
Discourse
BSc Artificial Intelligence, Spring 2011

Raquel Fernández

Institute for Logic, Language & Computation
University of Amsterdam

Raquel Fernández Discourse – BSc AI 2011 1 / 33

Summary from Last Week

Semantic construction: how to systematically associate logical
semantic representations with natural language sentences.

We introduced the lambda calculus, a notational extension of FOL
very well suited for semantic construction.

• specify a reasonable syntax for the fragment of interest;
• associate semantic representation with each lexical item using

lambda abstractions;
• use functional application and β-conversion to determine the

meaning of a complex constituent from that of its subparts.

Extended grammar from Blackburn & Bos: syntax-semantics
architecture covering an extended fragment of English.

⇒ Exercises 1 and 2 of HW #2 deal with semantic construction.

Raquel Fernández Discourse – BSc AI 2011 2 / 33

Plan for Today

We now have a basic architecture for translating natural language
sentences into a formal meaning representation (FOL) and for
checking whether they are valid in a given situation.

We are ready to move on to discourse – to dealing with more than
single sentences. We’ll start by addressing these two tasks:

• Consistency Checking Task: given the logical representation of a
discourse, is it consistent or inconsistent?

• Informativity Checking Task: given the logical representation of
a discourse, is it informative or uninformative?

These tasks are much more difficult than the querying task: they
are undecidable for FOL as we shall see. To deal with them
computationally, we’ll use automated reasoning tools for theorem
proving and model building.

Raquel Fernández Discourse – BSc AI 2011 3 / 33

Consistent Discourse

A consistent discourse is one that describes a possible state of affairs:

Everybody likes Mia. She’s smart and clever, and she dances gorgeously.
Mia likes Butch, who is a boxer. All boxers are poor dancers.

Inconsistent discourses describe situations that are impossible:

Everybody likes Mia. She’s smart and clever, and she dances gorgeously.
Mia likes Butch, who is a boxer. Butch doesn’t like Mia.

Humans have a strong tendency to search for consistency. . .
(“perhaps ‘everybody’ should have been interpreted loosely?”)

We’d like to be able to detect inconsistency when it arises because
it typically signals trouble.

Raquel Fernández Discourse – BSc AI 2011 4 / 33

Consistency & Satisfiability

When is a discourse (in)consistent? The informal concept of consistency
corresponds to the model-theoretic concept of satisfiability:

• A first-order formula is satisfiable if it is satisfied at least in one model:
if it describes a conceivable or possible situation, e.g.: robber(mia)

• A formula that is not satisfiable in any model is called unsatisfiable:
it describes an impossible or unrealisable situation, e.g.:
robber(mia) ∧ ¬robber(mia)

We can extend this concept to finite sets of formulas by using conjunction:

• A finite set of formulas {ϕ1, . . . , ϕn} is (un)satisfiable if ϕ1 ∧ . . . ∧ ϕn
is (un)satisfiable.

Accordingly, we define the consistency checking task as follows:

⇒ Consistency Checking Task: Given a first-order formula ϕ, is ϕ
consistent (i.e. satisfiable) or inconsistent (i.e. unsatisfiable)?

Raquel Fernández Discourse – BSc AI 2011 5 / 33

Informative Discourse

Information is a very broad concept. But using a narrow sense of
informativity, we can say that an informative discourse is one that
provides genuinely new information (i.e. that it is not redundant):

A: Everybody likes Mia. Either she’s very smart or she dances gorgeously.
B: Yeah. (Either she’s very smart or she dances gorgeously.)

C: She’s a poor dancer.

We’d like to be able to detect informativity and uninformativity,
because only the former allows us to rule out possibilities.

Raquel Fernández Discourse – BSc AI 2011 6 / 33

Validity

How can we formalise (some aspects of) informativity? We can think of
informativity in terms of the model-theoretic concept of validity:

• A formula ϕ is valid if it is satisfied in all models under any variable
assignment: if it is impossible to find a situation and a context where
it is not satisfied, e.g.: robber(x) ∨ ¬robber(x).

• A formula ϕ that fails to be satisfied in at least one model is invalid:
e.g., robber(x) is invalid as it is not possible to satisfy it in models
where there are no robbers.

We use |= ϕ to indicate that ϕ is valid, and 6|= ϕ to indicate it is invalid.

Raquel Fernández Discourse – BSc AI 2011 7 / 33

Valid Arguments

Validity can be extended to the notion of valid arguments. Given a finite
set of first-order formulas ϕ1, . . . , ϕn and ψ:

• the argument with premises ϕ1, . . . , ϕn and conclusion ψ is a valid
argument if and only if whenever all premises are satisfied in some
model using some variable assignment, then the conclusion is also
satisfied in the same model and using the same variable assignment.

∗ we can also say that ψ is a logical consequence of ϕ1, . . . , ϕn or a
valid inference from ϕ1, . . . , ϕn .

• an invalid argument is one for which it is possible to find a model and
an assignment that satisfies all the premises but not the conclusion.

We indicate that an argument is valid by writing ϕ1, . . . , ϕn |= ψ, and
that it is invalid by writing ϕ1, . . . , ϕn 6|= ψ.

Raquel Fernández Discourse – BSc AI 2011 8 / 33

Semantic Deduction Theorem

Validity and valid arguments are closely related: with the help of
the boolean connectives → and ∧ we can convert any valid
argument into a valid formula.

For instance, the following argument is valid:

∀x(robber(x) → customer(x)),robber(mia) |= customer(mia)

and so is the following formula:

|= ∀x(robber(x) → customer(x)) ∧ robber(mia) → customer(mia)

This is an example of the Semantic Deduction Theorem:

ϕ1, . . . , ϕn |= ψ if and only if |= (ϕ1 ∧ . . . ∧ ϕn) → ψ

Raquel Fernández Discourse – BSc AI 2011 9 / 33

Validity & Informativity (1)

What does validity tell us about informativity?

There is a clear sense in which valid formulas are uninformative: because
they are satisfied in all models, they don’t tell us anything about any
particular model - they don’t rule out possibilities. This idea can be
extended to arguments too:

• if ϕ1, . . . , ϕn |= ψ, and we know that ϕ1, . . . , ϕn , then ψ does not tell
us anything new.

All customers in this diner are robbers. One of the customers is Mia. She’s a robber.

∀x(customer(x) → robber(x)),customer(mia) |= robber(mia)

• however, if ϕ1, . . . , ϕn 6|= ψ and we already know ϕ1, . . . , ϕn , then
when we are told ψ we have learned something new.

All customers in this diner are robbers. One of the customers is Mia. She has a gun.

∀x(customer(x) → robber(x)),customer(mia) 6|= have(mia,gun)

Raquel Fernández Discourse – BSc AI 2011 10 / 33

Validity & Informativity (2)

Hence we can introduce the following terminology:

• if ϕ1, . . . , ϕn |= ψ we say that ψ is uninformative with respect to ϕ1, . . . , ϕn

All customers in this diner are robbers. One of the customers is Mia. She’s a robber.
∀x(customer(x) → robber(x)),customer(mia) |= robber(mia)

• if ϕ1, . . . , ϕn 6|= ψ we say that ψ is informative with respect to ϕ1, . . . , ϕn

All customers in this diner are robbers. One of the customers is Mia. She has a gun.
∀x(customer(x) → robber(x)),customer(mia) 6|= have(mia,gun)

By appealing to the Semantic Deduction Theorem, we can reduce testing
for informativity to a task involving a single formula:

ϕ1, . . . , ϕn 6|= ψ if and only if 6|= (ϕ1 ∧ . . . ∧ ϕn) → ψ

⇒ Informativity Checking Task: Given a first-order formula ϕ, is ϕ
informative (i.e. invalid) or uninformative (i.e. valid)?

Raquel Fernández Discourse – BSc AI 2011 11 / 33

How Hard are these Tasks?

• Consistency Checking Task: given a first-order formula ϕ, is ϕ
consistent (i.e. satisfiable) or inconsistent (i.e. unsatisfiable)?
∗ ϕ is satisfiable if it is satisfied at least in one model

• Informativity Checking Task: given a first-order formula ϕ, is ϕ
informative (i.e. invalid) or uninformative (i.e. valid)?
∗ ϕ is valid if it is satisfied in all models under any variable assignment

These tasks require us to check all possible models, but there is an
infinite number of possible models!

Therefore there is no algorithm capable of solving these tasks in
finite time for all possible input formulas. . .

⇒ Unlike the querying task (model checking task) where the model
and assignment used for evaluation are fixed, the consistency
and informativity checking tasks for FOL are undecidable.

Raquel Fernández Discourse – BSc AI 2011 12 / 33

Relating Consistency & Informativity (1)

There is one piece of good news however – both tasks boil down to
one single problem:

1. ϕ is consistent (satisfiable) iff ¬ϕ is informative (invalid)
2. ϕ is inconsistent (unsatisfiable) iff ¬ϕ is uninformative (valid)
3. ϕ is informative (invalid) iff ¬ϕ is consistent (satisfiable)
4. ϕ is uninformative (valid) iff ¬ϕ is inconsistent (unsatisfiable)

Consider 1 above:

Suppose ϕ is consistent. This means it is satisfiable in at least one
model. But this is the same as saying that there is at least one model
where ¬ϕ is not satisfiable. Which is precisely to say that ϕ is
informative.

Exercise 3 in Homework #2 asks you to give similar arguments for
establishing the truth of the relationships in 2, 3, and 4 above.

Raquel Fernández Discourse – BSc AI 2011 13 / 33

Relating Consistency & Informativity (2)

Both tasks can thus be reformulated in terms of the validity of
single formulas:

• saying that ψ is uninformative with respect to ϕ1, . . . , ϕn means that
ϕ1 ∧ . . . ∧ ϕn → ψ is valid

• saying that ψ is inconsistent with respect to ϕ1, . . . , ϕn means that
ϕ1 ∧ . . . ∧ ϕn → ¬ψ is valid

Therefore, what we need is a computational way to deal with validity.
However, since validity checking for FOL is undecidable, there are
no computational tools that give us a full algorithmic solution . . .

Fortunately, there are some partial solutions we can exploit: we’ll
use theorem provers and model builders in combination to tackle
the problem.

Raquel Fernández Discourse – BSc AI 2011 14 / 33

What is a Theorem Prover?

A theorem prover is a system that provides us with a systematic method
for checking whether or not it is possible to build a model in which some
given formula is true or false.

Methods for theorem proving are investigated within a branch of
computer science called automated reasoning. The crucial feature of such
proof methods is that they concentrate on the syntactic structure of formulas.

Such a systematic method gives us a way to test a formula for validity:

• a formula ϕ would be valid if and only if the method told us that there
is no way to build a model that falsifies ϕ (that is, a model for ¬ϕ).

Typically, theorem provers use refutation proof methods: to show that ϕ
is valid, we show that ¬ϕ leads to a contradiction.

Raquel Fernández Discourse – BSc AI 2011 15 / 33

Theorem Provers and Undecidability

Recall that FOL is undecidable: it is impossible to build a
computer program that can correctly decide in finite time whether
an arbitrary first-order formula is valid or not.

If a theorem prover fails to prove a formula this can be due to two
rather different reasons:
• the formula may be not valid, hence no proof exists, and so the prover

cannot find a proof;
• the formula may be valid but very difficult to prove, so the prover may

use up all its resources without finding a proof (even if it exists).

We can never be sure! A theorem prover thus cannot prove
non-validity. It can only prove validity (of formulas that are not
extremely complex nor tricky to prove).

Raquel Fernández Discourse – BSc AI 2011 16 / 33

Proof Methods
Many proofs methods for theorem proving have been studied:
tableau and resolution methods are two of the most common ones.

We shall briefly review the tableau method:

• it is conceptually simple and easy to understand;
• you should have covered its rudiments in previous courses, at least for

propositional logic;
• it is used by many “real” theorem provers

Blackburn and Bos include two simple theorem provers implemented in
Prolog. These are the relevant programs:

Propositional Logic First-Order Logic
propTableau.pl freeVarTabl.pl
propResolution.pl foResolution.pl
propTestSuite.pl folTestSuite.pl

We will not discuss this code. We shall instead concentrate on the overall
general idea behind theorem proving and on how it can be used for issues
in natural language discourse.

Raquel Fernández Discourse – BSc AI 2011 17 / 33

Tableau Method

These are the main ingredients of the tableau method for proving
validity by refutation:

• A proof is constructed as a tableau – a binary tree, the nodes of
which are labelled with formulas.

• Start: we start by putting in the root of the tree we want to
falsify (the negation of the original formula)

• Expansion: we apply expansion rules to the formulas on the tree,
thereby adding new formulas and splitting branches.

• Closure: we close branches that are obviously contradictory.
• Success: a proof is successful iff we can close all branches.

[N.B.: There are of course other variants, where e.g. tableaus are not
trees but different data structures. The main idea is what counts.]

Raquel Fernández Discourse – BSc AI 2011 18 / 33

Expansion Rules
Propositional rules:

Alpha Rules:
A ∧ B

A
B

¬(A ∨ B)
¬A
¬B

¬(A → B)
A
¬B

¬¬-Elimination:
¬¬A

A

Beta Rules:
A ∨ B
A B

A → B
¬A B

¬(A ∧ B)
¬A ¬B Closure:

A
¬A
×

Quantifier rules for first-order logic:

Gamma Rules:
∀x .A

A[t/x]
¬∃x .A
¬A[t/x]

Delta Rules:
∃x .A

A[c/x]
¬∀x .A
¬A[c/x]

• Beta Rules are branching rules that split the tree into branches.
• t is an arbitrary term and c is a constant symbol new to the branch.
• Unlike all other rules, the gamma rules may have to be applied more

than once to the same formula on the same branch.
• Recall that ϕ[t/x] denotes the formula we get by replacing each free

occurrence of the variable x in ϕ by the term t .

Raquel Fernández Discourse – BSc AI 2011 19 / 33

A Propositional Example

Let us show that the following formula is valid:

(P → Q) ∧ P → Q

We need to construct a proof that shows that its negation leads to
a contradiction. Here is the tableau:

¬[(P → Q) ∧ P → Q]

(P → Q) ∧ P
¬Q

P → Q
P

¬P
×

Q
×

• First, we apply the third alpha rule to the root
(because it is a negated implication)

• Then, the first alpha rule to (P → Q) ∧ P
(because it is a conjunction)

• Then, the second beta rule to P → Q , which
splits the tree in two branches

• Each branch can then be closed because they are
contradictory: the left branch contains ¬P and
P and the right branch contains Q and ¬Q .

Raquel Fernández Discourse – BSc AI 2011 20 / 33

A First-Order Example

Let us show that the following formula is valid:

∀x .(P(x) → Q(x)) ∧ ∃y.P(y) → ∃z .Q(z)

¬[∀x .(P(x) → Q(x)) ∧ ∃y.P(y) → ∃z .Q(z)]

∀x .(P(x) → Q(x)) ∧ ∃y.P(y)
¬∃z .Q(z)

∀x .(P(x) → Q(x))
∃y.P(y)

P(bob)

P(bob) → Q(bob)

¬P(bob)

×

Q(bob)

¬Q(bob)
×

• We apply the third alpha rule to the root.
• Then, the first alpha rule to the

conjunction
∀x .(P(x) → Q(x)) ∧ ∃y.P(y).

• We are left with only gamma and delta
rules to be applied: we first apply delta to
∃y.P(y) using bob as constant.

• We then apply the first gamma rule to
∀x .(P(x) → Q(x)) with term bob.

• We can close the left branch.
• We use the second gamma rule with
¬∃z .Q(z) and bob, and then we can also
close the right branch.

Raquel Fernández Discourse – BSc AI 2011 21 / 33

Back to Discourse. . .

We have seen that the consistency and informativity checking
tasks can be formulated in terms of validity. And that theorem
provers are automated reasoning tools designed to prove validity.

⇒ Are we able to fully address computationally the consistency and
informativity checking tasks by using a theorem prover?

Let us look at each of these tasks in turn. . .

Raquel Fernández Discourse – BSc AI 2011 22 / 33

Theorem Proving & Consistency (1)

How can we automatically show that this discourse is inconsistent?

All boxers are slow. Butch is a boxer. Butch is not slow.

• use semantic construction to build first-order representations for the
sentences in the discourse:

∀x .(boxer(x) → slow(x))
boxer(butch)
¬slow(butch)

• check whether the conjunction of the first two sentences implies the
negation of the last one - the final sentence is inconsistent with the
preceding discourse if and only if this formula is valid:

∀x .(boxer(x) → slow(x)) ∧ boxer(butch) → ¬¬slow(butch)

• give the formula to a theorem prover to automatically prove its validity.

Raquel Fernández Discourse – BSc AI 2011 23 / 33

Theorem Proving & Consistency (2)

If a discourse is inconsistent, then (assuming the problem is not
too hard for the prover) a decent first-order theorem prover can
demonstrate its inconsistency.

But theorem provers can’t prove non-validity, so we don’t have a
way to automatically prove that a discourse, such as the following,
is consistent:

All boxers are slow. Butch is a boxer. Mia likes Butch.

⇒ Theorem provers provide us with a negative check for consistency.

Raquel Fernández Discourse – BSc AI 2011 24 / 33

Theorem Proving & Informativity (1)

Let’s look into the consequences of undecidability for informativity.

How can we automatically show that this discourse is uninformative?

All boxers are crazy. Butch is a boxer. Butch is crazy.

• use semantic construction to build first-order representations for the
sentences in the discourse:

∀x .(boxer(x) → crazy(x))
boxer(butch)
crazy(butch)

• check whether the conjunction of the first two sentences implies the
the last one - the final sentence is uninformative with respect to the
preceding discourse if and only if this formula is valid:

∀x .(boxer(x) → crazy(x)) ∧ boxer(butch) → crazy(butch)

• give the formula to a theorem prover to automatically prove its validity.

Raquel Fernández Discourse – BSc AI 2011 25 / 33

Theorem Proving & Informativity (2)

As before, problems arise when the discourse is informative.

All boxers are crazy. Butch is a boxer. Butch loves Fabian.

Here the inference tasks we face is to determine whether the
following formula is valid:

∀x .(boxer(x) → crazy(x)) ∧ boxer(butch) → love(butch, fabian)

This formula is clearly not valid (there are models where it could
be false). But again: no general computational tools for
determining non-validity exist!

⇒Theorem provers provide us with a negative check for informativity.

Raquel Fernández Discourse – BSc AI 2011 26 / 33

Summarizing. . .

Theorem provers provide us with a negative check for consistency
and informativity:

• they can demonstrate the inconsistency or uninformativity of a
discourse simply by proving a theorem (provided the theorem is
not too hard).

However theorem proving does not provide us with a positive test:
• due to the undecidability of FOL, full positive checks for

consistency and informativity do not exists.

Are there any tools that provide us with partial positive checks?
Yes! they are called model builders.

Raquel Fernández Discourse – BSc AI 2011 27 / 33

Model Builders

Recall what a model checker does: it takes a formula and a model
and checks whether the formula is satisfied in that model or not.

A model builder does something more difficult: it takes a formula,
and tries to build a model that satisfies it.

• Model builders are relatively new automated reasoning tools;
• They do not build arbitrary infinite models, so even when some

possible models exist they may not be able to always build them.
• Model builders are only capable to build relatively small finite models.
• Often the domain size can be specified (e.g. up to 20 elements).

Although all this may sound simple, model builders can help us to
get partial positives checks for consistency and informativity.

Raquel Fernández Discourse – BSc AI 2011 28 / 33

Model Building & Consistency
The logical representation of this discourse is consistent:

All boxers are slow. Butch is a boxer. Mia likes Butch.

∀x .(boxer(x) → slow(x)) ∧ boxer(butch) ∧ like(mia, butch)

Suppose we ask a model builder to build a 2-element model:

Some possible models:
D = {d1, d2}
F (butch) = d1
F (mia) = d2
F (boxer) = {d1}
F (slow) = {d1}
F (like) = {(d2, d1)}

D = {d1, d2}
F (butch) = d1
F (mia) = d2
F (boxer) = {d1}
F (slow) = {d1, d2}
F (like) = {(d2, d1)}

The automatically built models may not always be intuitive, but
what matters to establish consistency is that there is at least one
model where the formula is satisfied.

⇒ Model builders provide us with a (partial) positive check for
consistency.

Raquel Fernández Discourse – BSc AI 2011 29 / 33

Model Building & Informativity
The last sentence in this discourse is clearly informative:

All boxers are crazy. Butch is a boxer. Butch loves Fabian.

That means the following formula is not valid, which in turn means that
its negation has at least one model:

∀x .(boxer(x) → crazy(x)) ∧ boxer(butch) → love(butch, fabian)

So we should ask a model builder to build a model for one of these two
equivalent formulas:

¬(∀x .(boxer(x) → crazy(x)) ∧ boxer(butch) → love(butch, fabian))

∀x .(boxer(x) → crazy(x)) ∧ boxer(butch) ∧ ¬love(butch, fabian)

This is easy! As long as there is a model for the negated formula, the
original formula is not valid and hence the discourse is informative.

⇒ Model builders provide us with a (partial) positive check for
informativity.

Raquel Fernández Discourse – BSc AI 2011 30 / 33

Combining both Tools

We have seen that:

• Theorem provers are capable of carrying out negative checks for
consistency and informativity.

• Model builders are capable of carrying out partial positive checks
for these tasks.

The optimal computational strategy is thus to use simultaneously
theorem proving and model building on the input formula – that is,
to do both negative and (partial) positive checks in parallel.

Next week we’ll explore an architecture that deals with the
consistency and informativity tasks by carrying out these processes
in parallel.

Raquel Fernández Discourse – BSc AI 2011 31 / 33

Summary

We have seen that the linguistic notions of consistency and
informativity of a discourse can be analysed with the logical
concepts of satisfiability and validity.

• Consistency Checking Task: given a first-order formula ϕ, is ϕ
consistent (i.e. satisfiable) or inconsistent (i.e. unsatisfiable)?
∗ ϕ is satisfiable if it is satisfied at least in one model

• Informativity Checking Task: given a first-order formula ϕ, is ϕ
informative (i.e. invalid) or uninformative (i.e. valid)?
∗ ϕ is valid if it is satisfied in all models under any variable assignment

Both tasks boil down to checking validity. In First-Order Logic,
this task is undecidable. However:

⇒ we can use theorem provers to obtain negative checks, and
model builders to obtain partial positive checks.

Raquel Fernández Discourse – BSc AI 2011 32 / 33

Next Week

We’ll have a practical session where we’ll put into practice today’s
ideas and go over what we have learned in the course so far.

Room details will be announced as soon as possible.

Raquel Fernández Discourse – BSc AI 2011 33 / 33

