Exercises Functional Analysis

March 16, 2019

1. Let \((X, d)\) be a metric space and \(E \subset X\) be compact. Show that for any \(x \in X\), there exists a \(e \in E\) with \(d(x, E) := \inf_{y \in E} d(x, y) = d(x, e)\).

2. Let \(X \subset \mathbb{R}^d\) be compact. Show that for \(1 \leq q \leq p \leq \infty\), \(L^p(X) \subset L^q(X)\), and that the embedding is continuous.

3. Show that for \(p \in [1, \infty]\), \(\ell^p\) is complete.

4. Show that \(\ell^\infty\) is not separable.

5. Let \(c_0\) be the space of all sequences that converge to 0. Show that \(c_0\) is a closed linear subspace of \(\ell^\infty\). Is \(c_0\) separable?

6. Show that \(d(\{x_n\}, \{y_n\}) := \sum_{n=1}^{\infty} 2^{-n} \frac{|x_n - y_n|}{1 + |x_n - y_n|}\) defines a metric on the linear space of real-valued sequences. Show there exists no norm \(\|\cdot\|\) on this space such that \(d(\{x_n\}, \{y_n\}) = \|\{x_n\} - \{y_n\}\|\).

7. (Gram-Schmidt) Let \(\{v_i\}\) be linearly independent in an inner product space \(X\). Show that \(\{e_i\}\), defined by

\[
e_i = v_i - \sum_{j=1}^{i-1} \frac{\langle v_i, e_j \rangle}{\langle e_j, e_j \rangle} e_j,
\]

is orthogonal, and that \(\text{span}\{e_j : 1 \leq j \leq i\} = \text{span}\{v_j : 1 \leq j \leq i\}\) for any \(i \in \mathbb{N}\).

8. Show that there is no inner product on \(C[0, 1]\) that induces the \(L^1(0, 1)\)-norm on that space.
9. Which of the following expressions defines an inner product on $C^2[0, 1]$ (being the space of two times continuously differentiable real functions on $[0, 1]$)

- $\langle f, g \rangle = \int_0^1 f'(t)g'(t) \, dt$
- $\langle f, g \rangle = \int_0^1 f(t)g(t) + f'(t)g'(t) + f''(t)g''(t) \, dt$

and for those who do, do they give rise to a Hilbert space?

10. Show that $\|f\| := \max_{t \in [0, 1]} |f(t)| + |f''(t)|$ defines a norm on $C^2[0, 1]$, and that w.r.t. this norm, $C^2[0, 1]$ is a Banach space.

11. Let V be the linear subspace of $C[0, 1]$ of functions f of type $f(x) = ax$ for some $a \in \mathbb{R}$. Let $1 : x \mapsto 1 \in C[0, 1]$. Compute $d(1, V)$, and show that the minimal distance is attained for several $f \in V$.

12. Let V be the linear subspace of $C[0, 1]$ of functions f with $f(1) = 0$. Show that V is a Banach space. Let W its subspace consisting of functions g with $\int_0^1 g(x) \, dx = 0$. Show that W is a closed subspace. Let $f \in V$ be defined by $f(x) = 1 - x$. Compute the distance $d(f, W)$, and show that this distance is not attained.

13. Prove that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ (Hint: Compute the Fourier series of $f : x \mapsto x$ on $L^2_{rad}[-\pi, \pi]$, and use Parseval’s theorem).

14. Let V be the linear space $C[0, 1]$. Define $L \in L(V, V)$ by $(Lf)(x) = xf(x)$.

 (a) Equip V with the L^∞-norm. Show that $L \in B(V, V)$, compute its is norm, and give an $f \in V$ with $\|Lf\|_{L^\infty[0, 1]} = \|L\|_{B(V,V)} \|f\|_{L^\infty[0,1]}$.

 (b) Equip V with the L^2-norm. Show that $L \in B(V, V)$, compute its is norm, and show that for any $0 \neq f \in V$, $\|Lf\|_{L^2[0,1]} < \|L\|_{B(V,V)} \|f\|_{L^2[0,1]}$.

15. (Supplement to the proof of Thm. 3.54)

 (a) Show that $\text{span}\{\cos^k x : 0 \leq k \leq n\} = \text{span}\{\cos kx : 0 \leq k \leq n\}$ (Hint: Recall that Chebychev polynomial $T_n(t) := \cos(n \arccos(t))$ of degree n has a non-zero leading coefficient (2^{n-1} when $n \geq 1$), and use that $\cos nx = T_n(\cos x)$.)
(b) Show that \(\text{span}\{\cos kx \mid k \geq 0\} \) is dense in \(C[0, \pi] \).

16. (Haar basis (Alfréd Haar 1909)) Let \(\phi(x) := \begin{cases} 1 & x \in [0, 1] \\ 0 & x \in \mathbb{R} \setminus [0, 1] \end{cases} \), \(\psi(x) := \begin{cases} 1 & x \in [0, \frac{1}{2}] \\ -1 & x \in (\frac{1}{2}, 1] \\ 0 & x \in \mathbb{R} \setminus [0, 1] \end{cases} \), \(\psi_{\ell,k}(x) := 2^{\ell/2}\psi(2^\ell x - k) \).

(a) Show that \(\Psi := \bigcup_{\ell=0}^{\infty} \{ \psi_{\ell,k} : k = 0, \ldots, 2^\ell - 1 \} \cup \{ \phi \} \) is a countable orthonormal collection in \(L^2_{\mathbb{R}}[0, 1] \).

(b) Show that \(\text{span}(\bigcup_{\ell=0}^{N-1} \{ \psi_{\ell,k} : k = 0, \ldots, 2^\ell - 1 \} \cup \{ \phi \}) = \{ f \in L^2_{\mathbb{R}}[0, 1] : f|_{(k2^{-N},(k+1)2^{-N})} \text{ is constant } \forall k = 0, \ldots, 2^N - 1 \} \).

(c) Show that \(\Psi \) is an orthonormal basis for \(L^2_{\mathbb{R}}[0, 1] \).

17. Let \(X = \{ x \in \ell^\infty : \# \text{supp } x < \infty \} \). Define \(T : X \to X : x \mapsto (x_1, x_2/2, x_3/3, \ldots) \). Show that \(T \in B(X,X) \) and that it is bijective, but that \(T^{-1} \) is not bounded.

18. Let \(X, Y \) be Banach spaces, \(T \in B(X,Y) \) be injective. Show that \(T^{-1} : \text{Im } T \to X \) is bounded iff \(\text{Im } T \) is closed in \(Y \).

19. Let \(X_1 = (X, \| \cdot \|_1) \) and \(X_2 = (X, \| \cdot \|_2) \) be Banach spaces. Show that if for some constant \(C, \| \cdot \|_1 \leq C \| \cdot \|_2 \), then both norms are equivalent.

20. Let \(Y = C_\mathbb{R}[0, 1] \). Let \(X \) its linear subspace of the continuous differentiable functions on \([0, 1] \). Let \(T : X \to Y : u \mapsto u' \).

(a) Show that \(T \) is not bounded.

(b) Show that \(G(T) \) is closed (Hint: Let \(X \ni \{u_n\} \to u \), and \(\{u'_n\} \to w \). Show that \(\int_0^1 w(\tau) d\tau = u(t) - u(0) \).

Apply a theorem to conclude that \(X \) is not closed.

21. Let \(X = C_\mathbb{R}[a, b], I : f \mapsto \int_a^b f(x) dx \in X' \), and \(\{ Q_n \} \subset X' \) of the form \(Q_nf = \sum_{i=1}^{k(n)} w_i^{(n)} f(x_i^{(n)}) \) for some \(\{x_i^{(n)} : 1 \leq i \leq k(n)\} \subset [a, b] \), and \(\{w_i^{(n)} : 1 \leq i \leq k(n)\} \subset \mathbb{R} \).

(a) Show that \(\|Q_n\| = \sum_{i=1}^{k(n)} |w_i^{(n)}| \).

(b) Show that if for any polynomial \(p \), \(\lim_{n \to \infty} Q_n(p) = I(p) \), and \(\sup_n \|Q_n\| < \infty \), then for any \(f \in C[a, b], \lim_{n \to \infty} Q_n(f) = I(f) \).
(c) Show that both conditions from (21b) are also necessary conditions.

(For the sequence of \((n + 1)\)-point Newton-Cotes formulas, it holds that \(\{\|Q_n\|\}\) is unbounded, whereas for the sequence of \((n + 1)\)-point Gauss-Legendre formulas or the composite trapezoidal rule \(\{\|Q_n\|\}\) is bounded, because \(\sum_{i=1}^{k(n)} |w_i^{(n)}| = \sum_{i=1}^{k(n)} w_i^{(n)} = b - a\).)

22. For inner product spaces \(X, Y\), let \(T \in L(X,Y)\), \(S \in L(Y,X)\) such that \(\langle Tx, y \rangle_Y = \langle x, Sy \rangle_X\) for all \((x, y) \in X \times Y\). Show that \(G(T)\) is closed. Conclude that \(T \in B(X,Y)\) when \(X\) and \(Y\) are Hilbert spaces.

23. Let \(Y\) be a subspace of a linear space \(X\). On \(X\) define the equivalence relation \(x \sim z\) whenever \(x - z \in Y\). The quotient space \(X/Y\) is the linear space of equivalence classes \([x] := \{z: x \sim z\}\).

(a) Let \(X\) be a normed linear space and \(Y\) a closed linear subspace. Show that \(X/Y\) is a normed linear space with \(\|[x]\| := \inf\{\|x + y\|: y \in Y\}\).

(b) Show that \(T \in L(X, X/Y)\) defined by \(x \mapsto [x]\) is bounded, and \(\|T\| \leq 1\).

(c) If additionally \(X\) is a Banach space, show that \(X/Y\) is a Banach space. Hint: Let \(\{u_i\}\) be a Cauchy sequence in \(X/Y\). Show that it has a subsequence \(\{u_{n_i}\}\) with \(\|u_{n_{i+1}} - u_{n_i}\| < 2^{-i}\). Show existence of a sequence \(\{x_{n_i}\} \subset X\) with \([x_{n_i}] = u_{n_i}\) and \(\|x_{n_{i+1}} - x_{n_i}\| < 2^{-i}\). Show that \(\{x_{n_i}\}\), and finally \(\{u_i\}\) are convergent.

24. Let \(X\) and \(Y\) be Banach spaces, and let \(\{L_n\}\) be a sequence in \(B(X,Y)\) such that for any \(x \in X\), \(L_n x := \lim_{n \to \infty} L_n x\) exists.

(a) Show that \(L \in B(X,Y)\).

(b) By means of a counterexample, show that that not necessarily \(\lim_{n \to \infty} L_n = L\).

25. In [Rynne & Youngson, Exer. 5.8] it was shown that there exists a non-zero \(f \in (\ell^\infty)'\) with \(f(e_n) = 0\) for all \(n \geq 1\), confirming the fact that \(\ell^1 \to (\ell^\infty)' : \vec{a} \mapsto (\vec{b} \mapsto \sum_{i=1}^{\infty} a_i b_i)\) is not surjective (we know that
the image is \((c_0)')\). It appears that an explicit construction of such an \(f\) is not possible. The following comes a bit ‘closer’ to an explicit construction:

Let \(c\) be the space of \(\vec{b} \in \ell_\infty\) for which \(\lim_{i \to \infty} b_i\) exists.

(a) Show that \(c\) is a separable Banach space.

(b) Construct a non-zero \(f \in c'\) with \(f(e_n) = 0\) for all \(n \geq 1\).

(c) Conclude again that there exists a non-zero \(f \in (\ell_\infty)'\) with \(f(e_n) = 0\) for all \(n \geq 1\).

26. Let \(Y\) be a subspace of a linear space \(X\). The codimension of \(Y\) is defined as \(\text{codim} \ Y = \dim X/Y\). When \(\text{codim} \ Y = 1\), any element of \(X/Y\) is called a a hyperplane parallel to \(Y\).

(a) Show that for any \(0 \neq f \in X^* (:= L(X, F))\) and \(c \in F\), \(\{x \in X : f(x) = c\}\) is a hyperplane parallel to \(\ker f\). It determines the half-spaces \(\{x \in X : f(x) \leq c\}\) and \(\{x \in X : f(x) \geq c\}\).

(b) Let \(X\) be a normed linear space, and for some \(r > 0\), let \(x_0 \in \{x \in X : \|x\| = r\}\). Show that there exists a hyperplane \(H \ni x_0\) such that \(\{x \in X : \|x\| \leq r\}\) entirely lies in one of the two hyperplanes determined by \(H\).

27. It is known that \(T : L_\infty[0, 1] \to (L^1[0, 1])'\): \(v \mapsto (u \mapsto \int_0^1 v(x) u(x) \, dx)\) is a linear (isometric) isomorphism.

(a) On \(C[0, 1] \subset L_\infty[0, 1]\), consider \(\delta : v \mapsto v(0)\). Show that \(\delta \in (C[0, 1])'\).

(b) Show that \(\nexists u \in L^1[0, 1]\) such that \(\delta(v) = \int_0^1 v(x) u(x) \, dx\) (\(v \in C[0, 1]\)).

(c) Show that \(\exists f \in L_\infty[0, 1]'\) for which \(\nexists u \in L^1[0, 1]\) such that \(f(v) = \int_0^1 v(x) u(x) \, dx\) (\(v \in L_\infty[0, 1]\)).

(d) Assume that \(L^1[0, 1]\) is reflexive, i.e. that the linear isomorphism \(J_{L^1[0, 1]} : L^1[0, 1] \to L_1[0, 1]'\) is surjective. Show that in this case for any \(f \in L_\infty[0, 1]'\) and \(v \in L_\infty[0, 1]\), for \(w = J_{L^1[0, 1]}^{-1}(T')^{-1}g\) it holds that \(f(v) = \int_0^1 v(x) w(x) \, dx\), and conclude a contradiction.

(e) Show that \(L_\infty[0, 1]\) is not reflexive.
28. Let W be a finite dimensional linear subspace of a normed linear space X.

(a) Show that W is closed.

(b) Show that for any $x \in X$, there exists a $w \in W$ with $\|x - w\| = \inf_{v \in W} \|x - v\|$. (Hint: Note that it is sufficient to consider v with $\|v\| \leq 2\|x\|$.)

29. Consider the odd function f, on $[0, \pi]$ defined by $f(x) = x(\pi - x)$.

Compute $\|f\|^2_{L^2[-\pi, \pi]}$, and with that, $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}$, and finally $\sum_{n=0}^{\infty} \frac{1}{n^6}$.

30. Let Y be a closed linear subspace of a normed space X. Show that for $x \in X \setminus Y$ there exists a $f \in X'$ with $f(x) = 1$ and $f(Y) = 0$.

(This property is used on many places in [Rynne & Youngson], for example in the proof of Thm. 5.43.)

31. Let X and Y be finite dimensional linear spaces equipped with bases $\Phi = \{\phi_1, \ldots, \phi_m\}$ and $\Psi = \{\psi_1, \ldots, \psi_n\}$, respectively, and let $T \in L(X,Y) = B(X,Y)$.

(a) When $x = \sum_{j=1}^{m} x_j \phi_j$, show that $Tx = \sum_{i=1}^{n} y_i \psi_i$ where $\bar{y} = \mathbf{T} \bar{x}$ and $\mathbf{T} = [\psi_i'(T \phi_j)]_{1 \leq i \leq n, 1 \leq j \leq m} \in \mathbb{F}^{n \times m}$, and $\Psi' = \{\psi'_1, \ldots, \psi'_n\}$ is the basis for Y' that is dual to Ψ. The matrix \mathbf{T} is the representation of $T \in L(X,Y)$ equipped with Φ or Ψ, respectively.

(b) Show that $\{J_X \phi_1, \ldots, J_X \phi_m\}$ is a basis for X'' that is dual to $\Phi' = \{\phi'_1, \ldots, \phi'_m\}$, being the basis for X' that is dual to Φ.

(c) Show that the representation of $T' \in L(Y', X')$, equipped with Ψ' and Φ', is given by the transpose \mathbf{T}^\top.

32. (Part of the closed range theorem) Let X and Y be normed linear spaces, and $T \in B(X,Y)$.

(a) Show that $\text{Im} T$ is closed if and only if $\text{Im} T = \circ \ker T'$.

(b) Now let X be a Banach space. Show that if $\inf_{0 \neq x \in X} \frac{\|Tx\|_Y}{\|x\|_X} > 0$ and $\ker T' = \emptyset$, then T is invertible, and thus boundedly invertible when also Y is a Banach space.

33. Let X be a normed linear space, and U a one-dimensional linear subspace. Show that there exists a projection P on X with $\text{Im} P = U$ and $\|P\| = 1$.
34. (a) Let H be a Hilbert space, and let $T_H : H \to H'$ be the Riesz operator, i.e. $(T_H y)(x) = \langle x, y \rangle_H$. Show that for $W \subset H$, $W^0 = T_H W^\perp$, and $\circ(T_HW) = W^\perp$.

(b) For Hilbert spaces H and K, and $T \in B(H,K)$, by using (34a) and [Rynne & Youngson, Lemma 5.52] show that $\ker T^* = (\text{Im } T)^\perp$, and $\ker T = (\text{Im } T^*)^\perp$.

35. Let X and Y be finite dimensional Hilbert spaces equipped with bases $\Phi = \{\phi_1, \ldots, \phi_m\}$ and $\Psi = \{\psi_1, \ldots, \psi_n\}$, respectively, and let $T \in L(X,Y) = B(X,Y)$.

(a) Setting $F_X : \mathbb{F}^m \to X : \vec{x} \mapsto \sum_{j=1}^m x_j \phi_j$, and analogously $F_X : \mathbb{F}^n \to Y$, show that the matrix T that represents T is given by $F_Y^{-1} T F_X$.

(b) Equipping \mathbb{F}^m with $\langle \vec{x}, \vec{y} \rangle_{\mathbb{F}^m} := \sum_{i=1}^m x_i \bar{y}_i$, show that Φ is an orthonormal basis if and only if $F_X^{-1} = F_X^*$. (Hint: Expand $\langle F_X \vec{x}, F_X \vec{y} \rangle_X$.)

(c) Show that if Ψ is orthonormal, then $\langle T \vec{x}, \vec{y} \rangle_{\mathbb{F}^m} = \langle T F_X \vec{x}, F_Y \vec{y} \rangle_Y$ ($\vec{x} \in \mathbb{F}^m, \vec{y} \in \mathbb{F}^n$).

(d) Let Φ and Ψ be orthonormal.

i. Show that the representation of T^* is T^*.

ii. Show that $T^* = T^{-1}$ if and only if $T^* = T^{-1}$.

(e) Let $X = Y$, $\Phi = \Psi$ be orthonormal. Show that $T^* = T$ if and only if $T^* = T$, and $T^* T = TT^*$ if and only if $T^* T = TT^*$.

36. For a Banach space X, let $A, B \in B(X)$.

(a) Show that if AB is boundedly invertible, and A and B commute, then both A and B are boundedly invertible (this is needed for showing the fourth \iff-implication in the proof of [Rynne & Youngson, Thm 6.39])

(b) Give an example showing that the condition that A and B commute cannot be dropped.

37. Give an example showing that [Rynne & Youngson, Lemma 6.29] is generally not valid in a real inner product space.

38. Let H be a complex Hilbert space and $T \in B(H)$. Show that if $\langle Tx, x \rangle$ is real for all $x \in H$, then T is self-adjoint.
39. Let H be a Hilbert space. Let M, N be closed linear subspaces of a Hilbert space H such that

$$\alpha := \inf_{0 \neq m \in M} \sup_{0 \neq n \in N} \frac{\langle m, n \rangle}{\|m\|\|n\|} > 0,$$

$$\forall 0 \neq n \in N, \exists m \in M \text{ with } \langle m, n \rangle \neq 0.$$ \hfill (1)

(a) With Q_N denoting the orthogonal projector onto N, let $R := (Q_N)|_M \in B(M, N)$. Show that $\|Rm\| \geq \alpha \|m\|$ ($m \in M$), $\ker R^* = \{0\}$, and conclude that R is boundedly invertible.

(b) Defining $P := R^{-1}Q_N \in B(H, H)$, show that P is a projector with $\text{Im} P = M$.

(c) Using that $\langle Q_Nu, n \rangle = \langle u, n \rangle$ ($u \in H, n \in N$), and $Q_NR^{-1} = I$, show that $\text{Im}(I - P) \subset N^\perp$. Show that $PN^\perp = \{0\}$, and conclude that $\text{Im}(I - P) = N^\perp$.

(d) Show that $\text{Im} P^* = N$, $\text{Im}(I - P^*) = M^\perp$. The operators P and P^* are called biorthogonal projectors. Note that $P = P^*$ if and only if $M = N$.

(e) Conversely, let $P \in B(H)$ be a projector. Show that $M := \text{Im} P$, $N = \text{Im}(I - P)^\perp$ satisfy (1) and (2).

40. Let H be a Hilbert space. An operator $T \in B(H)$ is called nilpotent when for some $n \in \mathbb{N}$, $T^n = 0$.

(a) Show that the spectrum of a nilpotent operator is $\{0\}$.

(b) Construct a nilpotent operator $T \in B(\ell^2)$.

41. For a complex Hilbert space H, let $T \in B(H)$. On $\rho(T) = \mathbb{C} \setminus \sigma(T)$, define the resolvent $R_T(\lambda) := (\lambda I - T)^{-1} \in B(H)$.

(a) Show that for all $n \in \mathbb{N}$, $r_\sigma(T) \leq \|T^n\|^{\frac{1}{n}}$, and so $r_\sigma(T) \leq \lim \inf_{n \to \infty} \|T^n\|^{\frac{1}{n}}$.

(b) Show that

$$R_T(\lambda) - R_T(\nu) = (\nu - \lambda)R_T(\lambda)R_T(\nu),$$

and for $\lambda \neq \nu$,

$$\frac{R_T(\lambda) - R_T(\nu)}{\lambda - \nu} + R_T(\nu)^2 = (R_T(\nu) - R_T(\lambda))R_T(\nu).$$
(c) Given $\eta \in B(H)'$, set $f = \eta \circ R_T : \rho(T) \to \mathbb{C}$. Show that for $\lambda \neq \nu$,
\[
|f(\lambda) - f(\nu) - \eta(R_T(\nu)^2)| \leq \|\eta\|\|R_T(\nu)\|\|R_T(\nu) - R_T(\lambda)\|,
\]
and conclude that f is analytic.

(d) Show that for $|\lambda| > \|T\|$, $R_T(\lambda) = \lambda^{-1} \sum_{n=0}^{\infty} (\lambda^{-1}T)^n$, and consequently,
\[
f(\lambda) = \lambda^{-1} \sum_{n=0}^{\infty} \eta((\lambda^{-1}T)^n). \tag{3}
\]

(e) Since f is analytic, complex function theory learns us that f has a unique Laurent expansion about the origin that is valid in every $\lambda \in \rho(T)$, and thus that (3) is valid for all $|\lambda| > r\sigma(T)$.

Conclude that for $|\lambda| > r\sigma(T)$, $\{(\lambda^{-1}T)^n\} \to 0$, and thus that $\{(\lambda^{-1}T)^n\} \subset B(H)$ is bounded.

(f) Show that for $|\lambda| > r\sigma(T)$, $\limsup_{n \to \infty} \|T^n\|^{\frac{1}{n}} \leq |\lambda|$, so that $\limsup_{n \to \infty} \|T^n\|^{\frac{1}{n}} \leq r\sigma(T)$, and eventually
\[
\lim_{n \to \infty} \|T^n\|^{\frac{1}{n}} = r\sigma(T).
\]

42. Let X and Y be normed linear spaces and $T \in B(X,Y)$.

(a) Show that if in X, $\{x_n\} \rightharpoonup x$, then in Y, $\{Tx_n\} \rightharpoonup Tx$.

(b) Show that if T is compact, then $\{Tx_n\} \rightharpoonup Tx$. (Hint: Assuming that the statement is wrong, conclude that there exists an $\eta > 0$ and a subsequence $\{Tx_{n(m)}\}$ with $\|Tx_{n(m)} - Tx\| > \eta$. Now derive a contradiction.)

43. Let X be an infinite dimensional normed linear space. Show that any set $A \subset X$ that has non-empty interior is not compact.