
Discourse
BSc Artificial Intelligence, Spring 2011

Raquel Fernández

Institute for Logic, Language & Computation
University of Amsterdam

Raquel Fernández Discourse – BSc AI 2011 1 / 33



Plan for Today

• Introduction to Discourse Representation Theory (DRT)
∗ Syntax and semantics of DRT and its connection to First-Order

Logic (B&B2, ch. 1)
∗ Semantic construction from natural language input in DRT

(B&B2, ch. 2)

Raquel Fernández Discourse – BSc AI 2011 2 / 33



Why DRT?

The system we have been working with (B&B’s Curt system) is
able to process and interpret sequences of sentences:
• it can assess whether a sentence is consistent or informative with

respect to the previous discourse (which is great!),
• but it uses a simple conjunctive strategy to build up the semantic

representation of the ongoing discourse

Every customer hates Vincent. He is not a customer.
∀x .(customer(x) → hate(x , vincent)) ∧ ¬customer(y)

In order to deal with pronouns, we need a different strategy. . .

Raquel Fernández Discourse – BSc AI 2011 3 / 33



Context Change Potential

First-order logic representations focus on the truth-conditional
dimension of meaning, but do not handle well the context change
potential of natural language expressions:

• sentences change the context in which subsequent sentences will be
interpreted

Every customer hates Vincent. He is not a customer.
∀x .(customer(x) → hate(x , vincent)) ∧ ¬customer(y) ∧ y = vincent

To capture truth conditions plus the context change potential of
meaning, we need representations that are more sophisticated than
first-order logic formulas:
• Discourse Representation Theory (DRT) offers the right

semantic architecture.

Raquel Fernández Discourse – BSc AI 2011 4 / 33



Discourse Representation Theory

• DRT was developed by Hans Kamp in the 1980s, and it has
since then become a very influential semantic theory.

• Other versions of dynamic semantics: Heim’s File Change
Semantics, and Groenendĳk & Stokhof’s Dynamic Predicate
Logic (Amsterdam school).

• The classic reference book for DRT is:
Kamp & Reyle (1993) From Discourse to Logic.

Basic idea behind DRT: a hearer (i.e. a natural language
processing agent) builds up an internal representation of the
discourse as it unfolds in time, with every incoming sentence
prompting additions to that representation.

• common idea in psycholinguistics, but new to formal semantics

Raquel Fernández Discourse – BSc AI 2011 5 / 33



Discourse Representation Structures

According to DRT, hearers processing language build up a
discourse representation structure (DRS).

DRSs are conventionally represented as boxes. They distinguish
two types of information:
• which discourse entities we have at our disposal (top part of the

DRS box, containing discourse referents)
• which properties these entities have and how they are

interrelated (bottom part of the box - containing conditions)

Vincent offers Mia a drink.

x y z
x=vincent
y=mia
drink(z)
offer(x,y,z)

It is blue.

x y z v
x=vincent
y=mia
drink(z)
offer(x,y,z)
blue(v)
v=z

Raquel Fernández Discourse – BSc AI 2011 6 / 33



What we need to know about DRSs

The DRT framework will allow us to handle anaphoric pronouns
(as well as presuppositions). But before we get to that, we need to
to know the following:

• how are DRS languages defined formally
• how are DRS interpreted
• how are DRSs constructed from natural language input

As we shall see, DRT is closely related to first-order logic:

• DRS languages and first-order languages are constructed from the
same vocabularies

• DRSs and first-order formulas are interpreted in the same models
• we can use the lambda calculus to build up DRSs from natural

language input as we did with first-order representations.

Raquel Fernández Discourse – BSc AI 2011 7 / 33



DRS Languages (1)

Given a vocabulary containing relation symbols, constants, and
variables (which we shall call discourse referents), we can build
DRSs and conditions as follows:

• DRSs:
If x1, . . . , xn are discourse referents and
c1, . . . , cm are conditions, then

x1, . . . , xn

c1...
cm

is a DRS.

• Terms: A term τ is either a constant or a discourse referent.
• Primitive conditions:
∗ If R is a relation symbol and τ1, . . . , τn are terms, then

R(τ1, . . . , τn) is a condition.
∗ If τ1 and τ2 are terms, then τ1 = τ2 is a condition.

Raquel Fernández Discourse – BSc AI 2011 8 / 33



DRS Languages (2)

• Complex conditions:
∗ If K is a DRS, then ¬K is a condition.
∗ If K1 and K2 are DRSs, then K1 ∨K2 is a condition.
∗ If K1 and K2 are DRSs, then K1 ⇒ K2 is a condition.

• Nothing else is a DRS or a condition.

Note that to build up complex conditions, the only logical symbols
used are ¬, ∨, and ⇒.
• ⇒ handles both conditionals and universal quantification.
• ∧ is handled in two ways:
∗ conditions within a DRS are implicitly conjoined;
∗ we can conjoin two DRSs with a merge operation (as we will see).

Raquel Fernández Discourse – BSc AI 2011 9 / 33



Interpreting DRSs (1)

DRSs are interpreted in exactly the sames models as first-order
formulas: M = (D , F )

B&B discuss two types of semantics for DRSs that are closely
linked: embedding semantics and dynamic semantics. It suffices to
understand the basic idea behind embedding semantics:

• essentially, a DRSs is satisfied in a model M = (D , F ) if we can
find a function from discourse referents to elements in D (an
embedding i) such that all conditions are satisfied.

D = {d1, d2, d3, d4, d5}
F (mia) = d2
F (honey-bunny) = d1
F (vincent) = d4
F (yolanda) = d1
F (customer) = {d1, d2, d4}
F (robber) = {d3, d5}
F (love) = {(d3, d4)}

x y
x = vincent
love(y,x)
customer(y)

Raquel Fernández Discourse – BSc AI 2011 10 / 33



When are conditions satisfied?

M is a model and i is an embedding in M .

• Basic conditions:

M , i |= R(τ1, . . . , τn ) if there is an i such that the elements in D corresponding
to τ1, . . . , τn are part of F (R).

M , i |= τ1 = τ2 if there is an i such that the elements in D corresponding
to τ1, τ2 are are the same.

• Complex conditions:

M , i |= ¬K if there is no i that satisfies K .
M , i |= K1 ∨K2 if there is an i such that K1 is satisfied or K2 is satisfied.
M , i |= K1 ⇒ K2 if for any i that satisfies K1, there is an extended function

that satisfies K2.

Raquel Fernández Discourse – BSc AI 2011 11 / 33



Examples

D = {d1, d2, d3, d4, d5}
F (mia) = d2
F (honey-bunny) = d1
F (vincent) = d4
F (yolanda) = d1
F (customer) = {d1, d2, d4}
F (robber) = {d3, d5}
F (love) = {(d3, d4)}

x
x = mia

¬ robber(x)

x
x = mia

robber(x) ∨ customer(x)

x
x = vincent

y
love(y,x) ⇒ customer(y)

Raquel Fernández Discourse – BSc AI 2011 12 / 33



Translating DRT into FOL

DRT and FOL are closely related indeed! We can define a translation
function fo that translates DRSs into first-order formulas.

Translation of DRSs: (

x1, . . . , xn

c1...
cm

)fo = ∃x1, . . . , ∃xn[(c1)fo ∧ . . . ∧ (cm)fo ]

Basic conditions: (R(x1, . . . , xn))fo = R(x1, . . . , xn)

(τ1 = τn )fo = τ1 = τn

Complex conditions: (¬K )fo = ¬(K )fo

(K1 ∨K2)fo = (K1)fo ∨ (K2)fo

(

x1, . . . , xn

c1...
cm

⇒ K )fo = ∀x1, . . . , ∀xn[(c1)fo ∧ . . . ∧ (cm)fo → (K )fo ]

Raquel Fernández Discourse – BSc AI 2011 13 / 33



Quick Exercise

• Translate the DRS examples we saw before into first-order
formulas

• Draw the DRSs representing the following sentences and
translate them into first-order formulas:
∗ Mia dances.
∗ Vincent does not have a car.
∗ Every robber has a gun.
∗ Yolanda hates all customers.
∗ Mia has a Ferrari or a Fiat.

Raquel Fernández Discourse – BSc AI 2011 14 / 33



Implementing DRT in Prolog

Before moving into DRS construction, let us have a look at how
we can implement the basics of DRT in Prolog.

• We shall represent DRSs as Prolog terms of the form drs(D,C),
where:
∗ D is a list of terms representing the discourse referents, and
∗ C is a list of terms representing DRS conditions.

• Discourse referents will be represented as Prolog variables.
• For complex conditions, we use the same operators as for FOL.

For instance:

Every robber has a gun. x
robber(x) ⇒

y
gun(y)
have(x,y)

drs([], imp(drs([X],[robber(X)]), drs([Y],[gun(Y),have(X,Y)])))

Raquel Fernández Discourse – BSc AI 2011 15 / 33



Prolog Implementation of fo

• The program drs2fol implements the translation function fo.
• By implementing a program that translates DRSs into first-order

formulas, we are able to make use of all the tools we have
available for FOL: the model checker, the theorem prover, and
the model builder.

• Let’s first look into how to translate DRSs.

[Note that the material in this slides follows the latest version of the
Prolog code — this may be a bit different from the draft book.]

Raquel Fernández Discourse – BSc AI 2011 16 / 33



Translating DRSs
This is the definition of fo:

(

x1, . . . , xn

c1...
cm

)fo = ∃x1, . . . , ∃xn[(c1)fo ∧ . . . ∧ (cm)fo ]

And here is the Prolog code that does the same thing:
drs2fol(drs([],[Cond]),Formula):-

cond2fol(Cond,Formula).

drs2fol(drs([],[Cond1,Cond2|Conds]),and(Formula1,Formula2)):-
cond2fol(Cond1,Formula1),

drs2fol(drs([],[Cond2|Conds]),Formula2).

drs2fol(drs([X|Referents],Conds),some(X,Formula)):-
drs2fol(drs(Referents,Conds),Formula).

• the third clause adds an existential quantifier for each discourse referent.

• the second clause conjoins the first-order translations of the conditions.

• the second and first clauses call the predicate cond2fol which specifies how
to translate conditions.

Raquel Fernández Discourse – BSc AI 2011 17 / 33



Translating Conditions

The translation of basic conditions is trivial:

(τ1 = τn )fo = τ1 = τn cond2fol(eq(X,Y),eq(X,Y)).

(R(x1, . . . , xn))fo = R(x1, . . . , xn) cond2fol(pred(Sym,X),pred(Sym,X)).
cond2fol(rel(Sym,X,Y),rel(Sym,X,Y)).

As are the clauses for the disjunctive and negative complex conditions:

(¬K )fo = ¬(K )fo

(K1 ∨K2)fo = (K1)fo ∨ (K2)fo

cond2fol(not(Drs),not(Formula)):-
drs2fol(Drs,Formula).

cond2fol(or(Drs1,Drs2),or(Formula1,Formula2)):-
drs2fol(Drs1,Formula1),
drs2fol(Drs2,Formula2).

Raquel Fernández Discourse – BSc AI 2011 18 / 33



Translating Implicative Conditions
This is how implicative conditions are translated according to fo

(

x1, . . . , xn

c1...
cm

⇒ K )fo = ∀x1, . . . , ∀xn[(c1)fo ∧ . . . ∧ (cm)fo → (K )fo ]

And here is the Prolog code that does the same thing:
cond2fol(imp(drs([],Conds),Drs2),imp(Formula1,Formula2)):-

drs2fol(drs([],Conds),Formula1),
drs2fol(Drs2,Formula2).

cond2fol(imp(drs([X|Referents],Conds),Drs2),all(X,Formula)):-
cond2fol(imp(drs(Referents,Conds),Drs2),Formula).

• the second clause adds a universal quantifier for each discourse referent in
the antecedent DRS and translates its conditions into a first-order formula.

• the first clause translates the consequent DRS into a first-order formula and
places the implication

Raquel Fernández Discourse – BSc AI 2011 19 / 33



DRS Construction

Raquel Fernández Discourse – BSc AI 2011 20 / 33



DRS Construction

We have seen how DRS Languages are defined and interpreted
formally. In order to build a little agent that uses DRT to process
language, we also need to specify how DRSs are constructed from
natural language discourses.

Informally, we have seen that:
• NPs introduce discourse referents.
• Nouns and verbs introduce conditions.
(see the explanation of the construction algorithm in BB2, ch.1)

We shall see that we can formally define semantic constriction for
DRT using the lambda calculus, as we did for first-order logic.

Raquel Fernández Discourse – BSc AI 2011 21 / 33



Composing DRSs (roughly)
Consider the following sentence: “Mia does not have a car”
Roughly, its parts seem to contribute the following bits:

Mia does not have a car

x
x = mia ¬ have(...,...)

y
car(y)

How do we get from this to the overall representation?

x
x = mia

¬
y
have(x,y)
car(y)

• We need a mechanism for combining two DRSs into one larger DRSs –
DRS merging

• We need a mechanism for marking missing information and indicating
how it should be filled in – lambda calculus

Raquel Fernández Discourse – BSc AI 2011 22 / 33



Merging DRSs

We’ll use the operator ⊕ to merge two DRSs.

• Merge combines two DRSs by taking the union of the two
universes and the two lists of conditions. For example:

x
boxer(x)
lose(x)

⊕
y
die(y)
y = x

=

x y
boxer(x)
lose(x)
die(y)
y = x

• Discourse processing: When we interpret a sentence with respect
to the current discourse, we merge the new DRS with the DRS
associated with the discourse so far.

Raquel Fernández Discourse – BSc AI 2011 23 / 33



λ-DRT: Lexical Items (1)

We can use the lambda calculus tools developed for first-order
logic for DRT: with λ-DRT, we can use the λ operator with DRS.

The representations of the different kinds of lexical items will
simply be the DRS counterparts of the first-order representations
we are familiar with:

first-order representation λ-DRT representation

boxer: λx .boxer(x) λx. boxer(x)

walk: λx .boxer(x) λx. walk(x)

loves: λv .λx .(v@λy.love(x , y)) λv .λx. (v@λy. love(x,y) )

Mia: λu.(u@mia) λu.(
x
x = mia ) ⊕u@x

Raquel Fernández Discourse – BSc AI 2011 24 / 33



λ-DRT: Lexical Items (2)

first-order representation λ-DRT representation

a: λu.λv .∃x .(u@x ∧ v@x) λu.λv .
x ⊕u@x⊕ v@x

every: λu.λv .∀x .(u@x → v@x) λu.λv . x ⊕u@x ⇒ v@x

Raquel Fernández Discourse – BSc AI 2011 25 / 33



Semantic Construction with λ-DRT

The main mechanisms for semantic construction are function application
and β-conversion (as in FOL), plus merge.

A boxer dances
S

x
boxer(x)
dance(x)

NP

λv .
x
boxer(x) ⊕v@x

Det

λu.λv .
x ⊕u@x⊕ v@x

a

N

λx. boxer(x)
boxer

VP

λx. dance(x)

V
dances

Raquel Fernández Discourse – BSc AI 2011 26 / 33



Semantic Construction with λ-DRT

Every boxer dances
S

x
boxer(x) ⇒ dance(x)

NP

λv . x
boxer(x) ⇒ v@x

Det

λu.λv . x ⊕u@x ⇒ v@x

every

N

λx. boxer(x)
boxer

VP

λx. dance(x)

V
dances

Raquel Fernández Discourse – BSc AI 2011 27 / 33



Implementing λ-DRT in Prolog
Implementing λ-DRT turns out to be very easy, because we can
reuse most of the code we have for first-order logic. Recall our
grammar architecture:

lambda.pl SYNTAX SEMANTICS

the Lexicon the Semantic Lexicon
LEXICON englishLexicon.pl semLexLambda.pl

the Syntax Rules the Semantic Rules
GRAMMAR englishGrammar.pl semRulesLambda.pl

• The Syntax will remain the same (with the incorporation of pronouns
in the lexicon).

• The main task consists in defining the macros in the semantic lexicon
with the λ-DRSs corresponding to each basic syntactic category.

• We also need to handle merge.

Raquel Fernández Discourse – BSc AI 2011 28 / 33



The Semantic Lexicon

As an example consider the semantic macro for the indefinite determiner
“a” / “some”:

first-order representation λ-DRT representation

a: λu.λv .∃x .(u@x ∧ v@x) λu.λv .
x ⊕u@x⊕ v@x

First-order version (in semLexLambda.pl):
semLex(det,M):-

M = [type:indef,
sem:lam(P,lam(Q,some(X,and(app(P,X),app(Q,X)))))].

λ-DRT version (in semLexLambdaDRT.pl):
semLex(det,M):-

M = [type:indef,
num:sg,

sem:lam(U,lam(V,merge(merge(drs([X],[]),app(U,X)),app(V,X))))].

Raquel Fernández Discourse – BSc AI 2011 29 / 33



Implementing Merge

• We can represent the merge of two DRSs K1 and K2 with the
Prolog predicate merge(K1,K2) (as we’ve just seen).

• We still need a mechanism to actually do the merges (merge
reduction). This is achieved by the program mergeDRT.pl:
∗ It essentially appends the list of discourse referents and list

conditions of the two DRSs we are merging.
∗ And it does so recursively since merges can also occur in complex

conditions.
∗ Have a look at the code for more details.

• Note that merge/2 and mergeDRT.pl work similarly to app/2
and betaConversion.pl (in the sense that merge and
β-conversion allow us to simplify the representations).

Raquel Fernández Discourse – BSc AI 2011 30 / 33



Wrapping Everything Together
The main level program is lambdaDRT.pl (which is the DRT
version of lambda.pl).
• It reads in a sentence,
• computes all its semantic representations in the form of DRSs using

the grammar,
• applies β-conversion and merge reduction, and
• prints the output DRS.

?- lambdaDRT.
> Mia walks.
1 drs([A], [mia(A), walk(A)])

The actual output is in fact a little bit more complicated:

?- lambdaDRT.
> Mia walks.
1 drs([A,B], [pred(mia,A), pred(walk,B), rel(agent,B,A), pred(event,B)])

This representation includes events as discourse referents and uses
pred/2 and rel/3 to represent predicate symbols.

Raquel Fernández Discourse – BSc AI 2011 31 / 33



Summary of Programs

These are the main programs in BB2 used to build up DRSs for
sentences:

• lambdaDRT.pl
• lambdaTestSuite.pl
• mergeDRT.pl

• semLexLambdaDRT.pl
• semRulesDRT.pl
• englishLexicon.pl
• englishGrammar.pl

Recall that we have also seen the program that implements fo:

• drt2fol.pl

Raquel Fernández Discourse – BSc AI 2011 32 / 33



Next Week

• Pronoun Resolution
∗ Read chapter 3 from B&B2

Raquel Fernández Discourse – BSc AI 2011 33 / 33


