
Discourse
BSc Artificial Intelligence, Spring 2011

Raquel Fernández

Institute for Logic, Language & Computation
University of Amsterdam

Raquel Fernández Discourse – BSc AI 2011 1 / 31

Summary from Last Week

• The querying task: given a first-order formula ϕ and a first-order
model M , is ϕ satisfied in M or not?
∗ recall that this corresponds to the process of evaluating natural

language descriptions in world situations while making use of
contextual information.

• We addressed this task computationally by implementing a
first-order model checker.

• Homework #1 asked you to play around with and test several
aspects of the model checker. We will briefly discuss Exercise 3.

Raquel Fernández Discourse – BSc AI 2011 2 / 31

HW1 – Exercise 3

Provide Prolog clauses for → and ∀ according to the satisfaction definition
of these connectives, without reusing clauses for other connectives.

3.a) Implication:

Satisfaction definition: M , g |= ϕ→ ψ iff not M , g |= ϕ or M , g |= ψ

Clauses used in modelChecker1.pl:

satisfy(imp(Formula1,Formula2),Model,G,Pol):-
satisfy(or(not(Formula1),Formula2),Model,G,Pol).

Alternative clauses without reusing other connectives:

satisfy(imp(Formula1,Formula2),Model,G,pos):-
satisfy(Formula1,Model,G,pos);
satisfy(Formula2,Model,G,neg).

satisfy(imp(Formula1,Formula2),Model,G,neg):-
satisfy(Formula1,Model,G,pos),
satisfy(Formula2,Model,G,neg).

Raquel Fernández Discourse – BSc AI 2011 3 / 31

HW1 – Exercise 3

3.b) Universal Quantification:

Satisfaction definition: M , g |= ∀xϕ iff M , g ′ |= ϕ for all x -variants g ′ of g

Clauses used in modelChecker1.pl for ∀:

satisfy(all(X,Formula),Model,G,Pol):-
satisfy(not(some(X,not(Formula))),Model,G,Pol).

Clauses for existential quantification ∃:

satisfy(some(X,Formula),model(D,F),G,pos):-
memberList(V,D),
satisfy(Formula,model(D,F),[g(X,V)|G],pos).

satisfy(some(X,Formula),model(D,F),G,neg):-
setof(V,(memberList(V,D),satisfy(Formula,model(D,F),[g(X,V)|G],neg)),Dom),
setof(V,memberList(V,D),Dom).

Raquel Fernández Discourse – BSc AI 2011 4 / 31

HW1 – Exercise 3

Clauses used in modelChecker1.pl for ∀:

satisfy(all(X,Formula),Model,G,Pol):-
satisfy(not(some(X,not(Formula))),Model,G,Pol).

Clauses for existential quantification ∃:

satisfy(some(X,Formula),model(D,F),G,pos):-
memberList(V,D),
satisfy(Formula,model(D,F),[g(X,V)|G],pos).

satisfy(some(X,Formula),model(D,F),G,neg):-
setof(V,(memberList(V,D),satisfy(Formula,model(D,F),[g(X,V)|G],neg)),Dom),
setof(V,memberList(V,D),Dom).

Alternative clauses for ∀ without reusing other connectives:

satisfy(all(X,Formula),model(D,F),G,pos):-
setof(V,(memberList(V,D),satisfy(Formula,model(D,F),[g(X,V)|G],pos)),Dom),
setof(V,memberList(V,D),Dom).

satisfy(all(X,Formula),model(D,F),G,neg):-
memberList(V,D),
satisfy(Formula,model(D,F),[g(X,V)|G],neg).

Raquel Fernández Discourse – BSc AI 2011 5 / 31

Plan for Today

We now know how to deal with the querying task, which is the core of
mode-theoretic semantics (meaning ≈ truth in a model).

The querying task manipulates logical formulas, which we take to be our
semantic representations.

But how do we associate natural language sentences with logical formulas?

⇒ This is the task we’ll address today, namely semantic construction:
how to systematically associate logical semantic representations with
natural language sentences.

Once we have this essential piece as part of our system, we’ll be able to
move on to discourse-related issues involving more than single sentences.

Raquel Fernández Discourse – BSc AI 2011 6 / 31

Compositionality

We want to be able to establish a systematic (non-arbitrary)
relation between sentences and formulas.

Vincent loves Mia ? love(vincent,mia)
Everyone hates Butch ? ∀x .hate(x , butch)

Intuitively, we know that the meaning of a sentence is based on the
meaning of its bits and pieces (compositionality):

• we may be able to associate a representation with each lexical item,
but how is this information combined?

• the meaning of a sentence is not only based on the words that make it
up, but also on the ordering, grouping, and relations among such words

• the missing ingredient is a notion of syntactic structure.

Raquel Fernández Discourse – BSc AI 2011 7 / 31

Syntax and Compositional Semantics

As you know, syntax tells us how to hierarchically decompose a sentence
into sub-parts that ultimately lead to the lexical items:

S
Vincent loves Mia

NP
Vincent

VP
loves Mia

V
loves

NP
Mia

• If we associate a semantic representation with each lexical item, and...

• describe how the semantic representation of a syntactic constituent is
to be built up from the representation of its sub-parts, then...

• we have at our disposal a compositional semantics: a systematic way
of constructing semantic representations for sentences.

Raquel Fernández Discourse – BSc AI 2011 8 / 31

Semantic Construction

Now we have a plausible strategy for finding a way to systematically
associate first-order semantic representations with sentences.

We need to:

1. Specify a reasonable syntax for the fragment of natural language of
interest.

2. Specify semantic representations for the lexical items.
3. Specify how the semantic representation of a syntactic constituent

is constructed in terms of the representations of its subparts.

Since we are interested in semantics, task 1 and 2 are where our
real interests lie.

To handle task 1, we’ll adopt a very simple solution: we’ll use
Definite Clause Grammars (DCGs), the built-in Prolog mechanism
for grammar specification and parsing.

Raquel Fernández Discourse – BSc AI 2011 9 / 31

Syntax with DCGs

s --> np, vp. pn --> [vincent].
np --> pn. pn --> [mia].
vp --> iv. noun --> [woman].
vp --> tv, np. noun --> [foot,massage].
np --> det, noun. iv --> [snorts].
det --> [a]. iv --> [walks].
det --> [every]. tv --> [likes].

• complex syntactic categories: s, np, vp

• simple syntactic categories: det, noun, iv, tv

• lexical items: a, every, vincent, mia, woman, footmassage,
snorts, walks, likes.

?- s([mia,likes,a,foot,massage],[]). ?- np(X,[]).
true . X = [vincent] ;

X = [mia] ;
X = [a, woman] ;

?- s([every,walks],[]). X = [a, foot, massage] ;
fail. X = [every, woman] ;

X = [every, foot, massage].

Raquel Fernández Discourse – BSc AI 2011 10 / 31

Semantic Construction
How shall we deal with tasks 2 and 3?

2. Specify semantic representations for the lexical items.
3. Specify how the semantic representation of a syntactic constituent

is constructed in terms of the representations of its subparts.

Using plain FOL does not seem very handy...

S
Vincent loves Mia

love(vincent,mia) ?

NP
Vincent
vincent

VP
loves Mia

love(x ,mia) ?

V
loves

love(x , y)

NP
Mia
mia

we could represent lexical items with
first-order terms and formulas, but how
do we combine them?

we’d like to replace variables with terms,
but how should we do that?

Fortunately, we can use a notational extension of FOL that will make
these tasks easy: the lambda calculus.

Raquel Fernández Discourse – BSc AI 2011 11 / 31

The Lambda Calculus

Raquel Fernández Discourse – BSc AI 2011 12 / 31

Lambda Abstraction

We shall view the lambda calculus as a notational extension of
FOL that allows us to bind variables with a new operator λ:

λx .woman(x)

• the prefix λx . binds the occurrence of x in woman(x)
• we often say the that prefix λx . abstracts over x , and call

expressions with such prefixes lambda expressions or lambda
abstractions

• we can use one lambda expression as the body of another one:

λx .λy.love(x , y)

Raquel Fernández Discourse – BSc AI 2011 13 / 31

Functional Application

We can think of the lambda calculus as a tool dedicated to gluing
together the items needed to build semantic representations.

λx .woman(x)

• the purpose of abstracting over variables is to mark the slots
where we want substitutions to be made
∗ the binding of the free variable x in woman(x) indicates that

woman has an argument slot where we may perform substitutions

• lambda abstractions can be seen as functors that can be applied
to arguments [we shall use the symbol @ for functional application]

λx .woman(x)@mia

• a compound expression of this sort refers to the application of
the functor λx .woman(x) to the argument mia.

Raquel Fernández Discourse – BSc AI 2011 14 / 31

β-conversion

Compound expressions F@A can be seen as instructions to
• throw away the λx . prefix of the functor F , and
• replace any occurrence of x bound by the λ-operator with the

argument A
This replacement or substitution process is called β-conversion:

λx .woman(x)@mia woman(mia)

λy.λx .hate(x , y)@butch λx .hate(x , butch)

Note that the λ-operator can bind variables ranging over complex
expressions: lambda abstractions can also act as arguments

λv .∃x .(boxer(x)∧ v@x) @ λx .dance(x) ∃x .(boxer(x)∧λx .dance(x)@x)

 ∃x .(boxer(x) ∧ dance(x))

Raquel Fernández Discourse – BSc AI 2011 15 / 31

Lambda Calculus for Semantic Construction

Lambda abstraction, functional application, and β-conversion are the
main ingredients we need to deal with semantic construction:

• Once we have devised lambda abstractions to represent lexical items,
we only need to use functional application and β-conversion to
combine semantic representations compositionally.

∗ Given a syntactic constituent R with subparts Ra and Rb, we need
to specify which subpart is to be thought as the functor F and
which as the argument A.

∗ We then construct the semantic representation of R by functional
application F@A

R
F@A

Ra
F

Rb
A

S
λx .walk(x)@vincent walk(vincent)

NP
vincent
Vincent

VP
λx .walk(x)

walks

Raquel Fernández Discourse – BSc AI 2011 16 / 31

λ-abstractions for Lexical Items (1)

How shall we represent the different basic syntactic categories?

We have been representing intransitive verbs and nouns as 1-place
relations which are missing their argument:

walk: λx .walk(x)
boxer: λx .boxer(x)

What about determiners such as ‘a’ and ‘every’ in NPs like ‘a boxer’?

• For instance, we’d like to represent the meaning of ‘a boxer walks’ as

∃x .boxer(x) ∧walk(x)

• What does each word contribute to this formula? And what is the
contribution of the determiner?

Raquel Fernández Discourse – BSc AI 2011 17 / 31

λ-abstractions for Lexical Items (2)

A boxer walks: ∃x .boxer(x) ∧walk(x)

If ‘boxer’ contributes boxer(x) and ‘walks’ contributes walk(x),
then the determiner ‘a’ must contribute something like this ∃x . . . ∧ . . .

For the determiner we then need three arguments:

• one for the existentially bound variable ∃x . . . ∧ . . .
• one for the contribution of the NP (the restriction) ∃x . . . ∧ . . .
• one for the contribution of the VP (the scope) ∃x . . . ∧ . . .

We can use lambda abstraction to mark the missing arguments that will
be filled in during semantic construction. This is the representation for
existential determiners:

a, some: λu.λv .∃x .(u@x ∧ v@x)

Raquel Fernández Discourse – BSc AI 2011 18 / 31

A boxer walks

S
λv .∃x .(boxer(x) ∧ v@x) @ λx .walk(x)

 ∃x .(boxer(x) ∧walk(x))

NP
λu.λv .∃x .(u@x ∧ v@x) @ λx .boxer(x)

 λv .∃x .(boxer(x) ∧ v@x)

Det
λu.λv .∃x .(u@x ∧ v@x)

a

N
λx .boxer(x)

boxer

VP
λx .walk(x)

V
λx .walk(x)

walks

Raquel Fernández Discourse – BSc AI 2011 19 / 31

λ-abstractions for Lexical Items (3)

We have represented quantified NPs as functors:

a boxer: λv .∃x .(boxer(x) ∧ v@x)

In order to have a uniform representation of all NPs as functors, we can
use the following representation for proper nouns (instead of simply using
constants) — a functor that applies its own argument to itself:

Mia: λu.(u@mia)

This complicates a little bit the representation of transitive verbs; instead
of λy .λx .love(x , y), we need the following representation:

loves: λv .λx .(v@λy.love(x , y))

Let us see why. . .

Raquel Fernández Discourse – BSc AI 2011 20 / 31

Vincent loves Mia

S
λu.(u@vincent)@λx .love(x ,mia))
 λx .love(x ,mia)@vincent
 love(vincent,mia)

NP

N
λu.(u@vincent)

Vincent

VP
λv .λx .(v@λy.love(x , y))@λu.(u@mia)
 λx .(λu.(u@mia)@λy.love(x , y))

 λx .love(x ,mia))

V
λv .λx .(v@λy.love(x , y))

loves

N
λu.(u@mia)

Mia

Raquel Fernández Discourse – BSc AI 2011 21 / 31

Implementing Lambda Calculus

Raquel Fernández Discourse – BSc AI 2011 22 / 31

DCGs for Semantic Construction

We shall use the following Prolog terms to implement the lambda calculus:
• lambda abstraction (λx .E): lam(X,E)
• functional application (F@A): app(F,A)

Here are the main syntactic rules decorated with semantic representations:

s(app(NP,VP))--> np(NP), vp(VP).
np(app(Det,Noun))--> det(Det), noun(Noun).
np(PN)--> pn(PN).
vp(IV)--> iv(IV).
vp(app(TV,NP))--> tv(TV), np(NP).

And here are some lexical entries:

noun(lam(X,woman(X)))--> [woman].
iv(lam(Y,walk(Y)))--> [walks].
tv(lam(X,lam(Y,app(X,lam(Z,like(Y,Z))))))--> [likes].
pn(lam(P,app(P,mia)))--> [mia].
det(lam(P,lam(Q,all(X,imp(app(P,X),app(Q,X))))))--> [every].
det(lam(P,lam(Q,some(X,and(app(P,X),app(Q,X))))))--> [a].

This code can be found in the file experiment3.pl

Raquel Fernández Discourse – BSc AI 2011 23 / 31

Implementing β-conversion

We can used the above DCG for semantic construction:

?- s(Sem,[mia,walks],[]).
Sem = app(lam(_G262, app(_G262, mia)), lam(_G268, walk(_G268)))

The output is correct, but what we want instead is walk(mia). To
get genuine first-order formulas we need β-conversion.

⇒ We will not discuss the code for β-conversion. You can find it in
the file betaConversion.pl. It makes use of a stack to keep
track of the expressions that need to be used as arguments.

The output of the DCG can be fed into the β-conversion predicate
to obtain the first-order semantic representation for the sentence:

?- s(Sem,[mia,walks],[]), betaConvert(Sem,Reduced).
Sem = app(lam(_G295, app(_G295, mia)), lam(_G301, walk(_G301))),
Reduced = walk(mia) .

Raquel Fernández Discourse – BSc AI 2011 24 / 31

Addendum: α-conversion

There is one more ingredient in the lambda calculus we have not
yet mentioned:

• In order to avoid accidental bindings during β-conversion, we
should first change all the bound variables (bound by lambdas or
quantifiers) in the functor to variables not used in the argument.

• The process of relabeling bound variables is called α-conversion.

The following expressions are α-equivalent:
λu.∃x .(woman(x) ∧ u@x)
λv .∃z .(woman(z) ∧ v@z)

Bound variables are dummies – it doesn’t matter which particular variable we use.

• We will not discuss the code for implementing α-conversion.
You can find it in the file alphaConversion.pl. The
β-conversion predicate uses alphaConvert/2 to relabel all
bound variables in the functor to fresh new symbols.

Raquel Fernández Discourse – BSc AI 2011 25 / 31

Summary of Programs for the Lambda Calculus

• experiment3.pl (DCG with lambda calculus for a small fragment of English)
• betaConversion.pl • betaConversionTestSuite.pl
• alphaConversion.pl • comsemPredicates.pl (auxiliary predicates)

If you load the file betaConversion.pl and issue the command

?- betaConvertTestSuite.

the examples in the test suite will be evaluated; they have this form:

expression(app(lam(A,sleep(A)),mia),
sleep(mia)).

the first argument of expression/2 is
the lambda expression to be β-converted
and the second one is the result.

The output will be a series of entries of the following form:

Expression: app(lam(_G227, sleep(_G227)), mia)
Expected: sleep(mia)
Converted: sleep(mia)
Result: ok

The test suite file betaConversionTestSuite.pl contains many
interesting and instructive examples with comments on many of them.

Raquel Fernández Discourse – BSc AI 2011 26 / 31

Grammar Engineering
We have all the ingredients we need for semantic construction, but the
DCG we have been playing with is very simple. It’s time to move to a
more interesting grammar fragment.
• Blackburn and Bos strive to develop a grammar that is:
∗ modular
∗ extendible
∗ reusable

• This diagram illustrates the two-dimensional architecture of their grammar:

lambda.pl SYNTAX SEMANTICS

the Lexicon the Semantic Lexicon
LEXICON englishLexicon.pl semLexLambda.pl

the Syntax Rules the Semantic Rules
GRAMMAR englishGrammar.pl semRulesLambda.pl

Raquel Fernández Discourse – BSc AI 2011 27 / 31

Syntax
The Syntax Rules

• DCG rules annotated with additional grammatical information
(s.a. agreement, morphology, etc).

• license several types of constructions: relative clauses, coordination,...

• they have a placeholder for semantic information:

s([sem:Sem])-->
np([num:Num,sem:NP]),
vp([num:Num,sem:VP]),
{combine(s:Sem,[np:NP,vp:VP])}.

The Lexicon

• The general format of a lexical entry is lexEntry(Cat,Features),
where Cat is the syntactic category and Features is a list of features.

• For example, the entries for the intransitive verb ‘to walk’ are:

lexEntry(iv,[symbol:walk,syntax:[walk],inf:inf,num:sg]).
lexEntry(iv,[symbol:walk,syntax:[walks],inf:fin,num:sg]).
lexEntry(iv,[symbol:walk,syntax:[walk],inf:fin,num:pl]).

Raquel Fernández Discourse – BSc AI 2011 28 / 31

Semantics
The Semantic Rules

• they implement the lambda calculus as we have seen earlier, with the
help of app/2.

• here is where the predicate combine/2 is defined. For instance:

combine(s:app(A,B),[np:A,vp:B]).

The Semantic Lexicon

• lexical semantics, set of semantic macros

• the most important part of the grammar: the semantic definition of
the lexical items determines the result of semantic construction

semLex(noun,M):-
M = [symbol:Sym,

sem:lam(X,Formula)],
compose(Formula,Sym,[X]).

N.B: compose/3 coerces a symbol and a
variable into a λ-abstracted formula, e.g.
lam(X,boxer(X))

semLex(det,M):-
M = [type:indef,

sem:lam(P,lam(Q,some(X,and(app(P,X),app(Q,X)))))].

Raquel Fernández Discourse – BSc AI 2011 29 / 31

Wrapping Everything Together

This is the main level program:
lambda:-
readLine(Sentence),

lambda(Sentence,Sems),
printRepresentations(Sems).

lambda(Sentence,Sems):-
setof(Sem,t([sem:Sem],Sentence,[]),Sems).

It uses readLine/1 to read in a sentence, computes all semantic repre-
sentations with t/3 (defined in englishGrammar.pl), and prints them out.

?- lambda.
> Mia knows a boxer.
1 some(A, and(boxer(A), know(mia, A)))

Summary of programs for the full grammar fragment:

• lambda.pl main file for lambda calculus
using the extended grammar

• readLine.pl
• sentenceTestSuite.pl

• semLexLambda.pl
• semRulesLambda.pl
• englishLexicon.pl
• englishGrammar.pl

Raquel Fernández Discourse – BSc AI 2011 30 / 31

What’s Next?

We now have a basic architecture for translating natural language
sentences into a formal meaning representation (FOL) and for
checking whether they are valid in a given situation.

We are ready to move on to discourse – to dealing with more than
single sentences. We’ll start by addressing these two tasks:

• Consistency Checking Task: given the logical representation of a
discourse, is it consistent or inconsistent?

• Informativity Checking Task: given the logical representation of
a discourse, is it informative or uninformative?

These tasks are much more difficult than the querying task: they
are undecidable for FOL as we shall see. To deal with them
efficiently, we’ll use automated reasoning tools for theorem proving
and model building.

Raquel Fernández Discourse – BSc AI 2011 31 / 31

