
Discourse
BSc Artificial Intelligence, Spring 2011

Raquel Fernández

Institute for Logic, Language & Computation
University of Amsterdam

Raquel Fernández Discourse – BSc AI 2011 1 / 21

Plan for Today

• Discussion of HW#2 and exercise 2 from Practical Session#1
• The Curt System: putting it all together
• Next steps

Raquel Fernández Discourse – BSc AI 2011 2 / 21

HW#2: Exercise 1
Required new clauses for “Vincent offers Mia a drink”:

lexical entry for noun “drink”:
noun(lam(X,drink(X)))--> [drink].

lexical entry for ditransitive verbs:
dtv(lam(Y,lam(X,lam(Z,app(X,lam(X1,app(Y,lam(Y1,offer(Z,X1,Y1)))))))))

--> [offers].
compare to lexical entry for transitive verb:
tv(lam(X,lam(Y,app(X,lam(Z,like(Y,Z))))))--> [likes].

syntax-semantics rules:
vp(app(app(DTV,Y),X))–> dtv(DTV), np(X), np(Y).

another possibility using a binary tree:

vp(app(VB,Y))--> vbar(VB), np(Y).
vbar(app(DTV,X))--> dtv(DTV), np(X).
dtv(lam(X,lam(Y,lam(Z,app(X,lam(X1,app(Y,lam(Y1,offer(Z,X1,Y1)))))))))

--> [offers].

Output of semantic construction: ∃x .(drink(x) ∧ offer(vincent, mia, x))

?- s(Sem,[vincent,offers,mia,a,drink],[]),betaConvert(Sem,Reduced).
Reduced = some(X, and(drink(X), offer(vincent, mia, X))).

Raquel Fernández Discourse – BSc AI 2011 3 / 21

HW#2: Exercise 2

Required new clauses for “Somebody snores” and “Everyone dances”:

lexical entry for intransitive verb “dance”:
iv(lam(Y,dance(Y)))–> [dances].

lexical entries for pronouns:
pr(lam(Q,all(X,imp(person(X),app(Q,X)))))–> [everyone].
pr(lam(Q,some(X,and(person(X),app(Q,X)))))–> [somebody].

compare to the lexical entries for the determiners:
det(lam(P,lam(Q,all(X,imp(app(P,X),app(Q,X))))))–> [every].
det(lam(P,lam(Q,some(X,and(app(P,X),app(Q,X))))))–> [a].

syntax-semantics rules:
np(PR)–> pr(PR).

Output of semantic construction:

?- s(Sem,[somebody,snorts],[]),betaConvert(Sem,Reduced).
Reduced = some(X, and(person(X), snort(X))) .

?- s(Sem,[everyone,dances],[]),betaConvert(Sem,Reduced).
Reduced = all(X, imp(person(X), dance(X)))

Raquel Fernández Discourse – BSc AI 2011 4 / 21

HW#2: Exercise 4

All boxers are slow. Butch is a boxer. Butch is not slow.

∀x .(boxer(x) → slow(x)) ∧ boxer(butch) ∧ ¬slow(butch)

The discourse above is inconsistent if its negation is valid:

¬[∀x .(boxer(x) → slow(x)) ∧ boxer(butch) ∧ ¬slow(butch)]

or equivalently

¬[∀x .(boxer(x) → slow(x)) ∧ boxer(butch) → ¬slow(butch)]
∀x .(boxer(x) → slow(x)) ∧ boxer(butch) → ¬¬slow(butch)

To prove validity by refutation, we need to show that the negation of a
supposedly valid formula leads to a contradiction:

¬[¬[∀x .(boxer(x) → slow(x)) ∧ boxer(butch) ∧ ¬slow(butch)]]
≈

∀x .(boxer(x) → slow(x)) ∧ boxer(butch) ∧ ¬slow(butch)

or equivalently

∀x .(boxer(x) → slow(x)) ∧ boxer(butch) → ¬slow(butch)

Any of the above formulas can be used at the root of a tableau tree.

Raquel Fernández Discourse – BSc AI 2011 5 / 21

HW#2: Exercise 4

∀x .(boxer(x) → slow(x)) ∧ boxer(butch) ∧ ¬slow(butch)

∀x .(boxer(x) → slow(x))
boxer(butch)
¬slow(butch)

boxer(butch) → slow(butch))

¬boxer(butch)

×

slow(butch)

×

• we apply the first alpha rule twice to deconstruct the two conjunctions;
• we then apply the first gamma rule to the universally quantified

formula, using butch as constant;
• finally, we apply the second beta rule to the implication;
• we end up with non-expandable formulas and contradictory

information in all branches.

Raquel Fernández Discourse – BSc AI 2011 6 / 21

Exercise 2 from Practicum#1
Implementation of tpmbTestSuite/0 in callInference.pl:

tpmbTestSuite:-
format(’~n~n>>>>> INFERENCE TEST SUITE <<<<<’,[]),
formula(Formula,Status),
format(’~nInput formula: ~p~nStatus: ~p’,[Formula,Status]),
callTPandMB(Formula,Formula,30,Proof,Model,Engine),
(Proof=proof,

Result=theorem ;
Proof=unknown,
Model=model(_,_),
Result=Model ;
Proof=unknown,
Model=unknown,
Result=unknown),

format(’~nInference engine ~p says: ~p~n’,[Engine,Result]),
fail.

Note that TP and MB are given the same formula:

• TP tries to prove ϕ (by falsifying ¬ϕ); MB tries to build a model for ϕ

This settings is not useful for all purposes.

Raquel Fernández Discourse – BSc AI 2011 7 / 21

Exercise 2 from Practicum#1

• Current setting in tpmbTestSuite/0 for each formula ϕ in
folTestSuite.pl:
∗ TP tries to prove ϕ
∗ MB tries to build a model for ϕ

• Optimal setting to check for satisfiability of ϕ:
∗ positive: MB tries to find a model for ϕ
∗ negative: TP tries to prove validity of ¬ϕ

(see the implementation of Clever Curt)

• Optimal setting to check for validity of ϕ:
∗ positive: TP tries to prove ϕ
∗ negative: MB tries to find a model for ¬ϕ

(see the implementation of Sensitive Curt)

• With the current setting, neither TP nor MB can deal with the
unsatisfiable formula. If ϕ is unsatisfiable, ¬ϕ is valid.
∗ MB can’t find a model for ϕ
∗ TP can’t falsify ¬ϕ

Raquel Fernández Discourse – BSc AI 2011 8 / 21

The Curt System:
Putting It All Together

The following slides assume you have read section 6.1 to 6.4 of
chapter 6 from Blackburn & Bos (2005).

Raquel Fernández Discourse – BSc AI 2011 9 / 21

The Curt System

Curt: Clever Use of Reasoning Tools
A system that can handle some simple but interesting interactions
with a user by making use of all the elements we have seen so far:
• semantic construction (grammar with lambda calculus)
• consistency checking,
• informativity checking,
• model checking (querying task).

Raquel Fernández Discourse – BSc AI 2011 10 / 21

Semantic Construction in Curt (1)

Curt builds semantic representations for natural language input
using the extended grammar architecture by B&B (see the slides
on semantic construction).

• In particular, it uses the code in kellerStorage.pl, which
incorporates the capability to handle quantifier scope ambiguity
into the semantic component of the grammar.
∗ we have not treated this – you may have covered it in other courses.

• Curt can be used with lambda.pl instead of kellerStorage.pl

⇒ Comment out all clauses involving kellerStorage and include the
corresponding lambda clauses in all files of the Curt family. E.g.:

% :- use_module(kellerStorage,[kellerStorage/2]).
:- use_module(lambda,[lambda/2]).

Raquel Fernández Discourse – BSc AI 2011 11 / 21

Semantic Construction in Curt (2)

Curt is able to combine the semantic representations of the input
sentences into a discourse representation.

combine(New,New):-
readings([]).

combine(Readings,Updated):-
readings([Old|_]),
findall(and(Old,New),memberList(New,Readings),Updated).

• Semantic representations are combined into a discourse representation
using conjunction: and(Old,New)

• Note that if we use lambda.pl instead of kellerStorage.pl we deal
with only 1 reading (1 semantic representation), so the predicate
combine/2 could be simpler. . .

Raquel Fernández Discourse – BSc AI 2011 12 / 21

Sample Interaction

We can examine the discourse history and the semantic
representation of the discourse:

> Vincent likes Mia.
Curt: OK.

> readings
1 like(vincent, mia)

> Vincent is not a boxer.
Curt: OK.

> history
1 [vincent, likes, mia]
2 [vincent, is, not, a, boxer]

> readings
1 and(like(vincent, mia), not(some(A, and(boxer(A), eq(vincent, A)))))

Raquel Fernández Discourse – BSc AI 2011 13 / 21

Dialogue Control in Curt

The dialogue control structure of Curt integrates the user input,
decides how the system should reply, and sets the program’s
executing state.

curtTalk(quit).

curtTalk(run):-
readLine(Input),
curtUpdate(Input,CurtsMoves,State),
curtOutput(CurtsMoves),
curtTalk(State).

The key predicates are:
• curtUpdate(Input,ReplyMoves,State)

• curtOutput(ReplyMoves)

Raquel Fernández Discourse – BSc AI 2011 14 / 21

Consistency Checking in Curt

curtUpdate/3 filters out inconsistent interpretations with
consistentReadings/3, which uses consistent/3 to call a
theorem prover and a model builder with callTPandMB/6:

consistent([Old|_],New,Model):-
DomainSize=15,
callTPandMB(not(and(Old,New)),and(Old,New),DomainSize,Proof,Model,Engine),
format(’~nMessage (consistency checking): ~p found a result.’,[Engine]),
\+ Proof=proof, Model=model([_|_],_).

If an incoming sentence is consistent with the preceding discourse,
MB can find a model for and(Old,New); if it is inconsistent, TP
can prove that not(and(Old,New)) is valid.

Curt keeps track of the model that is being built by the discourse
and allows us to inspect it.

Raquel Fernández Discourse – BSc AI 2011 15 / 21

Sample Interaction

> Every boxer likes Mia.
Message (consistency checking): mace4 found a result.
Curt: OK.

> Butch is a boxer.
Message (consistency checking): mace4 found a result.
Curt: OK.

>readings
1 and(all(A,imp(boxer(A), like(A,mia))), some(B,and(boxer(B), eq(butch,B))))

> models
1 D=[d1, d2]

f(0, butch, d1)
f(0, mia, d1)
f(0, c1, d1)
f(1, boxer, [d1])
f(2, like, [(d1, d1)])

> Butch does not like Mia.
Message (consistency checking): prover9 found a result.
Curt: No! I do not believe that!

Raquel Fernández Discourse – BSc AI 2011 16 / 21

Informativity Checking in Curt

curtUpdate/3 filters out uninformative interpretations with
informativeReadings/2, which uses informative/2 to again
call callTPandMB/6:

informative([Old|_],New):-
DSize=15,
callTPandMB(not(and(Old,not(New))),and(Old,not(New)),DSize,Proof,Model,Engine),
format(’~nMessage (informativity checking): ~p found a result.’,[Engine]),
\+ Proof=proof, Model=model([_|_],_).

If an incoming sentence is informative with respect to the preceding
discourse, MB can find a model for and(Old,not(New)); if it is
inconsistent, TP can prove that not(and(Old,not(New))) is valid.

Raquel Fernández Discourse – BSc AI 2011 17 / 21

Sample Interaction

> Every customer hates Vincent.
Message (consistency checking): mace4 found a result.
Message (informativity checking): mace4 found a result.
Curt: OK.

> Vincent is not a customer.
Message (consistency checking): mace4 found a result.
Message (informativity checking): mace4 found a result.
Curt: OK.

> Jimmy is a customer.
Message (consistency checking): mace4 found a result.
Message (informativity checking): mace4 found a result.
Curt: OK.

> readings
1 and(and(all(A,imp(customer(A), hate(A,vincent))),

not(some(B,and(customer(B), eq(vincent,B))))),
some(C,and(customer(C), eq(jimmy,C))))

> models
1 D=[d1, d2]

f(0, jimmy, d1)
f(0, vincent, d2)
f(0, c1, d1)
f(1, customer, [d1])
f(2, hate, [(d1, d2)])

>Jimmy hates Vincent.
Message (consistency checking): mace4 found a result.
Message (informativity checking): prover9 found a result.
Curt: Well, that is obvious!

Raquel Fernández Discourse – BSc AI 2011 18 / 21

Knowledgeable & Helpful Curt

You are encouraged to read what is left of Chapter 6 and find out how
Curt can be complemented with lexical and background knowledge, and
how it can be expanded to handle questions from the user.

We may come back to this later on, but for now we will not cover it
explicitly in class. Instead, we’ll go deeper into discourse-related issues.

Raquel Fernández Discourse – BSc AI 2011 19 / 21

What’s Next?

So far, we have used simple conjunction to combine the semantic
representations of the sentences in a discourse:

Every customer hates Vincent. Vincent is not a customer.
∀x .(customer(x) → hate(x , vincent)) ∧ ¬customer(vincent)

The discourse above is a bit awkward, it would be more natural to
use a pronoun. But if we represent pronouns as variables, a simple
conjunctive strategy does not give the right result:

Every customer hates Vincent. He is not a customer.
∀x .(customer(x) → hate(x , vincent)) ∧ ¬customer(y)

In order to deal with pronouns, we’ll introduced a different
formalism: Discourse Representation Theory

Raquel Fernández Discourse – BSc AI 2011 20 / 21

Next Steps

• Introduction to DRT
• Pronoun resolution (logic and non-logic based approaches)
• Presuppositions

To start with, read chapter 1 from BB2 (see HW#3)
• recall this is a draft book: read it intelligently and be tolerant!

Period 5: change of day, time, and room
Next lecture on Tuesday 29 March, 15–17:00h, room G0.05

HW#3 due on 25 March

Raquel Fernández Discourse – BSc AI 2011 21 / 21

