
An Implemented HPSG Grammar for SHARDS

Raquel Fernández

Department of Computer Science
King’s College London

raquel@dcs.kcl.ac.uk

Abstract

This report is an extension of (Gregory 2001) and presents an overview
of the implementation of the HPSG grammar currently used in SHARDS
—a Semantically-based HPSG Approach to the Resolution of Dialogue
Fragments (Ginzburg, Gregory, and Lappin 2001). The grammar is based
on the theoretical framework presented in (Ginzburg and Sag 2001) and
it is encoded in ProFIT (Erbach 1995).

1 Introduction

This report describes the basic components and structure of the implemented
HPSG grammar currently used in the SHARDS system (Ginzburg, Gregory,
and Lappin 2001). The report is organised as follows: we start by introducing
the main components of SHARDS, giving a quick overview of the particular
version of HPSG we assume and describing ProFIT, the language in which the
grammar is encoded. We then present the grammar implementation in Section
2. In Section 3 we discuss the analysis of fragments and the resolution procedure
of SHARDS. Finally, we conclude outlining some future work.

1.1 SHARDS

SHARDS is an implemented system which provides a procedure for computing
the interpretation of clausal fragments. The system comprises two main com-
ponents: a grammar and a resolution procedure. The grammar, encoded in
ProFIT (Erbach 1995), assigns HPSG features structures to English sentences.
Once a sentence has been parsed, the second component of the system resolves
the ellipsis sites on the basis of contextual information contained in preceding
sentences, located in a structured record stored in memory.1

The current grammar, which is the main topic of this report and will be
described in detail in the next sections, is a substantially modified version of

1For a complete description of the context and ellipsis resolution postprocessor of SHARDS
see (Gregory 2001).

1

the grammar described in (Gregory 2001), employed by (Lappin and Gregory
1997), (Gregory and Lappin 1999) and (Ginzburg, Gregory, and Lappin 2001).

1.2 A particular version of HPSG

The grammar currently used in SHARDS follows a particular version of the
HPSG framework, initiated by (Sag 1997) and developed in (Ginzburg and Sag
2001).

One of the main features of this recent theoretical work is the assumption of
a construction-based approach, wherein the notion of construction is analysed
in terms of types, type hierarchies and type constraints. Within this assump-
tion, generalisations about constructions (i.e. information about phrases) are
encoded by cross-classifying them in multidimensional type hierarchies. The
typed-based approach to construction analysis is accurately modelled by a hi-
erarchical system of construction types, stating constraints on the most specific
types of construction, on the most general type phrase, or on any of the inter-
mediate types recognised by the grammar.

The semantics developed for such grammatical proposal is based on the
framework of Situation Semantics. Phrases are classified not only in terms
of their phrase structure schema or X-bar type, but also with respect to a
further informational dimension of clausality. Clauses are divided into inter
alia declarative clauses, which denote propositions, and interrogative clauses
denoting questions.

The grammar pretends to model utterance types, with special attention
to fragments and dialog. To account for this two highly context-dependent
phenomena, the theory of context in dialogue developed in the framework of
KOS (Ginzburg 1996; Ginzburg 2002; Cooper, Larsson, Hieronymus, Ericsson,
Engdahl, and Ljunglof 2001) is integrated into the HPSG formalisation.

1.3 ProFIT

ProFIT (Erbach 1995) is an extension of Prolog which allows to declare an inher-
itance hierarchy, features and templates. Both typed features structures.2 and
Prolog terms can be used in ProFIT programmes. ProFIT compiles the typed
feature terms into a Prolog term representation, so that no special unification
algorithm nor meta-interpreter is needed. ProFIT thus is an efficient language
for the implementation of grammars developed with type features structures in
Prolog programmes.

A ProFIT programme consists of:

• Type declarations

• Feature declarations
2For a formal characterisation of typed feature structures see (Carpenter 1992). Some-

times, e.g. in Logic Programming, typed feature structures are referred to as sorted features
structures.

2

• Templates

1.3.1 Type declarations

In order to be able to use typed features terms, the types and features must be
declared in advance. The type declarations begin with a declaration of the most
general type top and all subtypes not explicitly declared under other supertypes
must be subtypes of top. The subtype declarations have the syntax given in
(1):

(1) Supertype > [Subtype1, ..., Subtypen]

The declaration in (1) states that every Subtypei is a subtypes of Supertype
and that all Subtypei are mutually exclusive, i.e. they are disjoint. It is also
possible to declare subtypes that are not mutually exclusive as in the case of
multi-dimensional inheritance hierarchies. In this kind of hierarchies each di-
mension is declared as a separate list of subtypes connected by the operator ∗,
as shown in (2):

(2) Supertype > [Subtype1,..., Subtypen] ∗ ... ∗ [Subtypek.1,..., Subtypek.m]

1.3.2 Feature declarations

Following the notion of appropriateness of Carpenter’s logic of typed feature
structures, in a ProFIT programme one must declare which features are intro-
duced by each type. A feature is introduced only at the most general type for
which the feature is appropriate and the features introduced by a type are inher-
ited by all its subtypes. Each feature has a particular type as its value. When
this type restriction is omitted, then the feature value is assumed to be of type
top. The syntax of feature declarations is given in (3). Feature declarations can
also be combined with type declarations using the syntax given in (4).

(3) Type intro [Feature1 : type restr1, ..., Featuren : type restrn]

(4) Type > [Subtype1,...] intro [Feature1 : type restr1,...]

1.3.3 Templates

Templates are an abbreviatory device to encode frequently used structures.
ProFIT templates are defined by expressions of the form shown in (5) and
are called using the prefix @ (@Name).

(5) Name := Definition

The Name may be a predicate whose arguments usually also occur within
the Definition. The Definition is a ProFIT term, consisting of a specification of
a type (6), a specification of a path using ! to list features and their values (7)
or a conjunction of terms using the sign & (8).

3

(6) <Type

(7) i. Feature ! Value

ii. Feature ! Feature ! Value

(8) Term & Term

The sign >>> provides a mechanism to abbreviate paths, as long as the
type and feature declarations are strong enough to ensure that there is a unique
path. The Definition may also include variables and template calls. We will see
several example of ProFIT templates in Section 2.3.

2 The grammar implementation

The implemented grammar includes:

• A type hierarchy, i.e. a linguistic ontology,

• a declaration of which features are appropriate for each type,

• a declaration of what type of value is appropriate for each feature,

• a specification of all constraints that (either phrasal or lexical) types must
satisfy and

• a set of grammar rules, to be used by the bottom-up parser.

The grammar must thus provide a complete specification of what types of
feature structures exist and how those types are organised into a hierarchy. It
must also specify which features are appropriate for each grammatical type, as
well as what value is appropriate for each feature.

2.1 Linguistic ontology, feature typing and appropriate-
ness

The grammar follows the HPSG sign-based approach in which all linguistic
signs, both phrasal and lexical, are modelled as typed feature structures. The
ProFIT declaration for the type sign states that its immediate subtypes are
phrase and lex(ical sign) and that the features appropriate for such a type
are phon, synsem, context and root. For each feature Fi, it is declared the
appropriate type Ti of its value (with the syntax Fi:Ti). In the present program,
when no Ti is specified, that means that the value of Fi is a list.

(9) sign > [lex,phr]
intro [phon,root:bool,syn:synsem,cxt:context].

synsem > [canonical,gap]
intro [loc:local,c params,store,slash,wh].

local intro [cat:category,cont:content].
category intro [head:heads,comps,subj,spr].

4

According to these ProFIT declarations, the AVM representation for the
type sign would be the following:

sign
phon

root boolean

syn

synsem

loc

cat

head

comps

subj

spr

cont content

c params

store

slash

wh

cxt context

2.1.1 The semantic ontology

With some simplifications,3 our semantic type hierarchy follows the semantic
ontology developed in (Ginzburg and Sag 2001)4, which inter alia distinguishes
between questions, propositions, facts, outcomes, situations and soas. Here is
part of the type and feature declarations of our grammar:

(10) content > [message,soa,param,quantifier,
situation,addressee,speaker].

message > [proposition, question, fact, outcome].
proposition intro [sit:situation, soa:soa].
question intro [params, prop:proposition].
soa intro [quants, nucleus:nucleus].
quantifier intro [det:det rel,restind:param].
param intro [index:index,rest].

We will focus our attention on the proposition and question types, which are
the semantic types associated with the content of declarative and interrogative
clauses, respectively. These are the only clausal types the current grammar
covers at the moment.

The type proposition introduces two features, the feature sit, whose value
will be the situation involved in the relevant proposition, and the feature soa.

3We don’t distinguish between austinian and propositionally constructed content, neither
between realist and irrealist SOA, for instance.

4See chapter 3 specially.

5

All soas allow the features quant(ifiers) and nucleus. The other relevant
subtype of message is the type question which introduces a feature prop, whose
value is a proposition. Given that in the semantic theory we follow questions are
identified with proposition abstracts (with open propositions), the type question
is also appropriate for the feature params, whose value will be a (possibly
empty) set of parameters—implemented as a list in the current grammar —
corresponding to the set of entities that gets abstracted away.5 The feature
declarations just introduced are express in AVM notation in (11):

(11) a.

proposition
sit situation

soa

soa
quants

nucleus

b.

question
params

prop

proposition
sit situation

soa

soa
quants

nucleus

2.1.2 Context and Contextual Parameters

Like (Ginzburg and Sag 2001), we adopt an approach based on the theory
of context in dialogue developed in the framework of KOS (Ginzburg 1996;
Ginzburg 2002; Cooper, Larsson, Hieronymus, Ericsson, Engdahl, and Ljunglof
2001). Following the HPSG formalisation of this approach, in our grammar
the value of the feature context contains three features: c(ontextual)-

indices, max-qud (Maximal Question Under Discussion) and sal-utt (Salient
Utterance).

(12) context intro [c indices:c inds, max qud, sal utt].
c inds intro [c spkr:index, c addr:index].

These c-indices encode contextual information about the speaker and the
addressee of the utterance. The attribute max-qud, whose value is of type ques-
tion, represents the question currently under discussion. sal-utt takes as its
value sets of type local and represents a distinguished constituent of the utter-
ance whose content is the current value of max-qud. sal-utt can be thought
as a means for underspecifying the focal (sub)utterance or as a potential parallel
element in the sense of (Dalrymple, Pereira, and Shieber 1991). Specifically, it

5Parameters are contextual indices carrying some semantic restrictions.

6

is compute as the (sub)utterance associated with the role which receives widest
scope within max-qud.

These two features make possible an account of fragments (like short answers
and sluices) without the need to resort to any form of syntactic reconstruction,
while still encoding a limited amount of syntactic parallelism.6 The values of
max-qud and sal-utt will be computed by the Context Resolution Procedure
of SHARDS.

Our grammar also includes a features c(ontextual)-param(meter)s, in-
troduce by (Ginzburg and Cooper 2001). The value of this feature is the set
of all contextual parameters of an utterance (proper names, indexicals). The
presence of this feature allow signs to play a role similar to the role traditionally
associated with “meanings”, i.e. as functions from contexts to contents.7 What
the content attribute of a sign encodes is the value that the meaning function
takes, given the values of the contextual parameters.

2.2 A multi-dimensional phrase hierarchy

In the last years, multiple inheritance has been extensively used for the descrip-
tion of different aspects of natural languages, some examples being the structure
of the lexicon (Koenig 1999) and the syntax of English relative clauses (Sag
1997). Our grammar, following (Sag 1997) and (Ginzburg and Sag 2001), uses
a multi-dimensional type hierarchy to classify phrases.

As in (Ginzburg and Sag 2001), phrases are cross-classified along two di-
mensions: Headedness and Clausality. The choices within one dimension are
mutually exclusive, however a structure can be assigned types from different
dimensions without postulating a unique most general common subtype.8 (13)
illustrates part of the implemented phrase hierarchy according to the syntax
described in Section 1.2.1. The first line of the example is the declaration of the
two dimensions, Headedness and Clausality, as two hierarchies belonging to the
type phrase. Next, the declaration of the subtypes for each dimension is shown.
In (14) we can see the declaration of the maximal phrasal types.9

(13) phr > [headed,nheaded]∗[clause,nclause].
headed > [head comps,head subj,head spr,head filler,sai,

head adj,head only].
clause > [core cl,rel cl].
core cl > [declarative,interrogative,imperative,exclamative].

6As sal-utt has as its value an object of type local.
7Montague (1974a), Kaplan(1989).
8In Carpenter’s formalisation of typed feature logic, the type hierarchy is required to be

a bounded complete partial order (BCPO), which means that any two types which have a
common subtype must have a unique most general common subtype. In other words, the
type hierarchy is required to be one-dimensional. In contrast, in a multiple inheritance a type
has supertypes from different hierarchies or “dimensions” without the need of introducing a
unique most general common subtype.

9Recall that a maximal type is a type with no subtypes.

7

(14) declarative > [decl hd su cl,decl ns cl,inv decl,decl frag cl].
interrogative > [wh intr,polar intr,sluice intr,is intr].
head subj > [decl hd su cl].
head filler > [wh intr].
wh intr > [ns wh intr, su wh intr].
sai > [polar intr,inv decl].
head only > [decl ns cl, is intr,hd frag ph,root cl].
hd frag ph > [decl frag cl,sluice intr].
is intr > [reprise intr,dir is intr].

Note that multiple inheritance arises when some type Y occurs in the right-
hand side of more than one type declaration, which is the case for most of the
subtypes declared in (14).

One important thing to note is that in this version of the grammar elliptical
constructions are analyse by means of the type hd frag ph (head-fragment-
phrase), which is a headed phrase. In contrast, in former versions of the gram-
mar used by SHARDS, fragments were analysed as non-headed bare phrases,
the fragment being the non-head daughter.

2.3 Constraints as templates

One of the main differences between the present implementation and earlier
versions of the grammar (which reflects a tendency in the evolution of the HPSG
framework) is the substitution of most of the grammar principles (the valence
Principle, the Semantic Principle and so on), which were implemented as prolog
rules, by constraints on phrasal types expressed through ProFIT templates.

For example, (15) one of the prolog clauses to implement the Valence Prin-
ciple in previous versions of the grammar,10 has been replaced by the template
in (16) representing the Empty Complements Constraint((Ginzburg and Sag
2001), p. 33):

(15) val p (<head comps &
syn!cat!comps!MComps &
syn!cat!subj!Subj &
head dtr!Head &
head dtr!syn!cat!comps!HComps &
head dtr!syn!cat!subj!Subj &
nhead dtrs!Dtrs):-

extract syn(Dtrs,Syn),
append(MComps,Syn,HComps),
val p(Head).

(16) ecc := <phr &
syn!loc!cat!comps![].

10See (Gregory 2001).

8

The template in (16) states that the value of comps will be the empty list
for all structures of type phrase. Since complements are introduced as sisters
of the lexical head by a constraint on the type head complement phrase, (16)
guarantees that, within any phrase, complements have already been cancelled
from the comps list at he level of the phrase’s lexical head.

Thus, following the construction-based approach, each type of phrase obeys
type-specific constraints. The constraints on types within the Headedness di-
mension mainly express notions related to the immediate dominance schemata
(17), while the constraints in the Clausality dimension mostly encode semantic
properties of different clausal types (18). In our grammar, a template Definition
always has the same structure: First, the type it applies to, using the prefix <;
second, the template calls, if any; and finally, the constraints on paths to enforce
either unification or the presence of specific values.

(17) head subj(N,V,P) := <head subj &
@ecc &
@head feature p &
phon!P &
syn!loc!cat!subj![] &
head dtr!V &
head dtr!<phr &
head dtr!syn!loc!cat!subj![Subj] &
nhead dtrs![N & syn!Subj].

(18) intr := <interrogative &
@core cl &
syn!loc!cont!<question.

The template in (17) encodes the constraint associated with the phrasal type
head-subject-phrase. Its head daughter is of type phrase and it has only one non-
head daughter, whose synsem value is identified with the value of the feature
subj of the head daughter that selects it. The phrase itself has an empty value
for the corresponding feature. All this information interacts with the constraints
expressed in the ecc and head feature p (see below) templates. On the other
hand, the template in (18) represents a constraint on interrogative clauses and it
encodes the information that the content of an interrogative is of type question.
It also calls the core cl template which enforce the verbal form to be of type
clausal.

2.3.1 The GHFP as a set of non-default constraints

(Ginzburg and Sag 2001) (p. 33) formulate a generalisation of the Head Feature
Principle as a default constraint on phrases of type headed-phrase:

9

(19) Generalized Head Feature Principle (GHFP)
hd-ph
synsem / 1

head-dtr

[
synsem / 1

]

The GHFP requires that the synsem value of the mother of a headed phrase
is identical to that of its head daughter by default.11 The GHFP replaces the
non-defeasible Head Feature Principle and the Valence Principle of (Pollard and
Sag 1994) and allows considerable simplification of the grammar. As a default
constraint, it requires that the features within the synsem value of the head
daughter and those of its mother have identical values, except in cases where
this is explicitly contradicted by constraints on specific subtypes of hd-ph.

Since our implementation does not make use of non-monotonicity, the GHFP
has been replaced with a set of non-default constraints expressed by means of
templates which are called by particular subtypes of head-phrase.

(20) head feature p := syn!loc!cat!head!X &
head dtr!syn!loc!cat!head!X.

(21) ghd feature p := syn!slash!Slash &
syn!store!Store &
head dtr!syn!slash!Slash &
head dtr!syn!store!Store.

(22) ghfp := <nclause &
syn!Syn &
head dtr!syn!Syn.

(20) is the most general case: almost all phrases call this template. This is
not the case, however, for the type head-only-phrase, where the head value is
recovered from the context (see Section 3).

The template in (22) is the one that corresponds to the GHFP, but it will
be only called by bare non-clausal phrases where it is possible to identify the
synsem value of the mother with that of its head daughter.

2.3.2 The Clausality dimension

The constraints in the Clausality dimension mostly encode the semantic prop-
erties of clauses. The content of a clause will always be some subtype of the
semantic type message, as ensured by a constraint on the type clause expressed
by the following template:

(23) clause := <clause &
syn!loc!cont!<message.

11The ’/’ notation indicating default information is introduced by (Lascarides and Copestake
1999).

10

Additional templates, like the one in (18) above, specify the content of each
clausal type in order to establish a correlation between clausal constructions
and types of meaning.

Given that the content of a VP is a soa, (Ginzburg and Sag 2001) posit the
following default constraint on the type declarative clause:

(24)

decl-cl

cont

[
soa / 1

]
head-dtr

[
cont / 1

]

Again, in our implementation this default constraint has been replaced by a
template only identifying the mother’s nucleus with that of its head daughter.
Such a template is called by the appropriate maximal declarative types which
supply the remaining information.

(25) decl sem := syn!loc!cont!sit!<s &
syn!loc!cont!soa!nucleus!Soa &
head dtr!syn!loc!cont!nucleus!Soa.

2.4 The DCG rules

The grammar also comprises a set of Prolog grammar rules to be used with
the bottom-up parser buparser2.pl (Clocksin and Mellish 1984; Gazdar and
Mellish 1989). These rules are essentially of the same form as DCG rules, with
the difference that in a ProFIT programme the operator ---> is used, instead
of the usual -->.

In general, the head of the rule has two arguments. The second one repre-
sents the phonological string of the node and is equal to the concatenation of the
corresponding phonological arguments in the body of the rule. The first argu-
ment is a ProFIT term representing the node as a linguistic sign in the form of
a ProFIT template. The arguments of the template unify with the correspond-
ing arguments in the body of the rule and its last argument (the phonological
argument) also unifies with the second argument of the head of the rule. The
following example shows the rule for a polar interrogative:

(26) s(S & @polar intr(A,N,V,P),P) ---> aux node(A,Pa),
np1(N,Pn),
vp(V,Pv),
{append(Pn,Pv,Temp)},
{append(Pa,Temp,P)}.

2.5 Other Prolog rules: Quantifier Storage

We adopt an implementation of quantifier storage where stored quantifiers are
passed up to the mother in a headed structure not from all daughters (like

11

in (Pollard and Sag 1994)), but only from the head daughter, as proposed by
Pollard & Yoo (1998) and adopted by (Ginzburg and Sag 2001).12 This proposal
is formalised as the Store Amalgamation Constraint, according to which the
store value of a verb will be the set union of the store values of the verb’s
arg-st members. Given that our grammar does not incorporate an arg-st

feature, we implement this constraint as a Prolog rule which affects the valence
features and which is called by the different VP projections in the DCG rules:

(27) store amalg(<sign &
syn!store!Store &
syn!loc!cat!subj!Subj &
syn!loc!cat!comps!Comps) :-

extract store(Subj,SStore),
extract store(Comps,CStore),
append(SStore,CStore,Store).

(28) vp(@vp tran(V,N,P),P) ---> tran node(V,Pv),
np1(N,Pn),
{append(Pv,Pn,P)},
{store amalg(V)},
{c params amalg(V)}.

The store value of the verb is passed up from head daughter to mother
according to a Store Inheritance Principle and eventually, at a clausal node,
Quantifier Retrieval transfers the stored quantifiers to the mother’s quants

list. There is an additional issue however: store members can be either pa-
rameters or quantifiers, given that quantifiers introduce a generalised quantifier
in their store value and wh elements introduce a parameter.13 That means
that we need to check the store list to apply the Quantifier Retrieval to stored
quantifiers only.

(29) a. check store(Phr & <phr &
head dtr!syn!store!Store) :-

store list(,Store,Phr).

b. store list(,[],Phr) :- inheritance(Phr & syn!store![]).

store list(P & <param,[P],Phr) :-
inheritance(Phr & syn!store![P]).

store list(Q & <quantifier,[Q],Phr) :- retrieval(Phr).

store list(Q & <quantifier,[Q|Rest],Phr) :-
store list(,Rest,Phr).

inheritance(Phr & <phr &
syn!store!Store &
head dtr!syn!store!Store).

12In this proposal store is a local feature, although our implementation does not adopt
this modification.

13See (Ginzburg and Sag 2001) for justification.

12

c. retrieval (<phr & <declarative &
syn!store!MStore &
syn!loc!cont!soa!quants!Retrieval &
head dtr!syn!store!HStore) :-

append(MStore,Retrieval,HStore).

The Prolog clause in (29a) is then called at clausal level by the DCG rules:

(30) s(@root cl(S,P),P) ---> s(S & @polar intr(A,N,V,P),P),
{check store(S)}.

3 Fragments and the context resolution proce-
dure of SHARDS

The main objective of SHARDS was to build a system for resolving elliptical
constructions like fragments in dialog. As we have seen before, in early versions
of the system phrasal utterances like sluicing and short answers were specified to
constitute non-headed structures, the fragment being the non-head daughter.14

In this new version of the grammar we analyse non-sentential utterances as
instances of different subtypes of the headed phrase head-only-phrase.

To account for short answers and sluices, (Ginzburg and Sag 2001) posit the
type head-fragment-phrase. The template in (31) is the implemented version of
the constraint on such a type:

(31) hd frag ph(H,P) := <hd frag ph &
@head only(H,P) &
syn!loc!cat!head!<verb &
syn!loc!cat!head!vform!<fin &
syn!loc!cat!subj![] &
syn!c params!Params &
head dtr!syn!loc!cat!head!<noun &
head dtr!syn!loc!cont!index!Index &
head dtr!syn!loc!cat!Cat &
head dtr!syn!c params!Params &
cxt!sal utt![syn!c params!Params &

syn!loc!cat!Cat &
syn!loc!cont!index!Index].

The current analysis is limited to NP fragments, so the head value of the
head daughter is restricted to be nominal (<noun in the example). The template
ensures that the category of the head daughter is identical to the one specified
by the contextually provided sal-utt. It also coindexes the head-daughter with
the sal-utt, which has the effect of unifying the content of the former with
a contextually provided content. The mother is specified to be of the same

14For a complete explanation of this proposal, see (Ginzburg, Gregory, and Lappin 2001).

13

category as finite verbs, which accounts for the fact that such phrases may
function as stand-alone clauses.

As an example, we will consider the subtype declarative-fragment-clause used
to analyse short answers. The template for the type declarative-fragment-clause
does not specify its content. It only requires that phrases of this type be specified
as ic+.

(32) decl frag cl(H,P) := @decl &
@hd frag ph(H,P) &
syn!loc!cat!head!ic!<plus.

The semantic content of the fragment is left to be recovered from context by
the resolution procedure, which is called once a sentence has been parsed. The
first step of the procedure consist in breaking down the AVM of each parsed
sentence into two lists: the MDR (Mother-Daughter Relation) list and the QUD
(Questions Under Discussion) list. The MDR list comprises a structured object
called a Mother-Daughter Relation, whose three argument places are the mother
AVM, the type of daughter-relation between the mother and the daughter, and
the daughter AVM. The list structure is convenient for searching purposes and
its transitive network encoding dominance relations will be used to re-assemble
the AVM after resolution.

The QUD list contains the content values of all the clausal constituents of
the parsed sentence. If this value is already a question, then it is left as it is; if
it is a proposition, then it will be the content of a polar question.

In order to construct a context record, in the next step both the MDR list
and the QUD list of the parsed sentence are stored in memory indexed by a
counter for that sentence.

Once a particular ellipsis structure is identified, the max-qud and sal-utt

features are assigned values from the context record and, finally, the matrix
AVM is recursively rebuilt.

(33) ellip(AVM & <root cl &
head dtr!@decl frag cl(syn!c params!{[Ans|]},) &
head dtr!syn!loc!cont!soa!nucleus!Nucleus &
cxt!max qud!Qud &
cxt!max qud!params!{[Qu]} &
cxt!max qud!prop!soa!nucleus!Nucleus &
cxt!sal utt!Sal &
cxt!sal utt!syn!wh![Qu] &
cxt!sal utt!syn!c params!{[Qu|]},
Quds, LU, AVM, 3) :-

member(Qud, Quds),
const of(Sal, LU),
unify if possible(Ans, Qu).

(33) shows one of the Prolog rules in the Resolution Procedure. The variable
Qud is a member of the QUD list, while the variable Sal represents one of the

14

constituents of the last parsed utterance (LU). Qud is required to be the value
of max-qud, which in this case will be the content of some question in the
context. The nucleus of the head daughter (the fragment) is identified with
the nucleus of Qud. On the other hand, sal-utt has as its value one of the
constituents of this question in context (which is restricted to be a wh-phrase
by the declaration syn!wh![Qu]). The parameter introduced by this wh-phrase
is identified with the value of the feature params in max-qud.

4 Conclusions and future work

The grammar described here provides an implementation for the core construc-
tions covered by (Ginzburg and Sag 2001), which confirms the computational
viability of such theoretical framework. The implemented grammar is able to
analyse a range of elliptical structures and dialogue fragments covering short
answers and reprise and non-reprise sluices. However, it is designed to be a flex-
ible base for further extensions covering other types of elliptical dialogue moves.
In particular, it is being used in combination with the dialogue move engine of
GoDiS (Larson, Ljunglof, Cooper, Engdahl, and Ericsson 2000) to implement
the different forms and readings of clarification requests described in (Purver,
Ginzburg, and Healey 2001).

References

Carpenter, B. (1992). The logic of typed feature structures. Cambridge Trac-
tats in Theoretical Computer Science. Cambridge University Press.

Clocksin, W. and C. Mellish (1984). Programming in Prolog. Springer-Verlag.

Cooper, R., S. Larsson, J. Hieronymus, S. Ericsson, E. Engdahl, and
P. Ljunglof (2001). Godis and questions under discussion. In The
TRINDI Book. Gothenburg: University of Gothenburg. Available from
http://www.ling.gu.se/research/projects/trindi.

Dalrymple, M., F. Pereira, and S. Shieber (1991). Ellipsis and higher order
unification. Linguistics and Philosophy (14), 399–452.

Erbach, G. (1994). Multi-dimensional inheritance. In Proceedings of KON-
VENS’94, Vienna.

Erbach, G. (1995). ProFIT: Prolog with features, inheritance and templates.
In Proceedings of the Seventh European Conference of the ACL, pp. 180–
187.

Gazdar, G. and C. Mellish (1989). Natural Language Processing. Addison-
Wesley Publishing Company.

Ginzburg, J. (1996). Interrogatives: Questions, facts, and dialogue. In S. Lap-
pin (Ed.), Handbook of Contemporary Semantic Theory. Oxford: Black-
well.

15

Ginzburg, J. (2002). A semantics for interaction in dialogue. Forth-
coming for CSLI Publications. Draft chapters available from:
http://www.dcs.kcl.ac.uk/staff/ginzburg.

Ginzburg, J. and R. Cooper (2001). Clarification, ellipsis, and the nature of
contextual updates. Under review for Linguistics and Philosophy.

Ginzburg, J., H. Gregory, and S. Lappin (2001). SHARDS: Fragment resolu-
tion in dialogue. In I. v. d. S. Harry Bunt and E. Thijsse (Eds.), Proceed-
ings of the Fourth International Workshop on Computational Semantics.
BIDIALOG.

Ginzburg, J. and I. Sag (2001). Interrogative Investigations. CSLI.

Gregory, H. (2001). A ProFIT grammar and resolution procedure for frag-
ments in dialogue. Technical Report TR-01-03, Department of Computer
Science, King’s College London.

Gregory, H. and S. Lappin (1999). Antecedent contained ellipsis in HPSG. In
G. Webelhuth, J. Koenig, and A. Kathol (Eds.), Lexical and constructional
aspects of linguistic explanation, pp. 331–356. CSLI Publications.

Koenig, J.-P. (1999). Lexical Relations. CSLI Publications.

Lappin, S. and H. Gregory (1997). A computational model of ellipsis res-
olution. In Proceedings of the Conference on Formal Gramamr, Aix en
Provence. ESSLLI.

Larson, S., P. Ljunglof, R. Cooper, E. Engdahl, and S. Ericsson
(2000). GoDiS–an accommodating dialogue system. In Proceedings of
ANLP/NAACL-2000 Workshop on Conversational systems.

Lascarides, A. and A. Copestake (1999). Default representation in constraint-
based frmaeworks. Computational Linguistics (55), 55–105.

Pollard, C. and I. Sag (1994). Head Drieven Phrase Structure Grammar. Uni-
versity of Chicago Press and CSLI Publications.

Purver, M., J. Ginzburg, and P. Healey (2001). On the means for clarification
in dialogue. Presented at the SIGdial 2001 workshop on discourse and
dialogue.

Sag, I. (1997). English relative clause constructions. Journal of Linguis-
tics (33), 431–484.

16

