Discourse
BSc Artificial Intelligence, Spring 2011

Raquel Fernandez

Institute for Logic, Language & Computation
University of Amsterdam

Raquel Fernandez Discourse — BSc Al 2011 1/31

Summary from Last Week

e The querying task: given a first-order formula ¢ and a first-order
model M, is ¢ satisfied in M or not?

* recall that this corresponds to the process of evaluating natural
language descriptions in world situations while making use of
contextual information.

o We addressed this task computationally by implementing a
first-order model checker.

e Homework #1 asked you to play around with and test several
aspects of the model checker. We will briefly discuss Exercise 3.

Raquel Fernandez

HW1 — Exercise 3

Provide Prolog clauses for — and V according to the satisfaction definition
of these connectives, without reusing clauses for other connectives.

3.a) Implication:

Satisfaction definition: M, g = ¢ — ¢ iffnot M,g =@ or M,g =1

Clauses used in modelCheckerl.pl:

satisfy(imp(Formulal,Formula2) ,Model,G,Pol) :—
satisfy(or(not (Formulal) ,Formula2) ,Model,G,Pol).

Alternative clauses without reusing other connectives:

satisfy(imp(Formulal,Formula2),Model,G,pos) : -
satisfy(Formulal,Model,G,pos) ;
satisfy(Formula2,Model,G,neg) .

satisfy(imp(Formulal,Formula2) ,Model,G,neg) :-

satisfy(Formulal,Model,G,pos),
satisfy(Formula2,Model,G,neg) .

Raquel Ferndndez

HW1 — Exercise 3

3.b) Universal Quantification:

Satisfaction definition: M, g = Vzy iff M, g’ |= ¢ for all z-variants g’ of g

Clauses used in modelChecker1.pl for V:

satisfy(all(X,Formula),Model,G,Pol):-
satisfy(not (some(X,not (Formula))) ,Model,G,Pol) .

Clauses for existential quantification 3:

satisfy(some(X,Formula) ,model(D,F),G,pos):—
memberList(V,D),
satisfy(Formula,model(D,F), [g(X,V)|G],pos).

satisfy(some(X,Formula) ,model(D,F),G,neg) : -

setof (V, (memberList (V,D),satisfy(Formula,model(D,F), [g(X,V)|G],neg)) ,Dom),
setof (V,memberList (V,D),Dom) .

Raquel Ferndndez Discourse — BSc Al 2011 4 /31

HW1 — Exercise 3

Clauses used in modelCheckerl.pl for V:

satisfy(all(X,Formula),Model,G,Pol):-
satisfy(not (some(X,not (Formula))),Model,G,Pol).

Clauses for existential quantification 3:

satisfy(some(X,Formula) ,model(D,F),G,pos):—
memberList(V,D),
satisfy(Formula,model(D,F), [g(X,V)|G],pos).

satisfy(some(X,Formula) ,model(D,F),G,neg) : -
setof (V, (memberList (V,D),satisfy(Formula,model(D,F), [g(X,V)|G],neg)) ,Dom),
setof (V,memberList (V,D),Dom) .

Alternative clauses for V without reusing other connectives:
satisfy(all(X,Formula) ,model(D,F),G,pos):-

setof (V, (memberList (V,D),satisfy(Formula,model(D,F), [g(X,V)|G],pos)),Dom),
setof (V,memberList (V,D),Dom) .

satisfy(all(X,Formula) ,model(D,F),G,neg):~

memberList (V,D),
satisfy(Formula,model(D,F), [g(X,V) |G],neg) .

Raquel Ferndndez

Plan for Today

We now know how to deal with the querying task, which is the core of
mode-theoretic semantics (meaning ~ truth in a model).

The querying task manipulates logical formulas, which we take to be our
semantic representations.

But how do we associate natural language sentences with logical formulas?

This is the task we'll address today, namely
how to systematically associate logical semantic representations with
natural language sentences.

Once we have this essential piece as part of our system, we'll be able to
move on to discourse-related issues involving more than single sentences.

Raquel Fernandez

Compositionality

We want to be able to establish a systematic (non-arbitrary)
relation between sentences and formulas.

Vincent loves Mia ?~~> LOVE(VINCENT, MIA)
Everyone hates Butch ?~~ Vz.HATE(z, BUTCH)

Intuitively, we know that the meaning of a sentence is based on the

meaning of its bits and pieces (compositionality):

® we may be able to associate a representation with each lexical item,
but how is this information combined?

e the meaning of a sentence is not only based on the words that make it
up, but also on the ordering, grouping, and relations among such words

e the missing ingredient is a notion of syntactic structure.

Raquel Fernandez

Syntax and Compositional Semantics

As you know, syntax tells us how to hierarchically decompose a sentence
into sub-parts that ultimately lead to the lexical items:

S

Vincent loves Mia

TN

NP VP
Vincent loves Mia
N
\% NP
loves Mia

e |f we associate a semantic representation with each lexical item, and...

e describe how the semantic representation of a syntactic constituent is
to be built up from the representation of its sub-parts, then...

e we have at our disposal a compositional semantics: a systematic way
of constructing semantic representations for sentences.

Raquel Fernandez

Semantic Construction

Now we have a plausible strategy for finding a way to systematically
associate first-order semantic representations with sentences.

We need to:

1. Specify a reasonable syntax for the fragment of natural language of
interest.

2. Specify semantic representations for the lexical items.

3. Specify how the semantic representation of a syntactic constituent
is constructed in terms of the representations of its subparts.

Since we are interested in semantics, task 1 and 2 are where our
real interests lie.

To handle task 1, we'll adopt a very simple solution: we'll use
Definite Clause Grammars (DCGs), the built-in Prolog mechanism
for grammar specification and parsing.

Raquel Fernandez

Syntax with DCGs

s --> np, vp. pn —-> [vincent].

np --> pn. pn --> [mia].

vp --> iv. noun --> [woman].

vp --> tv, np. noun --> [foot,massage].
np --> det, noun. iv --> [snorts].

det --> [al. iv --> [walks].

det --> [every]. tv --> [likes].

e complex syntactic categories: s, np, vp
e simple syntactic categories: det, noun, iv, tv

e |exical items: a, every, vincent, mia, woman, footmassage,
snorts, walks, likes

?- s([mia,likes,a,foot,massagel],[]). 7- np(X, [1).
true . X = [vincent] ;
X = [mia] ;
X = [a, woman] ;
?7- s([every,walks], []1). X = [a, foot, massage] ;
fail. X = [every, woman] ;
X = [every, foot, massagel].

Raquel Fernandez Discourse — BSc Al 2011 10 / 31

Semantic Construction

How shall we deal with tasks 2 and 37

2. Specify semantic representations for the lexical items.
3. Specify how the semantic representation of a syntactic constituent
is constructed in terms of the representations of its subparts.

Using plain FOL does not seem very handy...
S

Vincent loves Mia
LOVE(VINCENT, MIA) 7

/\ we could represent lexical items with
first-order terms and formulas, but how

NP VP .
Vincent loves Mia do we combine them?
VINCENT LOVE(z, MIA) 7 we'd like to replace variables with terms,
but how should we do that?
\% NP
loves Mia

LOVE(z,y) MIA

Fortunately, we can use a notational extension of FOL that will make
these tasks easy: the /ambda calculus.

Raquel Fernandez

The Lambda Calculus

Raquel Ferndndez Discourse — BSc Al 2011 12 /31

Lambda Abstraction

We shall view the lambda calculus as a notational extension of
FOL that allows us to bind variables with a new operator A:

AZ.WOMAN(z)

e the prefix Az. binds the occurrence of z in WOMAN(z)

e we often say the that prefix Az. abstracts over z, and call
expressions with such prefixes lambda expressions or lambda
abstractions

e we can use one lambda expression as the body of another one:

AZ.\y.LOVE(z, y)

Raquel Fernandez

Functional Application

We can think of the lambda calculus as a tool dedicated to gluing
together the items needed to build semantic representations.

AZ.WOMAN(z)

o the purpose of abstracting over variables is to mark the slots
where we want substitutions to be made

* the binding of the free variable z in WOMAN(z) indicates that
WOMAN has an argument slot where we may perform substitutions

e lambda abstractions can be seen as that can be applied
to [we shall use the symbol @ for functional application]

AZ.WOMAN(z)@MIA

e a compound expression of this sort refers to the application of
the functor Az.WOMAN(z) to the argument MIA.

Raquel Fernandez

(-conversion

Compound expressions FQA can be seen as instructions to
o throw away the \z. prefix of the functor F, and

o replace any occurrence of z bound by the A-operator with the
argument A

This replacement or substitution process is called J-conversion:

AZ.WOMAN(z)@MIA ~> WOMAN(MIA)

Ay Az.HATE(z, y)@BUTCH ~» AZ.HATE(z, BUTCH)

Note that the A-operator can bind variables ranging over complex
expressions: lambda abstractions can also act as arguments

Av.3z.(BOXER(z) A v@Qz) @ A\z.DANCE(z) ~» Jz.(BOXER(z) A Az.DANCE(z)Qz)
~> 3z.(BOXER(z) A DANCE(z))

Raquel Fernandez

Lambda Calculus for Semantic Construction

Lambda abstraction, functional application, and (-conversion are the
main ingredients we need to deal with semantic construction:

e Once we have devised lambda abstractions to represent lexical items,
we only need to use functional application and S3-conversion to
combine semantic representations compositionally.

* Given a syntactic constituent R with subparts Ra and Rb, we need
to specify which subpart is to be thought as the functor F and

which as the argument A.

* We then construct the semantic representation of R by functional

application F@A

Raquel Fernandez

AzZ.WALK(2) QVINCENT ~+ WALK(VINCENT)

N

NP VP
VINCENT Az.WALK(z)
Vincent walks

A-abstractions for Lexical Items (1)

How shall we represent the different basic syntactic categories?

We have been representing intransitive verbs and nouns as 1-place
relations which are missing their argument:

walk: Az.WALK(z)
boxer: Az.BOXER(z)

What about determiners such as ‘a’” and ‘every’ in NPs like ‘a boxer'?
e For instance, we'd like to represent the meaning of ‘a boxer walks’ as

Jz.BOXER(z) A WALK(z)

o \What does each word contribute to this formula? And what is the
contribution of the determiner?

Raquel Fernandez

A-abstractions for Lexical Items (2)

A boxer walks: 3z.BOXER(z) A WALK(x)

If 'boxer’ contributes BOXER(z) and ‘walks’ contributes WALK(z),
then the determiner ‘a’ must contribute something like this 3z ... A ...

For the determiner we then need three arguments:

e one for the existentially bound variable e AL
o one for the contribution of the NP (the restriction) 3z...A...
o one for the contribution of the VP (the scope) dz.. AL

We can use lambda abstraction to mark the missing arguments that will
be filled in during semantic construction. This is the representation for
existential determiners:

a, some: Au.Av.3z.(uQz A vQx)

Raquel Fernandez

A boxer walks

S
Av.3z.(BOXER(z) A v@Qz) @ A\z.WALK(z)
~~> Jz.(BOXER(z) A WALK(2))

NP VP
Audv.3z.(uQz A vQz) @ A\z.BOXER(z) Az.WALK(z)
~> A\v.3z.(BOXER(z) A vQx) |

Vv
AZ.WALK(z)
Det N walks
AuAv.3z.(u@Qz A vQz) Az.BOXER(z)
a boxer

Raquel Fernandez Discourse — BSc Al 2011 19 /31

A-abstractions for Lexical Items (3)

We have represented quantified NPs as functors:
a boxer: \v.3z.(BOXER(z) A v@Qx)

In order to have a uniform representation of all NPs as functors, we can
use the following representation for proper nouns (instead of simply using
constants) — a functor that applies its own argument to itself:

Mia: Au.(u@MIA)

This complicates a little bit the representation of transitive verbs; instead
of A\y.Az.LOVE(z, y), we need the following representation:

loves: Av.Az.(v@Ay.LOVE(z, y))

Let us see why. ..

Raquel Fernandez

Vincent loves Mia

S
Au.(W@QVINCENT) Oz .LOVE(z, MIA))
~~> A\Z.LOVE(Z, MIA) @VINCENT
~~ LOVE(VINCENT, MIA)

NP VP
| AvAz.(v@QAyY.LOVE(z, ¥)) @A\u. (u@MIA)
N ~> Az (Au.(u@QMIA)@\y.LOVE(Z, ¥))
Au.(u@VINCENT) ~+ \z.LOVE(Z, MIA))
Vincent
\Y N
A Az (vV@QAY.LOVE(z, y)) Au.(u@MIA)
loves Mia

Raquel Fernandez Discourse — BSc Al 2011 21 /31

Implementing Lambda Calculus

Raquel Ferndndez Discourse — BSc Al 2011 22 /31

DCGs for Semantic Construction

We shall use the following Prolog terms to implement the lambda calculus:
e lambda abstraction (Az.EF): lam(X,E)
e functional application (FQA): app(F,A)

Here are the main syntactic rules decorated with semantic representations:

s (app(NP,VP))--> np(NP), vp(VP).

np (app(Det ,Noun))--> det(Det), noun(Noun) .
np (PN)--> pn(PN) .

vp(IV)-—> iv(IV).

vp (app(TV,NP))--> tv(TV), np(NP).

And here are some lexical entries:

noun(lam(X,woman(X)))--> [woman].

iv(lam(Y,walk(Y)))--> [walks].
tv(lam(X,lam(Y,app(X,lam(Z,like(Y,2))))))--> [likes].
pn(lam(P,app(P,mia)))--> [mia].

det (lam(P,lam(Q,all (X, imp (app(P,X) ,app(Q,X))))))--> [every].
det (lam(P,lam(Q, some (X, and(app(P,X) ,app(Q,X))))))--> [al.

This code can be found in the file experiment3.pl

Raquel Ferndndez

Implementing (3-conversion

We can used the above DCG for semantic construction:

?- s(Sem, [mia,walks], []).
Sem = app(lam(_G262, app(_G262, mia)), lam(_G268, walk(_G268)))

The output is correct, but what we want instead is . To
get genuine first-order formulas we need [3-conversion.

= We will not discuss the code for G-conversion. You can find it in
the file . It makes use of a stack to keep
track of the expressions that need to be used as arguments.

The output of the DCG can be fed into the (3-conversion predicate
to obtain the first-order semantic representation for the sentence:

?- s(Sem, [mia,walks],[]), betaConvert(Sem,Reduced).
Sem = app(lam(_G295, app(_G295, mia)), lam(_G301, walk(_G301))),
Reduced = walk(mia) .

Raquel Fernandez

Addendum: a-conversion

There is one more ingredient in the lambda calculus we have not
yet mentioned:

e In order to avoid accidental bindings during -conversion, we
should first change all the bound variables (bound by lambdas or
quantifiers) in the functor to variables not used in the argument.

e The process of relabeling bound variables is called

The following expressions are a-equivalent:
Au.3z.(WOMAN(z) A u@z)
Av.3z.(WOMAN(z) A vQz)

Bound variables are dummies — it doesn’'t matter which particular variable we use.

o We will not discuss the code for implementing a-conversion.
You can find it in the file . The
(-conversion predicate uses alphaConvert/2 to relabel all
bound variables in the functor to fresh new symbols.

Raquel Fernandez

Summary of Programs for the Lambda Calculus

e cxperiment3.pl (DCG with lambda calculus for a small fragment of English)

e betaConversion.pl ® betaConversionTestSuite.pl
e alphaConversion.pl e comsemPredicates.pl (auxiliary predicates)

If you load the file betaConversion.pl and issue the command
?- betaConvertTestSuite.

the examples in the test suite will be evaluated; they have this form:

the first argument of expression/2 is
the lambda expression to be B-converted
and the second one is the result.

expression(app(lam(A,sleep(A)) ,mia),
sleep(mia)) .

The output will be a series of entries of the following form:

Expression: app(lam(_G227, sleep(_G227)), mia)
Expected: sleep(mia)

Converted: sleep(mia)

Result: ok

The test suite file betaConversionTestSuite.pl contains many
interesting and instructive examples with comments on many of them.

Raquel Ferndndez

Grammar Engineering

We have all the ingredients we need for semantic construction, but the
DCG we have been playing with is very simple. It's time to move to a
more interesting grammar fragment.

e Blackburn and Bos strive to develop a grammar that is:
* modular
* extendible
* reusable

e This diagram illustrates the two-dimensional architecture of their grammar:

lambda.pl SYNTAX SEMANTICS
the Lexicon the Semantic Lexicon
H= el englishLexicon.pl semLexLambda.pl
the Syntax Rules the Semantic Rules
S englishGrammar.pl semRulesLambda.pl

Raquel Fernandez

Syntax
The Syntax Rules

e DCQG rules annotated with additional grammatical information
(s.a. agreement, morphology, etc).

o license several types of constructions: relative clauses, coordination,...
o they have a placeholder for semantic information:

s([sem:Sem])-->
np ([num:Num, sem:NP]) ,
vp ([num:Num,sem:VP]),
{combine(s:Sem, [np:NP,vp:VP])}.

The Lexicon

e The general format of a lexical entry is lexEntry(Cat,Features),
where Cat is the syntactic category and Features is a list of features.

e For example, the entries for the intransitive verb ‘to walk’ are:
lexEntry(iv, [symbol:walk,syntax: [walk] ,inf:inf ,num:sg]).

lexEntry(iv, [symbol:walk,syntax: [walks],inf:fin,num:sg]).
lexEntry(iv, [symbol:walk,syntax: [walk] ,inf:fin,num:pl]).

Raquel Fernandez

Semantics

The Semantic Rules

e they implement the lambda calculus as we have seen earlier, with the
help of app/2.

o here is where the predicate combine/2 is defined. For instance:
combine (s:app(A,B), [np:A,vp:B]).

The Semantic Lexicon
e |exical semantics, set of semantic macros

e the most important part of the grammar: the semantic definition of
the lexical items determines the result of semantic construction

semLex (noun,M) : -
M = [symbol:Sym,
sem:lam(X,Formula)],
compose (Formula,Sym, [X]) .

N.B: compose/3 coerces a symbol and a
variable into a A-abstracted formula, e.g.
lam(X,boxer (X))

semLex (det ,M) : -
M = [type:indef,
sem:lam(P,lam(Q, some (X, and (app(P,X) ,app(Q,X)))))].

Raquel Fernandez

Wrapping Everything Together

This is the main level program:

lambda: -

readLine (Sentence),
lambda(Sentence,Sems),
printRepresentations(Sems) .

lambda(Sentence,Sems) : -
setof (Sem,t ([sem:Sem] ,Sentence, []) ,Sems) .

It uses readLine/1 to read in a sentence, computes all semantic repre-
sentations with t/3 (defined in englishGrammar.pl), and prints them out.

?- lambda.
> Mia knows a boxer.
1 some(A, and(boxer(A), know(mia, A)))

Summary of programs for the full grammar fragment:

e lambda.pl main file for lambda calculus
using the extended grammar

semLexLambda.pl

semRulesLambda.pl
englishLexicon.pl
englishGrammar.pl

® readlLine.pl
o sentenceTestSuite.pl

Raquel Fernandez Discourse — BSc Al 2011 30 /31

What's Next?

We now have a basic architecture for translating natural language
sentences into a formal meaning representation (FOL) and for
checking whether they are valid in a given situation.

We are ready to move on to — to dealing with more than
single sentences. We'll start by addressing these two tasks:

. . given the logical representation of a
discourse, is it consistent or inconsistent?

. . given the logical representation of
a discourse, is it informative or uninformative?

These tasks are much more difficult than the querying task: they
are undecidable for FOL as we shall see. To deal with them
efficiently, we'll use automated reasoning tools for theorem proving
and model building.

Raquel Fernandez

