)


In general the record types that will be used in the sequel are dependent record types
as they allow us to encode interesting dependencies between their components that are
useful for linguistic purposes. I will also make extensive use of families of record types,
i.e. functions λ(x : T ).T ′ whose output is a record type.

4.1.1.6 Some Operations on Record Types

To be able to use TTR for semantics and as a grammatical formalism, we will often need
to combine the information contained in two of more record types. For this I define a
notion of record type union. This notion has its grounds on the operation of extension
used to inductively construct the set of record types from the empty record type by
adding a new field (as defined in Appendix B). To make things easier, our record type
union operation will allow us to extend a record type by adding several fields in one go.
Intuitively the record type union operation will create a new record type containing all
fields present in the record types to be united.

Definition 4 (Record type union) Let Fields(ρ) be the set of fields in a record type ρ, and
Labels(ρ) be its set of labels. Given record types ρ1, . . . , ρn with pairwise disjoint sets of
labels, i.e. Labels(ρi)∩Labels(ρj) = ∅ for distinct ρi, ρj , their union is a record type R such
that Fields(R) =

⋃n
i=1 Fields(ρi). Hence it holds that R v ρ1, . . . ,R v ρn.

Because labels can occur at most once in record types, union is defined only on record
types with disjoint sets of labels. In order to ensure that our record types don’t share any
labels, I define a re-labelling operation relabel as follows:

5Note that not all labels li need to be used in subsequent dependent types.
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Definition 5 (Relabelling) Let T = {ρ1, · · · , ρn} be a set of record types ρi. We define a
function relabel such that relabel(T ) = {ρ1[l 7→l(ρ1)], · · · , ρn[l 7→l(ρn)]} where ρi[l 7→l(ρi)] is the
record type created by substituting all labels l in ρi with l(ρi).6

I assume that the record types on which record type union operates don’t share any labels,
possibly because relabel has been applied to them.

A precise definition of the type system can be found in Appendix B.

4.2 Utterance Representation in TTR

Now that we have the system of TTR at our disposal, I shall devote this section to put it
to use by developing a suitable representation of utterances in dialogue that in particular
is appropriate to model NSUs.

4.2.1 Contextual Dependence

The most basic feature exhibited by NSUs is perhaps their radical context-dependence.
Thus it seems fair to take as the simplest, most minimal requirement of an adequate rep-
resentation of NSUs some version of the classical context-sensitive approach to meaning
common in formal semantics since the seminal work of Lewis (1979), Montague (1974)
and Kaplan (1989). Such an approach basically differs from a classical, Tarskian, sat-
isfaction semantics in that context-dependent expressions like e.g. deictics (I, you, here,
now) are interpreted as functions from a set of contextual indices representing relevant
contextual coordinates, to denotations or contents. If NSUs are to be seen in this way,
then their analysis amounts to establishing what the necessary contextual coordinates
are for each NSU class and to formalising the appropriate function. And this is indeed
the task I undertake in the current chapter of this thesis.

As we have seen in Section 3.3.3 of the previous chapter, the notion of meaning as a
function from context to content underpins the view of grounding taken by Ginzburg and
Cooper (2004). Under this view grounding an utterance—i.e. grasping its content—is
identified with the process of finding values for its contextual parameters; while failure
to do so results in the need for clarification. This conception leads the authors to adopt a
particular HPSG representation of utterances, exemplified in (81) in the previous chapter
and repeated here in (114) for convenience. The example represents an utterance of the
interrogative sentence “Did Bo leave?”.

6For families of record types δ1, · · · , δn dependent on ρ1, · · · , ρn respectively, the relabelling of ρi also
needs to be applied to any label l from ρi on which δi depends.
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(114)


root-cl

PHON did bo leave

CAT V[+fin]

C-PARAMS



INDEX i

REST
{

spkr(i)
},
INDEX j

REST
{

addr(j)
},

INDEX k

REST
{

utt-time(k)
},
INDEX t

REST
{

precedes(t,k)
},

INDEX s

REST
{},

INDEX b

REST
{

named(Bo,b)
}



CONTENT



ask-rel

ASKER i

ASKED j

MSG-ARG



question

PARAMS
{}

PROP


SIT s

SOA


leave-rel

AGT b

TIME t








CONSTITS


[

PHON did
]
,
[

PHON bo
]
,
[

PHON leave
]
,[

PHON did bo leave
]




In (Cooper and Ginzburg 2002) the authors sketch a formulation of the aforementioned
analysis of grounding and clarification in terms of TTR. As they point out, the TTR ver-
sion of this conception has several advantages over its HPSG counterpart. To start with,
the set of contextual parameters encoded by means of the feature C-PARAMS in the HPSG
representation is intended to represent the domain of the meaning function. However
the semantics of typed feature structures cannot by itself denote such a function. Some-
thing similar can be said about the content of the utterance. The value of the feature
CONTENT in (114) is intended as a representation of the situation theoretic abstract
λ{ }.leave(b,t), but given that typed feature structures do not enable direct use of λ-
calculus tools, this is only the intended representation.

On the other hand, as I have shown, TTR incorporates all the tools from the λ-
calculus, and hence seems more adequate to represent semantic entities. The context-
dependent notion of meaning as a function from contextual assignments to full contents
can be straightforwardly expressed by a family of record types—a function like (115)
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where T2 : RecType.

(115) λ(r : T1).T2

The function maps records r of type T1, representing the type of context required to in-
terpret the utterance, to T2, which constitutes the type of the utterance content resulting
from application to the current context. (116) is a slightly simplified representation of
the meaning of the utterance “Did Bo leave?” given in (Cooper and Ginzburg 2002).

(116) λ



r :



i : Ind
j : Ind
c1 : spk(i)
c2 : add(j)
t1 : Time
t2 : Time
c3 : utt time(t1)
c4 : ev time(t2)
c5 : prec(t2, t1)
x : Ind
c6 : named(x,Bo)





.

[
msg : ?Leave(r .x, r .t2)
cont : ask(r .i, r .j,msg)

]

The content of the utterance is a record type with two labels: a label msg whose value
is a question message, and a label cont whose value is an illocutionary content. Both
values are dependent on record r, which is instantiated to the current context. This is
required to contain fields for all the contextual parameters of the utterance.

The TTR representations offered by Cooper and Ginzburg (2002) are concerned with
a semantic level of analysis. However, as I have pointed out earlier (in line with Cooper
(2005) and Ginzburg (forthcoming)), TTR can be used to underly other aspects of lin-
guistic analysis as well—in the spirit of HPSG signs, it can be employed as a full gram-
matical theory that comprehends phonology, syntax and semantics. Indeed, one could
integrate the aforementioned conception of meaning into a sign-based type-theoretical
representation like (117)—a record type characterising expressions simultaneously in
their phonological, syntactic and semantic components, the latter defined as a meaning
function like the one in (115).

(117)

 phon : Phon
syn : Cat
sem : λ(r : T1).T2


Some kinds of NSUs, however, provide evidence that the type in (117) is defective in at
least one respect, namely in that contextual dependence is limited to semantics. As we
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have seen in the introduction and in the previous chapter, since the early work of Ross
(1969) on sluicing and Morgan (1973, 1989) on short answers, it has been repeatedly
noticed in the literature that some NSUs exhibit a limited amount of structural paral-
lelism with their source. Although I have already illustrated this phenomenon in preced-
ing chapters, here I give some additional examples from the literature that summarise
the main parallelisms observed. These can more easily be appreciated in case-marking
languages like for instance German and Korean, and sometimes also in languages with
less rich case systems like Hebrew, which shows morphological case in clitic pronouns,
or even English:

(118) a. German
A: Hans will jemanden loben. B: Wen?/#Wem?
A: Hans wants someoneacc praise. B: Whoacc?/Whodat?

A: Hans wants to praise someone. B: Who?

b. English, from Merchant (2004):
A car is parked on the lawn—find out {whose/#who}.

(119) a. Korean, from Morgan (1989):
A: Nu-ka ku chaek-ul sa-ass-ni? B: Yongsu{–ka/#–rul}.
A: Whonom this bookacc bought? B: Yongsunom/Yongsuacc

A: Who bought this book B: Yongsu.

b. Hebrew, from Ginzburg and Sag (2001):
A: lemi hixmeta? B: lemoti/#moti.
A: To-who flater2nd−sg? B: to-moti/#moti

A: Whom did you flatter? B: Moti.

c. German, from Schlangen (2003):
A: Wen hast Du gelobt? B: Den Mann.
A: Whoacc have2nd−sg you praised? B: The manacc

A: Who did you praise? B: The man.

d. English, from Merchant (2004):
A: Whose car did you take? B: John’s/#John.

The examples in (118) show that the form of direct sluices is sensitive to the case require-
ments of argument-filling source NPs. Similarly, example (119) illustrates case matching
between short answers and their argumental wh-phrase antecedents.
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The existence of partial structural parallelism between NSU and source is perhaps
even stronger in CE. As with short answers and direct sluices, a non-sentential clarifi-
cation must match the source in case, as example (120a) from (Ginzburg and Cooper
2004) shows. Clarification fragments, however, exhibit an intricate pattern of connectiv-
ity where phonological parallelism can also play a role. This is demonstrated by example
(120b) adapted from (Ginzburg and Cooper 2004).

(120) a. A: Ist dieser Platz noch frei? B: Dieser/#Diesen Platz?
A: Is thisnom place still free? B: Thisnom/#Thisacc place?

A: Is this place free? B: This place?

b. A: Did Bo leave?
B1: My cousin? (; Are you referring to my cousin with your utternace ‘Bo’?)
B2: Bo? (; Who are you referring to with your utterance ‘Bo’?)

Example (120b) shows that when a clarification NP is interpreted as asking about the
meaning of some sub-utterance as intended by the speaker,7 a non-phonologically paral-
lel clarification fragment like B1 in (120b) conveys a polar question, while a wh-question
interpretation can only be conveyed by a phonologically identical NP like B2.8 Thus,
an adequate treatment of the readings conveyed by B2 in (120b) will have to refer to
phonological information present in the antecedent.

A general conclusion emerges from the data above. This is better formulated as a
twofold statement:

(121) a. Utterances can be context dependent above and beyond semantics, i.e. besides
content, other formal properties of utterances (e.g. syntactic and/or phonologi-
cal) can also depend on context. Therefore,

b. the context with respect to which utterances are interpreted must include some
degree of structural information, such as some syntactic and phonological prop-
erties of previous utterances.

(121b) can be seen as a version of the Hybrid content hypothesis formulated by Ginzburg
and Cooper (2004), given here in (122):

(122) Hybrid content hypothesis: The content which is updated in dynamic semantics
consists of structure expressing detailed relations between the content and formal
properties (syntax, phonology, etc) of the various parts of an utterance.

7In the terminology of Ginzburg and Cooper (2004), this corresponds to a constituent reading. According
to the authors, B1 and B2 in (120b) can also convey a clausal interpretation paraphraseable as Are you asking
if my cousin/Bo of all people left?. This reading does not seem to be sensitive to phonological information.

8This reading can also be conveyed by using a bare wh-phrase.
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Both (121b) and (122) are connected with the issue of how the context type (T1 in
(115)) should be defined, to which I shall turn in a minute. As to (121a), clearly it
calls for a modification of the type in (117). The technical alternative I favour to modify
(117) in a way which is consistent with (121a) involves making the λ-abstracted context
to take scope over the entire sign-like record type as follows:9

(123) λ(r : T1).

 phon : Phon
syn : Cat
sem : Type


Like the meaning function in (115), (123) is a family of record types. In this case how-
ever the range type does not stand for the content of an expression as in (115), but
for a sign-like record type. Functions like (123) from context to sign-like types seem
preferable to record type (117) as they potentially allow us to encode complex context-
dependencies amongst semantic and structural properties of utterances.

This brings us to the issue of what the nature of the context type should be. Intuitively
the context type characterises the context of use or the context of utterance with respect
to which an expression is interpreted. In a dialogue setting context is usually equated
with the information state of the dialogue participants, or perhaps more typically with
the shared information or common ground of the conversants. For now, let us just assume
that the context of utterance is defined by a type IS characterising the information state
of the agents engaged in dialogue. This gives us a general (static) picture of utterances
as families of sign-like record types dependent on the current information state (a record
r of type IS).

(124) λ(r : IS ).

 phon : Phon
syn : Cat
sem : Type


9 Given the definition of dependent record types and their relation to families of types, a similar effect

would be achieved by a dependent record type like the one in (i) , where the domain of the meaning
function in (117) is raised to the status of independent field in the record type, on which potentially all
subsequent fields can depend. In (i) I have used the notation r : T1 to make the connection with record type
(117) more transparent. A more meaningful notation would perhaps be ctxt : Type or c param : Type, as
the contextual field would roughly correspond to the HSPG feature C-PARAMS.

(i)

26664
r : T1

phon : Phon(r)

syn : Cat(r)

sem : Type(r)

37775
Given that (123) and (i) are equivalent for all relevant purposes I will, as pointed out before, stick to the
formulation in (123), which singles out the context type in a somehow sharper way than (i), and which will
prove to be clearer and more convenient for subsequent developments.
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Before giving a more precise definition of the type IS, it is worth remarking that the
TTR formulation in (124), as well as the representations put forward by (Ginzburg and
Cooper 2004, Ginzburg forthcoming) and the HPSG signs of (Ginzburg and Sag 2001,
Purver 2004b), are concerned with a static notion of interpretation. In all these cases
the context dependent nature of interpretation is taken into account, but nothing is said
about how contextual resources become available, i.e. about how utterances and their
interpretation change and create context. This is of course the leitmotiv of the dynamic
semantic approaches, and as we are concerned with dialogue and not with isolated sen-
tences, it seems most appropriate to embrace it. The Dynamic Logic approach described
in Section 3.4 of the previous chapter aimed at overcoming some of the limitations of a
static conception of interpretation. Here I will show how the transition from statics to
dynamics can be smoothly achieved using TTR.

4.2.2 From Statics to Dynamics

In the approaches of (Ginzburg and Sag 2001, Ginzburg and Cooper 2004, Purver 2004b,
Ginzburg forthcoming), which I take as point of departure, dynamics enters into the
picture only at the level of dialogue management (read pragmatics), which can be seen
as a species of post-module acting on compositionally built, static representations.

In the Information State Update (ISU) approach to computational dialogue modelling
context change is modelled in terms of update processes to the information states of
the dialogue participants (see e.g. Traum et al. 1999, Larsson and Traum 2000). Such
updates are typically brought about by a set of update rules mainly (but not exclusively)
triggered by the observance of speech acts (Matheson et al. 2000, Larsson 2002). For
instance, the rule in (125) is used in (Larsson 2002) to update the information state once
the user of the system has asked a question:10

(125)

RULE : integrateUsrAsk

PRECOND :

{
speaker = user

latest move = ask(Q)

EFFECTS :

{
push(QUD, Q)
push(agenda, respond(Q))

In recent work, Cooper (2006b) proposes an abstract formalisation of ISU processes in
terms of TTR. The central aim of his approach is to offer a declarative treatment of
update rules. As in (Larsson 2002), information states are taken to be records. Cooper
then formalises update rules as update functions like (126):

(126) λ(r : Ti).Ti+1

10The rule in (125) has been slightly simplified for readability’s sake.
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Update functions map an information state record r of type Ti (the type of the current
state) onto a record type Ti+1 (the type of the next state) dependent on r. They are
therefore families of record types, i.e. functions from records to record types.11

The following function is a (simplified) example of an update function given in
(Cooper 2006b), which in turn can be thought of as a TTR formulation of (125):

(127) λr :


is :


agenda : 〈Action〉

lu :

[
spk = usr : Participant
moves : {Moves}

]
qud : 〈Question〉


cond :

[
q : Question
c : member(ask(cond.q), is.lu.moves)

]


([

is :

[
agenda = respond(r .cond.q) | r .is.agenda : 〈Action〉
qud = r .cond.q | r .is.qud : 〈Question〉

] ])

The domain type of the function in (127) mimics the preconditions of the rule in (125).
Cooper uses records with two fields: a field is to represent the information state and an-
other field cond to express conditions that must hold of the information state. The is field
postulates that the user was the speaker of the latest utterance. The conditions require
that there is a question q such that ask(q) is a member of the set of moves performed by
the latest utterance (is.lu.moves).12 The type that emerges when the function is applied
to a record of the type specified by the domain requires that q is added to the qud list
and an action respond(q) is added to the agenda.

Thus, by providing an abstract characterisation of update rules as update functions,
Cooper shows that TTR is appropriate not only to formalise compositional semantics as
we have seen above, but also update processes in the context of ISU dialogue manage-
ment. However, how these two sides of the same coin are related to each other is not a
clear issue. The treatment of compositional semantics offered by Cooper and colleagues
is concerned with static meaning, while dynamic matters are brought about by update

11It might be objected that the use of types to formalise update is counterintuitive, as typically updates do
not involve types but objects. That is, the idea underlying, in some way or other, most dynamic semantics
approaches is that updates are mappings between information states (not information state types). In our
formulation this would correspond to mappings from records to records. As Cooper points out, however,
the use of types is justified if the goal of the formalisation is to reason about updates. Update functions can
be used to draw conclusions about the type of the next information state on the premise of the type of the
current state. Since there is typically more than one object of each type, types can be seen as underspecified
representations. Consequently, knowledge about the actual information state does not have to be exhaustive
in order to draw a conclusion on the type of the next information state, even though the latter of course
depends on the precise nature of the former. Note that the definition of the constraint update in SDRT for
instance follows the same spirit, as it acts on underspecified logical forms, i.e. on descriptions or types.

12In this setting utterances can realise more than one move.
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functions in a dialogue management setting. Although it is worth stressing that the long
term goal of Cooper and colleagues is “to obtain a single computationally tractable the-
ory of dialogue management and compositional semantics”,13 the work developed so far
has just shown that these two aspects can be approached using the same formal tools. At
the current stage, however, there is no fully-fledged account of the role of compositional
semantics in the update processes of information states.

Recall that one of the aims of the DL approach summarised in Chapter 3 was pre-
cisely to shed light on the interaction between these aspects. The strategy followed in
that work involved combining HPSG with Dynamic Logic. Now TTR seems to have all
the ingredients we need for an account similar to the HPSG-DL one that is formally more
uniform: representations akin to HPSG feature structures that allow Montague-style se-
mantic composition, and at the same time a way of formalising updates by means of
update functions.

The approach I take is rather simple: I shall add dynamics to the static representa-
tions of Section 4.2.1 by using update functions like (126) not only to represent update
rules, but also to represent utterance types themselves, which are seen as a special kind
of update rule—as we shall see, one that involves a locutionary event.14 In particular, I
model utterance tokens as mappings between information states, i.e. as functions from
records to records, and utterance types as families of information state types.

(128) λ(r : ISn).ISn+1

Families of information state types, or IS families, are mappings like (128) from records
of type ISn to a record type ISn+1, where ISn, ISn+1 are subtypes of the general type of
information states IS , which will be defined in a minute. I call ISn the domain type of
an utterance type. This specifies the contextual coordinates required for interpretation,
and as such will play a prominent role in the formulation of NSU classes. The contextual
update determined by an utterance type—its dynamic import—is then specified by its
range type ISn+1.

4.2.2.1 The IS Type: Preliminaries

I will start by assuming that the type of information states can minimally be modelled by
a record type with two fields: a field labelled facts, which contains the information that
is taken as shared by the dialogue participants; and a field labelled utt, which represents
the latest utterance contributed to the dialogue. Both facts and utt take propositions as
value.

13From http://www.ling.gu.se/∼cooper/records/.
14A preliminary account of this approach has been presented in Fernández (2005).
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(129) IS =def

[
facts : Prop
utt : LocProp

]

Propositions The view of propositions I adopt is inspired by the Situation Semantics
tradition.15 In a nutshell, within this tradition propositions are structured objects consist-
ing of a situation and a basic SOA or infon. Situations are spatiotemporally located parts
of reality, while basic SOAs classify situations as having certain properties. Basic SOAs are
structured objects themselves, made up from a relation and an assignment from entities
in the universe to the arguments in the relation, as illustrated by the following SOA:

(130) 〈〈 Rain ; loc: clapham, time: 8:15 GMT 〉〉

Given this, situation s supports SOA σ (s |= σ) if the properties designated by σ hold in
s. For instance, a situation s would support the SOA in (130) if s is a situation where it
is raining in Clapham at 8:15 GMT. A proposition consisting of a situation s and a SOA σ

is true just in case s |= σ.

I follow Ginzburg (2005)’s TTR modelling of propositions, which exhibits a straight-
forward correspondence with the sitsemic conception outlined above. Situations corre-
spond to records, while SOAs correspond to record types classifying situations as being
of a particular kind (i.e. to situation types labelled sT ). Proposition are then modelled
as records of type Prop, whose definition is given in (131).

(131) Prop =def

[
s : Rec
sT : RecType

]

Truth conditions are then defined as follows:

Definition 6 (Truth conditions) A proposition

[
s = r

sT = ρ

]
is true iff r : ρ.

For instance, the proposition expressed by the sentence A woman reads a book is true in
a particular situation if that situation can be modelled as a record of the following type:

(132)


x : Ind
c1 : woman(x)
y : Ind
c2 : book(y)
c3 : Read(x, y)


15See e.g. Barwise and Perry (1983) and Barwise and Etchemendy (1990).
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Appropriate boolean operations on propositions can be defined in accordance to the gen-
eral boolean definitions on types given in Section 4.1.1.4. I essentially follow Ginzburg
(2005) for this. The definitions can be found in Section B.2 of Appendix B.

Thus facts represents that propositional content that the dialogue participants take to
be true and shared amongst them. I will normally use an abbreviated notation to refer to
elements involved in the propositions in facts. To avoid clutter, I shall represent fields in
the situation type of some proposition in facts simply as in (133a), i.e. jumping through
the appropriate paths, which would typically include an extra record type labelled sT as
in the non-abbreviated representation in (133b).

(133) a.
[

facts = [ x : Ind ]
]

b.

[
facts =

[
s = r
sT = [ x : Ind ]

]
: Prop

]

The value of utt is actually also a fact—a fact that we want to single out in the dialogue,
i.e. the fact that some utterance has taken place. This fact has a special status because
it is typically the antecedent with respect to which NSUs are resolved. In type definition
(129), I have specified the value of utt as being of type LocProp—a subtype of Prop that
stands for the type of locutionary propositions. I use this type for a particular kind of
propositions that involve situations where a speaker (conventionally labelled as a) utters
a linguistic expression (a sign labelled as z). The definition of LocProp is the following:

(134) LocProp =def


s : Rec

sT :

 z : Sign
a : Ind
c : Utter(a, z)




The type Sign is given in (135). I assume that phrases include an extra field labelled
dtrs, whose type is a list of signs. 16

(135) Sign =def

 phon : Phon
syn : Cat
sem : Type


Thus, I represent locutionary acts as updates of the field utt. From a processing per-
spective, it seems reasonable to assume that a locutionary act is associated (at least)
with each word. Under this incremental view, each word would specify an update of

16In fact, the type Sign includes an additional field quant used to provide a very simple account of
indefinite NPs. This account, as well as the details of the grammar I assume, are explained in Appendix C.



100 Chapter 4. A Type-theoretical NSU Grammar

the information state that (possibly amongst other things) registers the fact that a locu-
tionary act has occurred—the act of uttering the word in question. However, although
appealing,17 semantic incrementality in this fashion poses some non-trivial complica-
tions. Perhaps the most obvious one is that for the incremental semantic update to work
out it has to be paired with some form of incremental syntactic processing, whose reali-
sation is far from clear. The intricacies of syntactico-semantic incrementality have been
the focus of attention of several lines of research, including e.g. Milward (1994) and
Kempson et al. (2000). One approach that faces this challenge and that is related in
spirit to the perspective I adopt here is the one offered by Poesio and Traum (1997),
Poesio and Muskens (1997). The aim of this proposal, formulated using Muskens’ com-
positional DRT (Muskens 1994), is to develop a theory that accounts for both anaphoric
accessibility and the intentional aspects related to speech acts performance. For this the
authors present a model of language processing in context where the meaning of each
word specifies an update of the common ground or discourse situation—the situation of
the conversation taking place, where information about the speech acts performed and
their descriptive content (the described situations) is recorded. They use a predicate ut-
ter to characterise locutionary acts at all levels, from phonemes to full sentences. This
leads them to adopt an inferential process whereby syntactic and semantic composition
are the result of applying defeasible inference rules.

Although this is an appealing approach, here I opt for simplifying matters by abstract-
ing over this issue. Furthermore I start from the top and look into how the locutionary
acts brought about by root utterances are to be represented. The compositional princi-
ples by means of which these are constructed are given in detail in the grammar fragment
in Appendix C.

I take root utterances to be associated with illocutionary propositions, i.e. propositions
of type IllocProp as defined below, such that IllocProp v LocProp v Prop.

(136) IllocProp =def



s : Rec

sT :



z :

 phon : Phon
syn : Cat
sem : Message


a : Ind
b : Ind
c1 : Utter(a, z)
c2 : IllocRel(a,b, z.sem)




17One of the advantages of incremental syntactic processing is that it has the potential to provide an

account of the interpretation of incomplete utterances.
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With respect to type LocProp, IllocProp incorporates an additional individual who acts as
the addressee of the utterance, and an illocutionary relation (IllocRel) that holds between
the speaker, the addressee and the content of the linguistic expression uttered, which is
specified to be of type Message. I will only be dealing with propositions and questions,
and assume that these message types determine the direct or primary illocutionary force
of root utterances. This is expressed in the following equivalences:

• Message ≡ Prop ∨Question

• IllocRel(a : Ind ,b : Ind ,m : Message) ≡
Assert(a : Ind ,b : Ind ,m : Prop) ∨Ask(a : Ind ,b : Ind ,m : Question)

In turn, I assume that the message type of utterances is determined by the structural
properties of linguistic constructions—essentially I take declarative sentences to denote
propositions and interrogative sentences to denote questions.

Questions Following Ginzburg’s work on questions, I take questions to be propositional
abstracts. In TTR propositional abstracts can be modelled as functions from records to
propositions. Consider for instance the interrogative sentence in (137a). The question
denoted by this interrogative can be modelled as the abstract in (137b).

(137) a. Who hates Mia?

b. λ

(
r :

[
x : Ind
c : person(x)

])
.

[
s = r1

sT =
[

c = Hate(r .x,mia) : Type
] ]

That is, the content of (137a) can be represented as a function from records r of type
(138) to propositions like (139) dependent on r.

(138)

[
x : Ind
c : person(x)

]

(139)

[
s = r1

sT =
[

c = Hate(r .x,mia) : Type
] ]

I associate with each wh-word in a language a particular record type, which I call a wh-
restrictor. The record type in (138), which I shall refer to as Twho, corresponds to the
wh-restrictor associated with the wh-word who. While, for instance, the restrictor for
what would be the record type Twhat in (140).

(140)

[
x : Ind
c : thing(x)

]
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Some wh-restrictors are not as easily characterised as Twho and Twhat however. This
is the case for interrogative determiners like which, whose restrictor actually emanates
from the noun it takes as a complement. We can accommodate this complication by
using a more underspecified restrictor like (141), where N stands for the type of nominal
predicates.

(141)

[
x : Ind
c : N (x)

]

Thus, (unary) wh-questions are functions from records r of type Twh to propositions
dependent on r, where Twh can be thought of as the following disjunctive type covering
all wh-restrictors associated with wh-words:

(142) Twh =def Twho ∨ Twhat ∨ Twhere ∨ Twhen ∨ . . .

Polar questions are also modelled as propositional abstracts. This is done by using a
notion of vacuous abstraction, which allows for 0-ary abstracts. In TTR 0-ary abstracts
can be formalised in terms of functions whose domain is the empty record type [ ].
This allows us to treat uniformly the domain type of both vacuous and non-vacuous
abstraction as being a record type.18

Given these observations, I define the question domain type ∆q as follows:

• The empty record [ ] is of type ∆q

• If Twh is a wh-restrictor and r : Twh then r : ∆q

• If r and r′ are of type ∆q, then so is r ∪ r′

• Nothing else is of type ∆q

The set of inhabitants of the question domain type ∆q is built up recursively by adding
wh-restrictors to the empty record type, which is the domain of polar questions. This
provides us with a uniform way of accounting for polar questions and n-ary wh-
interrogatives such as (143a), which denotes the question in (143b). The domain type
of this question is the union of the restrictors in (138) and (140).

(143) a. Who drinks what?
18As any record is of type [ ], this definition makes 0-ary abstracts and in particular polar questions

constant functions from the set of all records. An alternative account could be to consider the domain type
of 0-ary abstracts to be the type Rec0, whose sole member is the empty record. Since there is no evidence
of empirical differences between these two alternatives, the former seems preferable as it allows for a more
uniform treatment of interrogatives.
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b. λ

r :


x : Ind
c : person(x)
y : Ind
c′ : thing(y)


 .

[
s = r1

sT =
[

c = Drink(r .x, r .y) : Type
] ]

We are now ready to define the type Question, which I shall often abbreviate as Q. As
shown in (143), questions are functions from records r : ∆q to propositions, i.e. records
r′ : Prop as defined in (131).

Question =def ∆q → Prop (4.1)

I shall use the types WhQ and PolQ (both subtypes of Question) for questions whose
domain is a non-empty record type and the empty record type, respectively.

4.2.3 Notation

Let us see an example of how an utterance type of a simple declarative sentence like Leo
rides a bike could be represented with the tools we have so far.

(144) λ


r :


facts :


a : Ind
b : Ind
x : Ind
c : named(x,Leo)
s : Rec


utt : LocProp




.



facts : Prop

utt :



s1 : Rec

sT1 :


z :

 phon : leo rides a bike

syn = S : Cat
sem = p : Prop


c3 : Utter(r .facts.a, z)
c4 : Assert(r .facts.a, r .facts.b, z.sem)






In (144) the utterance “Leo rides a bike” is represented as an IS family. The update can
take place if the current state r is of the type specified by the domain type of the function.
This is required to contain individuals that can be identified as the speaker and the
addressee of the utterance and a referent for the proper noun Leo, as well as a contextual
situation for the proposition conveyed by the utterance. Provided that these contextual
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requirements are satisfied, the function determines the type of the next information state.
The value of utt is updated with the latest illocutionary proposition. This involves a
situation where a utters the linguistic expression z corresponding to Leo rides a bike,
and asserts to b its propositional content. This is abbreviated as p, which stands for the
proposition in (145):

(145) p ≡


s2 = r .facts.s

sT2 =

 y : Ind
c1 : Bike(y)
c2 : Ride(r .facts.x, y)




As the representation of IS families can be rather cumbersome, for the representation of
utterance types I shall use some notational shortcuts.

• I will generally ignore those fields, in both domain and range types of the function,
that are not relevant for current purposes. When there is no need to zoom into
either the domain or the range types, I will use the general type IS .

• Within the domain type, often I will need to refer to contextual parameters that
will typically be part of the situation type of the propositional content of facts. As
I already shown in (133a), for convenience of notation, I will usually refer to them
directly under facts, i.e. ignoring the intermediate label sT .

• Given the complexity of the notation of the utt value within the range type of the
function, I will usually simplify it for readability’s sake. Depending on current pur-
poses, I shall represent the value of utt with one of the main fields of the situation
type of illocutionary propositions. Whenever I need to exclusively refer to the sign
in utt—i.e. the value of label z within the situation type of the locutionary propo-
sition in utt—I will use the label utt.z instead of utt to avoid clutter and directly
refer to that sign. Alternatively, I will sometimes only use the locutionary predica-
tion, or the illocutionary one. Thus, for instance, the label utt in the range type of
function (144) could take one of the following abbreviated notations:

(146) a. utt.z :



phon = leo rides a bike : Phon
syn = S : Cat

sem =


s2 = r .facts.s

sT2 =

 y : Ind
c1 : Bike(y)
c2 : Ride(r .facts.x, y)


 : Prop


b. utt : Utter(r .facts.a, z)

c. utt : Assert(r .facts.a, r .facts.b, z.sem)
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I believe these conventions are rather intuitive. We will see them at work in subsequent
sections.

4.3 Formal Analysis of NSU

In the previous section, I have put forward a representation of utterances where utter-
ance tokens are transitions between information states and utterance types are families
of information state types. In this section, I will use this formal framework to define
utterance types for the main NSU classes in the corpus-based taxonomy presented in
Chapter 2.

Recall that IS families are functions from the current information state, restricted
to be of a particular type ISn , to the type of the next information state ISn+1 , where
ISn and ISn+1 are subtypes of the general type of information states IS . As NSUs are
highly context dependent, the domain type of these functions has a prominent role in the
definition of the NSU classes, as it sets the type of the contextual background required
for resolution.

Not all NSU classes require the same contextual background though. From a descrip-
tive point of view, I will distinguish between two main groups of NSUs, which differ in
terms of the granularity of the contextual information required for resolution. The NSU
classes in the first group are those whose antecedent is a sentential entity (often a com-
plete utterance) taken as a monolith, while the second group includes those NSU classes
that are sensitive to deeper components within the internal structure of the antecedent.
For instance, Plain Acknowledgement, Plain Rejection, or Propositional Modifier require
the presence in context of either a proposition P or a polar question λ(r : [ ]).P , where P
is seen as a monolith—as a proposition in propositional logic for instance. On the other
hand, the contextual background of NSU classes like Repeated Acknowledgement, Help-
ful Rejection, or Direct Sluice needs to be characterised in a more fine-grained manner.
In these cases, we cannot merely refer to a contextual proposition P or a polar question
λ(r : [ ]).P , but rather we need to refer to the internal structure of P , typically to some
component that acts as a species of parallel element in the HOU sense. This component
can be sentential, but it is often a non-sentential constituent of the antecedent utterance.
I shall use the term Sentential Antecedent as a binary feature [+/– SA] to distinguish
between these two groups of NSUs. Table 4.1 gives an overview of the NSU classes that
fall under Acknowledgements, Questions or Answers organised according to this feature.
As mentioned in Chapter 2, I will not be dealing with the resolution of Extensions and
Completions.

This classification turns out to be convenient because it helps us to distinguish
amongst NSU classes according to the complexity of the information state and the mech-
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+ SA – SA

Plain Affirmative Answer
Plain Rejection
Plain Acknowledgement
Check Question
Sluice (clarification reading)
Propositional Modifier

Short Answer
Repeated Affirmative Answer
Helpful Rejection
Repeated Acknowledgement
Direct Sluice
Sluice (reprise reading)
CE

Table 4.1: [+/– SA] NSUs

anisms required for resolution. Not surprisingly, [– SA] NSUs require a more complex
context than [+ SA] NSUs do. As we shall see, however, these two main groups are not
completely homogeneous, and thus it will be possible to establish a more fine-grained
ranking of NSU classes. I shall now approach each of these groups in turn, pointing out
possible aspects that allow further distinctions.

4.3.1 [+ SA] NSUs

As explained above, [+ SA] NSU classes are characterised by having as antecedent a
sentential entity that denotes a message. For instance, check questions like “okay?” and
sluices with a clarification reading like what? that merely ask for repetition seem to re-
fer to the antecedent utterance as a whole, without need to access its internal structure.
Note furthermore that, in contrast to [– SA] NSU, these NSU classes are realised by stand-
alone lexemes or lexicalised expressions like “yes”, “no way”, “right”, “possibly”, “what?”,
“okay?”. Grammatically, I will analyse them as message-denoting lexemes whose content
is constructed by operating on contextual information. Now we need to ask ourselves
what this contextual information is. For several [+ SA] NSUs a minimal information
state that singles out the latest utterance uttered in the dialogue, as introduced in (129),
seems to be sufficient. This seems to be the case at least for feedback NSUs, i.e. Plain Ac-
knowledgement, Check Question and Sluice with a clarification reading. Because these
NSUs deal with meta-communicative interaction, they are local utterances, i.e. they are
typically adjacent to their antecedent. This is of course not surprising as they deal with
grounding interaction and establishing mutual understanding is a precondition for ad-
vancing a conversation.

Let us start with Plain Acknowledgement, which explicitly indicates that the latest
utterance in the dialogue has been understood and integrated appropriately. This can
be modelled as an IS family that updates facts with the illocutionary predication con-
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tributed by the latest utterance.

(147) Plain Acknowledgement

λ

(
r :

[
facts : Prop
utt : IllocRel(a,b,m)

])
.

[
facts = r .facts ∧ r .utt : Prop
utt = Ack(b, a, r .utt) : IllocProp

]
Note that (147) represents a simple backchannel that merely shows that the conversation
is being followed, without entailing acceptance. For instance, in a dialogue like (148a),
the representation in (147) would model B’s acknowledgement as grounding (148b) but
not necessarily (148c):

(148) a. A: Bartleby’s gentleness is the effect of beer.
B: Mhm.

b. A asserted that Bartleby’s gentleness is the effect of beer.

c. Bartleby’s gentleness is the effect of beer.

Acknowledgements that also count as acceptances can be represented as functions that
update facts not only with the latest move made in the dialogue, but also with their
descriptive content, which will typically be a proposition.

(149) Plain Acknowledgement (acceptance)

λ

(
r :

[
facts : Prop
utt : Assert(a,b,p)

])
.

[
facts = r .facts ∧ r .utt ∧ r .utt.p : Prop
utt = Ack(b, a, r .utt) : IllocProp

]
As has been repeatedly observed, acknowledgement and acceptance can be conveyed im-
plicitly by showing continuous attention or by providing an appropriate response (Clark
and Schaefer 1989). Sometimes, however. speakers use check questions like “okay?” to
request explicit feedback from their addressees about the grounding/acceptance status
of a previously asserted proposition p. This can be modelled as follows:

(150) Check Question

λ(r :
[

utt : Assert(a,b,p)
]
).

[
utt.z :

[
phon : okay?
sem = λ(r ′ : [ ]).r .utt.p : Q

] ]
Given an antecedent utterance where a proposition p has been asserted, a check question
raises the question λ(r′ : [ ]).p, thereby requesting explicit feedback about the common
status of p.

Sluices with a clarification reading that ask for a repetition of the preceding utterance
can be represented as in (151). The semantic content of the sluice is a question that could
be paraphrased as “what did you just say/utter?”. This is constructed by abstracting the
linguistic sign (referred to as r .utt.z) from the preceding locutionary proposition (that
is, r .utt).
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(151) Sluice (clarification reading)

λ(r :
[

utt : LocProp
]
).

[
utt.z :

[
phon : what?
sem = λ(r′ : [x = r .utt.z : Sign]).r .utt : Q

] ]
While meta-communicative [+ SA] NSUs are typically adjacent to their antecedents,
other NSU classes have a stronger potential for non-adjacent antecedents. Indeed, al-
though in practice a high percentage of [+ SA] NSUs are local, some of them (typically
those that act as answers) have the potential of addressing issues brought about by ut-
terances that were uttered previously to the latest utterance contributed to the dialogue.
It is easy to construct examples that show this:

(152) A: Are you going to take part in the city marathon?
B: But wasn’t that last month?
A: No, it’s going to be in a couple of weeks.
B: Oh, then yes/no/probably.

This kind of evidence is at the core of Ginzburg’s analysis of NSUs, who observes that
some NSUs (especially short answers) can occur at an unbounded distance from their
antecedent. This is Ginzburg’s main motivation for incorporating into the representation
of context a repository of questions under discussion—QUD—as an ordering mechanism
that determines the current topic of discussion, as well as potential NSU antecedents.
This is in line with several other approaches that model topics as questions, like for
instance (Roberts 1996) or the approach of Dekker (2003a,b) reviewed in Chapter 3.

The QUD ordering is usually defined by Ginzburg as a partial order where the lat-
est issue raised takes conversational precedence. In the examples above the first two
utterances by A and B respectively introduce two issues q1 and q2 in QUD, ordered as
< q2, q1 > with q2 taking conversational precedence. Once q2 is addressed and consid-
ered resolved for current purposes, it is downdated from QUD and q1 becomes again the
current conversational topic, which can be picked up as antecedent by subsequent NSUs.

To reflect this, I shall modify the IS type in (129) by introducing a new field labelled
qud whose type is a list of questions that represents the order of questions under discus-
sion, thus adopting an IS type that mirrors Ginzburg’s DGB. Usually I will be concerned
with the first element in the qud list. Therefore I will commonly employ the label qud1

instead of qud to refer to that first element.

(153) IS =def

 facts : Prop
qud : 〈Question〉
utt : LocProp


In Ginzburg’s theory of context, questions under discussion are introduced into context
by means of illocutionary acts, both Ask and Assert . For Ask moves, this is clear: asking
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a question q raises q for discussion. Asserted propositions are not necessarily accepted
and therefore are also open for discussion. Asserting a proposition p raises the polar
question “whether p” for discussion (or λ(r : [ ]).p in our TTR notation) . This could
be incorporated in our dynamic type-theoretical grammar by defining IS families for
illocutionary propositions that would update qud according to their illocutionary force.
However, if QUD is to be used as the source of antecedents for NSU resolution, this
is not quite sufficient. The following examples show that subordinate questions and
propositions, not directly embedded under any illocutionary operator, are also available
for NSU resolution.

(154) a. A: Jo wonders/is investigating where Millie got that book from.
B: Oh, from that secondhand bookshop in Camden Town.

b. A: Cris asked me who won this year’s Booker Prize.
B: Coetzee.

c. A: Cris forgot/found out Marc’s surname.
B: Ferrer (like everyone in this town).

(155) A: Cris told me that Coetzee won the Booker Prize again.
B1: No (it was Banville this time).
B2: Probably (I wouldn’t be surprised if he did).
B3: Yes (the prize was awarded yesterday).

Given this evidence, I opt for associating the projection of questions into context not
with illocutionary force, but with locutionary acts involving linguistic expressions that
denote either questions, like interrogatives and question-denoting NPs, or propositions
like (embedded or otherwise) declarative clauses.19 20

19As pointed out by Öle Nielsen (p.c.), question projection and accessibility seem to be subjected to island
constraints:

(i) A: Max went for lunch with Tessa, who is wondering where John is.
B: In the library.

(ii) A: Max went for lunch with the guy who is wondering where John is.
B: #In the library.

20There is a difference between questions introduced by illocutionary acts and those introduced only by
locutionary acts. The former impose an obligation on the addressee to answer the question, while the latter
although available as NSU antecedents, don’t necessarily have to be answered. This could be taken as
motivating a distinction within QUD, perhaps similar to the one adopted by Larsson (2002), or the use of
obligations together with QUD (Kreutel and Matheson 1999, Traum 2003). As my main interest is related
to the resolution of NSUs, here I don’t make this distinction.
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The IS family of question-denoting expressions is given in (156). Their con-
tent type is Question (sem : Question), and such content is projected onto qud
(qud = utt.sT .z.sem⊕ r .qud). The equivalent IS family for proposition-denoting expres-
sions is shown in (157). In this case the propositional content (sem : Prop) projects the
polar question whether(p) onto qud (qud = λ[ ].utt.sT .z.sem⊕ r .qud).

(156) Question projection of question-denoting expressions

λ

r :

 facts : Prop
qud : 〈Question〉
utt : LocProp


 .



qud = utt.sT .z.sem⊕ r .qud : 〈Question〉

utt :


s : Rec

sT :


z :

[
sem : Question

]
a : Ind
c : Utter(a, z)





(157) Question projection of proposition-denoting expressions

λ

r :

 facts : Prop
qud : 〈Question〉
utt : LocProp


 .



qud = λ(r : [ ]).utt.sT .z.sem⊕ r .qud : 〈Question〉

utt :


s : Rec

sT :


z :

[
sem : Prop

]
a : Ind
c : Utter(a, z)





This applies for instance to the types I have associated with check questions (150) and
clarification sluices (151). For example, recall that in (150) I modelled check questions
of an assertion of p as conveying the polar question λ(r : [ ].p. According to (156), this
question now updates qud as follows:

(158) Check Question (revised)

λ(r :

[
qud : 〈Question〉
utt : Assert(a,b,p)

]
).

 qud = utt.sem⊕ r .qud : 〈Question〉

utt.z :

[
phon : okay?
sem = λ(r ′ : [ ]).r .utt.p : Q

] 
Note that this is to some extent redundant as an assertion of p, according to (157),
would already update qud with λ[ ].p. This redundancy however seems to be part of the
“checking” nature of these questions. Note that, should the addressee decide to explicitly
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address a previous assertion, the same range of responses are available regardless of
whether the check question is asked or not, as shown in (159). A lack of response from
B, however, would be rather odd if a check question is asked, while it would most likely
be taken as implicit acceptance otherwise.

(159) A: Dimitri’s guest will get the bridal suite. (Okay?)
B: Okay. / No way.

Sluices with a clarification reading also update qud accordingly. For acknowledgements
however, in line with Traum’s work on grounding (1994), I assume that there is no qud
update.21

Let us take stock. We have seen that, while [+ SA] NSUs that are intrinsically re-
lated to meta-communicative interaction can generally be dealt with by keeping track
of the latest utterance contributed to the dialogue, the resolution of other NSUs that
have a greater potential for distant antecedents motivates the introduction of an extra
structuring mechanism—a list of questions under discussion. Within the group of [+
SA] NSUs, these are Plain Affirmative Answer, Plain Rejection and Propositional Modi-
fier, which form the class of stand alone lexemes. These three NSU classes are realised
by propositional lexemes such as “yes”, “no” and “probably”. I restrict myself here to a
rather general account of these items, adopting an approach that closely follows that
of Ginzburg and Sag (2001). I assume that these NSU classes require the presence in
context of a polar question λ(r : [ ]).P currently under discussion, which has been intro-
duced into context either by a question or by a proposition as determined by (156) and
(157), respectively.

(160) A: Dimitri’s guest will get the bridal suite.
A’: Will Dimitri’s guest get the bridal suite?
B: Yes. / No. / Probably.

The content of these stand-alone lexemes can then be modelled as a relation R which
holds of the propositional core of the question under discussion, obtained by applying
λ[ ].P to the empty record. This is expressed by the following type:

(161) Propositional Lexeme

λ(r :
[

qud1 : PolQ
]
).
[

utt.z :
[

sem = R(r .qud1@[ ]) : Prop
] ]

For Plain Affirmative Answers R is the Identity relation; for Plain Rejection R is a relation
Neg sensitive to the polarity of its argument P , such that if P is a positive proposition

21Which basically amounts to assuming that acknowledgements do not have to be acknowledged, thus
avoiding the circularity of grounding models like (Clark and Schaefer 1989).
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Neg(P) corresponds to its negation, while if P is negative Neg(P) equals P . This captures
the following contrast:

(162) A: Are rats comrades? / Aren’t rats comrades?
B: No. (; Rats are not comrades.).

The types for Plain Affirmative Answer and Plain Rejection are given in (163) and (164),
respectively. As for Propositional Modifier, the relation R corresponds to PropRel, which
subsumes different modalities like probably or possibly. The type for this NSU class is
given in (165).22

(163) Plain Affirmative Answer

λ(r :
[

qud1 : PolQ
]
).
[

utt.z :
[

sem = Id(r .qud1@[ ]) : Prop
] ]

(164) Plain Rejection

λ(r :
[

qud1 : PolQ
]
).
[

utt.z :
[

sem = Neg(r .qud1@[ ]) : Prop
] ]

(165) Propositional Modifier

λ(r :
[

qud1 : PolQ
]
).
[

utt.z :
[

sem = PropRel(r .qud1@[ ]) : Prop
] ]

4.3.2 [– SA] NSUs and the Need for Fine-Grained Information

Let us now turn to those NSU classes classified as [– SA] in Table 4.1. As mentioned
earlier, these are characterised by maintaining a certain degree of connectivity with their
antecedent that cannot be explicated without appealing to fine-grained properties of its
internal structure. As we have seen, this kind of NSUs—like Short Answer, Direct Sluice
or CE—exhibit structural dependencies with a constituent of the antecedent utterance:
a wh-phrase in the case of short answers, a quantified NP for direct sluices, and the re-
peated constituent for repeated affirmative answers, for instance. This means that the
antecedent utterance cannot be taken as one piece where only sentential entities are vis-
ible, but should rather be represented as an object with further internal structure whose
components are available in context. My aim in this section is to determine what these
components are, and how they interact with the NSU phrase to account for resolution.

Syntactically, I assume a structure like that of Ginzburg and Sag (2001) and
Schlangen (2003), where the NSU is analysed as a message-denoting construction with
a single daughter corresponding to the NSU phrase. The content of the construction is

22Note that, in order to avoid getting into the semantics of adjuncts (which would require at least a
chapter on its own), I am adopting a rather coarse-grained approach here, which does not take into account
possible accessibility constraints that might govern the behaviour of these propositional modifiers.
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resolved by enriching the semantic contribution of the phrase with contextual informa-
tion.

Let us start with short answers, which are perhaps the most prototypical NSU class
we find in this group. Given the setting developed so far, the semantic resolution of Short
Answer is straightforward:

(166) Short Answer

λ(r :
[

qud1 : WhQ
]
).

[
utt.z :

[
sem = (r .qud1@d.sem) : Prop
dtrs = 〈d : [sem : Type]〉 : 〈Sign〉

] ]

As shown in (166), short answers are resolved by functional application of the current
QUD to the semantics of the NSU phrase. Hence, on purely semantic grounds, access
to the internal structure of the antecedent utterance is not required in this case—even
though there is semantic identity between the NSU phrase and the wh constituent, this
comes in for free courtesy of β conversion. However, as we know, [– SA] NSUs are
generally subjected to structural parallelisms that go over and beyond semantics, as ex-
emplified for instance in (119) and (118) for short answers and direct sluices.

In Chapter 3 I have reviewed some proposals as to how this kind of connectivity ef-
fects can be accounted for. I will focus here on two of them, namely those that take a
constructionist approach (Section 3.3). The first of these proposals is the one offered
by Ginzburg and Sag (2001), who deal with structural connectivity by assuming that
the context includes a set of salient utterances or SAL-UTTs, and then enforcing several
identities between the NSU and an element of that set. Although, as I will argue below,
this turns out to be essentially an appropriate strategy, it has a number of non-trivial im-
plications. Firstly, it involves keeping track of a set of potential utterance antecedents for
each QUD, which means keeping track of full signs (i.e. entities with phonological, syn-
tactic and semantic information) within purely semantic entities like QUDs. Secondly,
it implies that any NSU that exhibits connectivity must have an antecedent SAL-UTT.
Although the data shows that structural information cannot be completely ignored, the
first of these implications may seem a bit too strong for NSUs like short answers and
sluices that, as Schlangen observes, seem to be sensitive to subcategorisation require-
ments only—why should we keep track of full signs if argumental information is all that
appears to be required? The second implication, on the other hand, seems to make
inappropriate predictions. In A’s utterance in (167), for instance, there is no explicit
SAL-UTT that can act as antecedent of the sluice uttered by B, and yet case matching
with the implicit argument ensues.

(167) A: I borrowed a car.
B: Whose?
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As we saw in Chapter 3, an alternative approach is offered by Schlangen (2003), who
accounts for the structural parallelism exhibited by certain NSUs by taking into account
the role that their fragment phrase plays in the contextually provided predication—
contributed, in our case, by the current QUD.

Our TTR account could be easily extended to incorporate a similar approach. Let us
see what this would involve. Firstly we would need to assume that the syntax of predi-
cates V includes a function arg strV of type Type → Cat from the set of V ’s arguments
to a set of syntactic categories. For instance, the argumental structure of the German
predicate loben (“to praise”) would be determined by a function arg str loben, such that
it assigns to the first argument of the predicate the category SN[nom] and to the second
argument the category SN[acc]. Secondly, we should also assume that this function is part
of the semantic field of the predicate as in (168), and that it is inherited by the clauses
containing that predicate, being therefore present in QUD.

(168)


phon : loben

syn = V : Cat

sem :

[
arg str = arg strloben : Type → Cat
c : λ([x : Ind ]), (λ([y : Ind ]).Loben(x, y))

]


When the content of an argumental short answer is resolved by applying the current
QUD to the content of the NSU phrase, the argument structure of the QUD predicate
becomes part of the propositional content expressed by the short answer. Also, courtesy
of β conversion, the entity denoted by the phrase automatically becomes an argument of
this predicate. Now the only thing we need in order to obtain the right syntactic category
of the phrase is to apply the argument structure function to its content (as in the syn field
of the daughter syn = utt.sem.sT .arg str@sem : Cat below):

(169) Short Answer – subcategorisation strategy

λ

(
r :

[
qud1 : λ(r : Rec).

[
s : Rec
sT : [arg str : Type → Cat ]

] ])
.

 utt.z :

 sem = (r .qud1@d.sem) : Prop

dtr =

〈
d :

[
sem : Type
syn = utt.sem.sT .arg str@sem : Cat

]〉
: 〈Sign〉




Thus this seems a rather elegant way of accounting for syntactic parallelism, which intro-
duces only a limited amount of structural information into the context: the subcategori-
sation requirements of predicates. Furthermore, the strategy could easily be extended to
deal with implicit arguments—all that is required is that these are somehow represented
within the argumental structure of the predicates in question.
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However attractive, a subcategorisation strategy has a limited scope: as I mentioned
in Chapter 3, by definition it can only capture structural connectivity effects that derive
from the argumental role of some NSUs. Not all parallelisms exhibited by NSUs and
other anaphoric expressions however are due to the argumental role they play within a
predication. This was exemplified in Chapter 3 with the dialogue repeated here in (170),
which is similar to examples we have seen earlier in (120b). As I pointed out in Chapter
3, the form of this NSU cannot be explicated in terms of the argumental role it plays.

(170) a. A: Leo saw her.
B: Her? / #She?

b. Who are you referring to with your utterance “her”?

It is worth looking as well at other anaphoric phenomena that, like NSU, also exhibit
structural connectivity. Pronominal anaphora, where pronouns must agree in gender and
number with their antecedents, constitutes a well known example of this. Agreement re-
quires morphosyntactic information to be somehow present in context, which has always
constituted a problem for dynamic systems like DPL (Groenendijk and Stokhof 1991) and
standard DRT (Kamp and Reyle 1993), where context includes only information about
referents.

All this suggests that a general theory of anaphoric expressions and their resolution
would require the contextual availability of a variety of structural information. Although
I do not attempt to develop such a theory here, it is a desirable property of an account of
NSUs that it has the potential to be generalised to other anaphoric phenomena. On top
of this general requirement, we have in fact seen evidence from NSUs on its own that
shows that [– SA] NSUs require the presence in context of suitable antecedents from
which we should be able to access a range of different information: sluices exhibit a se-
mantic dependency with their antecedent, some forms of CE demand for their felicity a
phonologically identical antecedent, while they all require an antecedent which is mor-
phosyntactically parallel. This suggests that signs are the optimal entities to represent
[– SA] NSUs contextual dependencies.

Given this, I shall consider that each question under discussion q is accompanied
by a list of signs corresponding to topical constituent(s) of the utterance from which q

stems, and which act as sub-utterance antecedents or parallel elements for [– SA] NSUs.
A suitable way to model this is to take qud to be a list of records instead of questions—
more precisely, a list of records with two fields: a field labelled que, which encodes the
question under discussion proper; and a field I will label top (for topical), whose value is
a list of signs.

(171)

[
qud :

〈[
que : Question
top : 〈Sign〉

]〉 ]
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How do topical sub-utterances become available in context? As we have seen, wh-phrases
present in wh-interrogatives are the typical sub-utterances that act as antecedents for
short answers, while any quantified constituent has the potential to be an antecedent
sub-utterance for a direct sluice:

(172) A: A man saw something strange in a street nearby.
B: Who? / What? / Where?

Thus the availability of sub-utterance antecedents for short answers and direct sluices
can be captured by an incremental approach, whereby wh-phrases and quantified
constituents incrementally update the information state by introducing potential an-
tecedents into top. This is for instance the strategy adopted in implementations such
as (Fernández et al. in press) and (Purver 2004a), and we can model it in TTR by let-
ting the grammar monotonically associate the relevant updates with wh- and quantified
phrases, as shown in the following simplified representations:23

(173) Wh-phrase top update

λ(r : IS ).

 qud1 :
[

top = 〈utt〉
]

utt.z :
[

sem : Twh

]


(174) Quantifier NP top update

λ(r : IS ).

 qud1 :
[

top = 〈utt〉
]

utt.z :
[

sem : Tquant

]


Now that suitable topical sub-utterances are contextually available, the type for Short
Answer can be modified to include the syntactic connectivity between the fragment and
the topical antecedent.

(175) Short Answer (revised)

λ

r :

 qud1 :

 que : WhQ

top :

[
sem : Twh

syn : Cat

] 

 .

 utt.z :

 sem = (r .qud1@d.sem) : Prop

dtrs =

〈
d :

[
sem : Type
syn = r .qud1.top.syn : Cat

]〉
: 〈Sign〉




23More detailed representations are given in Appendix C. Note that in (174) I have used a type Tquant

as the type of existentially quantified content. This should be understood as an abbreviation. As shown
in Appendix C, existentially quantified NPs are characterised by an additional label quant. As this is not
important for current purposes, I forgo given more details here.
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As we have seen then, the need to access the internal structure of the antecedent utter-
ance seems to be limited to syntax in the case of Short Answer, as semantic identity is a
consequence of functional application and β-conversion. The resolution of direct sluices
on the other hand cannot do without appealing to the internal semantic structure of the
antecedent. Consider the following example:

(176) A: Someone called.
B: Who?

A’s utterance is an assertion of the proposition P in (177a), which according to our
current setting has updated the information state by introducing the question λ(r : [ ]).P
and the sign corresponding to the quantified NP in the current qud. In this context
B’s sluice resolves to the question in (177b), i.e. a question obtained by abstracting the
quantified element from the propositional core of the current QUD.

(177) a.


s = Rec

sT =

 x : Ind
c1 : person(x)
c : Call(x)




b. λ

(
r :

[
x : Ind
c1 : person(x)

])
.

[
s = Rec

sT =
[

c : Call(r .x)
] ]

In order for the right resolution to ensue, the indices of the wh-phrase and the quantified
NP (i.e. their labels of type Ind) must be identified. In other words, we need to make sure
that the sluice is asking about who the individual who called was. This can be expressed
with the following IS family:

(178) Direct Sluice

λ

r :

 qud1 :

 que : Question

top :

[
sem : Tquant

syn : Cat

] 

 .

 utt.z :

 sem = λ(d.sem).r .qud1.que@[ ] : Question

dtrs =

〈
d :

[
sem : [y = r .qud1.top.sem.x : Ind ]
syn = r .qud1.top.syn : Cat

]〉
: 〈Sign〉




Note that this analysis of Direct Sluice, like that of Ginzburg and Sag (2001), faces the
problem of examples like (167), which lack an explicit sub-utterance antecedent. As I
have pointed out earlier, it may seem odd in these cases to assume the existence of a con-
textually available full sub-utterance. Again, however, the presence of varied structural
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information in context without explicit linguistic antecedents is motivated independently
by other anaphoric phenomena, like deictic anaphora. In languages where nouns have
grammatical gender, pronouns with a deictic interpretation display gender agreement
with some kind of implicit utterance type associated with the demonstrated object. If
I throw a ball at Laia and ask her in Catalan to catch it, I will do so using a feminine
pronoun that agrees in gender with the noun one would typically predicate of the object
in question, i.e. pilota (‘ball’):

(179) Agafa-la! / # Agafa’l!
catch -it[fem,acc] / catch -it[masc,acc]

The mechanisms behind this phenomenon seem to involve some kind of utterance type
accommodation process, which I will not attempt to make precise here. This observation
however highlights the fact that the availability of sub-utterance antecedents for [– SA]
NSUs cannot always be explicated by an incremental update of the context, as it is the
case for most short answers and direct sluices. For instance, Repeated Affirmative An-
swers and Repeated Acknowledgments have a semantic dependency with a sub-utterance
antecedent. As mentioned in Chapter 2 and shown in (22) (repeated here as (180)), the
focus-ground structure of the antecedent may affect the range of potential topical sub-
utterance. However, determining the informational structure of the antecedent is not al-
ways an easy task, and when this one is not clearly marked the appropriate sub-utterance
cannot easily be singled out a priori.

(180) A: Did you SHOUT very loud?
B1: #Very loud, yes.
B2: Shout, yes.

For Repeated Acknowledgements this is still less clear cut, as often the parallel sub-
utterance seems to be repeated as an almost reflex follow-up (cf. Ginzburg and Cooper
2004):

(181) A: I’ll be having chips and beans and a capuccino.
B: And a capuccino, OK.

A perhaps stronger case can be made for CE and Helpful Rejection, whose antecedent
can be any constituent of the antecedent utterance:

(182) A: Did Raskolnikov receive a summons?
B1: Raskolnikov? / a summons? / receive?
B2: (No,) Nastasya / a letter / WROTE a summons.
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In these cases an incremental strategy that predicts which are the topical sub-utterances
in a forward-looking fashion would lead us to introduce a topical sub-utterance for each
constituent, which basically would amount to not introducing any topicality at all. Thus,
for some [– SA] NSU classes it seems more sensible to make use of a recoverability strat-
egy, whereby the topical sub-utterance is not triggered by the antecedent utterance on
its own in an incremental fashion, but recovered or accommodated when the NSU is pro-
cessed. This is similar to the obtention of discourse referents for plural pronouns in DRT,
which are “constructed” by means of different operations whenever they are required to
interpret a plural pronoun (Kamp and Reyle 1993, Ch. 4). In the following subsection I
propose accommodation rules that allow us to recover antecedents for some [– SA] NSU
classes.

4.3.2.1 Some Accommodation Rules

As we have seen in Chapter 3, Ginzburg and Cooper (2004) employ coercion operations
to construct a context that can explicate the resolution of CE. These operations involve
accommodating relevant questions in qud. I will argue that a similar strategy can be
used to account for Helpful Rejection. For Repeated Affirmative Answer and Repeated
Acknowledgement, however, we do not need to accommodate questions, but only topical
constituents. To this end, I propose to use a principle, which I dub constituent topical-
ization, that raises a constituent of the antecedent utterance to the status of topical sub-
utterance. Obviously for this to work out we need to have access to the set of constituents
of a given utterance—a move made as well by Ginzburg and Cooper (2004). To indicate
that a sign is a constituent of another sign I will use the constraint const(v, z), where
z will label the sign corresponding to the full utterance and v one of its constituents.
The general formulation of constituent topicalization is given in (183).24 The precise na-
ture of the accommodated topical sub-utterance will depend on the type of NSU to be
processed.

24I assume that in the domain type of constituent topicalization the current QUD and the content of
the latest utterance are co-propositional in the sense of Ginzburg (forthcoming). This ensures that the
accommodated topical constituent belongs to the utterance whose content raised the current QUD. Note
that as this is formulated, it enforces adjacency of the NSU. This can be solved by taking the value of utt to
be a bounded list instead of a single element, in line with (Purver 2004b) for instance.
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(183) Constituent topicalization

λ

r :


qud1 : [que : Question]

utt :


s : Rec

sT :

 z : Sign
v : Sign
c : const(v, z)






 .

[
qud1 :

[
que = r .qud1.que : Question
top = 〈r .utt.sT .v〉 : 〈Sign〉

] ]

Constituent topicalization is only one of the operations that allows for the recovery of NSU
antecedents. This is all that seems to be required to account for Repeated Affirmative
Answer and Repeated Acknowledgement.

The propositional content of Repeated Affirmative Answer arises by the same means
as Plain Affirmative Answers as seen in (163) above, but in this case this is in virtue of the
fact that the repeated or reformulated NSU phrase is co-referent with a constituent of the
antecedent utterance, which I assume has become topical by application of constituent
topicalization.

(184) Repeated Affirmative Answer

λ

(
r :

[
qud1 :

[
que : PolQ
top : 〈Sign〉

] ])
.[

utt.z :

[
sem = Id(r .qud1.que@[ ]) : Prop
dtrs = 〈d : [sem = r .qud1.top.sem : Type]〉 : 〈Sign〉

] ]

The IS family associated with Repeated Acknowledgement is the acknowledgement ver-
sion of (184). This NSU has the same semantic import as Plain Acknowledgement, but,
like above, we enforce co-referentiality with a topical sub-utterance of the antecedent,
which again has been accommodated by constituent topicalization:

(185) Repeated Acknowledgement

λ


r :



qud1 :
[

top = 〈utt.v〉 : Sign
]

utt :


z : [sem : Prop]
v : Sign
c : const(v, z)
c′ : Assert(z.sem)






.

 facts = r .facts ∧ r .utt : Prop

utt.z :

[
sem = [c : Ack(r .utt)] : Type
dtrs = 〈d : [sem = r .qud1.top.sem : Type]〉 : 〈Sign〉

] 
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Finally, Helpful Rejection and CE require accommodating topical constituents and ques-
tions under discussion. We have already seen that the context of a Helpful Rejection is a
polar question q under discussion, stemming either from a query or an assertion. I take
its resolved content to be a substitution instance of the propositional core of q.

(186) A: Raskolnikov got a summons. / Did Raskolnivok get a summons?
B: (No,) a letter. (; Raskolnikov got a letter)

I adopt an approach that has the flavour of the HOU analysis summarised in Chapter 3
and resembles the proposal of Engdahl et al. (2000): I assume that Helpful Rejections
presuppose a wh-question constructed by abstracting over the substituted parameter,
and that they can be resolved in a way akin to short answers—by applying this wh-
question to the content of the NSU phrase. This resolution involves positing an additional
recovery principle that allows us to accommodate onto qud a wh-question constructed by
abstracting the content of one of its sub-utterances, which in turn become topical. This
principle, which I dub parameter abstraction, can be formulated as follows:25

(187) Parameter abstraction

λ

r :


qud1 : [que : PolQ ]

utt :


s : Rec

sT :

 z : Sign
v : Sign
c : const(v, z)






 .

[
qud1 :

[
que = λ(r ′ : top.sem).P : WhQ
top = 〈r .utt.sT .v〉 : Sign

] ]

Thus in (186), parameter abstraction can be applied to the output of A’s utterance to
raise the question “What did Raskolnikov get?” together with the topical sub-utterance “a
summons”. This would construct the antecedents that can account for the resolution of
the helpful rejection.

We have already seen in Chapter 3 how the resolution of clarification NSUs can be
explicated by means of Ginzburg and Cooper coercion operations. Here I only focus on
exchanges like the following, where the NSU gets the interpretation in (188b):

(188) a. A: Did Bartleby leave?
B: Bartleby?

b. Who is Bartleby?/Who are you referring to with your utterance ‘Bartleby’?
25Here again I assume co-propositionality between the content of the latest utterance and the current

QUD in both domain and range types.
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In situations like the one above, where a speaker B cannot identify a referent for a contex-
tual parameter, B can still process A’s utterance by contextual existential generalisation—
partially updating her context by existentially quantifying over the unknown parameter:

(189) λ(r : IS ).

qud1 :
[

que = utt.sem : Question
]

utt.z :



phon : did bartelby leave

syn = S : Cat

sem = λ[ ].


s : Rec

sT :

 q :

[
x : Ind
c : Named(x,Bartleby)

]
c : Leave(q.x)


 : Q




This move may sometimes be sufficient for the current purposes. However in situations
where B considers this not to be enough (for instance because it does not allow her to
reply to A’s utterance appropriately), she can coerce her somewhat unsatisfactory infor-
mation state into one where (i) the problematic sub-utterance becomes topical, and (ii)
where the main question under discussion is not whether Bartleby left, but rather who
Bartleby is. This can be achieved by the accommodation rule parameter identification:

(190) Parameter identification

λ

r :

 utt :


s : Rec

sT :


a : Ind
z : Sign
v : Sign
c : const(v, z)







 .

[
qud1 :

[
que ≡ Q : Question
top = 〈r .utt.v〉 : Sign

] ]

The question introduced onto qud, which asks about the meaning of the topical sub-
utterance as intended by speaker A (a : Ind), is given in more detail in (191) (abbre-
viated as Q above). Note that the situation of the propositional core of the question is
identified with the utterance situation of the latest utterance (s = r .utt.s : Rec).

(191) λ
(
r ′ :

[
x : Ind

])
.

[
s = r .utt.s : Rec

sT :
[

c : Meaning(r .utt.sT .a, r .utt.sT .v, r ′.x)
] ]

This rule creates a context where the sign associated with the sub-utterance Bartleby
is topical, and where a question about the meaning of that sub-utterance is under dis-
cussion. The output of (190) is then the input context of the clarification question. As
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shown in (192), its content is resolved to the accommodated question, raising it explic-
itly. The NSU phrase is constrained to be phonologically and categorically identical to
the topical sub-utterance, which as we saw earlier in (120b) is a prerequisite to obtain a
wh constituent reading—in this case, the question ‘Who is Bartleby?’.

(192) CE

λ


r :



qud1 :

que = λ(r1 : [x : Ind ]).

[
s = utt.s : Rec
sT : [c : Mean(utt.sT .a, top, r1.x)]

]
top = utt.v : Sign



utt :


s : Rec

sT :


a : Ind
z : Sign
v : Sign
c : const(v, z)








.

 utt.z :


sem = r .qud1.que : Question
syn = S : Cat

dtrs =

〈[
phon = r .qud1.top.phon : Phon
syn = r .qud1.top.syn : Cat

]〉
: 〈Sign〉




4.4 Summary and Conclusions

This chapter has provided a formal grammatical analysis of the main NSU classes in the
taxonomy put forward in Chapter 2. For this I have employed Type Theory with Records,
which allows us to combine sign-based relational structures encompassing phonology,
syntax and semantics, with dynamic representations. My proposal has been to formalise
NSU types—and utterance types in general—as families of information state types, i.e.
functions from the current information state, which sets the contextual background
needed for resolution, to the type of the next information state.

I have also pointed out several factors that distinguish amongst NSU classes in terms
of the complexity of the contextual information and the mechanisms required for resolu-
tion. I have established a main distinction between [+/– SA] NSUs—i.e. between those
NSUs whose antecedent is a sentential entity, and those that require access to more fine-
grained sub-components of the antecedent. This has provided a ranking of NSU classes,
where [+ SA] that deal with meta-communicative interaction are seen as the NSUs that
require the simplest information state. All other NSUs need the presence in context of
a structuring mechanism like QUD. As for [– SA] NSUs, we have seen that they can
exhibit different types of dependencies. Short Answer is the simplest class within this
group, exhibiting only a syntactic dependency with its antecedent. Direct Sluice, on the
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other hand, adds to this the need to access the internal semantic structure of the an-
tecedent utterance. Finally, NSUs like Helpful Rejection and CE require accommodation
operations that allow us to coerce the context and recover some material that was not
originally present. Besides being analytically attractive, this ranking also seems to have
some cognitive plausibility, as it reflects some distinctions in the order of acquisition of
NSUs. In particular, Ginzburg and Kolliakou (2004) show that, for English and Greek
speaking children, the acquisition of CE and sluicing takes place at a later stage than the
acquisition of short answers, which as we have seen are the simplest [– SA] NSUs.



5 Abstract Models for Dialogue
Protocols

In this chapter I focus on the formal properties of dialogue protocols, adopting an
approach whose core draws on work done jointly with Ulle Endriss and presented in
(Fernández and Endriss 2003a,b). After briefly introducing the notion of dialogue proto-
col, I identify a variety of features that have an impact on the complexity of the dialogue
structure. This motivates a hierarchy of abstract models for dialogue protocols based on
the expressive power of well-known machine models from formal language theory.

As we shall see, there are some correlations between the hierarchy of protocols, which
differ in the information manipulated at each state by an abstract machine model, and
the ranking of NSU classes put forward in the previous chapter. This opens the door to
interesting connections between dialogue semantics and the theory of computation.

5.1 Communication Protocols

In communication modelling, it is common to distinguish between two main traditions:
on the one hand, classical Artificial Intelligence approaches, inspired by ideas originated
in analytical philosophy, are built on general models of rational agency, emphasising the
role that mental attitudes such as knowledge, belief, desire and intention play in con-
versational behaviour. This is the perspective adopted by plan-based approaches, most
prototypically the BDI (Beliefs, Desires and Intentions) framework (see e.g. Cohen and
Levesque 1990, Grosz and Sidner 1990, Sadek 1991). On the other hand, one can iden-
tify a parallel line of research, which the present thesis may be seen as an instance of,
that follows the work of philosophers like Lewis (1979) and Stalnaker (1978), and that
instead of focusing on the intentional attitudes of the interacting agents and the plans
that guide their contributions, highlights the public and conventional aspects of commu-
nication. Under this perspective, a dialogue can be seen as a conversational scoreboard
that keeps track of the state of the conversation.

A particular tendency within this latter tradition is the one inspired by the notion of

125



126 Chapter 5. Abstract Models for Dialogue Protocols

dialogue game (Hamblin 1970, Carlson 1983) and the related concept of adjacency pair
(Schegloff and Sacks 1973, Levinson 1983, Clark 1996). The underlying idea here is
that each participant’s contribution determines a set of preferred options for follow-up
in the dialogue. This relies on the evidence, corroborated by any corpus of real dialogues,
that conversations are composed of frequently reoccurring sequences of utterance types.
For instance, questions are followed by answers, assertions are either acknowledged,
discussed or elaborated upon, and proposals are usually either accepted, rejected, or
countered. These interaction patterns have inspired a line of research whose object of
description is, broadly speaking, the rule-governed behaviour exhibited by dialogue in-
teraction.

In formal approaches, interaction patterns are usually modelled by means of commu-
nication protocols, i.e. formal constructs modelling public conventions that specify the
range of possible follow-ups available to the participating agents. Conventional proto-
cols have been shown to be a powerful descriptive and explanatory means of formalising
the rules of encounter that characterise coherent interaction both in natural language
dialogue, as well as in dialogue between autonomous software agents. In the case of
multiagent systems involving autonomous software agents, protocols are simpler and
typically more rigid—i.e. they describe the set of allowed or legal dialogue continua-
tions. In natural language dialogue, on the other hand, protocols should be understood
as characterising the range of preferred or less-marked follow-ups in particular dialogue
situations.1 As such they do not restrict what counts as coherent in a general sense, but
rather formalise in simple terms an array of (possibly ranked) unmarked follow-ups that
reflects the expectations of the dialogue participants. In this sense, the violation of a
protocol can also be informative, as it can be seen for instance as signalling a topic or
task change. Thus, in multiagent systems protocols are prescriptive constructs, while in
natural language dialogue they tend to be descriptive and can therefore be evaluated in
terms of their coverage of the data.

It is worth pointing out that protocols need to be distinguished from strategies. While
each dialogue participant may be equipped with its own strategy determining its actual
responses, a protocol is a social concept common to all participants. That is, protocols
are concerned with shared conventions, and as such can be thought of as part of the
general dialogical competence of speakers. The notion of strategy on the other hand is a
private one, and in this respect it is clear that a dialogue participant’s strategy is shaped
by the epistemic notions at the core of plan-based approaches. Protocols, in contrast, are

1In this respect it is worth mentioning statistical approaches like e.g. (Taylor et al. 1998, Wright et al.
1999), that extract structural patterns from real data and then model protocols by assigning probabilities
to the different options for follow-up. The present approach abstracts from the possibility of statistically
ranking allowed continuations.
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not meant to determine what to say next, although of course they can be used to guide
that decision process by specifying a range of possible next actions, or those actions with
the highest probability.

5.2 Rationale of the Chapter

The focus of this chapter is on the formal properties of communication protocols needed
to account for different kinds of dialogue phenomena. As we shall see, in dialogue
interaction one can identify several features than have an impact on the complexity of
the dialogue structure. In the present approach, this variety of phenomena motivates a
hierarchy of abstract models for protocols based on the expressive power of well-known
machine models from the theory of computation. The basic idea of the hierarchy is that,
given a particular dialogue phenomenon, the type of abstract machine that is (usually
implicitly) encoded in a protocol or dialogue management system able to handle such a
phenomenon can be taken as one relevant dimension according to which the complexity
of the system can be classified. My starting point within this hierarchy will be protocols
based on deterministic finite automata. From there I will proceed by looking at particular
examples that justify either an enrichment or restriction of this initial model, taking
inspiration from both natural language dialogue and multiagent systems.

I should stress that, for the subject matter of this chapter, I restrict myself to conven-
tional protocols that characterise the set of possible continuations according to externally
observable features, such as the actual utterances taking place in the dialogue. In mul-
tiagent systems, protocols designed in accordance with this criterion have recently been
put forward by a number of authors (Singh 1998, Pitt and Mamdani 1999a, Colombetti
2000, Jones and Parent 2004). This stands in marked contrast to the BDI or so-called
mentalistic approach mentioned above, where legality conditions are explained in terms
of the mental attitudes of the agents participating in a dialogue (Cohen and Levesque
1990, FIPA). For the protocols I consider in this chapter, utterances are assumed to oc-
cur sequentially. This is perhaps a common assumption in natural language dialogue
modelling, whereas multiagent systems research has also tried to address concurrent
communication. Also, I am concerned here with duo-logues, i.e. dialogues that only in-
volve two participants. Some initial ideas about protocols involving multiple agents can
be found in (Ginzburg and Fernández 2005a).

Recall that in the previous chapter I have put forward a ranking of NSU classes on
the grounds of the complexity of the information state required for their resolution. Here
we shall see that, to some extent, this correlates with the proposed hierarchy of abstract
models for dialogue protocols, as these also differ on the information manipulated at
each state by an abstract machine model. Thus this correlation opens the door to a novel
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synthesis between formal language theory and dialogue semantics.

5.3 Protocols as Finite Automata

The starting point of my proposed classification of communication protocols will be pro-
tocols based on deterministic finite automata (DFAs). Indeed DFAs have been widely
used to represent communication protocols, mostly in the area of multiagent systems
(Parsons et al. 1998, Pitt and Mamdani 1999a), although their use is also very common
within the spoken natural language community.2 In this section, after some simple ex-
amples, I introduce the class of DFA-based protocols and show how to define the central
concept of possible follow-up with respect to this model.

5.3.1 Some Simple Examples

Several spoken dialogue systems (e.g. the Nuance Communications’ system or the CSLU
speech toolkit) use DFA-based models to determine the course of well-formed conversa-
tions. One of them is the SRI-Autoroute system (Lewin 1998), which is based on Con-
versational Game Theory (e.g. Power 1979). In this system finite automata are used to
model games that represent the conversational rules governing exchanges. The diagram
in Figure 5.1 shows a graphical representation of a confirmation game given in (Lewin
1998).3 This automaton characterises what the system (A) can expect from the user (B)
in an interaction where A asks B for confirmation of some utterance. In this situation
the user is expected to reply either affirmatively with a reply yes move or negatively with
a reply no move. Alternatively, the user may correct the hypothesis of the system by a
reply mod , in which case the confirmation game starts again.

0HOINJMKL 1HOINJMKL 2@GAFBECDHOINJMKL+3

A: confirm

&&
ff

B: reply mod

B: reply yes

&&

B: reply no

88

Figure 5.1: Confirmation game from (Lewin 1998)

Similar protocols are used to characterise interaction between autonomous software
agents. Pitt and Mamdani (1999b) give several examples of automata-based protocols
used in the area of multiagent systems. One of them is the so called continuous update

2A survey of some of these systems is given in Bohlin et al. (1999).
3As a convention, when depicting DFAs I indicate their initial state with a double arrow, and their final

state(s) with a double circle.
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protocol (Figure 5.2), which specifies a class of dialogues between two agents A and B

where A continuously informs B on the value of some proposition p.4

0HOINJMKL 1HOINJMKL 2HOINJMKL

3@GAFBECDHOINJMKL 4@GAFBECDHOINJMKL

+3 A: inform //

B: ack

&&
ff

A: inform

B: end

��

A: end

��

Figure 5.2: Continuous update protocol from (Pitt and Mamdani 1999b)

I will give a precise definition of DFA-based protocols shortly, but for now the notion
of what constitutes a possible follow-up in a dialogue conforming to the above protocols
should be intuitively clear from the diagrams. In the continuous update protocol, for
example, immediately after agent A has informed agent B, the latter can either choose to
acknowledge that fact or it may decide to end the dialogue. However, A cannot continue
the dialogue with another inform move unless it has received an acknowledgement from
B first, and so forth. The protocol could for instance account for dialogues like the
following (assuming that eventually either A or B will end the interaction):

(193) A: [...] we have a family party once a year [inform]
B: Mm. [ack ]
A: and er we do all the cooking between us and my, my sons [inform]
B: Mm. [ack ]
[BNC: J8F 144–147]

DFA-based protocols are not necessarily as simple as the examples I have shown so far.
A more sophisticated DFA-protocol is the finite-state model of grounding proposed by
Traum (1994). The protocol provides constrains on possible grounding act sequences,
allowing for a fine-grained monitoring of the grounding status of an utterance. In this
model the utterances that need to be grounded are realised by initiate and continue acts.
Other actions included are (self-)repairs (repair), requests for repair (req repair), ac-
knowledgements (ack) and requests for acknowledgement (req ack). The automaton
also includes an action cancel and a dead state labelled D which is reached when an
utterance cannot longer be grounded. Figure 5.3 shows a part of the automaton, the

4 For this particular protocol, the value of p is intended not to be relevant and therefore I ignore it; any
inform move uttered by agent A will take us from state 0 to state 1, whatever the content of the transmitted
piece of information may be.
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part corresponding to the transitions from and to state 1, i.e. a state where a not-yet-
grounded utterance has taken place. Only at the final state will the utterance be consid-
ered grounded. At state 1 all that is needed for grounding is an acknowledgement; other
states are concerned with possible self-corrections, clarification requests, and requests
for acknowledgement (our “check questions”), covering dialogues like for instance the
following:

(194) A: I’m gonna charge you, let’s say, thirty pence. [initiate]
A: Okay? [req ack ]
B: Mm. [ack ]
[BNC: GYR 660–662]

(195) A: Today they can’t do it. [initiate]
B: Mm. [ack ]

A: If you’d got the sack [initiate]
B: What? [req repair ]
A: <shouting> if you got the sack [repair ]
B: Yeah. [ack ]
[BNC: HDH 294–299]
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Figure 5.3: Grounding DFA from (Traum 1994)

5.3.2 DFA-based Protocols

Having seen these examples, I shall now precisely define the class of DFA-based protocols,
i.e. the class of protocols that can be defined in terms of a DFA. As mentioned above, this
will provide the starting point for the proposed classification of communication protocols.
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Although using a terminology appropriate for current purposes, my definition is in line
with standard definitions of a DFA (see e.g. Hopcroft et al. 2001, Lewis and Papadimitriou
1998).

A DFA-based protocol is a quintuple 〈Q, q0, F,L, δ〉, consisting of

• a finite set of dialogue states Q,

• including an initial state q0 ∈ Q and

• a set of final states F ⊆ Q,

• a communication language L, and

• a transition function δ : Q× L → Q.

The elements of the communication language L are utterances (i.e. locutionary actions)
and are constructed from a finite set A of agents (or dialogue participants), a finite set
M of categories in a broad sense (typically dialogue moves or illocutionary acts, but see
below), and a content language C. For current purposes, I assume that every utterance has
the structure i : m(c) with i ∈ A, m ∈M, and c ∈ C. In general, at the level of describing
abstract models for dialogue protocols rather than concrete instances thereof, I do not
put any restrictions on the content language C, i.e. utterances of the form i : m(c) cover
any type of utterance. Moreover, for simplicity, in my representations I will typically omit
c . As the types of dialogues I consider only involve two participants, A can be thought
of as the set {A,B}.

Usually, when talking about DFAs in general (i.e. not just in the context of protocols),
L is referred to as an input alphabet rather than a communication language. The input
alphabet is usually defined as a finite set (Hopcroft et al. 2001). This may seem at
odds with our set of utterances L which, intuitively, could be infinite. While this may
indeed be the case, we can always group utterances into a finite number of equivalence
classes with respect to the effect they have on the state transition function δ. For any
given input state, there are only a finite number of output states the system could move
to. These equivalence classes are determined by the elements in M, which is a finite
set. As mentioned above, in the context of communication protocols, these are typically
dialogue moves, but they can be any other sort of category like e.g. clausal types, or for
that matter, NSU classes. Any finite set of categories or types could be suitable.

Representing protocols as DFAs allows for a simple formalisation of the notion of
possible follow-up at a given point in a dialogue. Given the current dialogue state q,
an utterance u constitutes a possible follow-up of the dialogue iff there exists a state
q′ ∈ Q such that δ(q, u) = q′ holds. Before a dialogue starts we are in the initial state
q0. The dialogue state then gets updated whenever an utterance is performed, following
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the transition function δ. A complete dialogue conforms to a particular protocol iff it is
accepted by the DFA representing the protocol in question, i.e. iff each utterance in the
dialogue is a possible follow-up and the final utterance leads to a final state in F .

In the context of multiagent systems, where protocols have a prescriptive function,
possible follow-ups may also be interpreted as legal follow-ups. I will use the latter term
when appropriate.

5.4 Shallow Protocols

The last couple of examples of DFA-based protocols given in the previous section (Fig-
ures 5.2 and 5.3) deal with grounding behaviour. As such, they include transitions that
could be realised by NSUs like Plain Acknowledgement, Check Question or clarification
Sluice, that are intrinsically related to meta-communicative interaction. Note however
that, given the way in which meta-communicative [+ SA] NSUs have been defined in
Section 4.3.1, one does not require the full expressive power of a DFA to characterise
interactions where they may be used. This is so because of the local nature of ground-
ing: understanding our interlocutor enough for current purposes seems to be a pre-
requisite for further interaction (Clark 1996). Recall that this allowed us to formalise
meta-communicative [+ SA] NSUs as IS families where the only aspect that stands out
from the input state is the latest utterance—that is, as functions simpler than δ above.
As we will shortly see in more detail, this corresponds to a different, simpler class of pro-
tocols, that arises from restricting the transition function of the basic DFA-based model
introduced in the previous section.

The kind of protocols I am referring to is the class of so-called shallow protocols,
which has recently been introduced in the context of multiagent systems by Endriss et al.
(2003). A shallow protocol is a protocol where the appropriateness of an utterance (or,
alternatively, what constitutes a possible follow-up) can be determined on the sole basis
of the previous utterance in the dialogue. For example, to express that any proposal by
agent A must be followed by either an acceptance, a rejection, or a counter proposal by
agentB, we may use the following shallow rule, where the next-operator e, familiar from
linear temporal logic (Goldblatt 1992), is used to refer to the next turn in the dialogue:

A : propose → e(B : accept ∨B : reject ∨B : counter)

In general, a shallow rule is of the form u→ e(u1∨· · ·∨un), where u as well as u1, . . . , un

are utterances. This rule expresses that any of the utterances on the right-hand side of
the rule constitutes a legal continuation of a dialogue where the latest utterance has
been u. In addition, a special symbol is required to indicate the start of a dialogue in
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order to be able to provide a rule of the above form specifying the range of legal initial
utterances.5

This approach can be of great interest in the area of multiagent systems. As shown
by Endriss et al. (2003), it is possible to check a priori whether a given agent will behave
in conformance to a given shallow protocol by inspecting the agent’s specification, rather
than just observing an actual dialogue at runtime. This is the case, at least, in the sense
of the agent being guaranteed not to utter anything illegal; guaranteeing that an agent
actually utters anything at all turns out to be somewhat more difficult a problem. The
ability to check conformance to a protocol not only at runtime, i.e. while a dialogue
is actually taking place, but also before entering into an interaction with other agents,
allows system designers to build more successful software agents which, for example,
may be able to avoid penalties associated with behaviour that is deemed illegal according
to the social interaction protocol in place.

Shallow protocols may be understood either in terms of reactive rules of the kind
given above or as restricted DFA-based protocols, as in (Fernández and Endriss 2003a). A
DFA-based protocol is shallow iff the value of the transition function δ is always uniquely
identifiable given only its second argument—the utterance. Thus in a shallow protocol,
to determine the state we will end up given an utterance u, we do not need to know
the state we come from. A shallow rule tells us that, regardless of that state, whenever
utterance u in the left-hand side of the rule takes place, we end up in a state whose
possible outgoing utterances are those given in the right-hand side of the rule. On that
account, meta-communicative [+ SA] NSUs are utterance types that can appear in the
right-hand side of a shallow rule.

A non-shallow protocol would be a DFA where two edges with the same label point to
two different states. For example, it is common for spoken dialogue systems to include
a protocol that allows the system to ask the user to repeat their input at most, say, three
times in case of recognition problems. If the problem persists after the third repetition,
the system would terminate the interaction and possibly pass on to a human operator.
This change of behaviour after the third repetition cannot be modelled by means of a
shallow protocol.

In principle, it is always possible to turn a DFA-based protocol into a shallow protocol
by renaming any duplicate transitions. In fact, many of the simpler DFA-based protocols
to be found in the literature happen to be shallow or could at least be made shallow
by renaming only a very small number of transitions (besides Lewin (1998), examples
include the protocols proposed by Parsons et al. (1998) and Pitt and Mamdani (1999b)).

In a context where the renaming of utterances labelling problematic transitions is

5There are a number of requirements a set of shallow rules forming a protocol need to meet. Notably,
there can only be (at most) one rule for any “trigger” u. For full details see (Endriss et al. 2003).
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not acceptable, however, shallow protocols really do determine a proper subclass to
DFA-based protocols. While there is no standard machine model that corresponds to
the class of shallow protocols, they can nevertheless be characterised in terms of the
type of grammar that could generate a dialogue following a shallow protocol.

Recall that the regular languages, which are the languages accepted by DFAs, are
the languages generated by right-linear grammars (Lewis and Papadimitriou 1998). A
context-free grammar is called right-linear iff the right-hand side of every rule in the
grammar consists of any number of terminal symbols followed by at most one nontermi-
nal. In fact, for any regular language there exists a right-linear grammar generating that
language where there is also at most one terminal symbol in any rule. To characterise
shallow protocols, an additional restriction to the structure of admissible grammar rules
is needed. To account for this additional restriction Fernández and Endriss (2003a) in-
troduce the concept of shallow-right-linear grammar. A context-free grammar is shallow-
right-linear iff (i) every rule is of the form A → bB or A → b, where A and B are
nonterminal symbols and b is a terminal symbol, and (ii) for any terminal symbol b there
is a unique non-terminal symbol B such that for any non-terminal C other than B there
is no rule with bC on the right-hand side. The first part of this definition characterises
right-linear grammars, while the second part encapsulates the shallowness condition.
Now the languages generated by shallow-right-linear grammars over the alphabet given
by a communication language L are precisely the strings of utterances that correspond
to legal dialogues according to shallow protocols.

5.5 Protocols with Memory

The previous section has been concerned with a restriction of the basic model of DFA-
based protocols. In this section I will move in the opposite direction and present a first
example of a dialogue feature that cannot be modelled by a simple DFA-based protocol in
a satisfactory manner. As we shall see, this observation gives rise to an extension of the
basic model, which involves adding a memory component. This component allows us to
store utterances (or abstractions thereof) that may affect the range of possible follow-ups
later on in the dialogue.

5.5.1 Protocols that Allow for Subdialogues

As discussed in the previous section, shallow protocols can only deal with interactions
that can be characterised in terms of strict adjacency. It is clear, however, that not all
dialogues follow patterns that conform to this simple feature. Indeed in the preceding
chapter I argued that one of the properties characterising some NSU classes is that their
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antecedents are not necessarily adjacent utterances. This motivated the introduction of
the QUD structure in the information state as a kind of accessibility manager, making
available for NSU resolution utterances that were not the latest in the dialogue.

Certainly, responses to questions are a paradigmatic case of utterances that do not
necessarily require adjacency. It is in fact not uncommon to find embedded pairs of
questions and answers, where a sequence of questions is followed by a sequence of
answers, which answer the questions in reverse order. This is exemplified in (196),
taken from (Levinson 1983), and the made-up dialogue in (197).

(196) A: May I have a bottle of Mich? [Q1]
B: Are you twenty one? [Q2]
A: No. [A2]
B: No. [A1]

(197) A: Who should we invite? [Q1]
B: Should we invite Bill? [Q2]
A: Which Bill? [Q3]
B: Jack’s brother. [A3]
A: Oh, yes. [A2]
B: OK, then we should invite Gill as well. [A1]

In abstract terms, a protocol characterising this kind of dialogues would, at the very least,
have to be able to keep track of the number of questions asked so that the number of
answers can be matched against it. Now this could be modelled by a DFA as long as the
level of embeddings is bounded. If the number of questions is not bounded, however, this
would require an unlimited amount of memory to be able to store that number. This is
not possible with DFA-based protocols, because DFAs have a limited amount of memory,
encoded by the fixed set of states of the automaton.

Thus—in theory—the presence of embedded subdialogues (or insertion sequences in
the terminology of Levinson (1983)) creates a structure that calls for an enrichment of
the basic DFA-based model. As we shall see in Section 5.5.3, this can for instance be
modelled by adding a stack to a DFA. In the example above, questions would get pushed
onto the stack, to be then popped by their respective answers. As is well-known, the
machine model of a DFA together with a stack corresponds to a pushdown automaton
(Hopcroft et al. 2001, Lewis and Papadimitriou 1998).

5.5.2 Adding a Memory Component to the Basic Model

Storing questions in the manner suggested above is an example of storing an abstraction
from the full dialogue history—we only keep track of those parts of the history that are
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relevant for future follow-ups, and we do so in a convenient format. For embedded
question-answer sequences, an appropriate format seems to be a stack, which as we will
see below, is the data structure that is often used to implement QUD (Larsson 2002).

DFAs are abstract machines with a limited amount of memory. Adding a (finite) stack
amounts to enriching the automaton with an unlimited memory component. Modelling
this memory as a stack is just one of many options. Besides stacks, we may consider a
variety of abstract data types (ADTs) such as, for instance, queues, sets or lists.6 Following
Fernández and Endriss (2003a), I call the set of objects that can be stored in memory the
memory alphabet (which may or may not be identical to the communication language).
Every ADT comes with a set of basic operations (push(x) and pop in the case of a stack)
and functions (top to return the top element on a stack, for example). A configuration of
a memory component is an instance of the ADT used to model that memory component.
For example, in the case of a set, a configuration would be a subset of the memory
alphabet, while for a stack it would be a string of elements of that alphabet. The visible
part of a configuration is the part that can be checked using the available ADT functions.
In the case of a stack, for instance, only the topmost element is visible. In the case of a
set, on the other hand, all elements are visible.

After these preliminaries, I can now define a class of protocols with memory as a
〈Q, q0, F,A,L,L′, δ〉 where

• Q is a finite set of dialogue states,

• q0 ∈ Q is the initial state,

• F ⊆ Q is a set of final states,

• A is a finite set {α1, · · · , αn} of memory components,

• L is the communication language,

• L′ is a set {L1, · · · , Ln} of memory alphabets such that each Li ∈ L′ is the memory
alphabet for αi ∈ A,

• δ : Q × Γ × L → Q × Γ is a transition function, where Γ denotes the set of all
possible configurations of the memory components; that is, Γ is a set of tuples
〈γ1, · · · γn〉 ∈ Γ1 × · · · × Γn, where Γi is the set of all possible configurations of
memory component αi ∈ A.

6The use of ADTs plays an important role in the definition of the information state in implemented
dialogue systems following the ISU approach. For a list of some ADTs useful for dialogue management in
such computational systems see e.g. (Traum et al. 1999, Larsson 2002, Bos et al. 2003).
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The definition of what constitutes a possible follow-up at a given point during a dialogue
for this extended model is very similar to the case of DFA-based protocols. Given the
current dialogue state q and the current configuration of the memory components γ =
〈γ1, · · · γn〉, an utterance u constitutes a possible follow-up in the dialogue iff there exist a
state q′ ∈ Q and a configuration γ′ ∈ Γ such that δ(q, γ, u) = (q′, γ′). A complete dialogue
conforms to a particular protocol with memory iff it is accepted by the automaton in
question, i.e. iff each and every utterance is a possible follow-up and the last utterance
takes us to one of the final states in F .

In the following sections, I will discuss several choices for ADTs as memory compo-
nents enriching the basic DFA-based model, which are required to account for different
dialogue phenomena.

5.5.3 Protocols with a Stack

As we have seen, not surprisingly, not all dialogue structures are satisfactorily captured
by a protocol whose machine model corresponds to a simple DFA. In particular, we have
seen that the phenomenon of embedded subdialogues is best modelled by adding a finite
stack to a DFA-based protocol. A stack allows us to store arbitrarily large amounts of
information that are accessible in a last-in-first-out (LIFO) manner. Such information
can be manipulated by means of the function top, which returns the top element on
the stack, and the operations push(x), which pushes element x onto the stack, and pop,
which removes the top element from the stack.

Besides questions under discussion, other aspects relevant to dialogue management
can be successfully modelled with a stack. A clear example are discourse obligations
(Traum and Allen 1994, Kreutel and Matheson 1999), which constitute a structuring
mechanism similar to QUD. Simplifying a great deal, the main idea of the approach
is that some utterance types impose obligations on the addressee to respond to these
utterances. The assumption is then that dialogue participants will always try to address
the topmost element on their obligation stack. Another notion that can be (and indeed
usually is) modelled by means of a stack is the agenda of actions to be performed by
an agent (Traum et al. 1999). Again the assumption is that an agent will always try
to perform the action on top of its agenda. In general terms, thus, any repository of
information that requires only limited accessibility related to recency—i.e. to the LIFO
property of stacks—can in principle be modelled by this kind of datatype.

Expressive power As pointed out earlier already, a DFA together with a stack corre-
sponds to a pushdown automaton. As is well known, pushdown automata are strictly
more powerful than DFAs (see e.g. Lewis and Papadimitriou 1998). In the current con-
text this means that the class of dialogue protocols (and thereby the class of dialogues
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conforming to those protocols) that can be specified in terms of a DFA extended by a
stack strictly includes the class of protocols (and dialogues) that can be specified using a
DFA alone.

Recall that [– SA] NSUs are distinguished from [+ SA] NSUs by the complexity of
the elements that are stored in QUD. The latter do with single questions, while the
former require pairs of questions and salient constituents thereof. Although this makes
the memory alphabet more complex (as it is not made up of single elements but pairs of
questions and constituents), at the level of abstraction I am adopting here this does not
demand further expressive power beyond that provided by a standard stack.

While these observations regarding the expressive power of different protocol models
are easy exercises from a computation-theoretic point of view, I believe that they offer
an interesting and novel perspective on dialogue modelling. As mentioned above, the
type of abstract machine that is encoded in a protocol or dialogue management system
is certainly one relevant dimension according to which we can classify the complexity of
such a system.

5.5.4 Protocols with a Stack of Sets

So far I have argued that in dialogues like the one in (197) where several questions are
posed in sequence, it seems reasonable to use a protocol where the last question asked
takes precedence (i.e. it is the first one to be addressed), and that such a protocol can
be modelled by a pushdown automaton. In this section, I will discuss a generalisation of
this model that makes accessibility more flexible.

As some authors have noticed (Asher 1998, Ginzburg forthcoming), when successive
queries are asked by a single speaker, the simple kind of protocol discussed in the pre-
vious section would not always correctly account for the data. This is illustrated by the
following example (adapted from Asher 1998):

(198) A: Where were you on the 15th? [Q1]
Do you remember talking to anyone after the incident? [Q2]

B1: I didn’t talk to anyone. [A2]
I was at home. [A1]

B2: I was at home. [A1]
I didn’t talk to anyone. [A2]

Dialogues as the one above show that when two or more questions are uttered in suc-
cession by the same speaker, the respondent is sometimes allowed to answer them in
any order.7 When this is the case, a protocol based on a DFA plus a stack would not be
appropriate to handle this phenomenon.

7In such dialogues, the questions under discussion are in what has been called a coordinate structure
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Larsson (2002) gives some examples using short answers that point in the same di-
rection. As he notes, “a stack-like structure would suggest that [example (199a)] should
be easily processed by dialogue participants, but in fact it is very unclear what B means”.
Similarly, assuming that the questions in (199b) are organised as a stack “suggests a very
unintuitive interpretation of B’s answer, where 10:30 is the time when B is coming back
and 11:30 is the time when B is leaving”.8

(199) a. A: Where are you going? [Q1]
Where is your wife going? [Q2]

B: Paris. [A?]
London. [A?]

b. A: When are you leaving? [Q1]
When are you coming back? [Q2]

B: Ten thirty and eleven thirty. [A?] & [A?]

In fact, in Ginzburg’s theory the questions currently under discussion form a partially
ordered set. It should be noted, however, that his proposed model does not actually make
use of the full expressive power of a partially ordered set. This is so because questions can
only be popped from the top—that is, questions can be addressed if they are topmost (in
a more flexible sense than in a simple stack); we do not have access to arbitrary elements
further down the order, and we cannot insert elements at any position.

In terms of the hierarchy of protocols proposed here, such an architecture can be
modelled using a DFA together with a finite stack of sets. The questions under discussion
that currently have maximal conversational precedence are those in the top set of the
stack. Now, adding a new question strictly above the currently maximal ones corresponds
to pushing a singular set containing only that question onto the stack. To add a new
question next to the currently maximal questions, on the other hand, we first pop the
top set off the stack, then insert the new question into that set, and then push the new
set back onto the stack. To delete a question (with maximal precedence), we first pop
the top set off the stack, then delete that question from the set, and finally push the
remaining set back onto the stack—unless that set is empty (i.e. unless there has been
only a single topmost question). A delete operation will fail in case the question given as
a parameter is not a member of the top set.9

(Asher 1998), with none of them taking precedence over the others.
8The quotes and the examples are from (Larsson 2002) p. 154.
9 Larsson (2002) proposes to model QUD as an open-stack, i.e. a structure that retains the stack order but

possesses set-like properties. For instance, as a set, an open stack cannot contain repeated elements. This
makes push(x) a complex operation that involves first checking whether x is a member of the open-stack;
in the affirmative case, x is deleted prior to being pushed on the top position. Even though non-topmost
elements can be accessed and deleted, questions can only be added at the top. Contrary to our stack of
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An interesting issue, which I will discuss here only very briefly, is what causes a
question to be inserted into the top set of the stack or, alternatively, to be pushed onto
the currently maximal set. A simple hypothesis one could make is that the first operation
takes place when successive queries are posed within a single turn (as in the examples
above), while the second one is executed when a different speaker replies to a question
with another question (as in the example in Section 5.5.2). The following dialogue,
taken from (Ginzburg forthcoming), however, suggests that successive querying within
a single turn does not always imply that the questions enjoy equal status:

(200) A: Who will you be inviting? And why?
B: Mary and Bill, I guess.
A: Aha.
B: Yeah, (because) they are very undemanding folks.

Notice that here the first question asked seems to take precedence over the last one—only
after the first question is answered does the second question get addressed. Although a
reply along the lines of “I’d like to have a quiet dinner, so Mary and Bill I guess” would also
be possible, the order of answers in (200) seems to be the least marked option in this
situation.10 This suggests that the order in QUD is not determined solely by conventional
means (i.e. in terms of the order of occurrence in the dialogue or the speakers of the
questions), but is also guided by semantic relations that may hold between its elements.
This is of course noted by Asher (1998) and Ginzburg, who explicate the differences
between examples (197) and (200) in terms of the different relation that are said to
hold between the questions: coordination in the first case, and query-extension in the
second one.

There is not much to say about this from the abstract point of view I take here,
besides noting that complex relations between the elements of the content language C
would have to be encoded as part of the definition of the transition function δ.

Expressive power It turns out that, from a computational point of view, the model of a
DFA enriched with a stack of sets is in fact not more expressive than that of a pushdown
automaton (with a simple stack). This may be seen by considering that, given a DFA with

sets, however, this model cannot account for bunches of elements that are “at the same level” while being
ordered with respect to other elements. As it will be shown for sets in Section 5.5.5, the expressive power
of this model is not higher than that of a DFA.

10In early work, Ginzburg uses examples like (200) above to motivate a modification of his QUD-update
protocol, namely the addition of a new operation (“+QUD-FLIP”), which pushes a question under the max-
imal element in QUD, i.e. between the topmost element and the rest of the stack. In the abstract model
proposed here this would correspond to first popping the top element off the stack, then pushing the new
question, and finally pushing the former top element back onto the stack.
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a stack of sets using the memory alphabet L′, we can construct a pushdown automaton
that uses the power-set of L′ as its memory alphabet and that accepts the same inputs as
the original automaton.

An alternative way of constructing a pushdown automaton that is equivalent to a
given DFA with a stack of sets would be to extend the memory alphabet by a special
“separator” symbol. Now all elements in the stack between two separators would be
considered a set. Each state in the original DFA would have to be replaced with a sub-
automaton to simulate checking for membership and deleting elements from the top
set.

In either case, the simulation would result in an exponential blow-up of the model,
either with respect to the memory alphabet or with respect to the number of states.
Therefore, in practice, the model of a DFA-based protocol with a stack of sets may often
be preferred over protocols with a simple stack.

5.5.5 Protocols with a Set

So far we have seen abstract models for protocols that are related either to strict adja-
cency, like shallow protocols, or to different degrees of recency, like protocols that make
use of a stack or a stack of sets. Sometimes however, determining what constitutes an
appropriate follow-up with respect to a protocol can be related to aspects that are inde-
pendent from the order in which inputs have been received. An example of this order-
independent model is the so called blackboard architecture, which has been used in the
context of multiagent systems to formalise protocols inspired by work on argumentation
in dialogue modelling. Such protocols have recently been used to model different types
of dialogues (such as negotiation dialogues or persuasion dialogues) between software
agents (Amgoud et al. 2000). Central to this approach is the notion of commitment store
originally introduced by Hamblin (1970). For example, asserting a proposition amounts
to placing that proposition into one’s commitment store. A retract move would then be
considered legal only if the corresponding formula can be found in the agent’s commit-
ment store (and would itself cause the respective formula to be deleted again). Similarly,
to model the rule that an agent may only challenge a proposition that has previously been
asserted by its opponent, we may stipulate that a challenge move is only legal in a sit-
uation where the proposition that is being challenged has previously been added to the
commitment store.

This kind of blackboard architecture may be modelled in terms of a DFA-based proto-
col extended with a memory component that is structured as a set. The ADT operations
available when working with this kind of memory component are insert(x) to insert el-
ement x into the set and delete(x) to remove it again. The central function available is
member(x) to test whether x can be found in the set (Aho et al. 1983). Any utterances
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that may affect the legality of utterances later on in a dialogue would be stored in this
set. As pointed out above, this kind of architecture requires us to abstract from the order
in which utterances occur. We can only keep track of the fact that a given utterance
either has or has not been uttered in the past.

Besides modelling argumentation-based dialogue, another application of this model
would be protocols involving social commitments, like the agent interaction protocols
in (Singh 1998, Colombetti 2000) and the approach of Matheson et al. (2000), who
combine social commitments with discourse obligations. An example, taken from Singh
(1998), would be that an agent, if asked for a price quote by different agents (possibly
only within a particular time interval), must always reply with the same quote. This
social commitment may be modelled by storing the first price quote in the set component
(possibly together with the query and the time of the first query). Any subsequent reply
to a price quote may then be checked against the contents of the set to detect potential
violations of the protocol.

Ginzburg’s FACTS, which I have made use of to formalise the information state in the
previous chapter, is usually thought of as a set as well, whose elements in this case do not
represent the commitments or beliefs of agents, but rather what has been established for
the sake of the conversation.11 One may want to design protocols where, for instance,
questions are only appropriate follow-ups whenever their answers are not members of
the set of FACTS.

Expressive power It is interesting to note that adding a set to a DFA does in fact not
increase expressive power, because the range of all possible configurations of the set
component could be encoded into a larger DFA. This is the case, because we are working
with a finite memory alphabet. The set of possible configurations of the blackboard is
the power-set of the memory alphabet, i.e. it is also finite. It is therefore possible to
transform the original DFA by introducing a new state for every pair of an original state
and a configuration of the blackboard. If we arrange the transition function accordingly,
we obtain a new DFA (without explicit memory component) that corresponds to the
same protocol as the original automaton. However, such a construction would result in
an exponential blow-up of the set of states; that is, in practice, a blackboard architecture
can have great advantages over a simple DFA-based protocol.

In the literature on argumentation systems, each agent is usually equipped with its
own commitment store. Again, while this is a convenient means of representation, work-
ing with a DFA with more than one set does also not increase the expressive power of
the model, because the range of all possible configurations of the memory components

11There may be reasons to postulate some kind of order within the set of facts. See (Ginzburg 1997) for
some ideas in this direction.
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could be encoded explicitly within a larger DFA.

5.5.6 Protocols with a List

Besides stacks and sets, another important ADT is the list data type. Like a stack, a list
can be used to store a string of elements of the memory alphabet, but, while a stack only
allows access to its top element, in a list all elements are visible and can be manipulated.
The most important ADT operations for lists are insert(i, x) to insert element x at position
i and delete(i) to remove the element stored at position i from memory, while the function
retrieve(i) can be used to check the value of that element (Aho et al. 1983).

Systems providing access to (parts of) the dialogue history explicitly in order to check
the legality of an utterance may be modelled as DFA-based protocols together with a
finite list (by appending utterances to the end of the list as they occur in the dialogue).
This architecture allows us to keep track of relevant utterances and the order in which
they occur. In particular, a list-based representation enables us to access any of the
elements stored in memory at any time, and not just, say, the element inserted last (as
for stacks).

An architecture of this sort is used in (Ginzburg and Fernández 2005b) to account
for acceptance moves in multi-party dialogue, where the asserter of a proposition p can
consider p accepted by the audience only when it has been accepted by all addressees.
We model this by means of a list of ‘Moves’ that keeps track of the utterances that occur
in the dialogue. A proposition p is considered accepted if the list of moves contains
an assert(p) move followed by acceptance moves by all addressees participating in the
dialogue. Thus we need to access several moves stored in memory, and to make sure
that the assertion occurred prior to the acceptances, we also need to keep track of the
order in which moves occurred.

Keeping track of the full dialogue history encoded as a list gives rise to protocol
models less abstract than the ones I have so far discussed, but also more powerful. In
fact, according to the thesis underlying the conventionalist approach to communication
protocols in multiagent systems research, given the full dialogue history, it should—in
principle—always be possible to specify any conditions pertaining to the legality of an
utterance. Of course, in computational terms, this model is also the most costly one.
Storing the entire dialogue history may not always be feasible. Also, simply storing the
history without making suitable abstractions (as in the previous examples) will often be
too rich a mechanism for designing concise protocols. In fact, many approaches that
appeal to lists don’t make full use of the expressive power of this ADT.

Expressive power The machine model of a DFA enriched with a finite list is equivalent
to a Turing machine (Hopcroft et al. 2001, Lewis and Papadimitriou 1998). This follows
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immediately from the fact that the list can be used to store the tape, while the DFA can
be used to implement the control component of a Turing machine. An alternative way of
showing this equivalence would be to build on the fact that a list can be used to encode
two stacks and a pushdown automaton with two stacks is equivalent to a Turing machine
(Lewis and Papadimitriou 1998).

As a final remark, it is well known that Turing machines with multiple tapes can
be simulated by a single-tape Turing machine (Lewis and Papadimitriou 1998). There-
fore, working with a protocol with several list components would not increase expressive
power any further.

5.6 Summary and Conclusions

In the preceding sections, I have presented a variety of interesting features of dialogue as
they occur either in natural language interaction or in the context of multiagent systems.
These features have given rise to a number of different abstract models for dialogue pro-
tocols, based on the machine model of a deterministic finite automaton. I have enriched
this basic model with memory components modelled as different abstract data types. In
one case, I have also shown that a restriction of the basic model can have useful appli-
cations. Table 5.1 gives an overview of the various protocol models I have discussed,
together with a selection of representative examples.

I should emphasise that the protocols with memory introduced in this chapter are
abstract models that are intended to capture characteristic features of particular classes
of dialogues. In most cases, the full power of the theoretical model will not be neces-
sary to account for actual human-human dialogues. For instance, pushdown automata,
which I have used to model the phenomenon of subdialogues, are only strictly more
expressive than simple DFAs if the size of the stack is not bounded. However, one may
argue that humans will hardly ever use more than a relatively small number of levels of
embeddings. In the case of communicating software agents this bound may be higher,
but for practical purposes it seems still very reasonable to work with an upper bound
on the number of elements that can be stored in the stack. For all the ADTs that I have
discussed in this chapter, if the number of elements that can be stored is bounded, then a
DFA equipped with a memory component is not more expressive than a simple DFA. It is
worth stressing that this does not disqualify the idea of working with memory-enriched
protocols, however. A simple DFA together with an ADT that structures relevant infor-
mation in an appropriate manner can be much more useful, from both a practical and a
theoretical point of view, than a single large and possibly rather cumbersome DFA.
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Abstract model Examples

Shallow rules
(⊂ DFA)

- simple communication protocols in multiagent systems
(Endriss et al. 2003)

Finite automaton
(DFA)

- simple communication protocols in multiagent systems
(Pitt and Mamdani 1999b)

- conversational games (Lewin 1998)
- finite-state model of grounding (Traum 1994)

DFA + set
(= DFA)

- commitment store in argumentation
(Hamblin 1970, Amgoud et al. 2000)

DFA + stack
(= pushdown
automaton)

- (simplified) questions under discussion (Ginzburg 1996)
- (some models of) discourse obligations

(Kreutel and Matheson 1999)
DFA + stack of sets
(= pushdown
automaton)

- questions under discussion (Ginzburg 1996)

DFA + list
(= Turing machine)

- explicit representation of dialogue history
- acceptance moves in multi-party dialogue

(Ginzburg and Fernández 2005b)

Table 5.1: Abstract models of dialogue protocols





6 Automatic Classification of
Non-Sentential Utterances

In the approach I have presented in this thesis, the main NSU classes in the taxonomy
put forward in Chapter 2 are associated with particular utterance types that constrain
their resolution. Consequently, in the processing of NSUs a necessary first step towards
their resolution is the identification of the right NSU class, which will determine the
appropriate resolution procedure.

Although the inter-annotator agreement on the NSU classification task (76% kappa
score, as seen in Section 2.3.2 of Chapter 2) shows that humans can successfully distin-
guish between the proposed NSU classes, it is surely too optimistic to assume that this is
an easy task for any system that needs to process NSUs automatically. Indeed, because
of their fragmentary form and their highly context-dependent meaning, NSUs are often
potentially ambiguous, even if humans can intuitively distinguish them in the majority
of cases. Consider for instance example (201). An NSU like B’s in (201a) can be un-
derstood either as a clarification question or as a repeated acknowledgement, depending
on whether it is uttered with raising intonation or not. In (201b), on the other hand,
the NSU is clearly a short answer, while in (201c) it plays the role of a filler. Yet in the
context of (201d) it will most probably be understood as a helpful rejection.

(201) a. A: I left it on the table.
B: On the table

b. A: Where did you leave it?
B: On the table

c. A: I think I put it er. . .
B: On the table

d. A: Should I put it back on the shelf?
B: On the table

147
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In this chapter I concentrate on the task of automatically classifying NSUs, which I ap-
proach using machine learning techniques. My aim in doing so is twofold: firstly, I expect
to gain interesting insights into the data while achieving a good performance on the clas-
sification task; secondly, I seek to develop a classification model whose output can be fed
into a system (be it a full dialogue system or, for instance, an automatic dialogue sum-
marisation system) that is then able to resolve the content of NSUs on the basis of the
input provided by the classifier.

6.1 Preliminaries

Before turning to the machine learning experiments and the results obtained, I will first
point out a methodological simplification adopted with respect to the partitioning of the
data, then present the general strategy followed by the feature annotation procedure,
and finally give a brief description of the machine learners used.

6.1.1 A Methodological Simplification

The data used in the experiments I report in this chapter was selected from the classified
corpus of NSUs following a methodological restriction, which concerns some question-
denoting NSUs. I adopt a form-based class ‘Sluice’, which as mentioned in Section 2.4,
cuts across two classes in the taxonomy—Direct Sluice and CE. I classify under ‘Sluice’
all wh-question NSUs, thereby conflating direct and reprise sluices. In the taxonomy of
Chapter 2 reprise sluices are classified as CE. In the data set used in these experiments,
however, CE only includes clarification fragments which are not bare wh-phrases.

The first set of experiments I will present (Section 6.2) addresses the task of classi-
fying all NSU classes on the basis of data selected and partitioned following this restric-
tion. As we shall see, the results obtained are highly positive and provide the ground for
a wide coverage NSU classification system. Part of these results have been presented in
(Fernández et al. 2005b).

Adopting a form-based class Sluice simplifies the classification task of question-
denoting NSUs. However, this methodological simplification seems acceptable only if
the distinction between different sluice interpretations can still be recovered. In a sec-
ond experiment (Section 6.3) I investigate this issue, namely the disambiguation of sluice
interpretations, again obtaining very encouraging results. An earlier version of the re-
sults pertaining to this second experiment have been presented in (Fernández et al. 2004,
2005a).
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6.1.2 ML Toolkits and Algorithms

As mentioned above, I opt for approaching the classification task of NSUs using machine
learning techniques. It is perhaps worth stressing however that my focus of attention is
not on the methods and algorithms themselves, but on using them for the task at hand
and, as importantly, to obtain interesting linguistic insights into the data. Nevertheless,
a few words on the systems I employ are in order. Here I shall just provide a short
description of the systems. For more detailed information on the algorithms I refer the
reader to the references cited.

Weka The Weka toolkit, developed at the University of Waikato in New Zealand by
Witten and Frank (2000), includes Java implementations of several machine learning
algorithms. Many of them are designed for numeric prediction only (like the model tree
inducer M5 for instance) and consequently are not appropriate for our classification task.
From the toolkit I mainly use the J4.8 decision tree learner, which is an implementation
of a slightly revised version of the popular C4.5 algorithm (Quinlan 1993) called Revision
8. One of the main qualities of Weka is its friendly graphical interface. When using J4.8
this allows for the visualisation of the output decision tree, which can be a valuable
source of interesting information.

I also use two other simple classifiers included in the Weka toolkit to derive baseline
systems—a majority class predictor and a one-rule classifier.

SLIPPER SLIPPER (Simple Learner with Iterative Pruning to Produce Error Reduction)
is a rule induction system created by Cohen and Singer (1999). Like Weka’s J4.8, it is
based on the C4.5 decision tree algorithm, which it improves by using iterative pruning
and confidence-rated boosting. The output of SLIPPER is a weighted rule set, in which
each rule is associated with a confidence level. I use SLIPPER’s option unordered, which
finds a rule set that separates each class from the remaining classes using growing and
pruning techniques. This yields slightly better results than the default setting. To classify
an instance x, one computes the sum of the confidences that cover x: if the sum is greater
than zero, the positive class is predicted. For each class, the only rule with a negative
confidence rating is a single default rule, which predicts membership in the remaining
classes.

One advantage of SLIPPER is that it generates transparent, relatively compact rule
sets that can provide interesting insights into the data. Here however I will in general
concentrate on Weka’s decision trees to illustrate the points and will refer to SLIPPER’s
rules only seldom.
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TiMBL TiMBL is a memory-based learning algorithm developed at Tilburg University
by Daelemans et al. (2003). As with all memory-based machine learners, TiMBL stores
representations of instances from the training set explicitly in memory. In the predic-
tion phase, the similarity between a new test instance and all examples in memory is
computed using a distance metric. The system selects the most frequent category within
the set of most similar examples (the k-nearest neighbours). As a distance metric I use
modified value difference metric, which performs better than the default setting (overlap
metric). In light of recent studies (Daelemans and Hoste 2002), it is likely that the perfor-
mance of TiMBL could be improved by a more systematic optimisation of its parameters,
as e.g. in the experiments presented in (Gabsil and Lemon 2004). Here I only optimise
the distance metric parameter and keep the default settings for the number of nearest
neighbours (k = 1) and feature weighting method (gain ratio).

MaxEnt Finally, I experiment with a maximum entropy algorithm developed by Zhang
Le (2003). It computes the model with the highest entropy of all models that satisfy
the constraints provided by the features. The maximum entropy toolkit I use allows for
several options. In the present experiments I use 40 iterations of the default L-BFGS
parameter estimation (Malouf 2002).

6.1.3 Features and Feature Annotation

In order to construct the data sets, the NSU instances used in the experiments were
annotated with a set of features—one feature set for the NSU classification experiment
and a different feature set for the sluicing experiment. As will become clear when these
sets of features are described in detail in Sections 6.2.2 and 6.3.2, I opt for using small
sets of meaningful features, instead of taking large amounts of arbitrary features as is
common in some stochastic approaches. I do this with the aim of obtaining a better
understanding of the different classes of NSUs, their distribution and their properties.

In all the experiments the feature values are extracted automatically using the PoS
information encoded in the BNC. The annotation procedure involves a simple algorithm
which employs string searching and pattern matching techniques that exploit the SGML
mark-up of the corpus. The BNC was automatically tagged using the CLAWS system
developed at Lancaster University (Garside 1987). The∼100 million words in the corpus
were annotated according with a set of 57 PoS codes (known as the C5 tag-set) plus 4
codes for punctuation tags. A list of these codes can be found in (Burnard 2000). The
BNC PoS annotation process is described in detail in (Leech et al. 1994).

Unfortunately the BNC mark-up does not include any coding of intonation. The fea-
tures can therefore not use any intonational data, which would presumably be a useful
source of information to distinguish, for instance, between question- and proposition
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denoting NSUs, between Plain Acknowledgement and Plain Affirmative Answer, and be-
tween Reprise and Direct sluices.

6.2 Experiment I: NSU Classification

In this section I present the set of experiments that investigate the task of classifying
NSUs.

6.2.1 Data

The data used in the first experiment was selected from the corpus of NSUs following
some simplifying restrictions. Firstly, I leave aside the 16 instances classified as ‘Other’
in the corpus study (see Table 2.3 in Chapter 2). Secondly, I restrict the experiments to
those NSUs whose antecedent is the immediately preceding utterance. This restriction,
which makes the feature annotation task easier, does not pose a significant coverage
problem, given that the immediately preceding utterance is the antecedent for the vast
majority of NSUs (88%—see Table 2.5 in Chapter 2). The set of all NSUs, excluding those
classified as ‘Other’, whose antecedent is the immediately preceding utterance contains a
total of 1123 datapoints. Table 6.1 shows the frequency distribution for the NSU classes
partitioned as explained in Section 6.1.1.

Finally, the last restriction adopted concerns the instances classified as Plain Acknowl-
edgement and Check Question. Taking the risk of ending up with a considerably smaller
data set, I decided to leave aside these meta-communicative NSU classes given that (i)
plain acknowledgements make up more than 50% of the sub-corpus leading to a data
set with very skewed distributions; (ii) check questions are realised by the same kind of
expressions as plain acknowledgements (“okay”,“right”, etc) and would presumably be
captured by the same feature; and (iii) a priori these two classes seem two of the easiest
types to identify (a hypothesis that was confirmed after a second experiment—see Sec-
tion 6.2.6 below). I therefore exclude plain acknowledgements and check questions and
concentrate on a more interesting and less skewed data set containing all remaining NSU
classes. This makes up a total of 527 data points (1123 – 582 – 15). In Section 6.2.6 I
shall compare the results obtained using this restricted data set with those of a second
experiment in which plain acknowledgements and check questions are incorporated.

6.2.2 Features

A small set of features, extractable from PoS information, that capture the contextual
properties that are relevant for NSU classification was identified. In particular three
types of properties that play an important role in the classification task were singled
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NSU class Total

Plain Acknowledgement 582
Short Answer 105
Affirmative Answer 100
Repeated Acknowledgement 80
Clarification Ellipsis 66
Rejection 48
Repeated Affirmative Answer 25
Factual Modifier 23
Sluice 20
Helpful Rejection 18
Filler 16
Check Question 15
Bare Modifier Phrase 10
Propositional Modifier 10
Conjunct 5

Total dataset 1123

Table 6.1: NSU sub-corpus

out. The first one has to do with semantic, syntactic and lexical properties of the NSUs
themselves. The second one refers to the properties of its antecedent utterance. The
third concerns relations between the antecedent and the fragment. Table 6.2 shows an
overview of the nine features used.

• NSU features A set of four features are related to properties of the NSUs. These
are nsu cont,wh nsu,aff neg and lex. The feature nsu cont is intended to dis-
tinguish between question-denoting (q value) and proposition-denoting (p value)
NSUs. The feature wh nsu encodes the presence of a wh-phrase in the NSU— it is
primarily introduced to identify Sluices. The features aff neg and lex signal the
appearance of particular lexical items. They include a value e(mpty) which allows
to encode the absence of the relevant lexical items as well. The values of the feature
aff neg indicate the presence of either a yes or a no word in the NSU. The values
of lex are invoked by the appearance of modal adverbs (p mod), factual adjectives
(f mod), and prepositions (mod) and conjunctions (conj) in initial positions. These
features are expected to be crucial to the identification of Plain/Repeated Affir-
mative Answer and Plain/Helpful Rejection on the one hand, and Propositional
Modifiers, Factual Modifiers, Bare Modifier Phrases and Conjuncts on the other.
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Note that the feature lex could be split into four binary features, one for each of its
non-empty values. This option, however, leads to virtually the same results. Hence,
I opt for a more compact set of features. This also applies to the feature aff neg.

• Antecedent features I use the features ant mood,wh ant, and finished to encode
properties of the antecedent utterance. The first one of these features distinguishes
between declarative and non-declarative antecedents. The feature wh ant signals
the presence of a wh-phrase in the antecedent utterance, which seems to be the best
cue for classifying Short Answers. As for the feature finished, it should help the
learners identify Fillers. The value unf is invoked when the antecedent utterance
has a hesitant ending (indicated, for instance, by a pause) or when there is no
punctuation mark signalling a finished utterance.

• Similarity features The last two features, repeat and parallel, encode similar-
ity relations between the NSU and its antecedent utterance. They are the only
numerical features in the feature set. The feature repeat, which indicates the ap-
pearance of repeated words between NSU and antecedent, is introduced as a clue
to identify Repeated Affirmative Answers and Repeated Acknowledgements. The
feature parallel, on the other hand, is intended to capture the particular paral-
lelism exhibited by Helpful Rejections. It signals the presence of sequences of PoS
tags common to the NSU and its antecedent.

Some of the features, like nsu cont and ant mood, for instance, are high level features
that do not have straightforward correlates in PoS tags. Punctuation tags (that would
correspond to intonation patterns in spoken input) help to extract the values of these
features, but the correspondence is still not unique. For this reason the automatic feature
annotation procedure was evaluated against a small sample of manually annotated data.

The feature values were extracted manually for 52 instances (∼10% of the total) ran-
domly selected from the data set. In comparison with this gold standard, the automatic
feature annotation procedure achieves 89% accuracy. Only automatically annotated data
is used for the learning experiments.

6.2.3 Baselines

I now turn to examine some baseline systems that will help us to evaluate the classifica-
tion task. The simplest baseline one can consider is a majority class baseline that always
predicts the class with the highest probability in the data. In the restricted data set used
for the first experiment this is the class Short Answer. The majority class baseline yields
a 6.7% weighted f-score (see Table 6.4 below).
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A slightly more interesting baseline can be obtained by using a one-rule classifier. I
use the implementation of a one-rule classifier provided in the Weka toolkit. For each
feature, the classifier creates a single rule which generates a decision tree where the root
is the feature in question and the branches correspond to its different values. The leaves
are then associated with the class that occurs most often in the data, for which that value
holds. The classifier then chooses the feature which produces the minimum error.

In this case, the feature with the minimum error is aff neg. It produces the one-rule
decision tree in Figure 6.1, which yields a 32.5% weighted f-score (see Table 6.3). Plain
Affirmative Answer is the class predicted when the NSU contains a yes-word; Rejection
when it contains a no-word; and Short Answer otherwise.

aff neg:
- yes --> AffAns

- no --> Reject

- e --> ShortAns

Figure 6.1: One-rule tree

Finally, I consider a more substantial baseline that uses the four NSU features. Run-
ning Weka’s J4.8 decision tree classifier with these features creates a decision tree with
four rules, one for each feature used. The tree is shown in Figure 6.2.

nsu cont:
- q --> wh nsu:

- yes --> Sluice

- no --> CE

- p --> lex:
- conj --> ConjFrag

- p mod --> PropMod

- f mod --> FactMod

- mod --> BareModPh

- e --> aff neg:
- yes --> AffAns

- no --> Reject

- e --> ShortAns

Figure 6.2: Four-rule tree

The root of the tree corresponds to the feature nsu cont. It makes a first distinction
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between question-denoting (q branch) and proposition-denoting NSUs (p branch). Not
surprisingly, within the q branch the feature wh nsu is used to distinguish between Sluice
and CE. The feature lex is the first node in the p branch. Its different values capture
the classes Conjunct, Propositional Modifier, Factual Modifier and Bare Modifier Phrase.
The e(mpty) value for this feature takes us to the last, most embedded node of the tree,
realised by the feature aff neg, which creates a sub-tree parallel to the one-rule tree in
Figure 6.1. This four-rule baseline yields a 62.33% weighted f-score. Detailed results for
the three baselines considered are shown in Tables 6.3, 6.4 and 6.5, respectively.

All results reported (here and in the sequel) were obtained by performing 10-fold
cross-validation. They are presented as follows: The tables show the recall, precision
and f-measure for each class. To calculate the overall performance of the algorithm,
these scores are normalised according to the relative frequency of each class. This is
done by multiplying each score by the total of instances of the corresponding class and
then dividing by the total number of datapoints in the data set. The weighted overall
recall, precision and f-measure, shown in the bottom row of the tables, is then the sum
of the corresponding weighted scores. The NSU classes not shown in the tables obtain
null scores.

NSU class recall prec f1

ShortAns 100.00 20.10 33.50

Weighted Score 19.92 4.00 6.67

Table 6.3: Majority class baseline

NSU class recall prec f1

ShortAns 95.30 30.10 45.80
AffAns 93.00 75.60 83.40
Reject 100.00 69.60 82.10

Weighted Score 45.93 26.73 32.50

Table 6.4: One-rule baseline

6.2.4 Feature Contribution

As can be seen in Table 6.5, the classes Sluice, CE, Propositional Modifier and Factual
Modifier achieve very high f-scores with the four-rule baseline—between 97% and 100%.
These results are not improved upon by incorporating additional features nor by using
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NSU class recall prec f1

CE 96.97 96.97 96.97
Sluice 100.00 95.24 97.56
ShortAns 94.34 47.39 63.09
AffAns 93.00 81.58 86.92
Reject 100.00 75.00 85.71
PropMod 100.00 100.00 100.00
FactMod 100.00 100.00 100.00
BareModPh 80.00 72.73 76.19
ConjFrag 100.00 71.43 83.33

Weighted Score 70.40 55.92 62.33

Table 6.5: Four-rule baseline

more sophisticated learners, which indicates that NSU features are sufficient indicators
to classify these NSU classes. This is in fact not surprising, given that the disambiguation
of these categories is tied to the presence of particular lexical items that are relatively
easy to identify (wh-phrases and certain adverbs and adjectives). Recall however that a
further distinction needs to be made between the different interpretations conveyed by
sluices, a task I address in the experiment reported in Section 6.3.

There are however four NSU classes that are not predicted at all when only NSU
features are used. These are Repeated Affirmative Answer, Helpful Rejection, Repeated
Acknowledgement and Filler. Because they are not associated with any leaf in the tree,
they yield null scores and therefore don’t appear in Table 6.5. Examination of the confu-
sion matrices shows that around 50% of Repeated Affirmative Answers were classified as
Plain Affirmative Answers, while the remaining 50%, as well as the overwhelming ma-
jority of the other three classes just mentioned, were classified as Short Answer. Acting
as the default class, Short Answers achieves the lowest score—63.09% f-score.

In order to determine the contribution of the antecedent features (ant mood,

wh ant, finished), as a next step these were added to the NSU features used in the
four-rule tree. When the antecedent features are incorporated, two additional NSU
classes are predicted. These are Repeated Acknowledgement and Filler, which achieve
rather positive results—74.8% and 64% f-score, respectively. The full results obtained
when NSU and antecedent features are used together are not shown. Besides the ad-
dition of these two NSU classes, the results are very similar to those achieved with just
NSU features. The tree obtained when the antecedent features are incorporated to the
NSU features can be derived by substituting the last node in the tree in Figure 6.2 for the
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tree in Figure 6.3. As can be seen in Figure 6.3, the features ant mood and finished con-
tribute to distinguish Repeated Acknowledgement and Filler from Short Answer, whose
f-score consequently raises—from 63.09% to 79%—due to an improvement on precision.
Interestingly, the feature wh ant does not have any contribution at this stage (although
it will be used by the learners when the similarity features are added.) The general
weighted f-score obtained when NSU and antecedent features are combined is 77.87%.
A comparison of all weighted f-scores obtained will be shown in the next section, in Table
6.6.

aff neg:
- yes --> AffAns

- no --> Reject

- e --> ant mood:
- n decl --> ShorAns

- decl --> finished:
- fin --> RepAck

- unfin --> Filler

Figure 6.3: Node on a tree using NSU and antecedent features

The use of NSU features and antecedent features is clearly not enough to account for
Repeated Affirmative Answer and Helpful Rejection, which obtain null scores.

6.2.5 ML Results

In this next section I report the results obtained when the similarity features are included,
thereby using the full feature set, and the four machine learning algorithms are trained
on the data.

Although the classification algorithms implement different machine learning tech-
niques, they all yield very similar results: around an 87% weighted f-score. The maxi-
mum entropy model performs best, although the difference between its results and those
of the other algorithms is not statistically significant. Detailed recall, precision and f-
measure scores are shown in Tables 6.7, 6.8, 6.9 and 6.10 for Weka’s J4.8, SLIPPER,
TiMBL and MaxEnt, respectively.

As seen in previous sections, the four-rule baseline algorithm that uses only NSU
features yields a 62.33% weighted f-score, while the incorporation of antecedent features
yields 77.83% weighted f-score. The best result, the 87.75% weighted f-score obtained
with the maximal entropy model using all features, shows a 10% improvement over this
last result. As promised, a comparison of the scores obtained with the different baselines
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considered and all learners used is given in Table 6.6.

System w. f-score

Majority class baseline 6.67
One rule baseline 32.50
Four rule baseline (NSU features) 62.33
NSU and antecedent features 77.83

Full feature set
SLIPPER 86.35
TiMBL 86.66
J4.8 87.29
MaxEnt 87.75

Table 6.6: Comparison of weighted f-scores

Short Answers achieve high recall scores with the baseline systems (more than 90%).
In the three baselines considered, Short Answer acts as the default category. Therefore,
even though the recall is high (given that Short Answer is the class with the highest prob-
ability), precision tends to be quite low. The precision achieved for Short Answer when
only NSU features are used is ∼47%. When antecedent features are incorporated preci-
sion goes up to ∼72%. Finally, the addition of similarity features raises the precision for
this class to ∼82%. Thus, by using features that help to identify other categories with the
machine learners, the precision for Short Answers is improved by around 36%, and the
precision of the overall classification system by almost 33%—from 55.90% weighted pre-
cision obtained with the four-rule baseline, to the 88.41% achieved with the maximum
entropy model using all features.

Indeed, with the addition of the similarity features (repeat and parallel), the
classes Repeated Affirmative Answer and Helpful Rejection are predicted by the learners.
Although this contributes to the improvement of precision for Short Answer, the scores
yielded by these two categories are lower than the ones achieved with other classes. Re-
peated Affirmative Answer achieves nevertheless decent f-scores, ranging from 56.96%
with SLIPPER to 67.20% with MaxEnt. The feature wh ant, for instance, is used to dis-
tinguish Short Answer from Repeated Affirmative Answer. Figure 6.4 shows one of the
sub-trees generated by the feature repeat when Weka’s J4.8 is used with the full feature
set.

The class with the lowest scores is clearly Helpful Rejection. TiMBL achieves a
39.92% f-score for this class. The maximal entropy model, however, yields only a 10.37%
f-score. Examination of the confusion matrices shows that ∼27% of Helpful Rejections
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were classified as Plain Rejection, ∼26% as Short Answer, and ∼15% as Repeated Ac-
knowledgement. This indicates that the feature parallel, introduced to identify this
type of NSUs, is not a good enough cue.

repeat:
- = 0 --> finished:

- unf --> Filler

- fin --> parallel:
- = 0 --> ShortAns

- > 0 --> HelpReject

- > 0 --> ant mood:
- decl --> RepAck

- n decl --> repeat:
- = 1 --> wh ant:

- yes --> ShortAns

- no --> RepAffAns

- > 1 --> RepAffAns

Figure 6.4: Node on a tree using the full feature set
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NSU class recall prec f1

CE 97.00 97.00 97.00
Sluice 100.00 95.20 97.60
ShortAns 89.60 82.60 86.00
AffAns 92.00 95.80 93.90
Reject 95.80 80.70 87.60
RepAffAns 68.00 63.00 65.40
RepAck 85.00 89.50 87.20
HelpReject 22.20 33.30 26.70
PropMod 100.00 100.00 100.00
FactMod 100.00 100.00 100.00
BareModPh 80.00 100.00 88.90
ConjFrag 100.00 71.40 83.30
Filler 56.30 100.00 72.00

Weighted Score 87.62 87.68 87.29

Table 6.7: Weka’s J4.8

NSU class recall prec f1

CE 93.64 97.22 95.40
Sluice 96.67 91.67 94.10
ShortAns 83.93 82.91 83.41
AffAns 93.13 91.63 92.38
Reject 83.60 100.00 91.06
RepAffAns 53.33 61.11 56.96
RepAck 85.71 89.63 87.62
HelpReject 28.12 20.83 23.94
PropMod 100.00 90.00 94.74
FactMod 100.00 100.00 100.00
BareModPh 100.00 80.56 89.23
ConjFrag 100.00 100.00 100.00
Filler 100.00 62.50 76.92

Weighted Score 86.21 86.49 86.35

Table 6.8: SLIPPER
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NSU class recall prec f1

CE 94.37 91.99 93.16
Sluice 94.17 91.67 92.90
ShortAns 88.21 83.00 85.52
AffAns 92.54 94.72 93.62
Reject 95.24 81.99 88.12
RepAffAns 63.89 60.19 61.98
RepAck 86.85 91.09 88.92
HelpReject 35.71 45.24 39.92
PropMod 90.00 100.00 94.74
FactMod 97.22 100.00 98.59
BareModPh 80.56 100.00 89.23
ConjFrag 100.00 100.00 100.00
Filler 48.61 91.67 63.53

Weighted Score 86.71 87.25 86.66

Table 6.9: TiMBL

NSU class recall prec f1

CE 96.11 96.39 96.25
Sluice 100.00 95.83 97.87
ShortAns 89.35 83.59 86.37
AffAns 92.79 97.00 94.85
Reject 100.00 81.13 89.58
RepAffAns 68.52 65.93 67.20
RepAck 84.52 81.99 83.24
HelpReject 5.56 77.78 10.37
PropMod 100.00 100.00 100.00
FactMod 97.50 100.00 98.73
BareModPh 69.44 100.00 81.97
ConjFrag 100.00 100.00 100.00
Filler 62.50 90.62 73.98

Weighted Score 87.11 88.41 87.75

Table 6.10: MaxEnt
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6.2.6 Incorporating Plain Acknowledgement and Check Question

As explained in Section 6.2.1, the data set used in the experiments reported in the pre-
vious sections excluded the instances classified as Plain Acknowledgement and Check
Question in the corpus study. The fact that Plain Acknowledgement is the category with
the highest probability in the sub-corpus (making up more than 50% of our total data
set—see Table 6.1), and that it does not seem particularly difficult to identify could af-
fect the performance of the learners by inflating the results. Therefore it was left out
in order to work with a more balanced data set and to minimise the potential for mis-
leading results. As the expressions used in plain acknowledgements and check questions
are very similar and they would in principle be captured by the same feature values,
check questions were left out as well. In a second phase the instances classified as Plain
Acknowledgement and Check Question were incorporated to measure their effect on the
results. In this section I discuss the results obtained and compare them with the ones
achieved in the initial experiment.

To generate the annotated data set an additional value ack was added to the feature
aff neg. This value is invoked to encode the presence of expressions typically used in
plain acknowledgements and/or check questions (“mhm”, “right”,“okay” etc.). The total
data set (1123 data points) was automatically annotated with the features modified in
this way, and the machine learners were then run on the annotated data.

6.2.6.1 Baselines

Given the high probability of Plain Acknowledgement, a simple majority class baseline
gives relatively high results—35.31% weighted f-score. The feature with the minimum
error used to derived the one-rule baseline is again aff neg, this time with the new value
ack as part of its possible values (see Figure 6.5 below). The one-rule baseline yields a
weighted f-score of 54.26%.

aff neg:
- ack --> Ack

- yes --> Ack

- no --> Reject

- e --> ShortAns

Figure 6.5: One-rule tree

The four-rule tree that uses only NSU features goes up to a weighted f-score of
67.99%. In this tree the feature aff neg is now also used to distinguish between CE
and Check Question. Figure 6.6 shows the q branch of the tree.
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nsu cont:
- q --> wh nsu:

- yes --> Sluice

- no --> aff neg:
- ack --> CheckQu

- yes --> CheckQu

- no --> CE

- e --> CE

Figure 6.6: Node on the four-rule tree

As the last node of the four-rule tree now corresponds to the tree in Figure 6.5, the
class Plain Affirmative Answer is not predicted when only NSU features are used.

When antecedent features are incorporated, Plain Affirmative Answers, Repeated Ac-
knowledgements and Fillers are predicted, obtaining very similar scores to the ones
achieved in the experiment with the restricted data set. The feature ant mood is now
also used to distinguish between Plain Acknowledgement and Plain Affirmative Answer.
The last node in the tree is shown in Figure 6.7. The combined use of NSU features and
antecedent features yields a weighted f-score of 85.44%.

aff neg:
- ack --> Ack

- yes --> ant mood:
- n decl --> AffAns

- decl --> Ack

- no --> Reject

- e --> ant mood:
- n decl --> ShorAns

- decl --> finished:
- fin --> RepAck

- unfin --> Filler

Figure 6.7: Node on a tree using NSU and antecedent features

6.2.6.2 ML Results

As in the first experiment, when all features are used the results obtained are very sim-
ilar across learners (around 92% weighted f-score), if slightly lower with Weka’s J4.8
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(89.53%). Detailed scores for each class are shown in Tables 6.12, 6.13, 6.14 and 6.15.
As expected, the class Plain Acknowledgement obtains a high f-score (∼95% with all
learners). The f-score for Check Question ranges from 73% yielded by MaxEnt to 90%
obtained with SLIPPER. The high score of Plain Acknowledgement combined with its
high probability raises the overall performance of the systems almost four points over
the results obtained in the previous experiment—from ∼87% to ∼92% weighted f-score.
The improvement with respect to the baselines, however, is not as large: we now obtain
a 55% improvement over the simple majority class baseline (from 35.31% to 92.21%),
while in the experiment with the restricted data set the improvement with respect to the
majority class baseline is of 81% (from 6.67% to 87.75% weighted f-score.).

Table 6.11 shows a comparison of all weighted f-scores obtained in this second ex-
periment.

System w. f-score

Majority class baseline 35.31
One rule baseline 53.03
Four rule baseline (NSU features) 67.99
NSU and antecedent features 85.44

Full feature set
J4.8 89.53
SLIPPER 92.01
TiMBL 92.02
MaxEnt 92.21

Table 6.11: Comparison of weighted f-scores

It is interesting to note that even though the overall performance of the algorithms
is slightly higher than before (due to the reasons mentioned above), the scores for some
NSU classes are actually lower. The most striking cases are perhaps the classes Helpful
Rejection and Conjunct, for which the maximum entropy model now gives null scores
(see Table 6.15). We have already pointed out the problems encountered with Helpful
Rejection. As for the class Conjunct, although it yields good results with the other learn-
ers, the proportion of this class—0.4%, 5 instances only—is now probably too low to
obtain reliable results.

A more interesting case is the class Affirmative Answer, which in TiMBL goes down
more than 10 points (from 93.61% to 82.42% f-score—see Tables 6.9 and 6.14). The tree
in Figure 6.5 provides a clue to the reason for this. When the NSU contains a yes-word
(second branch of the tree) the class with the highest probability is now Plain Acknowl-
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edgement, instead of Plain Affirmative Answer as before (see tree in Figure 6.1). This
is due to the fact that, at least in English, expressions like e.g. “yeah” (considered here
as yes-words) are potentially ambiguous between acknowledgements and affirmative an-
swers.1 This ambiguity and the problems it entails are also noted by Schlangen (2005),
who addresses the problem of identifying NSUs automatically. As he points out, the
ambiguity of yes-words is one of the difficulties encountered when trying to distinguish
between backchannels (plain acknowledgements in our taxonomy) and non-backchannel
fragments. This is a tricky problem for Schlangen as his fragment identification proce-
dure does not have access to the context. Although in the present experiments I do
use features that capture contextual information, determining whether the antecedent
utterance is declarative or interrogative (which one would expect to be the best clue
to disambiguate between Plain Acknowledgement and Plain Affirmative Answer) is not
always trivial.

1Arguably this ambiguity would not arise in French given that, according to Beyssade and Marandin
(2005), in French the expressions used to acknowledge an assertion are different from those used in affir-
mative answers to polar questions.
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NSU class recall prec f1

Ack 95.00 96.80 95.90
CheckQu 100.00 83.30 90.90
CE 92.40 95.30 93.80
Sluice 100.00 95.20 97.60
ShortAns 83.00 80.70 81.90
AffAns 86.00 82.70 84.30
Reject 100.00 76.20 86.50
RepAffAns 68.00 65.40 66.70
RepAck 86.30 84.10 85.20
HelpReject 33.30 46.20 38.70
PropMod 60.00 100.00 75.00
FactMod 91.30 100.00 95.50
BareModPh 70.00 100.00 82.40
ConjFrag 100.00 71.40 83.30
Filler 37.50 50.00 42.90

Weighted Score 89.67 89.78 89.53

Table 6.12: Weka’s J4.8

NSU class recall prec f1

Ack 96.67 95.71 96.19
CheckQu 86.67 100.00 92.86
CE 96.33 93.75 95.02
Sluice 94.44 100.00 97.14
ShortAns 85.25 84.46 84.85
AffAns 82.79 87.38 85.03
Reject 77.60 100.00 87.39
RepAffAns 67.71 72.71 70.12
RepAck 84.04 92.19 87.93
HelpReject 29.63 18.52 22.79
PropMod 100.00 100.00 100.00
FactMod 100.00 100.00 100.00
BareModPh 83.33 69.44 75.76
ConjFrag 100.00 100.00 100.00
Filler 70.00 56.33 62.43

Weighted Score 91.57 92.70 92.01

Table 6.13: SLIPPER
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NSU class recall prec f1

Ack 95.71 95.58 95.64
CheckQu 77.78 71.85 74.70
CE 93.32 94.08 93.70
Sluice 100.00 94.44 97.14
ShortAns 87.79 88.83 88.31
AffAns 85.00 85.12 85.06
Reject 98.33 80.28 88.39
RepAffAns 58.70 55.93 57.28
RepAck 86.11 80.34 83.12
HelpReject 22.67 40.00 28.94
PropMod 100.00 100.00 100.00
FactMod 97.50 100.00 98.73
BareModPh 69.44 83.33 75.76
ConjFrag 100.00 100.00 100.00
Filler 44.33 55.00 49.09

Weighted Score 91.49 90.75 91.02

Table 6.14: TiMBL

NSU class recall prec f1

Ack 95.54 94.59 95.06
CheckQu 63.89 85.19 73.02
CE 92.18 95.01 93.57
Sluice 88.89 94.44 91.58
ShortAns 88.46 84.91 86.65
AffAns 86.83 81.94 84.31
Reject 100.00 78.21 87.77
RepAffAns 69.26 62.28 65.58
RepAck 86.95 77.90 82.18
HelpReject 00.00 00.00 00.00
PropMod 44.44 100.00 61.54
FactMod 93.33 100.00 96.55
BareModP 58.33 100.00 73.68
ConjFrag 00.00 00.00 00.00
Filler 62.59 100.00 76.99

Weighted Score 91.96 93.17 91.21

Table 6.15: MaxEnt
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6.3 Experiment II: Sluicing

The experiments on the classification of NSUs presented in previous sections have shown
that sluices can successfully be identified—the class Sluice achieves around 97% f-score
in all experiments reported. I have already pointed out that, given the form-based defi-
nition of this class, high scores were in fact expected.

Now for the classification output to have any impact on the resolution of question-
denoting NSUs, more fine-grained distinctions need to be made. In the second corpus
study presented in Chapter 2, Section 2.4, I identified four possible readings that can po-
tentially be expressed by bare wh-phrases: Direct, Reprise, Clarification and Wh-anaphor.
In this section I address the task of distinguishing between these different interpretations,
following the same methodology used for the general NSU classification task.

6.3.1 Data

The data set used in the sluicing experiment was selected from the classified corpus
of sluices presented in Chapter 2. The corpus study involved an annotation process
whereby two samples of sluices were annotated by three coders. To generate the input
data for the present experiments, all three-way agreement instances plus those instances
where there is agreement between coder 1 and coder 2 (the two coders with the highest
agreement) were selected, leaving out cases classified as unclear. As the reading Wh-
anaphor had only been introduced in the classification of the second sample, 9 instances
in the first sample were reclassified using this category and were also included in the
data set.2 The total data set includes 351 datapoints. The distribution of the different
sluice interpretations is shown in Table 6.16.

Sluice Interp. Total

Direct 106
Reprise 203
Clarification 24
Wh-anaphor 18

Total data set 351

Table 6.16: Sluice sub-corpus

As can be seen in Table 6.16, the classes in the data set have significantly skewed

2The reclassified instances in the first sample were those that had motivated the introduction of the Wh-
anaphor category for the second sample. Given that there were no disagreements involving this category,
this reclassification was straightforward.
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distributions. However, as we are now faced with a much smaller data set, we cannot
afford to leave out any subset of the data. Hence, the 351 data points are used in the ML
experiments with its original distributions.

6.3.2 Features

To annotate the data a set of 11 features was used. An overview of the features and their
values is shown in Table 6.17.

Besides the feature sluice, which indicates the sluice type, all the other features are
concerned with properties of the antecedent utterance. The features mood and polarity

refer to syntactic and semantic properties of the antecedent utterance as a whole. The
remaining features, on the other hand, focus on a particular lexical type or construc-
tion contained in the antecedent. These features (quant, deictic, proper n, pro,

def desc, wh and overt) are not annotated independently, but conditionally on the
sluice type. That is, they will take yes as a value if the element or construction in
question appears in the antecedent and it matches the semantic restrictions imposed by
the sluice type. For instance, when a sluice with value where for the feature sluice is
annotated, the feature deictic, which encodes the presence of a deictic pronoun, will
take value yes only if the antecedent utterance contains a locative deictic like “here”
or “there”. Similarly the feature wh takes a yes value only if there is a wh-word in the
antecedent that is identical to the sluice type.

Unknown or irrelevant values are indicated by a question mark ? value. This allows
us to express, for instance, that the presence of a proper name is irrelevant to determining
the interpretation of say a when sluice, while it is crucial when the sluice type is who.
The feature overt takes no as value when there is no overt antecedent expression. It
takes yes when there is an antecedent expression not captured by any other feature, and
it is considered irrelevant (? value) when there is an antecedent expression defined by
another feature.

The 351 data points were automatically annotated with the 11 features shown in
Table 6.17. Again, the automatic annotation procedure was evaluated against a manual
gold standard, achieving an accuracy of 86%.

6.3.3 Baselines

Because sluices conveying a Reprise reading make up more than 57% of our data set,
relatively high results can already be obtained with a majority class baseline that always
predicts the class Reprise. This yields 42.4% weighted f-score, as shown in Table 6.18.

The second baseline considered is a one-rule baseline. In this case the feature with
the minimum error chosen by the one-rule classifier is sluice. The classifier produces
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feature description values

sluice type of sluice what, why, who,...

mood mood of the antecedent utterance decl, n decl

polarity polarity of the antecedent utterance pos, neg, ?

quant presence of a quantified expression yes, no, ?

deictic presence of a deictic pronoun yes, no, ?

proper n presence of a proper name yes, no, ?

pro presence of a pronoun yes, no, ?

def desc presence of a definite description yes, no, ?

wh presence of a wh word yes, no, ?

overt presence of any other potential ant. expression yes, no, ?

Table 6.17: Sluice features and values

Sluice Interp. recall prec f1

Reprise 100 57.80 73.30

Weighted Score 57.81 33.42 42.40

Table 6.18: Majority class baseline

the one-rule tree in Figure 6.8. The branches of the tree correspond the the sluice types;
the interpretation with the highest probability for each type of sluice is then predicted.

By using the feature sluice the one-rule tree implements the correlations between
sluice type and preferred interpretation that were discussed in Chapter 2, Section 2.4.4.
There, I pointed out that these correlations were statistically significant (χ2 = 438.53,
p ≤ 0.001). We can see now that they are indeed a good rough guide for predicting sluice
readings. As shown in Table 6.19, the one-rule baseline dependent on the distribution
patterns of the different sluice types yields a 72.73% weighted f-score.

Sluice Interp. recall prec f1

Direct 72.60 67.50 70.00
Reprise 79.30 80.50 79.90
Clarification 100 64.90 78.70

Weighted Score 73,61 71.36 72.73

Table 6.19: One-rule baseline
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sluice:
- who --> Reprise

- what --> Clarification

- why --> Direct

- where --> Reprise

- when --> Direct

- which --> Reprise

- whichN --> Reprise

Figure 6.8: One-rule tree

6.3.4 ML Results

Finally, the four machine learning algorithms were run on the data set annotated with
the eleven features. We obtain results of around 80% weighted f-score, although in
this case there are some significant differences amongst the learners. MaxEnt gives the
lowest score—73.24% weighted f-score—hardly over the one-rule baseline, and more
than 8 points lower than the best results, obtained with Weka’s J4.8—81.80% weighted
f-score. The size of the data set seems to play a role in these differences, indicating that
MaxEnt does not perform so well with small data sets. A summary of weighted f-scores
is given in Table 6.20.

System w. f-score

Majority class baseline 42.40
One rule baseline 72.73

MaxEnt 73.24
TiMBL 79.80
SLIPPER 81.62
J4.8 81.80

Table 6.20: Comparison of weighted f-scores

Detailed recall, precision and f-measure results for each learner are shown in Tables
6.21, 6.22, 6.23 and 6.24. The results yield by MaxEnt are almost equivalent to the
ones achieved with the one-rule baseline. With the other three learners, the use of
contextual features improves the results for Reprise and Direct by around 5 points each
with respect to the one-rule baseline. It can be seen however that the results obtained
with the one-rule baseline for the Clarification reading are hardly improved upon by any
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of the learners. In the case of TiMBL the score is in fact lower—72.16 v. 78.70 weighted
f-score. This leads us to conclude that the best strategy is to interpret all what sluices as
conveying a Clarification reading.

The class Wh-anaphora, which not being the majority interpretation for any sluice
type was not predicted by the one-rule baseline nor by MaxEnt, now gives positive results
with the other three learners. The best result for this class is obtained with Weka’s J4.8—
80% f-score.

The decision tree generated by Weka’s J4.8 algorithm is displayed in Figure 6.9. The
root of the tree corresponds to the feature wh, which makes a first distinction between
Wh-anaphor and the other readings. If the value of this feature is yes, the class Wh-
anaphor is predicted. A negative value for this feature leads to the feature sluice. The
class with the highest probability is the only clue used to predict the interpretation of the
sluice types what,where,which and whichN in a way parallel to the one-rule baseline.
Additional features are used for when,why and who. A Direct reading is predicted for a
when sluice if there is no overt antecedent expression, while a Reprise reading is pre-
ferred if the feature over takes as value yes. For why sluices the mood of the antecedent
utterance is used to disambiguate between Reprise and Direct: if the antecedent is declar-
ative, the sluice is classified as Direct; if it non-declarative it is interpreted as Reprise.
In the classification of who sluices three features are taken into account—quant,pro and
proper n. The basic strategy is as follows: if the antecedent utterance contains a quan-
tifier and no personal pronouns nor proper names appear, the predicted class is Direct,
otherwise the sluice is interpreted as Reprise.

6.3.4.1 Feature Contribution

Note that not all features are used in the tree generated by Weka’s J4.8. The missing
features are polarity, deictic and def desc. Although they don’t make any contri-
bution to the model generated by the decision tree, examination of the rules generated
by SLIPPER shows that they are all used in the rule set induced by this algorithm.

For instance, the feature polarity is used in a rule that assigns Direct interpretations
to why sluices, albeit with a low confidence level (less than 1).

Direct not Reprise|Clarification|Wh anaphor :-

sluice = why, polarity = pos, wh = no (+0.91662)

The feature deictic is used in combination with the sluice type where to predict a
Reprise reading. In this case the rule is associated with a higher confidence level then
the previous rule, even though it does not seem to be very informative as Reprise is the
default interpretation for where sluices anyway.
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Sluice Interp. recall prec f1

direct 71.70 79.20 75.20
reprise 85.70 83.70 84.70
clarification 100.00 68.60 81.40
wh anaphor 66.70 100.00 80.00

Weighted Score 81.47 82.14 81.80

Table 6.21: Weka’s J4.8

Sluice Interp. recall prec f1

direct 81.01 71.99 76.23
reprise 83.85 86.49 85.15
clarification 71.17 94.17 81.07
wh anaphor 77.78 62.96 69.59

Weighted Score 81.81 81.43 81.62

Table 6.22: SLIPPER

Sluice Interp. recall prec f1

direct 78.72 75.24 76.94
reprise 83.08 83.96 83.52
clarification 75.83 68.83 72.16
wh anaphor 55.56 77.78 64.81

Weighted Score 79.85 79.98 79.80

Table 6.23: TiMBL

Sluice Interp. recall prec f1

direct 65.22 75.56 70.01
reprise 85.74 76.38 80.79
clarification 89.17 70.33 78.64
wh anaphor 0.00 0.00 0.00

Weighted Score 75.38 76.93 73.24

Table 6.24: MaxEnt
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wh:
- yes --> Wh anaphor

- no --> sluice:
- what --> Clarification

- where --> Reprise

- which --> Reprise

- whichN --> Reprise

- when --> overt:
- yes --> Reprise

- no --> Direct

- why --> ant mood
- decl --> Direct

- n decl --> Reprise

- who --> quant:
- yes --> pro:

- yes --> Reprise

- no --> proper n:
- yes --> Reprise

- no --> Direct

- no --> Reprise

Figure 6.9: Weka’s J4.8 tree

Reprise not Direct|Clarification|Wh anaphor :-

sluice = where, deictic = yes (+1.77533)

A perhaps more informative rule could be the following, where the absence of deictic
pronouns favours Direct interpretations over Reprise ones. The confidence level of the
rule however is significantly low.

Direct not Reprise|Clarification|Wh anaphor :-

deictic = yes (+0.139897)

The feature def desc was mainly introduced to captured potential antecedents for which
and whichN sluices. However, given the overwhelming majority of the Reprise reading
for this kind of sluices, the feature does not seem to play any role in this respect. It is
nevertheless used by SLIPPER in combination with other features:

Reprise not Direct|Clarification|Wh anaphor :-

quant = no, def desc = yes, mood = n decl (+1.24173)
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Despite the fact that all features are used in the rules generated by SLIPPER, the con-
tribution of the features polarity, deictic and def desc does not seem to be very
significant. When they are eliminated from the feature set, SLIPPER yields very similar
results to the ones obtained with the full set of features—81.22% weighted f-score v. the
81.66% obtained before. TiMBL on the other hand goes down a couple of points—from
79.80% to 77.32% weighted f-score. No variation is of course observed with MaxEnt,
which seems to be using just the sluice type as a clue for classification.

6.4 Automatic NSU Resolution: SHARDS

As mentioned at the outset of this chapter, one of the aims of employing statistical tech-
niques to disambiguate amongst NSUs was to develop a classification model whose out-
put could be used by a dialogue system. This would provide the system with the right
NSU class, which in the present approach determines the appropriate resolution proce-
dure. Obviously, for this to be of any use, the system fed by the output of the classifier
needs to be equipped with the capability of resolving NSUs on the basis of this infor-
mation. A system designed with the aim of resolving NSUs is SHARDS (Ginzburg et al.
2001, Fernández et al. in press), which implements an approach in line with the one I
have presented in this thesis.

SHARDS is an implemented system which provides a procedure for computing the in-
terpretation of some NSUs in dialogue. The system comprises two main components: an
HPSG-based grammar and a resolution procedure. The SHARDS grammar is an imple-
mented version of the grammar proposed by Ginzburg and Sag (2001), and is encoded
in ProFIT (Erbach 1995). It is is able to parse NSUs and to assign them an underspecified
semantic representation.

The last sentence parsed by the grammar is stored in memory and is used by the
second component of the system to resolve the underspecified content of NSUs. The
resolution component creates a model of dialogue context that provides a set of possible
questions under discussion and a set of salient utterances. Once an NSU has been parsed,
the resolution component instantiates the values of the features MAX-QUD and SAL-UTT

and combines them with the underspecified semantic representation of the NSU to fully
resolve its content.

The baseline system handles short answers, direct and reprise sluices, as well as plain
affirmative answers to polar questions. SHARDS however has been extended to cover
several types of clarification requests, and has been used as a part of the information-
state-based dialogue system CLARIE (Purver 2004b), which implements the theory of
grounding and clarification proposed by Ginzburg and Cooper (2004).
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6.5 Summary and Conclusions

This chapter has addressed the task of automatically classifying NSUs employing ma-
chine learning techniques. I have presented two experiments: one concerned with the
classification of all NSU classes, and another one focussed on the disambiguation of
sluice interpretations. In both cases, the results obtained are decidedly positive and pro-
vide the basis for a wide-coverage NSU classification model that can be used to assist the
resolution of NSUs in a dialogue processing system.

The experiments have also provided interesting insights into the data, for instance by
showing that some NSUs that according to the approach of Chapter 4 require more com-
plex resolution mechanisms—like Helpful Rejection and Repeated Acknowledgement—
are also NSU classes that are more difficult to disambiguate automatically; while [+ SA]
NSUs like Plain Acknowledgement, Plain Affirmative Answer, Plain Rejection and Propo-
sitional Modifier, since they usually have a strong lexical component are rather easy to
spot. As for sluices, the experiments have confirmed that the identified correlations be-
tween interpretation and sluice type are a good guide to predict sluice reading.

To train the machine learners I have used a small set of features that capture ei-
ther properties of the NSUs themselves, of their antecedents, or of the relation between
antecedent and NSU. The positive results obtained suggest that the features employed
offer a reasonable basis for machine learning acquisition of the NSU taxonomy. However,
some features like parallel, introduced to account for Helpful Rejection, require con-
siderable improvement. A possibility in this direction could be to use similar techniques
to the ones employed e.g. in (Poesio et al. 2004, Schlangen 2005) to compute semantic
similarity to derive a notion of semantic contrast that would complement this structural
feature. This is however an issue that I leave to future investigation.





7 Conclusions

In this chapter, I briefly summarise the main contributions made in this thesis and provide
an outlook on possible ways in which the work could be further developed.

7.1 Summary of Contributions

This thesis has been concerned with the analysis of non-sentential utterances in dia-
logue. I have employed experimental, symbolic and statistical methods to provide an
account that is grounded on empirical data, is theoretically motivated, and is amenable
to computational processing. As the last section of each chapter offers an overview of
its content, I shall not recapitulate this here. Instead, I devote this section to identifying
some of the main contributions of this work. These are the following:

• The first contribution of the thesis concerns the development of a comprehensive,
corpus-based taxonomy of NSU classes as they occur in conversation. The empirical
study on which the taxonomy is based also offers novel data about the distance
between NSUs and their antecedents.

• As a second contribution, I have shown that Type Theory with Records can be used
to formalise the main classes of NSUs identified. In previous work, this kind of task
has typically been addressed using the formalism of HPSG. Here I have demon-
strated that Type Theory with Records offers a valid alternative to the grammatical
characterisation of utterances in general, which has the advantage of combining
sign-like structures with dynamic representations.

• A third contribution of the thesis relates to the proposed hierarchy of abstract mod-
els of dialogue protocols. The hierarchy can be seen as providing an abstract char-
acterisation of the minimal computational requirements needed to deal with dif-
ferent structural features of dialogue interaction. This offers a novel link between
dialogue dynamics and formal language theory.
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• The fourth main contribution of this thesis concerns the application of machine
learning techniques to the problem of automatically identifying NSU classes. This
has resulted in a wide-coverage classification model that can be used to boost the
resolution of NSUs in dialogue processing.

7.2 Further Work

In Chapter 4, I have formalised the main classes of NSUs. However, some classes like
Bare Modifier Phrase, Factual Modifier, Conjunct or Filler were not given an analysis.
Perhaps the most natural direction for future work would be to extend the TTR analysis
to cover these classes as well. For classes like Bare Modifier Phrase, this would involve
extending the grammatical analysis to incorporate a proper treatment of modification.
The class Filler, however, seems to require incremental processing and therefore would
call for more radical extensions.

Regarding the abstract models for dialogue protocols introduced in Chapter 5, there
are a variety of possible avenues of future research. The most obvious would be to try
to identify further dialogue phenomena that require protocol models not covered by the
analysis given so far. For instance, to analyse some NSU classes I have made use of ac-
commodation. The question is whether this calls for an extension of the data type used
(in order to be able to introduce elements into the memory component in retrospective),
or whether this simply requires a more sophisticated use of an existing model. Another
interesting issue is the interaction between protocols and other aspects of dialogue mod-
elling. For instance, the choice of a particular protocol model may restrict the possible
dialogue strategies. Vice versa, the need for a particular strategy may influence the data
type used to model the protocol.

The classification task addressed in Chapter 6 is only a first step towards the auto-
matic resolution of NSUs. To actually resolve NSUs, obviously the classifier has to be
combined with a module that takes care of this task on the basis of the NSU class iden-
tified. In this respect, a possible route to take could be to integrate the classification
model presented in this thesis with the information state-based dialogue system CLARIE
(Purver 2004b), which is based on similar theoretical assumptions. One of the main as-
pects involved in the integration of a classifier with the resolution module would be the
extraction of the feature values from the information state of the system, as well as the
instantiation of the contextual variables with information from the feature values.

The input fed to the classification model I have presented is a vector of features
associated with an utterance that has already been singled out as an NSU. Hence, a
related point that needs further elaboration is the automatic identification of NSUs as
opposed to other kinds of utterances in dialogue. As mentioned earlier, some work in
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this direction has recently been carried out by Schlangen (2005).
Finally, it is worth stressing that in this thesis I have only looked at NSUs from a

processing perspective. Nothing has been said about the generation of NSUs in dialogue,
which clearly is an interesting and important topic as well. Stina Ericsson’s thesis ad-
dresses NSUs from this perspective (Ericsson 2005).





Appendix A
Generalising PABAK to n Categories

This appendix provides a generalisation of the PABAK formula for n categories and m
coders developed in collaboration with Ulle Endriss.

In (Byrt et al. 1993), PABAK is computed with the same formula to compute kappa,
but using as P (E) an “average” chance agreement P (E)av, where any category is taken
to be equally chosen by all coders. In the case of two coders choosing between two
categories, PABAK equals 2P (A)− 1, given that: (i) The probability p of a coder choos-
ing one of the two categories is the total proportion divided by the number of cate-
gories, i.e. p = 1/2 = 0.5, (ii) the probability of the 2 coders agreeing on a category
is p2 = 0.52 = 0.25, and (iii) the probability of the 2 coders agreeing on any of the 2
categories equals 2 · p2. Hence P (E)av = 2 · 0.25 = 0.5, and therefore

PABAK =
P (A)− 0.5

1− 0.5
= 2P (A)− 1

The generalisation of P (E)av for m coders and n categories equals to 1/n, given that: (i)
The probability p of a coder choosing one of n categories is 1/n, (ii) the probability of
any pair of coders agreeing on a category is (1/n)2, and (iii) the probability of any pair
of coders agreeing on any category equals n · (1/n)2. Hence P (E)av = n · (1/n)2 = 1/n.
Therefore we obtain

PABAK =
P (A)− 1

n

1− 1
n
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Appendix B
The TTR System: Formal Definitions

This appendix provides the formal definitions of Type Theory with Records. I introduce
the general hierarchy of types and give precise definitions of records, record types, and
families of record types. The appendix ends with a summary of the basic boolean opera-
tions on propositions.

B.1 The TTR System

In order to be able to treat types as objects in our domain, following Cooper (2006a)
I introduce a stratified set Type of sets Typen of types of order n. The stratification is
achieved by stating that Typen+1 is the set of types whose inhabitants are types of order
n. Type0 is then the set of types whose inhabitants are not types. This allows us to treat
types as first class citizens while avoiding paradoxes like T : T . Here I define the system
of TTR in terms of stratified types. In the main text, however, I ignore the subscripts
whenever there is no danger of confusion.

The system of Type Theory with Records is a set

TTR System = {Type,BasType,ProofType,M}

where

• Type =
⋃

n∈N Typen is a family of sets indexed by the naturals numbers such that
for any n ∈ N:

– Typen is a set of types of order n.

– RecTypen is a set of record types ρ of order n, where record types are sets
of pairs 〈l, T 〉 defined with respect to a set of labels L, such that l ∈ L and
T ∈ Typen.

– If T ∈ RecTypen then T ∈ Typen.
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• BasType is a set of basic types, including at least types Ind ,Time,Bool .

• ProofType is a set of proof types. It is defined with respect to a pair 〈Pred ,V 〉,
where Pred is a set of predicates and V a function that assigns to each P ∈ Pred a
finite tuple of types T ∈ Type.

• M = {D,F, v} is a model where

– D is a non-empty set of elements.

– F is a function such that:

for each T ∈ BasType, F (T ) ⊆ D

for each T ∈ ProofType, F (T ) ⊆ D

– v is a mapping from a set of symbols Σ = {a1, · · · , an} to elements in D.

F determines the inhabitants of the basic types by assigning to each T ∈ BasType
a set of elements in D. If T ∈ BasType, then a : T iff v(a) ∈ F (T ).

The elements of ProofType are determined by F in the following way: If P ∈
Pred , V (P ) = 〈T1, . . . , Tn〉 and v(a1), · · · , v(an) ∈ D are such that a1 : T1, . . . , an :
Tn, then P (a1, · · · , an) ∈ ProofType. If T ∈ ProofType, then a : T iff v(a) ∈
F (T ).

B.1.1 The Hierarchy of Types

The hierarchy of types is constructed as follows:

• Type0 = BasType ∪ProofType, and nothing else.

For each n > 0, Typen is inductively defined as follows:

• If T ∈ Typen then T ∈ Typen+1.

• If T1, T2 ∈ Typen, then (T1 → T2) ∈ Typen.

• If T1, T2 ∈ Typen, then (T1 ∧ T2) ∈ Typen.

• If T1, T2 ∈ Typen, then (T1 ∨ T2) ∈ Typen.

• If T ∈ Typen, then ¬T ∈ Typen.

• No other types belong to Typen.

• If T ∈ Typen and T : T ′, then T ′ ∈ Typen+1.
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• Let ProofType ∈ Type1 be the type of proof types; that is T : ProofType iff T ∈
ProofType.

• Let Typen ∈ Typen+1 be the type of types of order n; that is T : Typen iff T ∈
Typen.

• Let RecTypen ∈ Typen+1 be the type of record types of order n; that is T :
RecTypen iff T ∈ RecTypen.

B.1.2 Records, Record Types and Families of Record Types

• The inhabitants of record types are records, that is sets of pairs 〈l, a〉 of labels l and
objects a. A record r = {〈l1, a1〉, · · · , 〈ln, an〉} is of type ρ = {〈l1, T1〉, · · · , 〈lk, Tk〉}
iff for each field 〈li, Ti〉 ∈ ρ there is a field 〈li, ai〉 ∈ r such that ai : Ti.

• Let Recn be the type of records of type ρ such that ρ : RecTypen. The empty record
r = { } also denoted by [ ] is of type Rec0. For any n > 0, if T ∈ RecTypen and
r : T , then r : Recn.

• The empty record type ρ = { } is also denoted by [ ] ∈ RecType0. For each n > 0,
RecTypen is inductively defined as follows: If ρ ∈ RecTypen, l is a label not
occurring in ρ, and T ∈ Typen, then ρ ∪ {〈l, T 〉} ∈ RecTypen. A record r is of
type ρ ∪ {〈l, T 〉} iff r : ρ, 〈l, a〉 is a field in r and a : T .

• Dependent record types are a particular kind of record types. Dependent record
types are record types ρ such that some types appearing in ρ are families of types.
A family of types over a type T is a function F of type (T → Typen) from variables
x : T to types T ′ : Typen dependent on x, such that F(a) = T ′[x→a] for any a : T .
We extend the subtyping relation to families of types as follows:

Definition 7 (Subtyping of families of types) Let F1 : (T1 → Typen) and F2 :
(T2 → Typen) be families of types. Then F1 v F2 iff T1 v T2 and F1(a) v F2(a) for
any element a : T1.

If ρ ∈ RecTypen, F is a family of types over ρ, and l is a label not occurring in ρ,
then ρ ∪ {〈l,F〉} ∈ RecTypen is a dependent record type.

• Families of record types are a particular kind of families of types. A family of record
types is a family of types F over T such that F : (T → RecTypen).
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B.2 Boolean Operations on Propositions

• Negation

Given a proposition p =

[
s = r

sT = ρ

]
its negation is q =

[
s = r

sT = ¬ρ

]
. If p is

true then q is false.

• Conjuction

Given propositions p =

[
s = r1

sT = ρ1

]
and q =

[
s = r2

sT = ρ2

]
their conjunction

{p, q} is

[
s = 〈r1, r2〉
sT = ρ1 ∧ ρ2

]
. {p, q} is true iff p and q are true.

• Disjunction

Given propositions p =

[
s = r

sT = ρ1

]
and q =

[
s = r

sT = ρ2

]
their disjunction

{p, q} is

[
s = r

sT = ρ1 ∨ ρ2

]
. {p, q} is true iff either p or q is true.



Appendix C
A Grammar Fragment

This appendix contains a detailed grammar fragment for the utterance representations
put forward in Chapter 4. I start by introducing a small lexicon, to then give the com-
positional principles by means of which basic phrases and simple clausal types are con-
structed.

C.1 Preliminaries

The grammar will be defined as a set of constructions, in the sense of Sag (1997). Lexical
items, phrases and clauses are represented as families of information state types. Recall
that these are functions λ(r : IS 1).IS 2 where IS 1, IS 2 v IS . Let us first zoom into the
internal structure of the IS type in order to better grasp some notational abbreviations I
shall use in the definition of the grammar. Information states are records of the following
type:

(202) IS =def



facts :

[
s : Rec
sT : RecType

]

qud :

〈[
que : Question
top : 〈Sign〉

]〉

utt :



s : Rec

sT :


z :


phon : Phon
syn : Cat
sem : Type
quant : RecType


a : Ind
c : Utter(a, z)






The type Sign corresponds to the record type labelled z within utt. The label quant
will be used to handle existential quantifiers, of which I will offer an extremely simple
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account that will be limited to indefinite NPs. The content of definite NPs will be the
value of their label quants, which will be later on incorporated into the content of clauses
containing these phrases.

As the representation of families of IS types can be rather cumbersome, in the defini-
tion of the grammatical types I shall use some notational shortcuts, most of which were
already introduced in Chapter 4. They can be summarised as follows:

• I will generally ignore those fields, in both domain and range types of the function,
that are not relevant for current purposes. When there is no need to zoom into
either the domain or the range types, I will use the general type IS .

• Within the range type of the function, I will mostly be concerned with the sign
associated with each construction—i.e. the value of label z within the situation
type of the locutionary proposition in utt. Consequently, I will whenever possible
use the label utt.z instead of utt to avoid clutter and directly refer to that sign.

• As for qud, usually I will be concerned with the first element in the qud list. There-
fore I will commonly employ the label qud1 instead of qud to refer to that first
element.

• Within the domain type, often I will need to refer to contextual parameters that will
typically be part of the situation type of the propositional content of facts. Thus,
for convenience of notation, I will usually refer to them directly under facts, i.e.
ignoring the intermediate label sT .

C.2 Words

I start by defining a small lexicon containing proper names and common nouns, wh-
words, the singular indefinite article, intransitive and transitive verbs, and the auxiliary
verb do.

Proper Names The type of proper names is shown in (203), while (204) shows the
lexical entry for the name Mia.

(203) p name =def

λ

(
r :

[
facts :

[
x : Ind
c : named(x,Name)

] ])
.

[
utt.z :

[
syn = N : Cat
sem : [y = r .x : Ind ]

] ]

(204) λ

(
r :

[
facts :

[
x : Ind
c : named(x,Mia)

] ])
.

 utt.z :

 phon : mia
syn = N : Cat
sem : [y = r .x : Ind ]
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Being referential expressions, proper names denote individuals, whose existence is taken
for granted. This is indicated by requiring their content to be of type Ind, and constrain-
ing the current information state to include the appropriate individual—in (204), for
instance, an individual x named Mia. Identity between the contextually provided indi-
vidual and the denotation of the name is enforced by means of a manifest field.

Common Nouns The type of common nouns is given in (205). In a classical montogo-
vian style, the content of common nouns is modelled as a function from individuals to
proof types. An example for the noun bike is shown in (206). As the content of the noun
is in principle not dependent on context, the domain type is unconstrained i.e. specified
as being the general type of information states IS.

(205) cn =def

λ (r : IS ) .

[
utt.z :

[
syn = N : Cat

sem :
[

c : Ind → ProofType
] ] ]

(206) λ (r : IS ) .

 utt.z :


phon : bike
syn = N : Cat

sem :
[

c : λ(x : Ind).Bike(x)
]



Wh Words The type in (207) is the type of interrogative wh-words. Interrogative wh-
words like e.g. who and what are associated with wh-restrictors, i.e. records which intro-
duce an individual and restrict it appropriately, as seen in Section 4.2.2.1 of Chapter 4.
(208) shows the lexical entry for who.

(207) wh =def

λ (r : IS ) .


qud1 :

[
top = 〈utt.z〉 : 〈Sign〉

]
utt.z :

[
syn = N : Cat
sem : Twh

]


(208) λ (r : IS ) .



qud1 :
[

top = 〈utt.z〉 : 〈Sign〉
]

utt.z :


phon : who

syn = N : Cat

sem :

[
x : Ind
c : person(x)

]
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Indefinite Article I adopt a simple view of singular indefinite articles as functions that
map a property p (the denotation of common nouns) to a record type introducing an
individual that is constrained to bear p. This will be enough to ensure existential quan-
tification of the individual in question.1

(209) ind det =def

λ (r : IS ) .

 utt.z :


phon : a

syn = DET : Cat

sem : λ(r1 : [p : Ind → ProofType]).

[
x : Ind
c : r1.p@x

]



Verbs The types of intransitive and transitive verbs are shown in (210) and (211),
respectively. (212) and (213) give examples of particular lexical entries. The content
of an intransitive verb like procrastinate is a function that maps an individual to a proof
type that is inhabited if that individual procrastinates. A transitive verb like find follows
the same pattern, but with an extra argument for its object.

(210) int v =def

λ (r : IS ) .

[
utt :

[
syn = V : Cat
sem : λ (r1 : [x : Ind ]) . [ c : ProofType]

] ]

(211) tra v =def

λ (r : IS ) .

 utt.z :

 syn = V : Cat
sem : λ (r1 : [x : Ind ]) .

(λ (r2 : [y : Ind ]) . [ c : ProofType])




(212) λ (r : IS ) .

 utt.z :


phon : procrastinate

syn = V : Cat

sem : λ (r1 : [x : Ind ]) .
[

c : Procrastinate(r1.x)
]



(213) λ (r : IS ) .

 utt.z :


phon : find

syn = V : Cat
sem : λ (r1 : [x : Ind ]) .(

λ (r2 : [y : Ind ]) .
[

c : Find(r1.x, r2.y)
])




1Recall that by the definition of record typehood, record types are truth-bearing objects, which leads to
an effect of existential quantification (cf. Chapter 4, Section 4.1.1.2).
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The auxiliary verb do simply denotes the identity function, which I represent with the
type Id :

(214) aux do =def

λ (r : IS ) .

 utt.z :

 phon : do

syn = V : Cat
sem : Id




C.3 Phrases

Like words, phrases are also families of IS types, built up from those specified by their
immediate constituents. Phrasal functions have the following general form:

(215) λ(r : IS ).
[

utt.z : Phrase
]

The type Phrase is a subtype of Sign. As can be seen in (216), phrasal signs have two
additional labels: a label slash that will be used to construct canonical wh-interrogatives
as extraction constructions, and a label dtrs whose value is the list of signs associated
with the immediate constituents of a phrase. I shall label the signs within the list of
daughter with labels d1,d2, . . . ,dn.

(216) Phrase =def



phon : Phon
syn : Cat
sem : Type
quant : RecType
slash : Type
dtrs : 〈Sign〉


Besides the idiosyncrasies introduced by each construction, to which I will turn to in a
minute, some basic constrains governing the construction of phrases can be singled out.
These apply to any phrasal IS family σ0 with immediate constituents σ1, ..., σn.

Let σ = λ(r : T1).T2 be an IS family. I shall use Dom(σ) to refer to T1 and Rng(σ)
to refer to T2, where T1, T2 v IS . If π is a path of labels l1, ..., ln in T1, then Dom(σ).π
denotes the type labelled by ln in T1. If π is a path of labels in T2, then Rng(σ).π denotes
the type labelled by ln in T2.

• Contextual amalgamation: Dom(u0) v Dom(σ1), ...,Dom(σn)

The domain type of a phrasal IS family σ0 is a subtype of the domain type of
each of its immediate constituents. Essentially this means that phrases inherit the
contextual requirements of their daughters, being on top of this able to introduce
new requirements of their own.
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• quant amalgamation: Rng(σ0).utt.z.quant =
⋃n

i=1 Rng(σi).utt.z.quant

The type of the field labelled quant in the range type of a phrasal IS family σ0 is
the union of the record types labelled quant in the range type of its daughters.

• Top amalgamation: Rng(σ0).qud1.top = 〈Sign〉
⊕n

i=1 Rng(σi).qud1.top

The value of top within the maximal question under discussion of the range type
of a phrasal IS family is the concatenation of some list of signs and the top values
of the range type of its daughters. Again this means that phrases inherit topical
sub-utterance from their daughters as well as being able to introduce topical sub-
utterances themselves.

• Phrasal structure: Rng(σ0).utt.z.dtrs = 〈Sign〉〈d1:Rng(σ1).utt.z,...,dn:Rng(σn).utt.z〉

The value of the field labelled dtrs in the sign within the value of utt in the range
type of a phrasal IS family σ0 is a singleton type whose only inhabitant is a list
whose members d1, . . . ,dn are signs as specified in the range type of σ0’s daughters.

If σ1 : T is an immediate constituent of σ0, then within the list of daughters of σ0 I
will use the notation T.z instead of Rng(σ1).utt.z to denote the type of the sign in
the range type of σ1. Again, this will become clear in a minute when phrases are
defined.

C.3.1 Non-clausal Phrases

In this section I shall define simple NPs and VPs.

Noun Phrases The general type of NPs is shown in (217).

(217) np =def

λ (r : IS ) .

[
utt.z :

[
syn = NP : Cat
sem = [x : Ind ]

] ]

Beside the NPs consisting of a proper name or a wh-word, I consider indefinite NPs of the
form “a N”. While proper name NPs are referential and require the presence in context
of a suitable referent, indefinites are existentially quantified and introduce a topical sub-
utterance in qud. The IS family in (218) is the type of indefinite NPs. Note that by
phrasal structure, the value of dtrs is a list containing the signs associated with IS
families of type ind det and cn, which are therefore the immediate constituents of this
phrasal type.
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(218) np ind :

λ (r : IS ) .



qud1 :
[

top = 〈utt.z〉 : 〈Sign〉
]

utt.z :


syn = NP : Cat
sem : d1.sem@d2.sem
quant = d1.sem@d2.sem : RecType
dtrs = 〈d1 : ind det .z, d2 : cn.z〉 : 〈Sign〉




There are a few aspects that should be noted about this type. First, the content of the
indefinite NP arises by applying the content of the indefinite article (its first daughter)
to the content of the noun (its second daughter). Second, the value of the label quant
is the same as the content of the NP. And third, the indefinite NP becomes a topical
sub-utterance within qud.

Let us see how this works with an example. Consider the indefinite NP a bike, whose
immediate constituents are the indefinite article a and the noun bike as defined in (209)
and (206), respectively. The types of the daughters are shown in detail in (220) and
(221).

(219) λ (r : IS ) .



qud1 :
[

top = 〈utt.z〉 : 〈Sign〉
]

utt.z :


phon : a bike

syn = NP : Cat
sem : d1.sem@d2.sem
quant = d1.sem@d2.sem : RecType
dtrs = 〈d1 : a.z,d2 : bike.z〉 : 〈Sign〉





(220) d1 :

 syn = DET : Cat

sem : λ(r1 : [p : Type]).

[
x : Ind
c : r1.p@x

] 

(221) d2 :

[
syn = N : Cat

sem :
[

c : λ(y : Ind).Bike(y)
] ]

The content of the NP (as well as the value of quant) arises by the application of d1.sem
to d2.sem, which has as output the following record type:

(222)

[
x : Ind
c : λ(y : Ind).Bike(y)@x

]

Finally, after application of the function denoted by the noun to an individual x as speci-
fied in the field labelled c above, we obtain the record type in (223), which corresponds
to the content of the indefinite NP.
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(223)

[
x : Ind
c : Bike(x)

]

Verb Phrases (224) shows the general type of VPs, which is the same as that of intran-
sitive VPs. The type of transitive VPs (subsumed by (224)) is given in (225).

(224) vp =def

λ (r : IS ) .

[
utt.z :

[
syn = VP : Cat
sem : λ (r1 : [x : Ind ]) . [ c : ProofType]

] ]

(225) vp tra =def

λ (r : IS ) .

 utt.z :

 syn = VP : Cat
sem : d1.sem@d2.sem
dtrs = 〈d1 : v tra.z, d2 : np.z〉 : 〈Sign〉




In the most standard way, the content of a transitive VP arises by applying the denotation
of the verb to that of the object. Let us see how the VP find a bike would be built up from
the IS families corresponding to the verb find (213) and the indefinite NP a bike (219).

(226) λ (r : IS ) .



qud1 :
[

top = 〈d2〉 : 〈Sign〉
]

utt.z :



phon : find a bike

syn = VP : Cat

sem : λ(r2 : [y : Ind ]).
[

c : Find(r2.y,d2.sem.x)
]

quant =

[
x : Ind
c : Bike(x)

]
: RecType

dtrs = 〈d1 : find .z,d2 : a bike.z〉 : 〈Sign〉





(227) d1 :


phon : find

syn = V : Cat
sem : λ(r1 : [x : Ind ]).

λ(r2 : [y : Ind ]).
[

c : Find(r1.x, r2.y)
]


(228) d2 :



phon : a bike

syn = NP : Cat

sem :

[
x : Ind
c : Bike(x)

]

quant =

[
x : Ind
c : Bike(x)

]
: RecType
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Applying d1.sem to d2.sem yields the following function, which is the content of the VP:

(229) λ(r2 : [y : Ind ]).
[

c : Find(r2.y,d2.sem.x)
]

By top amalgamation and quant amalgamation, the values of top and quant are the
same as those of the object.

C.3.2 Clauses

In this section I will give the types for simple declarative clauses and basic polar and
wh-interrogatives.

Declaratives The content of a simple declarative sentence consisting of an NP and a
VP is a proposition whose situation type arises by applying the content of the VP to that
of the NP, and uniting this with any existential quantifiers.

(230) declarative =def

λ
(
r :
[

facts : [s : Rec]
])
.

utt.z :



syn = S : Cat

sem =

[
s1 = r .facts.s : Rec
sT = d2.sem@d1.sem ∪ quant : RecType

]
: Prop

slash : Rec0

quant : RecType
dtrs = 〈d1 : np.z,d2 : vp.z〉 : 〈Sign〉




Polar Interrogatives Polar interrogatives consist of the auxiliary verb do, an NP, and
a VP. Their content is a polar question. The situation type of the propositional core is
constructed by applying the content of the VP to that of the NP, and then applying the
identity function denoted by the auxiliary. Finally, any quantifiers are also united with
the situation type.

(231) polar int =def

λ
(
r :
[

facts : [s : Rec]
])
.

utt.z :



syn = S : Cat

sem = λ(r1 : [ ]).

[
s1 = r .facts.s : Rec
sT = d1@(d3.sem@d2.sem) ∪ quant : RecType

]
: Q

slash : Rec0

quant : RecType
dtrs = 〈d1 : aux do.z,d2 : np.z,d3 : vp.z〉 : 〈Sign〉
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Wh-interrogatives For simplicity’s sake, I only provide a type for subject wh-
interrogatives. To construct them, we need an additional declarative type that creates a
proposition out of a VP. This is achieved by applying the function denoted by the VP to
the value of slash.

(232) non subj decl =def

λ
(
r :
[

facts : [s : Rec]
])
. utt.z :


syn = S : Cat

sem =

[
s1 = r .facts.s : Rec
sT = d1.sem@slash ∪ quant : RecType

]
: Prop

slash : Type
dtrs = 〈d1 : vp.z〉 : 〈Sign〉





We can now construct subject wh-interrogatives treating the wh-phrase as a filler whose
content is identified with the slash value of a non-subject declarative. The content of this
construction is a question whose domain is the content of the filler wh-phrase and whose
range is the propositional content of the non-subject declarative.

(233) wh int =def

λ
(
r :
[

facts : [s : Rec]
])
.

utt.z :



syn = S : Cat
sem = λ(d1.sem).d2.sem : Question
slash : Rec0

quant : Rec0

dtrs =

〈
d1 : [sem = d2.slash : Twh ],
d2 : [sem : [s1 = r .facts.s : Rec]]

〉
: 〈Sign〉





C.4 Root Utterances

Finally, root utterances are defined as IS families of type root . The value of utt is of type
IllocProp. The content of the sign is constrained to be of type Message and the value of
slash to be the empty record.
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(234) root =def

λ


r :



facts :

 s : Rec
a : Ind
b : Ind


qud :

〈[
que : Question
top : Sign

]〉
utt : IllocProp




.



facts v r .facts : Prop

qud :

〈[
que : Question
top : Sign

]〉

utt :



s1 = r .facts.s : Rec

sT :


z :

 syn = S : Cat
sem : Message
slash : Rec0


c1 : Utter(r .facts.a, z)
c2 : IllocRel(r .facts.a, r .facts.b, z.sem)
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