
Information State Update: Semantics or Pragmatics?

Raquel Fernández, Matthew Purver
Department of Computer Science

King’s College London, Strand, London WC2R 2LS, UK
{raquel,purver }@dcs.kcl.ac.uk

Abstract

We argue for an approach which treats
the compositional semantic content of
an utterance as including its basic dia-
logue update effects – those which can
be derived entirely from its semantic and
syntactic properties. This allows us to
capture the distinction between these in-
tegral semanticcontextual effects and
thosepragmaticeffects which can only
be determined from the interaction be-
tween features of the utterance and the
context itself.

1 Introduction

This paper presents an approach to dialogue up-
date processes that captures the distinction be-
tween that part of an utterance’s contextual im-
port that can be derived entirely from its seman-
tic and syntactic properties, and that which results
from interaction between features of the utterance
and the context – by treating the former as part
of the utterance’s compositionalsemanticcontent
and only the latter as having to be specified sepa-
rately aspragmaticprocesses. We then show that
this does not prevent an utterance’s representation
from articulating constraints on context, and illus-
trate this for context-dependent phenomena such
as givenness and ellipsis.

1.1 Background

We adopt the approach to utterance representa-
tion introduced in (Purver and Fernández, 2003),

which views utterances and their sub-constituents
as instructions for contextual update: programs in
a dynamic logic defined with respect to the dia-
logue gameboard (DGB) of (Ginzburg, 1996). The
DGB provides a structured view of context in di-
alogue by keeping track of the following compo-
nents: a set of commonly acceptedFACTS; a par-
tially ordered setQUD of questions under discus-
sion (QUDs); and theLATEST-MOVE (LM) made
in the dialogue.

In (Ferńandez, 2003), the DGB is formalised
using first-order Dynamic Logic (DL) as it is in-
troduced in (Harel et al., 2000). In short, DL is a
multi-modal logic with a possible worlds seman-
tics, which distinguishes betweenformulae and
programs. Programs are interpreted as relations
between states that change the values assigned to
particular variables. They can be combined to
form complex programs by means of a repertoire
of program constructs, such assequence; , choice
∪, iteration * and test?. The different DGB com-
ponents are modelled either as individual variables
ranging over terms (e,g.LM, for the latest move),
or asstackvariables ranging over strings of terms
(e,g. QUD, a stack of questions). Update oper-
ations are brought about by program executions
that involve changes in variable assignments. The
atomic programs are simple assignments (x := t),
wherex is an individual variable andt is a term;
and X.push(x) and X.pop programs, whereX is
a stack variable andx stands for the element to
be pushed ontoX. Such programs can then be
assigned to utterances and their sub-components
by a HPSG grammar which relates programs to

grammatical types. The approach allows us to re-
flect the basic insights of dynamic semantics (e.g.
indefinite NPs can be assigned programs which
introduce new referents) and define a process of
grounding and clarification, as well as specify up-
date effects of utterances familiar from Informa-
tion State (IS)-based theories of dialogue.

2 Update Programs

The basic assumption underlying the IS approach
to dialogue modelling is that the main aspects
of dialogue management are best captured by (i)
keeping track of the relevant information available
to each dialogue participant at each state of the
conversation, and (ii) providing a full account of
the possible update mechanisms that change this
information. The notion of ISupdateis key, usu-
ally being governed by a set ofupdate rulestrig-
gered by the observation and performance of dia-
logue moves.

Our starting point is, in fact, a fairly straightfor-
ward extension of this view: as long as dialogue
move types can be incorporated into the grammat-
ical representation of utterances, their update ef-
fects can also be seen as part of the utterance’s lin-
guistically conveyed information. The integration
of direct illocutionary force into the grammar has
been argued for in (Ginzburg et al., 2001b). The
authors present an HPSG grammar where each
illocutionary type introduces a constraint on the
type of its message argument (ask-rel types are
associated withquestions, assert-rel types with
propositions, and so on), with these message types
being determined by syntactic form. SDRT (Asher
and Lascarides, 2003) also assumes auniform se-
manticsof declaratives, interrogatives and imper-
atives, where each clause type is linked to its illo-
cutionary force by means of compositional seman-
tics. Our approach goes one step further in that
it views the immediate contextual effects of these
various illocutionary types (which are usually seen
as brought about by independent IS update rules or
pragmatic inference) as compositionally linked to
syntactic and semantic properties of utterances. In
(Purver and Ferńandez, 2003) this is achieved by
associating appropriate DL programs with particu-
lar clause types, as shown inAVM (1) and AVM (2)

for interrogatives and declaratives:

(1)

interrogative

CONT 1
[
question

]
C-PROG A; QUD.push(1)

HEAD-DTR | C-PROG A

(2)

declarative

CONT 1
[
proposition

]
C-PROG A; QUD.push(whether(1))

HEAD-DTR | C-PROG A

Introducing DL programs into the grammatical

representation of utterance types allows us to re-
flect the part of their contextual import which is
compositionally derivable. Just as an indefinite
NP intrinsically introduces a new entity into the
context,ask moves, and therefore questions, in-
trinsically introduce new QUDs (in our formal-
isation, push their content ontoQUD). Similarly,
moves which assert a propositionp push the ques-
tion whether(p) onto QUD. Note that this is not
to deny that some questions and assertions might
have further contextual effects, or even that QUD
introduction might also be achievable by other,
less obvious means. The point here is that an im-
portant part of the context change potential ofask
andassertmoves (namely the fact that they intro-
duce particular QUDs) can be fully derived from
their grammatical properties. As far as dialogue
goes, it is therefore possible and, we think, desir-
able to consider such updates as part of the seman-
tic contribution of interrogative and declarative ut-
terances (just as much as the introduction of new
referents is part of the semantic contribution of in-
definites). This is precisely what our programs
achieve.

The main issue to consider now is: can this ap-
proach be extended to all dialogue move types? In
other words, is it possible to encode the main con-
textual updates brought about by dialogue moves
into the grammatical representation of utterances,
thus removing the need for independent update
rules?

3 Semantic vs. Pragmatic Updates

Here we must distinguish two different kinds of
updates: updates whose assignment can be deter-
mined purely by properties of the utterance itself,
and those which should only be assigned to ut-

terances given certain information in the current
state.

3.1 Semantic (Direct) Updates

The immediate update effects of direct moves such
as ask and assert (as given above) can be de-
termined by simple examination of the linguistic
properties of utterances – they don’t have to be in-
ferred using pragmatic information. The same can
be said for many other move types included in di-
alogue act taxonomies such asgreetings, closings
andacknowledgements. In fact, one could argue
that the meaning of an acknowledgement canonly
be represented as a contextual update – in our ap-
proach, acknowledgements are associated with a
program that pushes ontoFACTSwhatever propo-
sition was previously under discussion:

(3)

ack-cl
CONT acknowledge-rel
C-PROG head(QUD) = whether(p)?;

FACTS.push(p); QUD.pop

The complex program shown in AVM (3) re-

quires for its success the existence of some ques-
tion whether(p) under discussion. If there is no
such question, the program will not succeed, the
utterance cannot be understood or grounded (and
on our account, will cause a clarification question).
This seems correct: if there is nothing to be inte-
grated into the common ground, or if the current
QUD is awh-question, an acknowledgement will
seem quite odd. Acknowledgements require suit-
able QUDs in order to be understood (just as un-
derstanding anaskmove seems to require recog-
nition of its intention to raise a new QUD). It is
important to note that although an acknowledge-
ment therefore imposes a restriction on the type of
state to which it can apply (expressed as atestsub-
program), there is no need for pragmatic informa-
tion to determine what its update effects should be
(what program to associate with it).

3.2 Pragmatic (Indirect) Updates

Most dialogue act taxonomies and implemented
dialogue systems include other move types which
are less directly associated with the linguistic
or grammatical form of the utterance. Indirect
speech acts such as requests or commands can take
the form of questions (“Can you close the door

please?”); questions can be rhetorical (“Do I look
like an idiot?”).

Answers in the Grammar? A common exam-
ple in dialogue systems is ananswermove. An-
swers differ from assertions and questions in many
respects: if we were to specify the contextual up-
date effect of an answer by a program, it might be
of the formQUD.pop – i.e. a program that down-
datesQUDby popping the maximal question under
discussion, rather than one which adds a new ques-
tion to the stack. The notion of answerhood em-
ployed by many dialogue systems involves asser-
tion of a proposition that unifies with the proposi-
tional content of a QUD question (see e.g. (Traum,
2003)). This could be easily defined within the
grammar as in (4):

(4)

answer

CONTENT 1
[
proposition

]
C-PROG (head.(QUD) = λ

{
. . .
}
. 1)?; QUD.pop

The problem is of course that there will be no

way of associating this program with an utter-
ance based on its internal grammatical properties
alone: to determine which update effects to asso-
ciate with a declarative (those of anassertprogram
as in (2) or ananswerprogram as in (4)), we must
take into account its relation to some relevant con-
textual information (precisely the maximal QUD).
Given our formalism, this could be phrased as a
single program using thechoiceoperator:1

(5)

declarative

CONTENT 1
[
proposition

]
C-PROG ((head.(QUD) = λ

{
. . .
}
. 1)?; QUD.pop)

∪ QUD.push(whether(1))

However, we see several problems with such

an approach. The first is that downdating QUD,
which must be one of the update effects of an an-
swer, does not need to be performed in order to
understandit: one can understand an answer with-
out accepting it, and indeed can discuss whether
it is true – so making this downdate part of the
semantic content seems inappropriate. A second
is that the contextual effects expressed as the se-

1Another equally unattractive solution would be to seeall
declarative sentences as ambiguous between being answers
and assertions, with two alternative analyses assigned by the
grammar and with the decision between the two made later.

mantic content have now becomedetermined by
context, rather than just expressingrestrictions on
context as before. Even worse, the third is that this
approach seems very difficult to scale up to more
complex notions of answerhood: in particular, in-
direct answers could not be detected by the test
of unification with the head QUD as above, but
would require some further inference – thus the
C-PROG program would have to involve such in-
ference and presumably access to further contex-
tual information. Semantic content, then, would
not only be context-dependent but include (possi-
bly unrestricted) access to pragmatic components.

Note that this is not the case for acknowledge-
ments: the program in AVM (3) shows no contex-
tually determined variation in its possible effects
– the program simply imposes a restriction on the
current state that has to be met for the update pro-
gram to be executable: if the restriction is not met,
the program will just fail.

Answers outside the Grammar A more rea-
sonable approach therefore seems to be to take an-
swers as having update effects at two levels: at the
direct level, expressible as part of the grammati-
cally assigned semantic content, the effect of an
assertion as in AVM (2) (introducingwhether(p)
to QUD); and then at theindirect level the further
answering effect (popping theQUDstack). This
indirect effect must be outside the realm of gram-
mar, as its applicability will depend on the cur-
rent IS – reasoning or update rules must decide
whetherp answers the current maximal QUD, and
if so whether it is to be accepted.

The semantic content then no longer varies with
context (although it can still express a restriction
on context as before), and can be grammatically
assigned as long as this basic program is not in-
consistent with the possible later indirect updates.
For answers, the basic effect is an assertion which
is then used to license QUD downdate; for rhetor-
ical questions, the basic effect would be to intro-
duce a new QUD which is seen to be already an-
swered (by domain/world knowledge or context)
and thus immediately downdated; for indirect re-
quests, again the basic effect would be to introduce
a new QUD, which further inference would then
presumably determine to be influenced by the in-

directly requested task (see (Ludwig, 2001) for a
similar approach to inferring requests from basic
declaratives).

This distinction, between direct updates which
stem from the utterance’s internal properties on the
one hand, and indirect updates which stem from its
relation to context on the other, now allows us to
draw a line between the kind of updates that can
be thought of as part of an utterance’ssemantic
content, and those that should be specified sepa-
rately by means ofpragmaticoperations (e.g. up-
date rules or inference). Note that this distinction
does not correspond to the one drawn between for-
ward and backward looking acts (Allen and Core,
1997) – acknowledgements and answers are both
usually classified as backward-looking. In a typ-
ical system such as GoDiS (Larsson et al., 2000)
the only move type which requires separate prag-
matic processes (and which we would therefore
classify as indirect) isanswer.

3.3 Discourse & Turn-Taking Effects

So far we have assumed that the direct update ef-
fect of questions and assertions is to introduce a
question which becomes topmost in QUD (q, in
the case of asking a questionq, andwhether(p)
in the case of asserting a propositionp). In
Ginzburg’s account, this topmost position is taken
to explicate why the last question posed takes
conversational precedence (has to be addressed
first) and why elliptical forms are licensed as
responses to it. Several authors (Asher, 1998;
Ginzburg, forthcoming), however, have pointed
out that when multiple moves are performed by
the same speaker within a single turn, the evolu-
tion of QUD seems to be somewhat different.

(6)
A : Where were you? Did you talk to anyone?
B : I was at home. I didn’t talk to anyone.
B’: I didn’t talk to anyone, I was at home.

(7)
A : Who did you invite? Did you invite Jill?
B : Yes. Also Merle and Pat.

(8)
A : Who did you invite? And why?
B : Merle and Pat, because they are very
undemanding folks.

Examples like the ones above have motivated a
view according to which the way several queries

asked in sequence by the same speaker are inte-
grated into QUD depends on the discourse relation
that links them. Thus, the questions in example (6)
(adapted from (Asher, 1998)) are taken to be in
what has been calledcoordinate structure, with
none of them taken precedence over the other one.
The questions in (7), on the other hand, would
be related byquery-elaboration, which would ac-
count for the fact that apparently the second one
takes precedence over the first one. Contrastingly,
the questions in example (8) would be related by
query-extension, which would explain why in this
case the first question tends to be answered first.

At a first glance, one may think that three dif-
ferent QUD updating operations are needed to ac-
count for these examples: one that pushes the
second question next to the maximal QUD, the
standard push on top operation, and a “push-
under” operation (orQUD-FLIP, as it is called by
Ginzburg (forthcoming)) that would push the sec-
ond question under the topmost element in QUD.
If we were to specify these distinctions in our ac-
count, we would presumably have to do so by a
program that first tests the kind of rhetorical re-
lation that holds between the head of QUD and
the current question, and then applies the right
QUD.pushprogram, as in AVM (9):

(9)

interrogative

CONT 1
[
question

]
C-PROG q-elab(head(QUD), 1)?; QUD.push(1)∪

coor(head(QUD), 1)?; QUD.push-next(1)∪
q-ext(head(QUD), 1)?; QUD.push-under(1)

However, as with answers in the previous sec-

tion, the test subprograms in AVM (9) not only
express restrictions on the kind of state the pro-
gram can be applied to (like the program for ac-
knowledgements in AVM (3) above), but crucially
they both require further pragmatic information,
and use it to determine the program’s effects. To
decide on the kind of push program that has to
be applied, we must first compute the rhetorical
relation that holds between the current question
and the maximal QUD, and this will involve us-
ing pragmatic reasoning. Thus, to use a gram-
mar to assign the complex program in AVM (9) to
interrogative clauses seems both problematic and
rather pointless, given that its update effects are

actually ambiguous between three different QUD
updating operations, and such ambiguity is only
resolved by pragmatic knowledge about rhetorical
relations.

Instead, we think that thesemanticupdate ef-
fects of questions and assertions are still best
characterised by the simple programs proposed in
AVMs (1) and (2). In fact, a closer look at the ex-
amples above reveals that the discourse relations
that link different questions in the same turn do not
play such a significant role in determining avail-
ability and licensing of elliptical forms:

(10)
A : Who did you invite? Did you invite Jill?
B’: (I invited) Merle, Pat, and Jill, yes.

(11)
A : Who did you invite? And why?
B’: I thought we’d need a guitar, so Merle.

As (10) and (11) show, regardless of the rhetor-
ical relation that holds between the questions, both
questions are still available: they can be answered
by a fragment and it is up to the addressee to
choose which one to answer first. We can there-
fore assume that the basic QUD update mecha-
nism (and therefore our basic programs) do not re-
quire, and need not be affected by, computation
of the rhetorical relation that links moves within
a single turn. This is not to claim that discourse
relations are not needed at any level: they may be
required to establish the coherence of the dialogue
at the pragmatic level, or indeed to decide which
member of QUD to answer first. We do claim
however that one can still specify some basicse-
manticcontextual update potential brought about
by questions and assertions as monotonically in-
troducing QUDs.

QUDs introduced in the same turn must then
have equal satus in theQUDstack. We regard this
coordinate status as a consequence of the dynam-
ics governing turn management. It is implicitly as-
sumed that information about turn taking and turn
change is part of the resources commonly shared
by dialogue participants. To encode this informa-
tion explicitly in the dialogue context, here we as-
sume that QUD not only includes the questions
under discussion themselves, but also information
on turn change that acts as an additional structur-
ing mechanism of the QUD order. Assuming that

turn change is recorded in QUD, the maximal el-
ements of QUD are then those questions between
the top and the turn change indicator.2

4 The Contextual Interface

As we have seen,semanticupdate programs such
as acknowledgements can specify restrictions on
the current state, without requiring state infor-
mation to determine their form. How does this
distinction apply for other contextually-dependent
phenomena such as ellipsis?

4.1 Conditions on State

Some interaction between the utterance represen-
tation and the context is required not only by
moves like acknowledgements, but by the treat-
ment of givenness: given referents such as those
associated with definite NPs and proper names
contribute sub-programs which express restric-
tions on the type of state to which the utter-
ance program can be successfully applied – to
whit, that the state contain a suitable antecedent
(seeAVM (12) and AVM (13)). The same is
true for other givenness effects such as the fo-
cus/ground distinction: following (Engdahl et al.,
1999; Ginzburg, forthcoming) a particular focus/-
ground partition introduces a sub-program which
must find a particular maximal QUD in the cur-
rent state. This type of program, then, expresses a
condition on the kind of state to which it can ap-
ply: in other words, the kind of context in which
an utterance is licensed.

(12)

definite

CONT 1
[
parameter

]
C-PROG (1 ∈ BG/FACTS)?

(13)

root-clause

INFO-STRUCT

[
FOCUS 2

GROUND 3

]
C-PROG (head(QUD) = λ 2 . 3)?

4.2 Fragments

Elliptical fragments can also be seen in this way:
as being licensed only in certain types of context,
and therefore as expressing conditions on the kind

2A way of implementing this idea is to think of QUD as a
stack of sets. See (Fernández and Endriss, ms) for a formali-
sation of this in the context of dialogue protocols.

of state to which their programs can apply. Frag-
ments, of course, specify their content only partly,
requiring the presence of some information in con-
text in order to resolve their fully specified senten-
tial content. Ginzburg et al. (2001a) analyse this
by use of two contextual features in their HPSG
grammar,MAX -QUD and SAL-UTT: the content
of a fragment is specified in terms of constraints
on these, by identifying the propositional content
of the elliptical utterance with that ofMAX -QUD

and the referential index of the fragment itself
with that of SAL-UTT. Until resolution in con-
text, this information is essentially underspecified.
Schlangen (2003), on the other hand, regards the
content of such an elliptical utterance as contain-
ing an unknown anaphoric propositional relation,
which must be enriched using contextual infer-
ence.

Instead, we regard elliptical fragments as intro-
ducing sub-programs which must ensure that the
required contextual information is present in the
current state, and by finding it, fully instantiate the
content. The grammatical approach can directly
follow that of Ginzburg et al. (2001a): the content
of a (declarative) elliptical fragment utterance is
taken to be a proposition which must be associ-
ated with the currentMAX -QUD question; the ref-
erential index of its head daughter must be identi-
fied with that of aSAL-UTT utterance which is also
constrained to be syntactically parallel to it. This
is expressed in the grammar via the typedecl-frag-
cl (see AVM (14)).3

(14)

decl-frag-cl
CONTENT 1

HEAD-DTR

[
CAT 2

CONT | INDEX 3

]

CONTEXT

MAX -QUD
[

PROP 1
]

SAL-UTT

[
CAT 2

CONT | INDEX 3

]

Now, the only change that must be made is that

top-level sentences (in our grammar, signs of type
root-cl) must add sub-programs which require the
specified contextual information to be found, as
shown in AVM (15).4 Note that the order of the

3Similar specifications can be given for short interroga-
tives, sluices, bare adjuncts and so on following (Fernández
et al., 2004) directly.

4This root-cl specification also includes a sub-program to

program is important: the contextual information
must be identified in the initial state, before it is
changed by the utterance program (which may of
course updateQUD), and of course before theLM
state variable can be set to the fully specified move
(the overall utterance content).

(15)

root-clause

CONTENT 1
[
illoc-rel

]
CONTEXT

[
MAX -QUD 2

SAL-UTT 3

]
C-PROG (head(QUD) = 2)?;

(head(UTT) = 3)?;A; LM := 1

HEAD-DTR | C-PROG A

This seems to make the status of this

contextual information clearer than in either
Ginzburg et al. (2001a) or Schlangen (2003)’s ap-
proach. In the former, the utterance is left un-
derspecified by the grammar, and we must as-
sume separately specified pragmatic routines (up-
date rules?) to fill it in; in the latter, this under-
specification is replaced by anaphora essentially
unaccompanied by information about possible an-
tecedents, which must be identified by pragmatic
inference. In our approach, not only is the method
of content specification fully defined by the gram-
mar as a program, the source of the antecedents
(particular state variables) is also made clear.

Note the similarity between this program
and that introduced by information structure in-
AVM (12). Both programs express a constraint on
the current maximal QUD, and therefore restrict
their utterances’ use to suitable contexts.5

4.3 Setting Up State Conditions

Note that not only does the program for the frag-
ment specify the state variables where antecedents
must be found, the program for the previous ut-
terance will have specified how the values of
these state variables were updated. As already
shown in (1) above, interrogatives introduce ques-
tions to QUD– this will automatically provide a
suitable head value ofQUDfor an elliptical an-
swer which follows it. In fact, the program for

set the latest-moveLMvariable to the value of the utterance’s
content, a move – see (Purver and Fernández, 2003) for de-
tails.

5Of course, the samecouldbe said for answers, if (as dis-
cussed and rejected above) they were to be represented as
testing for a suitable QUD and popping it from theQUDstack.

wh-interrogatives also pushes a salient utterance
(thewh-word corresponding to the question’s ab-
stracted parameter) onto theUTT stack, thus pro-
viding a state which will fulfill both the require-
ments of an elliptical fragment:

(16)

interrogative

CONT 1
[
λ 3 .p

]
C-PROG A; QUD.push(1); UTT.push(2)

HEAD-DTR | C-PROG A

CONSTITS

{
. . . 2

[
CONT 3

]
. . .
}

Similarly, declarative utterances (as we have al-

ready seen in (2) above) introducewhether(p)
QUDs; indefinites also introduce programs to
push themselves ontoUTT for later resolution of
sluices.

4.4 Ordering Sub-Programs

The specification of AVM (15) is designed to
ensure that sub-programs are executed in a cer-
tain order: firstly, checks on state variables, be-
fore any utterance programs have had any effect;
secondly, the sub-programs projected by individ-
ual phrases (and inherited by the sentence from
its daughters); and thirdly the top-level effects
of the utterance – updatingQUD, UTT and LM.
The ordering of the daughter sub-programs them-
selves will also be important to account for e.g. in-
trasentential anaphora and presupposition projec-
tion. Anaphoric definites and pronouns must be
able to identify variables introduced by preceding
indefinites as their referents, so we must ensure
that the indefinite programs which introduce them
are executed before the definite programs which
attempt to find them. In English at least, this re-
quires sub-programs to be put together in linear
order, and this is simply expressed:

(17)

[
C-PROG A; . . . ;B

DTRS

〈[
C-PROG A

]
, . . . ,

[
C-PROG B

]〉]

5 Summary

Update effects which are specified entirely by, and
are inseparable from, utterances themselves can
be represented as part of their grammatically as-
signed content, even when this content is contex-
tually dependent. It is only when the context de-
termines the form of these effects (the type of pro-

gram which represents them), as with answers,
that we need these effects to be determined by
pragmatic processes. This is, of course, not to
deny that these pragmatic processes govern dia-
logue to a large extent: merely to say that the di-
viding line between semantics and pragmatics can
be drawn in a different place. This approach is
currently being implemented in a HPSG grammar
and a prototype IS-based dialogue system.

6 Acknowledgements

We would like to thank two anonymous Catalog
reviewers for several helpful comments that have
significantly contributed to the final version of this
paper. The authors are supported by ESRC grants
RES-000-23-0065 and RES-000-22-0355 respec-
tively.

References

James Allen and Mark Core. 1997. Draft of DAMSL:
Dialog act markup in several layers.

Nicholas Asher and Alex Lascarides. 2003.Logics of
Conversation. Cambridge University Press.

Nicholas Asher. 1998. Varieties of discourse struc-
ture in dialogue. In J. Hulstijn and A. Nijholt, ed-
itors, Proceedings of the 2nd Workshop on Formal
Semantics and Pragmatics of Dialogue (Twendial),
Enschede, May.

Elisabet Engdahl, Staffan Larsson, and Stina Ericsson.
1999. Focus-ground articulation and parallelism in
a dynamic model of dialogue. InTask Oriented
Instructional Dialogue (TRINDI): Deliverable 4.1.
University of Gothenburg.

Raquel Ferńandez and Ulle Endriss. ms. Abstract
models for dialogue protocols. Under review.

Raquel Ferńandez, Jonathan Ginzburg, Howard Gre-
gory, and Shalom Lappin. 2004. SHARDS:
Fragment resolution in dialogue. In H. Bunt and
R. Muskens, editors,Computing Meaning, vol-
ume 3. Kluwer Academic Publishers. To appear.

Raquel Ferńandez. 2003. A dynamic logic formal-
isation of the dialogue gameboard. InProceed-
ings of the Student Research Workshop, EACL 2003,
pages 17–24, Budapest. Association for Computa-
tional Linguistics.

Jonathan Ginzburg, Howard Gregory, and Shalom Lap-
pin. 2001a. SHARDS: Fragment resolution in dia-
logue. In H. Bunt, I. van der Sluis, and E. Thijsse,

editors,Proceedings of the 4th International Work-
shop on Computational Semantics (IWCS-4), pages
156–172. ITK, Tilburg University, Tilburg.

Jonathan Ginzburg, Ivan Sag, and Matthew Purver.
2001b. Integrating conversational move types in the
grammar of conversation. In P. Kühnlein, H. Rieser,
and H. Zeevat, editors,Proceedings of the 5th Work-
shop on Formal Semantics and Pragmatics of Dia-
logue (BI-DIALOG), pages 45–56.

Jonathan Ginzburg. 1996. Interrogatives: Questions,
facts and dialogue. In S. Lappin, editor,The Hand-
book of Contemporary Semantic Theory, pages 385–
422. Blackwell.

Jonathan Ginzburg. forthcoming. A Seman-
tics for Interaction in Dialogue. CSLI Pub-
lications. Draft chapters available from:
http://www.dcs.kcl.ac.uk/staff/ginzburg .

David Harel, Dexter Kozen, and Jerzy Tiuryn. 2000.
Dynamic Logic. Foundations of Computing Series.
The MIT Press.

Staffan Larsson, Peter Ljunglöf, Robin Cooper, Elisa-
bet Engdahl, and Stina Ericsson. 2000. GoDiS -
an accommodating dialogue system. InProceedings
of ANLP/NAACL-2000 Workshop on Conversational
Systems.

Bernd Ludwig. 2001. Dialogue understanding in dy-
namic domains. In P. K̈uhnlein, H. Rieser, and
H. Zeevat, editors,Proceedings of the 5th Workshop
on Formal Semantics and Pragmatics of Dialogue,
pages 287–297. BI-DIALOG.

Matthew Purver and Raquel Fernández. 2003. Utter-
ances as update instructions. InProceedings of the
7th Workshop on the Semantics and Pragmatics of
Dialogue (DiaBruck), pages 115–122, Saarbrücken,
September.

David Schlangen. 2003. A Coherence-Based Ap-
proach to the Interpretation of Non-Sentential Utter-
ances in Dialogue. Ph.D. thesis, University of Edin-
burgh.

David Traum. 2003. Semantics and pragmatics of
questions and answers for dialogue agents. InPro-
ceedings of the International Workshop on Compu-
tational Semantics, pages 380–394, January.

