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Summary from Last Week

Overview of the main topics of the course: from interpreting single
sentences to processing discourse (pronouns, presuppositions,
consistency, informativity,. . . )

We introduced the main ideas behind model-theoretic semantics:
using logic as an intermediate level of representation to link
language to the world.

To start with, we chose First Order Logic to represent natural
language meaning.

• FO formulas ≈ formal meaning representations (truth conditions)
• FO models ≈ formal representations of world situations
• satisfaction relation ≈ knowing when a natural language sentence is

true in a given situation (querying task)

We did a quick review of FOL.
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Plan for Today

We would like to use FOL as a semantic representation formalism.
How do we deal with it computationally with Prolog?

We shall address the querying task by implementing a first-order
model checker:

• the model checker takes a first-order formula and a first-order model
as input and checks whether the formula is true in the model.

We will first develop a preliminary version of a model checker and
then refine it to fix some shortcomings.
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A First-Order Model Checker in Prolog
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Model Checker: Main Components

How should we implement a FO model checker in Prolog? There
are three main tasks we have to deal with:
• Deciding how to represent first-order models.
• Deciding how to represent first-order formulas.
• Specifying how (representations of) formulas are to be evaluated

in (representations of) models.
The latter task corresponds to implementing the satisfaction
relation for first-order logic (given again in the next slide for
convenience).
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The Satisfaction Definition

The satisfaction relation holds between a formula, a model D = (D ,F ),
and an assignment g of values in D to variables.

[Here ‘iff’ is shorthand for ‘if and only if.’ That is, the relationship on the left-
hand side holds precisely when the relationship on the right-hand side does too.]

1. M , g |= R(τ1, . . . , τn ) iff (Ig
F (τ1), . . . , Ig

F (τn )) ∈ F (R);

2. M , g |= ¬ϕ iff not M , g |= ϕ;

3. M , g |= ϕ ∧ ψ iff M , g |= ϕ and M , g |= ψ;

4. M , g |= ϕ ∨ ψ iff M , g |= ϕ or M , g |= ψ;

5. M , g |= ϕ→ ψ iff not M , g |= ϕ or M , g |= ψ;

6. M , g |= ∀xϕ iff M , g ′ |= ϕ for all x -variants g ′ of g; and

7. M , g |= ∃xϕ iff M , g ′ |= ϕ for some x -variant g ′ of g.

Truth: A sentence ϕ is true in a model M iff for any assignment g ,
M , g |= ϕ. If ϕ is true in M , we write M |= ϕ.
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Representing Models in Prolog (1)
Let’s suppose that we have fixed our vocabulary. How should we
represent models of this vocabulary in Prolog?

Vocabulary:

{ (love, 2),
(customer, 1),
(robber, 1),
(jules, 0),
(vincent, 0),
(pumpkin, 0),
(honey-bunny, 0),
(yolanda, 0) }

Prolog representation of a possible model:

model([d1,d2,d3,d4,d5],
[f(0,jules,d1),
f(0,vincent,d2),
f(0,pumpkin,d3),
f(0,honey_bunny,d4),
f(0,yolanda,d5),
f(1,customer,[d1,d2]),
f(1,robber,[d3,d4]),
f(2,love,[(d3,d4)])]).

• Recall that a FO model M is defined as an ordered pair (D ,F )

• The predicate model/2 mirrors this set-theoretical definition:
∗ its first argument is a list representing the model’s domain D , which

in this case contains five elements [d1,d2,d3,d4,d5]
∗ the second argument is a list specifying the interpretation function F
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Representing Models in Prolog (2)

Example model representation 1:

model([d1,d2,d3,d4,d5],
[f(0,jules,d1),
f(0,vincent,d2),
f(0,pumpkin,d3),
f(0,honey_bunny,d4),
f(0,yolanda,d5),
f(1,customer,[d1,d2]),
f(1,robber,[d3,d4]),
f(2,love,[(d3,d4)])]).

Example model representation 2:

model([d1,d2,d3,d4,d5,d6],
[f(0,jules,d1),
f(0,vincent,d2),
f(0,pumpkin,d3),
f(0,honey_bunny,d4),
f(0,yolanda,d4),
f(1,customer,[d1,d2,d5,d6]),
f(1,robber,[d3,d4]),
f(2,love,[])]).

Example 1:
• The interpretation function names each of the elements in the domain.
• It also tells us that Jules and Vincent are customers, Pumpkin and Honey

Bunny are robbers, and that Pumpkin loves Honey Bunny.
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Representing Models in Prolog (3)

Example model representation 1:

model([d1,d2,d3,d4,d5],
[f(0,jules,d1),
f(0,vincent,d2),
f(0,pumpkin,d3),
f(0,honey_bunny,d4),
f(0,yolanda,d5),
f(1,customer,[d1,d2]),
f(1,robber,[d3,d4]),
f(2,love,[(d3,d4)])]).

Example model representation 2:

model([d1,d2,d3,d4,d5,d6],
[f(0,jules,d1),
f(0,vincent,d2),
f(0,pumpkin,d3),
f(0,honey_bunny,d4),
f(0,yolanda,d4),
f(1,customer,[d1,d2,d5,d6]),
f(1,robber,[d3,d4]),
f(2,love,[])]).

Example 2:
• Only four elements are named by constants; d5 and d6 are anonymous, but

we know that they are customers.
• d4 has two names, Yolanda and Honey Bunny.
• Also note that the two-place love relation is empty.

All this is fine, as it is in the set-theoretic definition of FOL.
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Representing Formulas in Prolog (1)

• To represent first-order formulas in Prolog, we need to:
∗ decide how to represent FO variables
∗ decide how to represent non-logical symbols
∗ decide how to represent the logical symbols

• Variables: we will simply represent FO variables as Prolog
variables.

• Non-logical symbols: FO constants c and relation symbols R
will be represented by Prolog atoms c and r.

Given these conventions, we can now represent atomic formulas as
Prolog terms. The equality symbol (a two-place relation) can be
represented by the Prolog term eq/2.

love(vincent,mia) love(vincent,mia)
hate(butch, x) hate(butch,X)
yolanda = honey-bunny eq(yolanda,honey_bunny)
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Representing Formulas in Prolog (2)

• Logical symbols: we will use the Prolog terms in (1) to represent
the boolean connectives ∧, ∨, →, and ¬, and those in (2) to
represent quantified formulas:

(1) boolean connectives: and/2 or/2 imp/2 not/1

(2) quantified formulas: all(X,Phi) some(X,Phi)

Sample formulas:

and(love(vincent,mia), hate(butch,X))

imp(love(vincent,mia), not(hate(vincent,mia)))

all(X,hate(butch,X))
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The Satisfaction Definition in Prolog

We now turn to the final task for implementing our model checker,
specifying the satisfaction relation: how formulas are to be
evaluated in models.

The predicate that carries out this task is called satisfy/4:
satisfy(Formula,Model,G,Pol). Its arguments are:

1. the formula to be tested;
2. the model;
3. an assignment function: a list of assignments of members of the

model’s domain to any free variables in the formula; and
4. a polarity feature (pos or neg) that tells us whether a formula

should be positively or negatively evaluated.

We know how arguments 1 and 2 look like, but arguments 3 and 4
require further clarification.
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The assignment function G in satisfy/4

• We shall use Prolog terms of the form g(Variable,Value) to
indicate that a variable Variable has been assigned the element
Value of the model’s domain.

• The third argument of satisfy/4 will thus be a list of terms of
this form, one for each free variable in the formula.

• If the formula to be evaluated has no free variables (it’s a
sentence or closed formula), the list will be empty.

formula with a free variable: hate(butch,X) G = [g(X,d3)]
sentence or closed formula: all(X, hate(butch,X)) G = []
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The Polarity argument in satisfy/4 (1)

• When we evaluate a formula, we use the satisfaction definition
to break it down into smaller subformulas, and then check these
smaller subformulas in the model.

• When we encounter a negation, that tells us that what follows
has to be checked as false in the model.

• Going deeper into a negated formula, we may encounter another
negation, which means that its argument has to be evaluated as
true. And so on and so forth. . .

robber(yolanda)
robber(yolanda)

¬robber(yolanda)
not(robber(yolanda))

¬(robber(yolanda) ∨ ¬(yolanda = honey-bunny))
not(and(robber(yolanda), not(eq(yolanda,honey_bunny))))
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The Polarity argument in satisfy/4 (2)

• The polarity argument is a flag that records whether we are
trying to check if a particular formula is true or false in a model.
∗ subformula flagged as pos: check if it is true
∗ subformula flagged as neg: check if it is false

• Note that when we give the original formula to the model
checker, the polarity argument will be pos.

The heart of the model checker is a series of clauses that spell out
recursively how to check a formula as true in a model, and how to
check it as false.
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Clauses of satisfy/4: Negation

Let’s start by looking into how to handle complex formulas.

Negation:

satisfy(not(Formula),Model,G,pos):-
satisfy(Formula,Model,G,neg).

satisfy(not(Formula),Model,G,neg):-
satisfy(Formula,Model,G,pos).

• These clauses spell out the required flip-flops between true and false
with negation.

• First clause: to check if a negated formula (not(Formula)) is true
(pos), we need to check if the argument of the negation (Formula) is
false (neg).

• Second clause: to check if not(Formula) is false (neg), we need to
check if the argument of the negation (Formula) is true (pos).
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Clauses of satisfy/4: Conjunction & Disjunction

Conjunction:

satisfy(and(Formula1,Formula2),Model,G,pos):-
satisfy(Formula1,Model,G,pos),
satisfy(Formula2,Model,G,pos).

satisfy(and(Formula1,Formula2),Model,G,neg):-
satisfy(Formula1,Model,G,neg);
satisfy(Formula2,Model,G,neg).

Disjunction:

satisfy(or(Formula1,Formula2),Model,G,pos):-
satisfy(Formula1,Model,G,pos);
satisfy(Formula2,Model,G,pos).

satisfy(or(Formula1,Formula2),Model,G,neg):-
satisfy(Formula1,Model,G,neg),
satisfy(Formula2,Model,G,neg).

These are direct Prolog encodings of what the satisfaction definition tells
us about ∧ and ∨. Note the use of the ; symbol, Prolog’s built in ‘or’.
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Clauses of satisfy/4: Implication

Implication:

Recall the formal satisfaction definition for this connective:

M , g |= ϕ→ ψ iff not M , g |= ϕ or M , g |= ψ;

The connective → can be defined in terms of ¬ and ∨:
• for any formulas φ and ψ whatsoever, φ→ ψ is equivalent to ¬φ ∨ ψ

Since we already have the clauses for ¬ and ∨ at our disposal, to
check an implication we will simply check the equivalent formula:

satisfy(imp(Formula1,Formula2),Model,G,Pol):-
satisfy(or(not(Formula1),Formula2),Model,G,Pol).
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Clauses of satisfy/4: Quantifiers (1)

Existential quantification:

satisfy(some(X,Formula),model(D,F),G,pos):-
memberList(V,D),
satisfy(Formula,model(D,F),[g(X,V)|G],pos).

satisfy(some(X,Formula),model(D,F),G,neg):-
setof(V,

(memberList(V,D),satisfy(Formula,model(D,F),[g(X,V)|G],neg)),
Dom),

setof(V,memberList(V,D),Dom).

[N.B.: the predicate memberList/2 succeeds if its first argument (any term) is
a member of its second argument (a list). You can find it in the library
comsemPredicates.pl. It’s equivalent to the predicate usually called member/2.]
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Clauses of satisfy/4: Quantifiers (2)
Let’s examine the first clause in the code for existential quantification:

satisfy(some(X,Formula),model(D,F),G,pos):-
memberList(V,D),
satisfy(Formula,model(D,F),[g(X,V)|G],pos).

Recall the formal definition:

M , g |= ∃xϕ iff M , g ′ |= ϕ for some x -variant g ′ of g

∃xϕ is true in a model M with respect to an assignment g if there is an x -variant
assignment g ′ under which ϕ is true in M .

• the call memberList(V,D) instantiates the variable V to some element
in the domain D

• with the instruction [g(X,V)|G] we try to evaluate with respect to
this variant assignment

• if this fails, Prolog will backtrack and memberList(V,D) will give us
another instantiation (if possible)

• we use Prolog backtracking to try out different variant assignments
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Clauses of satisfy/4: Quantifiers (3)

Let’s now examine the second clause:

satisfy(some(X,Formula),model(D,F),G,neg):-
setof(V,

(memberList(V,D),satisfy(Formula,model(D,F),[g(X,V)|G],neg)),
Dom),

setof(V,memberList(V,D),Dom).

The formula needs to be false with respect to all variant assignments:

• like before, we use memberList(V,D) and backtracking to try
different variant assignments

• we use Prolog inbuilt setof/3 predicate to collect all the
instantiations of V that falsify the formula

• when all instantiations make the formula false, then setof/3 will
simply be the domain D itself

• obtaining D as the result of setof/3 is the signal that we have falsified
the existential formula.
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Clauses of satisfy/4: Quantifiers (4)

Universal quantification:

Recall the formal definition:

M , g |= ∀xϕ iff M , g ′ |= ϕ for all x -variants g ′ of g;

∀xφ is logically equivalent to ¬∃x¬φ, so we can reuse our existing code:

satisfy(all(X,Formula),Model,G,Pol):-
satisfy(not(some(X,not(Formula))),Model,G,Pol).
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Clauses of satisfy/4: Atomic Formulas
Let’s now turn to atomic formulas. Recall the formal definition:

M , g |= R(τ1, . . . , τn ) iff (Ig
F (τ1), . . . , Ig

F (τn )) ∈ F (R);

One-place predicate symbols (positive version):

satisfy(Formula,model(D,F),G,pos):-
compose(Formula,Symbol,[Argument]),
i(Argument,model(D,F),G,Value),
memberList(f(1,Symbol,Values),F),
memberList(Value,Values).

Remarks:

• we’ve again made used of memberList/2

• we’ve also used compose/3 defined as (see comsemPredicates.pl):

compose(Term,Symbol,ArgList):-
Term =.. [Symbol|ArgList].

we use it to decompose a formula: it flattens a term into a list, with
the predicate as the first member and the arguments as the rest.
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Clauses of satisfy/4: Atomic Formulas (1)

Recall the formal definition of the interpretation of atomic formulas:

M , g |= R(τ1, . . . , τn ) iff (Ig
F (τ1), . . . , Ig

F (τn )) ∈ F (R);

One-place predicate symbols:

satisfy(Formula,model(D,F),G,pos):-
compose(Formula,Symbol,[Argument]),
i(Argument,model(D,F),G,Value),
memberList(f(1,Symbol,Values),F),
memberList(Value,Values).

satisfy(Formula,model(D,F),G,neg):-
compose(Formula,Symbol,[Argument]),
i(Argument,model(D,F),G,Value),
memberList(f(1,Symbol,Values),F),
\+ memberList(Value,Values).

The real work is done by predicate i/4, which is a Prolog version of the
interpretation function Ig

F .

Raquel Fernández Discourse – BSc AI 2011 24 / 35



Clauses of satisfy/4: Atomic Formulas (2)

Recall from our formal definition that Ig
F interprets variables with

assignment g and constants with the interpretation function F :

• if τ is a constant, Ig
F (τ) = F (τ)

• if τ is a variable, Ig
F (τ) = g(τ)

This is exactly what i/4 does:

i(X,model(_,F),G,Value):-
(

var(X),
memberList(g(Y,Value),G),
Y==X, !

;
atom(X),
memberList(f(0,X,Value),F)

).
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Clauses of satisfy/4: Atomic Formulas (3)
One-place predicate symbols: how are they handled?

satisfy(Formula,model(D,F),G,pos):-
compose(Formula,Symbol,[Argument]),
i(Argument,model(D,F),G,Value),
memberList(f(1,Symbol,Values),F),
memberList(Value,Values).

satisfy(Formula,model(D,F),G,neg):-
compose(Formula,Symbol,[Argument]),
i(Argument,model(D,F),G,Value),
memberList(f(1,Symbol,Values),F),
\+ memberList(Value,Values).

• compose/3 turns the formula into a list
• i/4 is called to interpret the argument term
• the 1st call to memberList/2 looks up the meaning of the 1-place predicate
• the second call checks that the interpretation of the term is one of the

possible values for the predicate in the model
• in the negative clause (neg), we use negation as failure

\+ memberList(Value,Values) to check precisely the opposite
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Clauses of satisfy/4: Atomic Formulas (4)
Two-place predicate symbols: for two-place predicate symbols, we
make to calls to i/4, one for each of the two argument terms.

satisfy(Formula,model(D,F),G,pos):-
compose(Formula,Symbol,[Arg1,Arg2]),
i(Arg1,model(D,F),G,Value1),
i(Arg2,model(D,F),G,Value2),
memberList(f(2,Symbol,Values),F),
memberList((Value1,Value2),Values).

satisfy(Formula,model(D,F),G,neg):-
compose(Formula,Symbol,[Arg1,Arg2]),
i(Arg1,model(D,F),G,Value1),
i(Arg2,model(D,F),G,Value2),
memberList(f(2,Symbol,Values),F),
\+ memberList((Value1,Value2),Values).

Finally, these are the clauses for equality:

satisfy(eq(X,Y),Model,G,pos):-
i(X,Model,G,Value1),
i(Y,Model,G,Value2),
Value1=Value2.

satisfy(eq(X,Y),Model,G,neg):-
i(X,Model,G,Value1),
i(Y,Model,G,Value2),
\+ Value1=Value2.
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Evaluating Formulas

Now we have the core of (the first version of) our model checker.

In order to make it more usable for handling the querying task, the code
includes the predicate evaluate/3:

• it takes a formula, a numbered example model, and a list of
assignments to free variables;

• it then checks whether the formula is satisfied in the example model
and prints the result.

evaluate(Formula,Example,Assignment):-
example(Example,Model),
satisfy(Formula,Model,Assignment,Result),
printStatus(Result).

For closed formulas, you can also use evaluate/2, which evaluates with
respect to the empty list of assignments.
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Beyond the Querying Task
The model checker can handle the querying task, which corresponds to
the speakers’ knowledge of whether a natural language sentence is true or
false in a given situation.

But it can actually do more than that: it can be used to find elements in
a model’s domain that satisfy certain descriptions.

?- satisfy(robber(X),
model([d1,d2,d3],

[f(0,jules,d1),
f(0,vincent,d2),
f(0,pumpkin,d3),
f(1,customer,[d2]),
f(1,robber,[d1,d3]),
f(2,love,[])]),

[g(X,Value)],
pos).

Value = d1 ;
Value = d3 ;
fail.

Note the assignment [g(X,Value)] where Value is a Prolog variable.
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Test Suite

The predicate modelCheckerTestSuite/0 can be used to test the model
checker on predefined examples:

?- modelCheckerTestSuite.

This command will force Prolog to evaluate all the examples in the file
modelCheckerTestSuite.pl and print out the results. The entries in that
file have the following form:

test(some(X,robber(X)),1,[],pos).

The output of modelCheckerTestSuite/0 will be a list of entries such as:

Input formula:
1 some(A, some(B, love(A, B)))
Example Model: 1
Status: Satisfied in model.
Model Checker says: Satisfied in model.

The fourth line should the actual status of the formula, and the bottom
line shows the verdict of the model checker.
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Summary of programs for the Model Checker v.1

All programs can be found in the directory BB1, available from
http://homepages.inf.ed.ac.uk/jbos/comsem/software1.html

• modelChecker1.pl is the main file. Consult it to run the first-order
model checker – it will load all other files it requires.

• comsemPredicates.pl contains definitions of auxiliary predicates,
such as memberList/2 and compose/3.

• exampleModels.pl contains example models in various vocabularies;
you could add your own models to this file.

• modelCheckerTestSuite.pl contains formulas to be evaluated in
the example models.
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Problems with Model Checker v.1 (1)

Although the first version of our model checker implements the main
ideas of the first-order satisfaction definition, it is not sufficiently robust.

These are the weak points — you are encouraged to think your way
through them by yourself (e.g. by using the trace mode):

• Problem 1: evaluating Prolog variables

The model checker v.1 gets into an infinite loop when given the following queries:
?- evaluate(X,1).
?- evaluate(imp(X,Y),4).

• Problem 2: evaluating constants (i.e. terms instead of formulas)

The model checker should signal that terms can’t be evaluated, but it doesn’t:
?- evaluate(mia,3).
fail.

?- evaluate(all(mia,vincent),2).
fail.
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Problems with Model Checker v.1 (2)

• Problem 3: evaluating out-of-vocabulary formulas

The model checker should signal that the satisfaction relation should not be defined
for items that don’t belong to the vocabulary, but it doesn’t:

?- evaluate(tasty(cheese),1).
fail.

• Problem 4: evaluating formulas with free variables with evaluate/2

The model checker should signal that formulas with free variables can’t be evaluated
without an assignment, but it doesn’t:

?- evaluate(customer(X),1).
fail.
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A Refined Model Checker

The code in modelChecker2.pl implements an improved version
of the model checker that handles these problems and produces
appropriate messages.

We won’t discuss the code for this revised version. You are
encouraged to work out by yourself how it fixes the problems.

See the homework exercises for this week.
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Next Week

So far we have been dealing with the querying task assuming that
sentences in natural language can be translated into FOL formulas.

But - how do we actually associate sentences in plain natural
language with logical semantics representations?

Next week we will look into the task of semantic construction:

• overview of how the lambda calculus can be used for this purpose;
• implementation of the lambda calculus in Prolog.

Some relevant code for next week:

experiment3.pl lambda.pl
betaConversion.pl readLine.pl
alphaConversion.pl sentenceTestSuite.pl
betaConversionTestSuite.pl semLexLambda.pl
comsemPredicates.pl semRulesLambda.pl
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