Additional exercises with Numerical Methods for Stationary PDEs, 2016

February 16, 2016

1. (a) With $n \in \mathbb{N}, h=1 / n, x_{i}=\operatorname{ih}(i=0, \ldots, n)$, show that $\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ illustrated in Figure 1 is a basis for

$$
S_{h}:=\left\{v \in C([0,1], \mathbb{R}): v(0)=0,\left.v\right|_{\left[x_{i-1}, x_{i}\right]} \in P_{1}(i=1, \ldots, n)\right\} .
$$

Figure 1: "Nodal" basis with zero boundary condition at the left end.
(b) With $a(u, v):=\int_{0}^{1} u^{\prime}(x) v^{\prime}(x) d x$ compute the stiffness matrix w.r.t. $\left\{\phi_{1}, \ldots, \phi_{n}\right\}$.
2. (barycentric coordinates) Let $\left\{z_{1}, \ldots, z_{n+1}\right\} \subset \mathbb{R}^{n}$ be $n+1$ points not on a hyperplane. For $i \in\{1, \ldots, n+1\}$, let $\lambda_{i} \in P_{1}$ be defined by $\lambda_{i}\left(z_{j}\right)=\delta_{i j}$. Show that for any $n \in \mathbb{N}$, and any $p \in P_{1}, \sum_{i=1}^{n+1} p\left(z_{i}\right) \lambda_{i}=p$.
Note that in particular $\sum_{i=1}^{n+1} \lambda_{i}(x)=1$ for any $x \in \mathbb{R}^{n}$. The $(n+1)$ tuple $\left(\lambda_{1}(x), \ldots, \lambda_{n+1}(x)\right)$ are called the barycentric coordinates of x w.r.t. $\left\{z_{1}, \ldots, z_{n+1}\right\}$.
The set $\left\{x \in \mathbb{R}^{n}: \lambda_{i}(x) \geq 0, \forall i\right\}$ is called an n-simplex. What is it for $n=1,2,3$?
3. (Friedrich's inequality) Show that on a bounded Lipschitz domain $\Omega \subset \mathbb{R}^{n}$ and $p \in[1, \infty]$,

$$
\|v-\bar{v}\|_{W_{p}^{1}(\Omega)} \leq C(\Omega)|v|_{W_{p}^{1}(\Omega)}
$$

where $\bar{v}=\frac{1}{|\Omega|} \int_{\Omega} v(x) d x$.
4. Let $p \in[1, \infty]$ and $m \in \mathbb{N}_{0}$ such that $m+1>2 / p$ or $m+1 \geq 2$ if $p=1$. For a triangle K, and $x_{1}, \ldots, x_{N} \subset K$, invariant under permutations of the barycentric coordinates, weights w_{1}, \ldots, w_{N} independent of K, let $Q_{K}(g)=\operatorname{vol}(K) \sum_{i=1}^{N} w_{i} g\left(x_{i}\right)$ be a quadrature formula that is exact on $P_{m}(K)$. Show that

$$
\left|\int_{K} g(x) d x-Q_{K}(g)\right| \leq C \operatorname{vol}(K)^{1-1 / p} \operatorname{diam}(K)^{m+1}|g|_{W_{p}^{m+1}(K)}
$$

where C is a constant that is independent of K.
5. For some domain $\Omega \subset \mathbb{R}^{n}$, and with

$$
L u:=-\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j} \frac{\partial u}{\partial x_{j}}\right)+\sum_{i=1}^{n} b_{i} \frac{\partial u}{\partial x_{i}}+c u
$$

where $a_{i j}=a_{j i} \in L_{\infty}(\Omega), b_{i} \in W_{\infty}^{1}(\Omega), c \in L_{\infty}(\Omega)$, for $f \in L_{2}(\Omega)$ consider the bvp

$$
\left\{\begin{array}{cl}
L u=f & \text { on } \Omega \\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

(a) Show that the corresponding variational formulation is given by the problem of finding $u \in H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
a(u, v)=\int_{\Omega} f v d x \quad\left(v \in H_{0}^{1}(\Omega)\right) \tag{1}
\end{equation*}
$$

where

$$
a(u, v)=\int_{\Omega}(\mathbf{A} \nabla u) \cdot \nabla v+(\mathbf{b} \cdot \nabla u) v+c u v d x
$$

where $\mathbf{A}(x)=\left(a_{i j}(x)\right)_{1 \leq i, j \leq n}, \mathbf{b}(x)=\left(b_{1}(x), \ldots, b_{n}(x)^{T}\right.$.
(b) Assuming that $\xi \cdot(\mathbf{A}(x) \xi) \geq C\|\xi\|^{2}$ for some absolute constant $C>0$ independent of $\xi \in \mathbb{R}^{n}$ and $x \in \Omega$ (uniform ellipticity), $\mathbf{b}=0$ and $c=0$, show that (1) has a unique solution with $\|u\|_{H^{1}(\Omega)} \lesssim\|f\|_{L_{2}(\Omega)}$.
(c) Show the same result when the assumptions $\mathbf{b}=0$ and $c=0$ are replaced by $-\frac{1}{2} \operatorname{divb}(x)+c(x) \geq 0$ on Ω. (Hint: Show that for $u \in$ $\left.H_{0}^{1}(\Omega), \int_{\Omega}(\mathbf{b} \cdot \nabla u) u d x=\frac{1}{2} \int_{\Omega} \mathbf{b} \cdot \nabla\left(u^{2}\right) d x=-\frac{1}{2} \int_{\Omega} u^{2} \operatorname{div} \mathbf{b} d x\right)$
(d) Reconsidering (5a), what are the natural boundary conditions corresponding to the differential operator L ?
6. Consider the following variational formulation of the Biharmonic problem $\left\{\begin{array}{cl}\triangle^{2} u=f & \text { on } \Omega \subset \mathbb{R}^{2} \\ u=\frac{\partial u}{\partial n}=0 & \text { on } \partial \Omega\end{array}:\right.$ Find $u \in H_{0}^{2}(\Omega)$ s.t.

$$
\begin{equation*}
a(u, v):=\int_{\Omega} \triangle u \triangle v d x=\int_{\Omega} f v d x=: F(v) \quad\left(v \in H_{0}^{2}(\Omega)\right) \tag{2}
\end{equation*}
$$

Show that for $v \in \mathcal{D}(\Omega), \int_{\Omega}\left(\frac{\partial^{2} v}{\partial x_{1} \partial x_{2}}\right)^{2} d x=\int_{\Omega} \frac{\partial^{2} v}{\partial x_{1}^{2}} \frac{\partial^{2} v}{\partial x_{2}^{2}} d x$, and with that, that $|v|_{H^{2}}^{2} \leq\|\Delta v\|_{L_{2}(\Omega)}^{2}\left(v \in H_{0}^{2}(\Omega)\right)$. Assuming that say $f \in L_{2}(\Omega)$, using Poincaré's inequality conclude that (2) has a unique solution u with $\|u\|_{H^{2}(\Omega)} \lesssim\|f\|_{L_{2}(\Omega)}$.
7. Let $\Phi:(r, \phi) \mapsto(x, y)=(r \cos \phi, r \sin \phi)$.
(a) With $\tilde{u}=u \circ \Phi$, prove that

$$
(-\triangle u) \circ \Phi=-\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \tilde{u}}{\partial r}\right)-\frac{1}{r^{2}} \frac{\partial^{2} \tilde{u}}{\partial \phi^{2}}
$$

(b) For $\alpha>\frac{1}{2}$, let $\Omega_{\alpha}=\left.\operatorname{Im} \Phi\right|_{(0,1) \times\left(0, \frac{\pi}{\alpha}\right)}$. With f given by $(f \circ \Phi)(r, \phi)=$ $4(\alpha+1) r^{\alpha} \sin \alpha \phi$, show that u given by $(u \circ \Phi)(r, \phi)=\left(1-r^{2}\right) r^{\alpha} \sin \alpha \phi$ solves

$$
\left\{\begin{aligned}
-\Delta u=f & \text { on } \Omega_{\alpha} \\
u=0 & \text { on } \partial \Omega_{\alpha} .
\end{aligned}\right.
$$

(c) Sketch Ω_{α}. Show that $f \in L_{2}\left(\Omega_{\alpha}\right)$, but that $u \notin H^{2}\left(\Omega_{\alpha}\right)$ when $\alpha<1$, i.e., when Ω_{α} is not convex.
8. ("superconvergence") Consider the bvp $-u^{\prime \prime}=f$ on $(0,1), u(0)=u(1)=0$ in variational form. Let u_{h} denote the finite element Galerkin approximation using continuous piecewise linears, and let $I_{h} u$ denote the interpolant of u in this finite element space. Show that $u_{h}=I_{h} u$ by showing that $a\left(u_{h}-I_{h} u, w_{h}\right)=0$ for any function w_{h} in the f.e. space (where $\left.a(w, v)=\int_{0}^{1} w^{\prime} v^{\prime} d x\right)$
9. Consider the space of continuous piecewise linears w.r.t. the triangulation of $\Omega=(0,1)^{2}$ illustrated below.

Use element mass and stiffness matrices to construct mass and stiffness matrices (where $a(u, v):=\int_{\Omega} \nabla u \cdot \nabla v d x$) for both homogeneous Dirichlet boundary conditions and homogeneous Neumann boundary conditions.
10. Consider the continuous piecewise linear finite element discretization w.r.t. $n+1$ equal sized subintervals of $-u^{\prime \prime}(x)=f(x)$ on $(0,1), u(0)=u(1)=0$ in standard variational form. Show that the stiffness matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ w.r.t. the nodal basis with a lexicographical numbering of the grid points is given by

$$
\frac{1}{h}\left[\begin{array}{rrrr}
2 & -1 & 0 & \ldots \\
-1 & 2 & -1 & \cdots \\
\vdots & & & \\
& 0 & -1 & 2
\end{array}\right]
$$

where $h=1 /(n+1)$. Show that an orthonormal basis of eigenvectors of \mathbf{A} is given by $\left\{\mathbf{v}^{(k)}=[\sqrt{2 h} \sin (j k \pi h)]_{j=1, \ldots, n}: k=1, \ldots, n\right\}$ with corresponding eigenvalues $\lambda^{(k)}=4 h^{-1} \sin ^{2}(h k \pi / 2)$.
11. Show that on shape regular triangles T,

$$
\|v\|_{L_{2}(\partial T)} \lesssim h_{T}^{-1 / 2}\|v\|_{L_{2}(T)}+h_{T}^{1 / 2}|v|_{H^{1}(T)} \quad\left(v \in H^{1}(T)\right)
$$

12. For a triangle T, let $\left\{\phi_{1}, \phi_{2}, \phi_{3}\right\} \subset P_{1}(T)$ be the standard nodal basis corresponding to evaluation in the vertices. Let $\left\{\psi_{1}, \psi_{2}, \psi_{3}\right\} \subset P_{1}(T)$ let be the collection that is dual to $\left\{\phi_{1}, \phi_{2}, \phi_{3}\right\}$, i.e., $\left\langle\psi_{i}, \phi_{j}\right\rangle_{L_{2}(T)}=\delta_{i j}$. Express all ψ_{i} as a linear combinations of $\phi_{1}, \phi_{2}, \phi_{3}$.
13. Show that any monotone, bounded function on $(0,1)$ can be approximated in L_{∞}-norm at order $\mathcal{O}\left(N^{-1}\right)$ with piecewise constant, free knot approximation with N knots.
14. Let τ_{0} be a conforming initial partition. In this exercise, we consider exclusively partitions τ that are created from τ_{0} by newest vertex bisection.
(a) Show all τ are uniformly shape regular (only dependent on τ_{0}). Hint: Show that all descendants of a $T \in \tau_{0}$ fall into 4 similarity classes.
(b) Assume that τ_{0} satisfies the matching condition. Show that any uniform refinement τ of τ_{0} (meaning that all its triangles have the same generation) is conforming.
(c) Let τ_{0} satisfy the matching condition, τ be conforming, and $T, T^{\prime} \in \tau$. Show that if T^{\prime} contains the refinement edge of T, then either

- gen $\left(T^{\prime}\right)=\operatorname{gen}(T)$, and T and T^{\prime} share their refinement edge, or
- gen $\left(T^{\prime}\right)=\operatorname{gen}(T)-1$, and T shares its refinement edge with one of both children of T^{\prime}.
(d) Let τ_{0} satisfies the matching condition, τ be conforming, and $T \in \tau$. Show that refine (τ, T) terminates.

15. (Inverse inequalities) Show that for uniformly shape regular triangles T, and fixed $k \in \mathbb{N}$,

$$
\begin{aligned}
\|\Delta z\|_{L_{2}(T)} \lesssim h_{T}^{-1}\|z\|_{H^{1}(T)} & \left(z \in P_{k}(T)\right) \\
\|\nabla z\|_{L_{2}(e)^{2}} \lesssim h_{T}^{-\frac{1}{2}}\|z\|_{H^{1}(T)} & \left(z \in P_{k}(T)\right)
\end{aligned}
$$

16. For τ_{0} being a conforming initial partition, let \mathbb{T} denote the set of all conforming partitions that can be created from \mathcal{T}_{0} by newest vertex bisection. Given $\mathcal{T}^{\prime}, \mathcal{T}^{\prime \prime} \in \mathbb{T}$, let \mathcal{T} be the partition defined as the set of leaves of the tree defined as the union of the binary trees underlying \mathcal{T}^{\prime} and $\mathcal{T}^{\prime \prime}$. Show that $\mathcal{T} \in \mathbb{T}$, and that it is the smallest common refinement of \mathcal{T}^{\prime} and $\mathcal{T}^{\prime \prime}$. Furthermore show that

$$
\# \mathcal{T}+\# \mathcal{T}_{0} \leq \# \mathcal{T}^{\prime}+\# \mathcal{T}^{\prime \prime}
$$

(Hint: Note that it is sufficient to show the last inequality for $\# \mathcal{T}_{0}=1$).
17. Consider the model problem $\left\{\begin{aligned}-\Delta u=f & \text { on } \Omega \\ u=0 & \text { on } \partial \Omega\end{aligned} \quad\right.$ with $\Omega=(0,1)^{2}$ and $f=1$. Compute the continuous piecewise linear finite element solution u_{0} w.r.t. the triangulation \mathcal{T}_{0} of Ω into 4 triangles by drawing the 2 diagonals.

With the center of Ω being the newest vertex of all 4 triangles of \mathcal{T}_{0}, construct \mathcal{T}_{1} by applying two uniform refinements, resulting in a triangulation that has 16 triangles. Compute the continuous piecewise linear finite element solution u_{1} w.r.t. the triangulation \mathcal{T}_{1}. Compare u_{0} and u_{1}. The bulk chasing parameter θ can be chosen such that u_{0} and u_{1} will be in the sequence of finite element solutions produced by the AFEM. Is there a contradiction with the convergence result we have seen for the AFEM? Explain your answer.
18. Given $k \in \mathbb{R}$, find the variational formulation of $-u^{\prime \prime}+k u^{\prime}+u=f$ on $(0,1)$ for (a) homogeneous Dirichlet boundary conditions, and (b) Neumann boundary conditions. Show that in the first case the bilinear form is coercive (Hint: write $\left.v v^{\prime}=\frac{1}{2}\left(v^{2}\right)^{\prime}\right)$, and give a k for which in the second case the bilinear form is not coercive.

