

Galit Weidman Sassoon, ILLC, University of Amsterdam; Ben Gurion University of the Negev

Adjectives: A respect argument

It can be saturated:

1) Tweety is healthy with respect to blood pressure

It can be bound:

2) Tweety is healthy in every / some / most respect(s)

It can be implicitly saturated / bound: 3) Tweety is healthy

 $\Rightarrow \quad \mbox{Adjectival dimensions function as} \\ \mbox{categorization criteria.}$

Adjectives: A respect argument

It can be saturated:

- 1) Tweety is healthy with respect to blood pressure #a bird with respect to size/ flying
- It can be bound:
- 2) Tweety is healthy in every / some / most respect(s) #a bird in every / some / most respects / #generally a bird
- It can be implicitly saturated / bound: 3) Tweety is healthy
- ⇒ Adjectival dimensions function as categorization criteria. Nominal ones don't!

Nominal concepts are mean-based (1/2)

Murphy 2002; Hampton 1998; Cognitive linguists (Lakoff 1987):

(most typical)

An entity is classified as a bird iff (roughly) its mean degree in the dimensions of bird, small size, flying, perching, etc. (or of some bird exemplar) exceeds the standard. Nominal concepts are mean-based (2/2)

The dimensions are not necessary conditions for membership. Only the mean in the dimension counts.

Are adjectives mean-based? (1/2)

- Health is measured by bp, pulse and sugar
- Dan is maximally healthy wrt bp and pulse, but not in the norm wrt sugar
- □ Sam's degrees are <u>all</u> in the normative range, yet the <u>lowest</u> possible
- **D** (Dan's mean is higher than Sam's -37 vs. 30).

Are adjectives mean based? (2/2)

Intuition: Sam is healthy and Dan is sick;

So Sam is healthier (although Dan's mean is higher)

It is not the case that we compare Sam's mean in the dimensions to Dan's mean.

Had we done that, we would have judged Dan to be healthier than Sam.

Transformation operations

Context: We discover that birdhood depends on ten genes (categorization criteria):

Tan is a bird wrt to gene 1-6 but not a bird wrt genes 7-10 *V*

Conclusions

The Adjectival / Nominal distinction is a cue for selecting processing type (dimension-set type)

 The cue can be 'overridden': Nouns can 'turn' into adjectives, and v.v. Accommodation Adjectives – as a case study

How can we tell how to interpret:

Dan is healthy Mary is intelligent

∀ / ∃ ??

My proposal (1/4)

I. Conjunctive Adjectives

(normal, typical, healthy, familiar, conservative...)
Entities must reach the standard in *all* the dimensions.
Intuition: If one is healthy in every respect except she has the flu, strictly speaking, she is *not healthy*.

My proposal (3/4)

II. Disjunctive Adjectives

(bad, sick, atypical, abnormal, different, innovative...)
Entities must reach the standard in but one dimension.
Intuition: Entities that violate some health dimension in a context are considered sick.

sick

not sick

Exception phrases

Only universal quantification licenses exception phrases:

(1) Everybody except for Dan is singing
(2) Nobody except for Dan is singing
(3)*Somebody except for Dan is singing

Prediction 1

Except-phrases can operate on the dimension-set of an

adjective, as in *healthy except for bp*, but:

This is more likely to happen in *conjunctive adjectives* than in *disjunctive ones*.

In disjunctives this requires accommodating a non-default universal quantifier (as in *sick in every respect except bp*).

Fact 1

Dimension-set readings are felicitous only with conjunctive adjectives:

(1) I am a 64-year-old man, healthy except for high bp
(2)# ... sick except for (normative) bp

Negation

On my proposal:

A negated conj. adjective (like *not healthy*) denotes the entities that fail to fall under **some** 'healthy' dimension.

 $[[Dan is not healthy]]_c = 1$ iff

¬ ∀Q∈PREDICATE, Q is a respect of healthy in c, [[Dan is Q]]_c= 1 **iff** ∃Q∈PREDICATE, Q is a respect of healthy in c, [[Dan is Q]]_c≠ 1 (Dan is not healthy wrt **some** dimension in c)

A negated disj. adjective (like *not sick*) denotes the entities that fall under **no** 'sick' dimension.

 $[[Dan is not sick]]_c = 1$ iff

¬∃Q∈PREDICATE, Q is a respect of sick in c, [[Dan is Q]]_c=1 iff ∀Q∈PREDICATE, Q is a respect of sick in c, [[Dan is Q]]_c≠1 (Dan is sick wrt **no** dimension in c)

Prediction 2

Under negation '*except*' is likely to operate on the dimension -set of disjunctive, not conjunctive, adjectives:

Fact 2

Dimension-set readings are felicitous only with negated disjunctive adjectives:

(1)# They are not healthy, except for (normative) bp(2) They are not sick, except for high bp

[[Dan is not sick except wrt bp]]_c = 1 iff $\forall \mathbf{Q} \in \text{PREDICATE}, \mathbf{Q} \neq \mathbf{bp}, \mathbf{Q} \text{ is a respect of } sick \text{ in c,}$ [[Dan is Q]]_c \neq 1 (Dan is sick wrt no dimension except bp in c)

A corpus-based study (1/10)

Method:

1. Count the different uses of 'except' with conj. / disj. adjectives in the first ~70 Google results with each.

Google [™] ("healthy except" Search R	esults 1 - 70 of about 37,000 …
Google "sick except"	Results 1 - 70 of
	Results
Google "typical except"	R
Google "atypical except"	Search
Google ("identical exception	pt ^{··} Search
Google ('differe	nt except"

A corpus-based study (2/10)

- 2. Exclude uses with explicit universal quantification:
 - 1) *Everything* normal except for high bp
 - 2) Nothing abnormal except for high bp
 - 3) Little abnormal except for high by
 - 4) <u>The tests</u> appeared normal except for high bp
 - 5) <u>Totally bealthy except</u> for failing eyesight
 - 6) **Completely healthy except** for failing eyesight
 - 7) Absolutely healthy except for failing eyesight
 - 8) <u>Otherwise</u> healthy except for failing eyesight
 - 9) <u>All in all healthy, except for failing eyesight</u>

A corpus-based study (3/10)

3. Ignore non dimension-set uses of 'except':

 Quantification over entities, events, time points, etc.: *Everyone's* been sick (except me--ha!) ... *Never* been siek (except a cold last year)

 Mitigation: *I was off slck, except I was only half sick; the rest was tiredness A different clause: One would never know I was sick. Except for being bald, I look ...*

A corpus-based study (4/10)

Predictions about the number of dimension-set uses:

1. Conj. Adj.

(Dan is healthy except for bp) Many Negated Conj. Adj.

(Dan is **not** healthy except for bp)

Few

2. <u>Negated</u> Disj. Adj. >> (Dan is not sick except for bp) Many

Disj. Adj. (Dan is sick except for bp) **Few**

A corpus-based study (9/10)

Predictions about the number of dimension set uses:

Negated Cong. Inot healthy except for by: Few 1 (~1%) Disj. Adj. (sick except for bp): Few 14

A corpus-based study (10/10)

The results with 14 adjectives (7 disj., 7 conj.)

However, negated forms are scarce in natural use!

Few negated 'conjunctive' adjectives

Few/no dimension-set readings with them

Controlling for Frequency

Conjunctives	Frequency ADJ	Frequency NEG-ADJ	Dimension set uses ADJ	Dimension set uses NEG-ADJ	
healthy	230,000,000	2,360,000	48	0	
typical	167,000,000	2,820,000	31	1	
normal	895,000,000	4,820,000	46	0	
identical	76,500,000	3,820,000	60	0	
familiar	188,000,000	11,400,000	28	1	
unfamiliar	17,100,000	161,000	20	0	
healthier	24,900,000	19,000	14	1	
sicker	1,880,000	3,010	1	0	
better	1,270,000,000	7,640,000	11	0	
worse	160,000,000	1,100,000	7	1	
similar	803,000,000	917,000	48	0	
Disjunctives					
sick	170,000,000	1,420,000	1	7	
atypical	7,900,000	108,000	8	16	
abnormal	32,000,000	140,000	2	2	
different	1,080,000,000	4,220,000	3	< 17	
innovative	162,000,000	170,000	0	13	
bad	1,010,000,000	58,000,000	1	16	
dissimilar	5,090,000	531,000	19	31	

Study II (1/8)

18 adjectives

 ~ 100 counts for each

Separately searching for negated forms, e.g. *not P except hardly P except doesn't seem to be P except...*

Comparing "the likelihood of a dimension-set reading" in non-negated uses versus negated uses

Study II (4/8) The likelihood of dimension-set readings in exception phrases with disjunctive adjectives is ~3-16 times higher when they are negated than when they are non-negated

Disjunctive	Non-negated	Negated Ratio		Both	
adjectives	<u>P Except Dim</u> P except	<u>Neg P Except Dim</u> Neg P except	<u>Negated</u> Non-negated	(Neg) P Except Dim (Neg) P except	
Bad	0.03	0.55	16.5	0.33	
Sick	0.02	0.26	10.8	0.10	
Atypical	0.19	0.68	3.51	0.38	
Abnormal	0.06	0.20	3.35	0.15	
Different	0.13	0.40	3.04	0.28	
Average	0.09	0.42	7.44	0.25	

Study II (5/8) The likelihood of dimension-set readings in exception phrases with conjunctive adjectives is ~4-7 times higher when they are non-negated than when they are negated

Conjunctive	Non-negated	ted Negated Ratio		Both	
adjectives	<u>P Except Dim</u> P except	<u>Neg P Except Dim</u> Neg P except	<u>Non-negated</u> Negated	(Neg) P Except Dim (Neg) P except	
Normal	0.69	0.10	6.87	0.51	
Typical	0.54	0.09	6.12	0.41	
Healthy	0.54	0.11	4.84	0.34	
familiar	0.45	0.09	4.82	0.33	
Healthier	0.35	0.09	3.85	0.31	
Average	0.51	0.10	5.30	0.38	

Study II (7/8)A third set?!The likelihood of dimension-set readings in exceptionphrases with mixed adjectives is roughly the same whenthey are negated and non-negated

Mixed	Non-negated	Negated	Ratio	Ratio	
adjectives	<u>P Except Dim</u> P except	<u>Neg P Except Dim</u> Neg P except	<u>Non-negated</u> Negated	<u>Negated</u> Non-negated	
Unfamiliar	0.15	0.27		1.81 Borde	, rline
Worse	0.20	0.32		1.62 disjund	ctive
Dissimilar	0.58	0.83	1	1.44	٦
Intelligent	0.37	0.41	-	1.10	
Better	0.25	0.25	1	1	
Good	0.24	0.21	1.14		
Similar	0.80	0.67	1.20	Borderline	
identical	0.86	0.49	1.75		
Average	0.09	0.42	1.27	1.39	3

Study II (7/8)A third set?!The likelihood of dimension-set readings in exceptionphrases with mixed adjectives is roughly the same whenthey are negated and non-negated

Mixed	Non-negated	Negated	Reu	dSi	
adjectives	<u>P Except Dim</u>	Neg P Except Di	reading	STRCC .	
	Pexcept	ton Se	LEFICT TO	Suted	\sim
Unfamiliar	0.15	nsional	NEILINE	1.81 Borde	erline
Worse Dia	N dime	ate qui		1.62	γ
	"sorm	0.41		1.10	
	leter	0.25	1	1	
	0.24	0.21	1.14		
Sil	0.80	0.67	1.20	borderline	
identical	0.86	0.49	1.75		
Average	0.09	0.42	1.27	1.39	
The likelihood of a dimension-set reading in exception phrases with non-negated versus negated forms (8/8)

37

Predictive factors (1/10)

Which cues

help speakers to distinguish between disjunctive and conjunctive adjectives

??

Polarity?? (2/10)

- a. Conjunctive: normal, typical, healthy, familiar, healthier
- b. Disjunctive: bad, sick, atypical, abnormal, different
- c. Borderline
 - conjunctive *identical, similar, good, (better)*
 - disjunctive: *intelligent*, dissimilar, worse, unfamiliar

Polarity (2/10)

- a. Conjunctive: normal, typical, healthy, familiar, healthier
- b. Disjunctive: bad, sick, atypical, abnormal, different
- c. Borderline
 - **conjunctive** *identical, similar, good, (better)*
 - disjunctive: *intelligent*, dissimilar, worse, unfamiliar

\Rightarrow Polarity is a reliable predictor (

The quantifier force systematically varies in antonym pairs

 \Rightarrow

Negative adjectives are negations of their positive antonyms

0 0

Related results (3/10)

Healthy + healthierconjunctive;good + bettermixed; $bad + worse_{borderline}$ disjunctive

Related results (3/10)

Healthy + healthierconjunctive;good + bettermixed; $bad + worse_{borderline}$ disjunctive

The dimensions of derived comparatives integrate via the default operation of the adjectives they derive from

Standard type?? (4/10)

Kennedy and McNally (2005):

Wet is 'partial': Even minimally wet entities are *wet*.*Dry* is 'total': Only maximally dry entities are *dry*.*Tall* is 'relative': Its standard is context dependent

Conjunctive/Disjunctive ≠ Total/Partial
The Total/Partial distinction is per a dimension
The conj./disj. distinction is not
(it's about the way judgments of membership in all the dimensions together determine membership in the adjective).

Standard type?? (5/10)

Can we derive the **quantifier force** from the **standard type**: **???**

To be healthy one must be maximally healthy \Rightarrow One must be maximally healthy in all the dimensions; & To be sick one must be somewhat sick \Rightarrow One must be somewhat sick in but one dimension

Standard type?? (6/10)

Conjunctive	Polarity + Standard type	Disjunctive	Polarity + Standard type
Healthy		bad	
Typical	Positive + Relative or total	Sick	
Normal		Atypical	Negative + Relative or partial
Healthier or		Abnormal	
familate artial		Different	

 \Rightarrow Perhaps standard type is a cue, but not a reliable one...

Tests for standard type

(Rotstein and Winter 2004; Kennedy and Mcnally 2004)

First, typically, in partial (minimum standard) predicates, any non-zero degree in P entails P-hood, but in relative predicates many non-zero degrees may be below the contextual standard. Thus, the interpretation of (a), but not of (b), is intuitively judged to be a contradiction.

a. # The door is not open, but it is still ajar [contradiction]b. Sam is not tall but his height is normal for his age [No contradiction]

Second, the negation of a total predicate entails the assertion of its (partial) antonym, but in relative predicates entities may fall under neither P nor P's antonym. For instance, *not closed* entails *open* (a), but *not short* does not entail *tall* (b).

a. The door is not closed \Rightarrow The door is open. b. Sam is not short $\neg \Rightarrow$ Sam is tall.

Third, mid-point modifiers like *half* or *partially* entail P-hood in partial predicates and non-P-hood in total predicates (a-b). They entail membership under neither P nor not-P in relative predicates (c).

a.	The door is half open	\Rightarrow	The door is open.
b.	The door is half closed	\Rightarrow	The door is not closed.
c.	The tree is half tall	$\neg \Rightarrow$	The tree is (not) tall.

Forth, in minimum standard predicates x is more P than y entails x is P (a). In maximum standard predicates x is more P than y entails y is not P (b). Comparative phrases with a relative predicate P entail neither that x is P nor that y is not P (c), etc.

a.	The door is more open than the window	\Rightarrow	The door is open.
b.	The door is more closed than the window	\Rightarrow	The window is not closed
b,	Rod A is longer than Rod B	$\neg \Rightarrow$	Rod A is long.
		$\neg \Rightarrow$	Rod B is not long.

Interpretation matters? (7/10)

Variance in interpretation correlates with quantifier type;

An exceptional (conjunctive) use of *atypical*: *Patient 4 was atypical except for the high-pitched voice*

In scientific contexts *atypical* is used conjunctively. *Atypical* \cong belongs / patterns with an atypical group

Explicit quantification? (8/10)

Do the Google results re. implicit quantification represent *natural use* at all ???

The most frequent force of explicit quantifiers over dimensions The 'default' force of implicit quantifiers over dimensions ???

Explicit quantification? (9/10)

The most frequent force of explicit quantifiers over dimensions = Seems to be The 'default' force of implicit quantifiers over dimensions Initial results from linguistic corpuses Google counts with explicit quantification have to be examined..

Implicit and Explicit quantification(10/10) **CORPUS OF AMERICAN ENGLISH** (400 MILLION WORDS, 1990-2009) **BRITISH NATIONAL CORPUS** (100 MILLION WORDS, UK, 1980-1993)

CORPUS OF AMERICAN ENGLISH

 $\Lambda \eta$

Conjunctives	ADJ. except	Negated ADJ. except
Normal	8 (+5 cases of explicit qua.) the middle ear cavity was <u>normal except</u> for a small amount of blood in	
Typical, healthier	0	0
Healthy	 2 (+2 cases of explicit quantification) 1) he is <u>healthy except</u> for failing eyesight 2) The brilliant young judge, <u>healthy except</u> for his heart 3) Susie is a ten-month-old baby, <u>perfectly healthy except</u> that she has a congenital abnormality of her foot 	0
familiar	1 older woman, who appeared <u>familiar except</u> for the tattoos that covered her face and shoulders. " Mother? "	0
Identical	48 (+3 cases of explicit qua.) all the world's children prove <u>identical except</u> for their color and clothes.	0
Similar	4 The groups were <u>similar</u> <u>except</u> for sex, the placebo group having more boys	0
	63 + 10	0 51

CORPUS OF AMERICAN ENGLISH

Disjunctives	ADJ. except	Negated ADJ. except
Bad	0	0
Sick	0	0
Atypical	0	0
Abnormal, unfamiliar	0	0
Different	0	0 (+4 cases of explicit qua.) The Friday night before Flynn had an abortion was no <u>different except</u> Margaret, who, couldn't concentrate
Dissimilar, worse, intelligent, better	0	0
	0	0 + 4
Borderline Conj. good	2 (+3 cases of) It's _(=life is) pretty <u>good</u> <u>except</u> for, like, homework	0 (+2 cases of explicit qua.)

A corpus based study

Results III. Nouns don't combine with *except* at all

(**0** dimension-set uses in the first 100-34 Google results with each).

Nouns	P Except Dim	(Neg) P except
bird	0	100
table	0	100
mother	0	100
capital	0	34
carrot	0	34

Conclusion: The dimensions of nouns do not combine via quantifiers, but via mean operations

General conclusions

Adjectival dimensions tend to combine via quantifiers, not via averaging.

The quantifiers' force depends on the adjectives: Polarity; ?Standard type; Contextual interpretation; Default explicit quantifiers over dimensions;

. . .

To do

- Improve the methodology
- Study many more adjectives.
- Test with natural examples (linguistic corpora)
- Test the hypothesis with other methodologies
- Look for predictive factors ...

Psycholinguistic correlates of categorization tasks that:

- involve averaging ("nominal dimensions")

- don't involve averaging ("adjectival dimensions")

Neural correlates (1/2) The basal gangilia selects the strategy in a Ashby and Maddox 2005: given situation. Selective brain deficits Conjunctive and disjunctive (rule-based) tasks: Require more working memory, EF Recruit mostly verbal, declarative systems (the prefrontal cortex). Mean-based (prototype-resemblance) tasks

Mean-based (prototype-resemblance) tasks recruit implicit or procedural learning systems (the inferotemporal cortex).

Neural correlates (2/2)

Consistent with considerable lesion and imaging data:

Noun processing tasks:

Processing semantic knowledge about nominal categories (animals, artifacts) recruits inferior (and middle) temporal lobe (Randi 2003: 66-67)

Adjective processing tasks: Any studies?

??

Developmental correlates (1/2)

The late maturation of the prefrontal cortex affects children performance.

Frye et al 1995; Zelazo et al 1996, 2004; Thomason 1994: Children (at age 3-5 years) have difficulty in consistently using rules.

Keil 1979:

Children (up to age 10) often base categorization on similarity.

Developmental correlates (2/2)

Consistent with findings from noun /adjective acquisition.

Waxman and Lidz 2006, Berman 1988, Gozderv 1961:

Children (up to age 5 years) have selective control of word classes: Nouns (and verbs) >> Adjectives

Polinsky 2005: Incomplete learners (whose acquisition was interrupted at age 5): Nouns (and verbs) >> Adjectives Morpho-syntactic cues for predicting whether the interpretation:

- involves averaging ("nominal dimensions")

- doesn't involve averaging ("adjectival dimensions")

Wrt phrases

Dimensions' descriptions

• More

WRT phrases (1/6)

Modifying a predicate P with a *wrt*-phrase makes sense iff Entities may be regarded as P in one respect, and as 'not P' in another iff P's dimensions are categorization criteria iff Either P or P's negation is conjunctive

WRT phrases (2/6)

Multidimensional adjectives:

healthy wrt bp

Modifying a predicate P with a *wrt*-phrase makes sense iff Entities may be regarded as P in one respect, and as 'not P' in another iff P's dimensions are categorization criteria iff Either P or P's negation is conjunctive

WRT phrases (3/6)

Multidimensional adjectives:

healthy wrt bp

One-dimensional adjectives:

Modifying a predicate P with a *wrt*-phrase makes sense iff Entities may be regarded as P in one respect, and as 'not P' in another iff P's dimensions are categorization criteria iff Either P or P's negation is conjunctive *#is tall wrt height* (we cannot find two respects)

WRT phrases (4/6)

Multidimensional adjectives:

healthy wrt bp

One-dimensional adjectives:

Modifying a predicate P with a *wrt*-phrase makes sense iff Entities may be regarded as P in one respect, and as 'not P' in another iff P's dimensions are categorization criteria iff Either P or P's negation is conjunctive *#is tall wrt height* (we cannot find two respects)

Nouns

#is a bird wrt flying (nouns mean-based, not conjunctive)

WRT phrases (5/6)

Multidimensional adjectives:

healthy wrt bp

One-dimensional adjectives:

#is tall wrt height (we cannot find two respects)

??

'Exceptions': *health wrt bp*; *typicality wrt flying an Italian wrt food*

Modifying a predicate P with a *wrt*-phrase makes sense iff Entities may be regarded as P in one respect, and as 'not P' in another iff P's dimensions are categorization criteria iff Either P or P's negation is conjunctive

Nouns #is a bird wrt flying (nouns mean-based, not conjunctive)

WRT phrases (6/6)

Multidimensional adjectives:

healthy wrt bp

One-dimensional adjectives:

#is tall wrt height (we cannot find two respects)

Nouns

#is a bird wrt flying (nouns mean-based, not conjunctive)

Modifying a predicate P with a *wrt*-phrase makes sense iff Entities may be regarded as P in one respect, and as 'not P' in another iff P's dimensions are categorization criteria iff Either P or P's negation is conjunctive

'Exceptions': *health wrt bp*; *typicality wrt flying an Italian wrt food*

(Exceptions: Nouns that are morpho-semantically related to adjectives, i.e. Nominalizations and +Human nouns, which have adjectival entries)

'Exceptions'

+Human nouns resemble adjectives wrt: agreement and copula:			
Adjectives	Nouns	+Human nouns	
Dan (hu) yarok	#Dan (hu) cipor	Dan (hu) idiot	
'Dan is green _{MASC} '	'Dan is a bird'	'Dan is an idiot _{MASC} '	
Beth (hi) yeruk a	#Beth (hi) cipor	Beth (hi) idiot it	
'Beth is green _{FEM} '	'Beth is a bird'	'Beth is an idiot _{FEM} '	

Nominalizations resemble adjectives wrt argument structure:			
Adjectives	Nouns	Nominalizations	
The conference was successful for a student conference	# Tweety is a bird for a water-bird	The conference was a success for a student conference	

Dimensions' descriptions

The adjectival dimensions: **'Respects'**

Example: Dan is not healthy in three **respects**: bp, pulse ...

The nominal dimensions: *'typical*'

Example: Flying, singing and perching is **typical** of birds

More (1/5)

The comparative operation in comparisons of the form "x is more P than y (is P)" selects for one-dimensional predicates

More (2/5)

One-dimensional adjectives:

Dan is taller than Mary

The comparative operator in the construction "x is more P than y (is P)" selects for onedimensional predicates

More (3/5)

One-dimensional adjectives:

Dan is taller than Mary

••

Multidimensional adjectives:

Dan is healthier than Mary wrt bp wrt bp and pulse in every respect

The comparative operator in the construction "x is more P than y (is P)" selects for onedimensional predicates

(easily turn one-dimensional in virtue of the wrt argument)
More (4/5)

One-dimensional adjectives:

Dan is taller than Mary

Multidimensional adjectives:

Dan is healthier than Mary wrt bp wrt bp and pulse in every respect

The comparative operator in the construction "x is more P than y (is P)" selects for onedimensional predicates

(easily turn one-dimensional in virtue of the wrt argument)

Nouns

#Tweety is more a bird than Tan
(Nouns do not license a 'wrt' argument,
so they are inherently multi-dimensional)

More (5/5)

One-dimensional adjectives:

Dan is taller than Mary

0 0

The comparative operator in the construction "x is more P than y (is P)" selects for onedimensional predicates

Multidimensional adjectives:

Dan is healthier than Mary wrt bp wrt bp and pulse in every respect

> (easily turn one-dimensional in virtue of the wrt argument)

Nouns

#Tweety is more a bird than Tan (Nouns do not license a 'wrt' argument, so they are *inherently* multi-dimensional) **'Exceptions': Not really**

#Dan is more an Italian than Mary is
#The first talk was more a success than the second

Why one-dimensional predicates?

More (in "x is more P than y (is P)") denotes the **difference operation** (von Stechow 1984):

 $[[Dan is 2 cms taller than Sam]]_{c} = 1$ iff $f_{tall,c}([[Dan]]_{c}) - f_{tall,c}([[Sam]]_{c}) = 2 cms$

- \Rightarrow It cannot apply to two dimensions simultaneously
- \Rightarrow It cannot operate on ordinal (non-difference) scales

Why are nominal scales ordinal?

The nominal-dimensions' weights are context dependent. The variance in weights preserves the ordering between entities' degrees, but not the differences between them.

Table 1: Predicate types		
Ratio	Interval (difference)	Ordinal
Knowledge about ratios: Dan is twice as tall as Sam Dan is twice as happy as Sam	No knowledge about ratios: #Dan is twice as short as Sam # Dan is twice as unhappy	No knowledge about ratios: #Tweety is twice as a bird as Tan #twice as "bald and tall" as Tan (where twice takes scope over and)
Knowledge about intervals: Dan is 2 inches taller than Sam	Knowledge about intervals: Dan is 2 inches shorter than	No knowledge about intervals: #Tweety is more a bird than Tan
Knowledge about ordering: Dan's degree (the extent it satisfies the property) 'tall' is bigger than Sam's	Knowledge about ordering: Dan's degree in (the extent it satisfies the property) 'short' is bigger than Sam's	Knowledge about ordering: Tweety's degree in (the extent it satisfies the property) 'bird' is bigger than Tan's

More selects one dimension (1/4)

According to my proposal:

- 1. The natural interpretation of *more P and Q* is *more P & more Q*;
- 2. The natural interpretation of *more P or Q* is *more P or more Q*

More modifies each conjunct/disjunct separately, operating on one dimension at a time.

More selects one dimension (2/4)

Method

35 Hebrew speaking subjects read descriptions like the following:

Sam weighs 100kg Sam is not bald Dan weighs 70 kg Dan is bald

(i.e., Sam is *fatter*)(i.e., Dan is *balder*)

Followed by the questions:

Sam is *more "fat and bald"* than Dan Yes/No
 Dan is *more "fat and bald"* than Sam Yes/No
 Dan and Sam are *equally "fat and bald"* Yes/No

More selects one dimension (3/4)

Sam weighs 100kg Dan weighs 70 kg Sam is not bald Dan is bald

(i.e., Sam is *fatter*) (i.e., Dan is *balder*)

Prediction:

If more bald and tall = balder and taller equally bald and fat = equally fat and equally bald.

As Sam is fatter but Dan balder, subjects will say that:

- 1. Sam is **<u>not</u>** more "fat and bald"
- Dan is **not** more "fat and bald" 2.
- 3. They are **<u>not</u>** equally "fat and bald"

More selects one dimension (4/4)

Results: 90% of the subjects answered as predicted.

Conclusion:

more bald and tall = balder and taller
equally bald and fat = equally fat and equally bald.

Similar patterns with: *Equally fat* characters, one balder. *The conj. adj. Typical wrt flying and singing.*

More in comparisons between predicates (1/3)

Comparisons of values of two different functions ("x is more P than y is Q") make sense only provided that the functions' ranges can be normalized (transformed into the same bound interval).

Example:

Dan is better in mathematics than in literature if Dan's marks in these two fields are, say, 5 and 4, respectively, on *a shared six-point scale*.

More in comparisons between predicates (2/3)

Nouns

Tweety is more a horse than a bird This is more a table than a wall The range of nominal degree functions is readily normalized (They are based on averaging on values of different functions).

More in comparisons between predicates (3/3)

Nouns

Tweety is more a horse than a bird This is more a table than a wall The range of nominal degree functions is readily normalized (They are based on averaging on values of different functions).

Adjectives

??Tweety is more happy than tall Adjectives are not mean-based (not readily normalized), so they occur less freely in such comparisons

••

Comparisons of values of two different functions ("x is more P than y is Q") make sense only provided that the functions' ranges can be normalized (transformed into the same bound interval).

To do

- Establish the magnitude of the conj/disj phenomena (study with corpus methods many more adjectives).
- Look for predictive factors
- Test (and establish or refute) the neural hypothesis
- Test (and establish or refute) the syntactic hypotheses

THANK YOU!

Any comments are most welcomed: galitadar@gmail.com

Selected References

- Ashby, Gregory, F., and Maddox, W. Todd (2005), Human Category Learning, Annual Review of Psychology 56:149-78.
- Kennedy, Christopher (1999), *Projecting the adjective: The Syntax and Semantics of Gradability and Comparison*. Garland. NY. (1997 UCSC PhD thesis).
- Kennedy, Christopher and McNally, Louise. 2005. Scale structure and. the semantic typology of gradable predicates, Language 81: 345-381.
- Lakoff, George (1987), *Women, Fire and Dangerous Things: What Concepts Reveal about the Mind.* Chicago University Press.
- Lapata, Mirella and Frank Keller. 2005. Web-based Models for Natural Language Processing. *ACM Transactions on Speech and Language Processing* 2:1, 1-31.
- Lewis, David, K. (1979), Scorekeeping in a Language Game, *Journal of Philosophical Logic* 8, 339-59. Reprinted In David K. Lewis (1983), *Philosophical Papers* 1, 233-49, Oxford University Press, NY.
- Murphy, Gregory (2002), *The big book of concepts*. The MIT Press. Cambridge, MA.
- Polinsky Maria (2005). Word class distinctions in an incomplete grammar. In Dorit Ravid and Hava Bat-Zeev Shyldkrot, eds. *Perspectives on language and language development*, 419-436. Dordrecht: Kluwer.
- Randi C. Martin 2003 Annual rev. of psy. 54: 55-89
- Sassoon, W. Galit, 2007, Vagueness, Gradability and Typicality, A Comprehensive semantic analysis. Unpublished doctoral Dissertation, Tel Aviv University.