
Discourse
BSc Artificial Intelligence, Spring 2011

Raquel Fernández

Institute for Logic, Language & Computation
University of Amsterdam

Raquel Fernández Discourse – BSc AI 2011 1 / 11

Summary from Last Week

We looked into the following two tasks:

• Consistency Checking Task: given the logical representation ϕ of a
discourse, is ϕ consistent (i.e. satisfiable) or inconsistent (i.e. unsatisfiable)?
∗ ϕ is satisfiable if it is satisfied at least in one model

• Informativity Checking Task: given the logical representation ϕ of a
discourse, is ϕ informative (i.e. invalid) or uninformative (i.e. valid)?
∗ ϕ is valid if it is satisfied in all models under any variable assignment

These tasks require us to check all possible models, but there is an
infinite number of possible models! Therefore there is no algorithm
capable of solving these tasks in finite time for all possible input
formulas. . . These tasks are undecidable for FOL.

However, automated reasoning tools such as theorem provers and
model builders give us a partial computational solution.

Raquel Fernández Discourse – BSc AI 2011 2 / 11

Automated Reasoning Tools

A theorem prover is a system that systematically checks whether a
formula is valid using refutation proof methods:
• to show that ϕ is valid, the prover attempts to show that ¬ϕ leads to

a contradiction
• if a proof is found, ϕ is valid; if a proof is not found, we are left

wondering whether a proof doesn’t exists or it will be found later on. . .
• theorem provers cannot prove non-validity.

A model builder is a system that, given a formula, attempts to
build a model that satisfies it:
• a model builder can thus prove satisfiability
• model builders are only capable to build relatively small finite models;
• they do not build arbitrary infinite models, so even when some possible

models exist they may not be able to always build them.

How can we use these tools for consistency & informativity checking?

Raquel Fernández Discourse – BSc AI 2011 3 / 11

Consistency Checking

Everybody likes Mia. She’s smart and she dances gorgeously. Mia likes Butch.
Butch is a boxer (consistent) / Butch doesn’t like Mia (inconsistent)

• ψ is consistent with respect to ϕ1, . . . , ϕn iff
∗ ϕ1 ∧ . . . ∧ ϕn → ψ is satisfiable

there is at least one model where the formula is true
∗ ϕ1 ∧ . . . ∧ ϕn → ¬ψ is invalid
¬ψ is not true in all models where ϕ1 ∧ . . . ∧ ϕn is true

• ψ is inconsistent with respect to ϕ1, . . . , ϕn iff
∗ ϕ1 ∧ . . . ∧ ϕn → ψ is unsatisfiable

there are no models where the formula is true
∗ ϕ1 ∧ . . . ∧ ϕn → ¬ψ is valid
¬ψ is true in all models where ϕ1 ∧ . . . ∧ ϕn is true

◦ We give ϕ1 ∧ . . . ∧ ϕn → ¬ψ to a theorem prover, which attempts to
prove validity by refuting ¬[ϕ1 ∧ . . . ∧ ϕn → ¬ψ]. If a proof is found,
the original formula is valid and hence the discourse is inconsistent.

◦ We give ϕ1 ∧ . . . ∧ ϕn → ψ to a model builder. If it finds a model for
it, the formula is satisfiable and hence the discourse is consistent.

Raquel Fernández Discourse – BSc AI 2011 4 / 11

Informativity Checking

Everybody likes Mia. She’s smart and she dances gorgeously. Mia likes Butch.
Butch is a boxer (informative) / Mia is smart (uninformative)

• ψ is informative with respect to ϕ1, . . . , ϕn iff
∗ ϕ1 ∧ . . . ∧ ϕn → ψ is invalid

the formula is not true in all models
∗ ϕ1 ∧ . . . ∧ ϕn → ¬ψ is satisfiable

there is at least one model where ϕ1 ∧ . . . ∧ ϕn and ¬ψ are true
• ψ is uninformative with respect to ϕ1, . . . , ϕn iff
∗ ϕ1 ∧ . . . ∧ ϕn → ψ is valid

it is true in all models
∗ ϕ1 ∧ . . . ∧ ϕn → ¬ψ is unsatisfiable

there are no models where the formula is true

◦ We give ϕ1 ∧ . . . ∧ ϕn → ψ to a theorem prover, which attempts to
prove validity by refuting ¬[ϕ1 ∧ . . . ∧ ϕn → ψ]. If a proof is found,
the original formula is valid and hence the discourse is uninformative.

◦ We give ϕ1 ∧ . . .∧ϕn → ¬ψ to a model builder. If it finds a model for
it, the formula is satisfiable and hence the discourse is informative.

Raquel Fernández Discourse – BSc AI 2011 5 / 11

Combining both Tools

We have seen that:

• Theorem provers are capable of carrying out negative checks for
consistency and informativity.

• Model builders are capable of carrying out partial positive checks
for these tasks.

The optimal computational strategy is thus to use simultaneously
theorem proving and model building on the input formula – that is,
to do both negative and (partial) positive checks in parallel.

The architecture developed by Blackburn & Bos deals with the
consistency and informativity tasks by carrying out these processes
in parallel.

Raquel Fernández Discourse – BSc AI 2011 6 / 11

Some Technicalities

We shall use the theorem prover Prover9 and the model builder Mace4.
Both can be downloaded from http://www.cs.unm.edu/~mccune/prover9/

Prover9 and Mace4 are available in all FNWI Linux machines. To
activate them, you need to do the following:

• Log in with your student account.

• In your home directory you’ll find the file .pkgrc. This is a hidden file; if you can’t
see it, tick the option “Show Hidden Files” under “View”.

• Open .pkgrc with a text editor, add ladr at the bottom of the file, and save it.

• Open a terminal, run the command eval ’softpkg’ and kill the terminal.

Prover9 and Mace4 are newer versions of the reasoning tools originally
employed by B&B. Updated version of the B&B Prolog code for use with
these newer tools are packed in updated-inference.zip, which can be
downloaded from the course materials in Blackboard.

Raquel Fernández Discourse – BSc AI 2011 7 / 11

http://www.cs.unm.edu/~mccune/prover9/

Inference Architecture (1)

Files in updated-inference (adapted from BB1):

• callInference.pl: main Prolog interface to off-the-shelf theorem
provers or model builders. It calls all other programs.

• inferenceEngines.pl: specifies the inference engines to be used.
• fol2prover9.pl: translates a FOL formula to Prover9/Mace4 syntax.
• interfaceTP.perl: Perl script interfacing theorem provers.
• interfaceMB.perl: Perl script interfacing model builders.
• interfaceTPandMB.perl: Perl script interfacing theorem provers and

model builders.

Raquel Fernández Discourse – BSc AI 2011 8 / 11

Inference Architecture (2)

The program callInference.pl includes the following predicates:

• The predicates fol2prover9/2 and fol2mace4/2 translate a
formula in Prolog notation to instructions for Prover9 & Mace4.

Try the following:

?- fol2prover9(imp(all(X,dance(X)),not(some(Y,not(dance(Y))))),user).

?- fol2mace4(some(X,and(man(X),all(Y,imp(woman(Y),love(X,Y))))),user).

[N.B: with user as second argument, Prolog prints the result to standard output.]

• The interface predicates callTP(Problem,Result,Prover),
callMB(Problem,DomainSize,Model,ModelBuilder), and
callTPandMB(TPProblem,MBProblem,DSize,Proof,Model,Engine)

Try the following:

?- callTP(imp(all(X,dance(X)),not(some(Y,not(dance(Y))))),R,P).

?- callMB(some(X,and(man(X),all(Y,imp(woman(Y),love(X,Y))))),2,M,MB).

Raquel Fernández Discourse – BSc AI 2011 9 / 11

Inference Architecture (3)

callInference.pl ← −−|
↓ ↓ |

prover9.in mace4.in |
↓ ↓ |
interfaceTP.perl
interfaceMB.perl

interfaceTPandMB.perl
→

tp.out
mb.out
tpmb.out

l l
prover9 mace4

• callInference.pl uses fol2prover9/2 and fol2mace4/2 to create
input files for the engines.

• The Perl scripts act as interfaces:
∗ they activate the engines with the created input files,
∗ read their output and convert it to the right notation,
∗ write the result in an output file

• The output file is then given back to callInference.pl.
Raquel Fernández Discourse – BSc AI 2011 10 / 11

Exercises

A sheet with exercises for Practical Session #1 can be downloaded
from the course materials in Blackboard.

Raquel Fernández Discourse – BSc AI 2011 11 / 11

