
SOME NOTES WITH NUMERICAL METHODS FOR
STATIONARY PDES

ROB STEVENSON

1. Interpolation estimates in Sobolev spaces

Theorem 1.1 (Bramble-Hilbert “lemma”). Let Ω ⊂ Rn be a Lipschitz
domain, and for some m ∈ N, q ∈ [1,∞] and a normed space Y , let
L : Wm

q (Ω) → Y be a bounded linear mapping with Pm−1 ⊂ KerL.
Then ∃C = C(Ω) such that

‖Lv‖Y ≤ C‖L‖Wm
q (Ω)→Y |v|Wm

q (Ω) (v ∈ Wm
q (Ω)).

Lemma 1.2 (transformation lemma). Let G(x̂) = Bx̂+c with detB 6= 0,

and Ω̂ and Ω be Lipschitz domains in Rn with G(Ω̂) = Ω.

For m ≥ 0, p ∈ [1,∞] and v ∈ Wm
p (Ω), v̂ := v ◦G ∈ Wm

p (Ω̂).
∃C = C(n,m, p) with

|v̂|Wm
p (Ω̂) ≤ C‖B‖m2 | detB|−1/p|v|Wm

p (Ω) (v ∈ Wm
p (Ω)),

|v|Wm
p (Ω) ≤ C‖B−1‖m2 | detB|1/p|v̂|Wm

p (Ω̂) (v̂ ∈ Wm
p (Ω̂)).

Theorem 1.3. Let Ω, Ω̂ ⊂ Rn and G as in Lemma 1.2. Let

hΩ := inf{diam(S) : S ball containing Ω}
ρΩ := sup{diam(S) : S ball in Ω}

and let hΩ̂ and ρΩ̂ be defined similarly. Then ‖B‖2 ≤ hΩ

ρΩ̂
, ‖B−1‖2 ≤

hΩ̂

ρΩ
.

Theorem 1.4. Let Ω, Ω̂ ⊂ Rn and G as in Lemma 1.2.
Let k,m ∈ N0 and p, q ∈ [1,∞] be such that W k+1

p (Ω̂) ↪→ Wm
q (Ω̂), and

let Π̂ : W k+1
p (Ω̂)→ Wm

q (Ω̂) be a bounded linear mapping that preserves
polynomials of degree k.
Define Π by Π(v) ◦G = Π̂(v ◦G).

Then ∃C = C(Π̂, Ω̂), thus independent of Ω, such that

|v − Πv|Wm
q (Ω) ≤ C(vol(Ω))

1
q
− 1

p
hk+1

Ω

ρmΩ
|v|Wk+1

p (Ω) (v ∈ W k+1
p (Ω)).
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2. Application to estimate local interpolation errors

Theorem 2.1. Let (K̂, P̂ , N̂) be a finite element with s denoting the

maximal order of partial derivatives occurring in the definition of N̂ .
For some m, k ∈ N0, p, q ∈ [1,∞], let

W k+1
p (K̂) ↪→ Cs(K̂)

W k+1
p (K̂) ↪→ Wm

q (K̂)

Pk(K̂) ⊂ P̂ ⊂ Wm
q (K̂)

Then ∃C = C(K̂, P̂ , N̂) such that for all (K,P,N) that are affine

interpolation equivalent to (K̂, P̂ , N̂),

|v − IKv|Wm
q (K) ≤ C(vol(K))

1
q
− 1

p
hk+1
K

ρmK
|v|Wk+1

p (K) (v ∈ W k+1
p (K)).

Remark 2.2. Condition W k+1
p (K̂) ↪→ Cs(K̂) is imposed so that the

interpolant IK̂ is a bounded mapping on W k+1
p (K̂).

Definition 2.3. A family of finite elements (K,P,N) is called uni-
formly shape regular when supK hK/ρK <∞.

Corollary 2.4. For a family of uniformly shape regular affine inter-
polation equivalent finite elements, result from Theorem 2.1 reads as

|v − IKv|Wm
q (K) ≤ C(vol(K))

1
q
− 1

phk+1−m
K |v|Wk+1

p (K) (v ∈ W k+1
p (K)).

3. Application to estimate global interpolation errors

Theorem 3.1. Consider family (Th)h of subdivisions of a domain Ω ⊂
Rn into element domains that are uniformly shape regular, and such
that all finite elements are affine interpolation equivalent to a reference
element (K̂, P̂ , N̂). Then under the conditions of Theorem 2.1 with
p = q,
(1)( ∑

K⊂Th

h
p(m−k−1)
K ‖v − IKv‖pWm

p (K)

)1/p
. |v|Wk+1

p (Ω) (v ∈ W k+1
p (Ω)).

Define ITh by (IThv)|K := IKv|K. Then if =ITh ⊂ Cm−1(Ω̄), then with
h := supK∈Th hK,

(2) ‖v − IThv‖Wm
p (Ω) . hk+1−m|v|Wk+1

p (Ω) (v ∈ W k+1
p (Ω)).

Remark 3.2. In these notes, by C . D we will mean that C can be
bounded on some absolute multiple of D, independently of parameters
which C and D may depend on. Obviously, C & D is defined as D . C,
and C h D as C . D and C & D.
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Remark 3.3. [homogeneous Dirichlet boundary conditions] In the sit-
uation of Theorem 3.1, if =ITh ⊂ C0(Ω̄), and ITh preserves the low-
est order homogeneous Dirichlet boundary conditions, then VTh,0 :=
=ITh(Hk+1(Ω) ∩H1

0 (Ω)) ⊂ H1
0 (Ω), and (2) for m ∈ {0, 1}, p = 2 reads

as

‖v − IThv‖Hm(Ω) . hk+1−m|v|Hk+1(Ω) (v ∈ Hk+1(Ω) ∩H1
0 (Ω)).

Using the Lax-Milgram lemma and Cea’s lemma, we arrive at the
following corollary.

Theorem 3.4. Consider the situation of Theorem 3.1 with =ITh ⊂
C0(Ω̄). Let a : H1(Ω) × H1(Ω) → R be bilinear, bounded, coercive,
F : H1(Ω) → R linear and bounded. Let u ∈ H1(Ω), uTh ∈ VTh be the
solutions of

a(u, v) = F (v) (v ∈ H1(Ω),

a(uh, vh) = F (vh) (vh ∈ VTh),

respectively. Then

‖u− uh‖H1(Ω) . hk|u|Hk+1(Ω)

assuming u ∈ Hk+1(Ω).

Remark 3.5. Same conclusion when variational problem is formulated
on H1

0 (Ω) and VTh reads as VTh,0.

Under additional assumptions, higher order convergence can be demon-
strated in the weaker L2(Ω)-norm:

Theorem 3.6 (Aubin-Nitsche duality ‘trick’). Let a(, , ) be as in Thm 3.4.
Suppose that for f ∈ L2(Ω), the solution uf ∈ H1(Ω) (or in H1

0 (Ω)
in case of hom. Dir.) of the adjoint problem a(v, uf ) =

∫
Ω
fvdx

(v ∈ H1(Ω)) (H1
0 (Ω)) is in H2(Ω) with

(3) ‖uf‖H2(Ω) . ‖f‖L2(Ω)

(this is known as a regularity condition). Let (VTh)h ((VTh,0)h) be such
that
(4)

inf
vh∈VTh

‖w− vh‖H1(Ω) . h‖w‖H2(Ω) for all w ∈ H2(Ω) (H2(Ω)∩H1
0 (Ω)).

Then for u and uh as in Thm 3.4, we have

‖u− uh‖L2(Ω) . h‖u− uh‖H1(Ω).

Proof. Let w ∈ H1(Ω) (H1
0 (Ω)) be the solution of the adjoint problem

a(v, w) = (u−uh, v)L2(Ω) (v ∈ H1(Ω)) (H1
0 (Ω)). Then for any wh ∈ VTh

(VTh,0),

‖u−uh‖2
L2(Ω) = a(u−uh, w) = a(u−uh, w−wh) . ‖u−uh‖H1(Ω)‖w−wh‖H1(Ω)

Using that infwh
‖w − wh‖H1(Ω) . h‖w‖H2(Ω) . h‖u − uh‖L2(Ω), the

proof is completed. �
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Example 3.7. If Ω ⊂ R2 has a C2 boundary or is convex, then for
f ∈ L2(Ω), the solution u ∈ H1

0 (Ω) of
∫

Ω
∇u · ∇vdx =

∫
Ω
fvdx (v ∈

H1
0 (Ω)) is in H2(Ω) and satisfies ‖u‖H2(Ω) . ‖f‖L2(Ω). (Without such

conditions on Ω, this regularity result is generally not true).

4. Inverse inequality

Theorem 4.1. Let (VTh)h be a family of affine equivalent f.e. spaces
w.r.t. family (Th)h of uniformly shape regular subdivisions of Ω ⊂ Rn.
Let hmin := minK∈Th diam(K). Let VTh ⊂ Wm

p (Ω). Then on VTh,

‖ · ‖Wm
p (Ω) . h−mmin‖ · ‖Lp(Ω).

Proof. By the transformation lemma, equivalence of norms on finite
dimensional spaces, and again the transformation lemma, for v ∈ VTh
we have

|v|pWm
p (Ω) =

∑
K∈Th

|v|K |pWm
p (K) .

∑
K∈Th

‖B−1‖mp| detB||v̂|K |pWm
p (K̂)

h
∑
K∈Th

‖B−1‖mp| detB|‖v̂|K‖pLp(K̂)
.
∑
K∈Th

‖B−1‖mp‖v|K‖pLp(K)

.
∑
K∈Th

(
ĥ

ρK
)mp‖v|K‖pLp(K) . h−pmmin ‖v‖

p
Lp(Ω).

�

Literature with Sections 1–4: [Cia78]

5. Matrix-vector formulation of finite element
discretization

Let V be some finite dimension subspace of some real Hilbert space
H, let a : V × V → R be bilinear, bounded and coercive, and let
f : V → R be linear and bounded (e.g., a and f are restrictions to
V of (bi)linear forms on H having those properties). We consider the
problem of finding u ∈ V s.t.

(5) a(u, v) = f(v) (v ∈ V )

Defining A : V → V ′ by (Au)(v) = a(u, v) an equivalent formulation is
given by

(6) Au = f.

Let Φ = {φ1, . . . , φN} be a basis for V . The corresponding dual basis
Φ′ = {φ′1, . . . , φ′N} for V ′ is defined by φ′i(φj) = δij.

Exercise -1. Let A ∈ RN×N be defined by Aij = a(φj, φi), called the
stiffness matrix.
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• Show that A is the representation of A w.r.t. primal and dual
bases of V and V ′, respectively, i.e., if v =

∑
j vjφj, then Av =∑

i(Av)iφ
′
i. Conclude that an equivalent formulation of (5) or

(6) is given by Au = f , where u =
∑

i uiφi, f =
∑

i fiφ
′
i.

• With u =
∑

i uiφi, v =
∑

i viφi, f =
∑

i fiφ
′
i, i.e., fi = f(φi),

and 〈·, ·〉 the standard scalar product on RN , show that 〈Au,v〉 =
a(u, v) and f(v) = 〈f ,v〉.

Unless stated otherwise, with the norm ‖ · ‖ on RN (or on RN×N)
we will always mean the standard norm (or the corresponding operator
norm).

Exercise 0. • Show that a(·, ·) is symmetric iff A = AT .
• Show that a(v, v) > 0 for all 0 6= v ∈ V iff A is positive definite

(denoted as A > 0), i.e. 〈Av,v〉 > 0 for all 0 6= v ∈ RN .

Remark 5.1. With the notations of Exercise -1, we have

〈Au,v〉 = a(
∑
j

ujφj,
∑
i

viφi) =
∑
ij

ujvi
∑
K

a(φj|K , φi|K).

The (set of non-zero entries of) the matrix a(φj|K , φi|K) is known as
the element stiffness matrix.

6. Conditioning of the stiffness matrix

Let V ⊂ L2(Ω). M ∈ RN×N defined by Mij = (φj, φi)L2(Ω) is called
the mass matrix. Note that M is symmetric, positive definite.

Lemma 6.1. If {ψ1, . . . , ψm} is an independent set in a normed space
(V, ‖ · ‖), then ‖

∑
i ciψi‖2 h

∑
i |ci|2 (i.e. uniformly in c ∈ Rm).

Proof. c 7→ ‖
∑

i ciψi‖ is continuous, so it attains a maximum and
minimum on the unit ball in Rm. By the independence of the set, the
minimum is strictly positive. �

Theorem 6.2. Let (VTh)h be a family of affine equivalent f.e. spaces
w.r.t. a family of quasi-uniform, uniformly shape regular subdivisions of
Ω ⊂ Rn. Then M = Mh corresponding to the nodal basis is uniformly
well-conditioned, i.e., suph κ(M) < ∞, where κ(M) = ‖M‖‖M−1‖ =
ρ(M>M)

1
2

ρ(M−>M−1)
1
2

is the spectral condition number of M.

Proof. By the choice of the basis, in the relation v =
∑

i viφi we have
vi = Ni(v) where Ni denotes the ith global degree of freedom. With
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h > 0 such that h h minK∈Th diam(K) h maxK∈Th diam(K), we have

〈Mv,v〉 = ‖v‖2
L2(Ω) =

∑
K

‖v|K‖2
L2(K) =

∑
K

| detB|‖v̂|K‖2
L2(K̂)

h hn
∑
K

‖v̂|K‖2
L2(K̂)

Lemma 6.1h hn
∑
K

∑
j

|N̂ loc
j (v̂|K)|2

affine eq.
= hn

∑
K

∑
j

|N loc
j (v|K)|2 h hn

∑
i

|Ni(v)|2 = hn‖v‖2.�

Theorem 6.3. For Ω ⊂ Rn, let (VTh)h ⊂ Hm(Ω) (or ⊂ Hm
0 (Ω)) be a

family of f.e. spaces. Let a(·, ·) : Hm(Ω)×Hm(Ω)→ R be bil., bound.
and coercive (or with Hm(Ω) reading as Hm

0 (Ω)). Then the stiffness
matrix A = Ah w.r.t. a basis of VTh satisfies ‖A‖ . h−2m

min ‖M‖ and
‖A−1‖ . ‖M−1‖, with M being the corresponding mass matrix.

Proof. Using Theorem 4.1, we have

|〈Av,w〉| = |a(v, w)| . ‖v‖Hm(Ω)‖w‖Hm(Ω) . h−2m
min ‖v‖L2(Ω)‖w‖L2(Ω)

. h−2m
min λmax(M)‖v‖‖w‖,

or ‖A‖ . h−2m
min λmax(M). On the other hand

〈Av,v〉 & ‖v‖2
Hm(Ω) ≥ ‖v‖2

L2(Ω) & λmin(M)‖v‖2,

and so

‖A−1v‖2 . λmin(M)−1〈v,A−1v〉 ≤ λmin(M)−1‖v‖‖A−1v‖
or ‖A−1v‖ . λmin(M)−1‖v‖ or ‖A−1‖ . λmin(M)−1. �

Remark 6.4. If the basis in Theorem 6.3 is the nodal basis, then under
the conditions of Theorem 6.2 we have κ(A) . h−2m

min . Generally, this
estimate is sharp.

7. A posteriori error estimation

For simplicity: Poisson on a polytopal domain Ω, usually in n = 2
dimensions, homogeneous Dirichlet boundary conditions.
T is a uniformly shape regular, conforming partition into n-simplices.
ST is Lagrange f.e. space of degree k. E(T ) is the set of the interior
edges of T .

For T ∈ T , v ∈ ST , f ∈ L2(Ω), the (squared) error indicator for v
on T reads as

η(v, T )2 := h2
T‖f + ∆v‖2

L2(T ) + hT‖J∇vK‖2
L2(∂T\∂Ω),

where J∇vK is jump of normal derivative of v over interface, hT :=
|T |1/n.

The (squared) oscillation of f on T is defined as

osc(f, T )2 := h2
T‖f − P r

Tf‖2
L2(T ),
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where, for some fixed N0 3 r ≥ k − 2, P r
T is the L2(T )-orthogonal

projector onto Pr(T ).
Note that osc(f, T )2 ≤ η(v, T )2, because P r

T∆v = ∆v. (Usually∑
T∈T osc(f, T )2 �

∑
T∈T η(v, T )2, cf. Example 11.3).

For M⊂ T ,

η(v,M)2 :=
∑
T∈M

η(v, T )2, osc(f,M)2 :=
∑
T∈M

osc(f, T )2.

T ≤ T̃ means that T̃ is a refinement of T . RT →T̃ := T \ T̃ , i.e., the

set of those T ∈ T that were refined when passing from T to T̃ .
uT will denote the Galerkin solution from ST .

Theorem 7.1 (local upper bound provided by error estimator). For
T ≤ T̃ , it holds that

|uT̃ − uT |
2
H1(Ω) . η(uT , RT →T̃ )2.

In particular
|u− uT |2H1(Ω) . η(uT , T )2.

Proof. It holds that

(7) |uT̃ − uT |H1(Ω) = sup
06=wT̃ ∈ST̃

a(uT̃ − uT , wT̃ )

|wT̃ |H1(Ω)

.

For any wT ∈ ST , we have

a(uT̃ − uT , wT̃ ) = a(uT̃ − uT , wT̃ − wT )

=

∫
Ω

f(wT̃ − wT ) dx− a(uT , wT̃ − wT )

=
∑
T∈T

{∫
T

f(wT̃ − wT ) dx−
∫
T

∇uT · ∇(wT̃ − wT )
}

=
∑
T∈T

{
(

∫
T

f + ∆uT )(wT̃ − wT ) dx−
∫
∂T

∇uT · n(wT̃ − wT )
}

≤
∑
T∈T

‖f + ∆uT ‖L2(T )‖wT̃ − wT ‖L2(T )

+
∑
e∈E(T )

‖J∇uT K‖L2(e)‖wT̃ − wT ‖L2(e).

(8)

Select wT to be the Scott-Zhang interpolant of wT̃ as follows: If
vertex ν ∈ T 6∈ RT →T̃ , select SZ edge on T , so that wT (ν) = wT̃ (ν).
So wT = wT̃ on all T 6∈ RT →T̃ , and consequently on all edges of those
T .

For the remaining T ∈ T and edges e ∈ E(T ), use that

(9) h−1
T ‖wT̃ − wT ‖L2(T ) + |wT̃ − wT |H1(T ) . |wT̃ |H1(S(T ,T )),

with patch S(T , T ) := {T ′ ∈ T : T ∩ T ′ 6= ∅}, as well as

‖g‖L2(e) . h
−1/2
T ‖g‖L2(T ) + h

1/2
T |g|H1(T )



8 ROB STEVENSON

for T ∈ T such that e is an edge of T , which yields, using (9) again,

(10) ‖wT̃ − wT ‖L2(e) . h
1/2
T |wT̃ |H1(S(T ,T )).

By combining (8) with (9) and (10), applying Cauchy-Schwarz, the
proof is completed by (7). �

Theorem 7.2 (global lower bound provided by error estimator).

η(uT , T )2 . |u− uT |2H1(Ω) + osc(f, T )2.

(Actually holds true for uT reading as any function in ST .)

As a consequence of Thm. 7.1 and 7.2, we have that the ‘total error’
–defined as the square root of squared error plus squared oscillation–
is proportional to the estimator:

Corollary 7.3. |u− uT |2H1(Ω) + osc(f, T )2 h η(uT , T )2.

Proof of Thm. 7.2. For v ∈ H1
0 (Ω), we have

(11) a(u− uT , v) =
∑
T∈T

[ ∫
T

(f + ∆uT )v −
∫
∂T

(∇uT · n)v
]
.

Fixing T ∈ T , for v ∈ H1
0 (T ), with f̄T := P r

Tf and using (P r
T − I)P r

T = 0,
we have that

|
∫
T

(f̄T + ∆uT )v| = |a(u− uT , v) +

∫
T

(f̄T − f)(I − P r
T )v|

. |u− uT |H1(T )|v|H1(T ) + hT‖f − f̄T‖L2(T )|v|H1(T ),

or

sup
06=v∈H1

0 (T )

|
∫
T

(f̄T + ∆uT )v|
|v|H1(T )

. |u− uT |H1(T ) + osc(f, T ).

From

hT‖p‖L2(T ) . sup
06=v∈H1

0 (T )

|
∫
T
pv dx|

|v|H1(T )

(p ∈ Pr(T ))

([BS08, 9.x.5]), we obtain

hT‖f + ∆uT ‖L2(T ) ≤ hT‖f̄T + ∆uT ‖L2(T ) + osc(f, T )

. |u− uT |H1(T ) + osc(f, T ).
(12)

For e ∈ E(T ), e = T1∩T2, and v ∈ Ve := {w ∈ H1
0 (T1∪T2) :

∫
Ti
wPr =

0}, from (11) and (P r
T − I)P r

T = 0, we infer

|
∫
e

J∇uT Kv ds| = |a(u− uT , v) +
2∑
i=1

∫
Ti

(f̄Ti − f)(I − P r
Ti

)v|

. |u− uT |H1(T1∪T2)|v|H1(T1∪T2) +

√√√√ 2∑
i=1

h2
Ti
‖f − f̄Ti‖2

L2(Ti)
|v|H1(T1∪T2).
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From

h
1
2
e ‖p‖L2(e) . sup

06=v∈Ve

|
∫
e
pv dx|

|v|H1(T1∪T2)

(p ∈ Pk)

([BS08, 9.x.7], where he := |e|1/(n−1)), we obtain

(13) h
1
2
e ‖J∇uT K‖L2(e) . |u−uT |H1(T1∪T2) +

√
osc(f, T1)2 + osc(f, T2)2.

By summing (12) over T ∈ T , and (13) over e ∈ E(T ), the proof is
completed. �

Literature with this section: [Ver96, Ste07].

8. Newest vertex bisection

The newest vertex bisection algorithm reads as follows:

• In each triangle in an initial, conforming partition T0 of a poly-
gon Ω into triangles, call one of its vertices its newest vertex.
• If you want to refine a triangle T in a partition, then connect

its newest vertex with the midpoint of opposite edge (the re-
finement edge of T ). This midpoint will be the newest vertex
of the two triangles being created.

All partitions T that can be created in this way can be represented
as a subtree (being a subset that contains the roots, and for any other
element that it contains, it contains its parent and its sibling) of an
infinite binary tree (the master tree) that has as its roots the triangles
from T0.

For any triangle T in the master tree, gen(T ) is defined as the number
of bisections that are needed to create it starting from a root.

The partitions T that can be created in this way are uniformly shape
regular (exercise).

To restrict ourselves to the subset of partitions T that additionally
are conforming, consider the following procedure to refine a triangle T
in a conforming partition T :

refine(T, T )
% T is triangle in conforming partition T
if the neighboring triangle T ′ at other side of refinement edge of

T has a different refinement edge
then refine(T ′, T )
endif

simultaneously bisect T and T ′ in T .

This algorithm may not terminate, see Figure 8. To avoid such a dead-
lock situation, we impose a matching condition on the initial assignment
of the newest vertices: If e = T ∩ T ′ is the refinement edge of T , then
it is the refinement edge of T ′.
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Figure 1. Deadlock situation. The arrows indicate the
newest vertices

Theorem 8.1 ([BDD04]). For any conforming triangulation T0, there
exists an assignment of the newest vertices such that the matching con-
dition is satisfied.

The proof this theorem is not easy, and what is worse, it is not
constructive. As an alternative, one may perform an initial refinement
of T0 that yields a triangulation on which a suitable initial assignment
of the newest vertices can easily be found, cf. Figure 8.

Figure 2. A refinement of a given T0, and a valid as-
signment of newest vertices in the resulting triangulation.

Theorem 8.2. Let T0 be a conforming initial partition that satisfies
the matching condition, and let T denote any partition that is created
from T0 by newest vertex bisection. Then

(1) if T is a uniform refinement of T0 (meaning that all its triangles
have the same generation), then it is conforming.

(2) If T be conforming, T, T ′ ∈ T , and T ′ contains the refinement
edge of T , then either
• gen(T ′) = gen(T ), and T and T ′ share their refinement

edge, or
• gen(T ′) = gen(T ) − 1, and T shares its refinement edge

with one of both children of T ′.
(3) refine(T , T ) terminates.

Proof. Exercise. �
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From here on, T will always denote a conforming partition that
can be created by newest vertex bisection from a conforming initial
partition that satisfies the matching condition. The set of all these
partitions will be denoted as T.

Lemma 8.3. If T , T ′ ∈ T, then the smallest common refinement T ⊕
T ′ is in T, and #T ⊕ T ′ + #T0 ≤ #T + #T ′.

Proof. Exercise. Hint: do it first for one root, i.e. #T0 = 1. �

9. The adaptive finite element method (AFEM)

% Let θ ∈ (0, 1] be some parameter

For k = 0, 1, . . ., do

solve uk ∈ STk from a(uk, vk) = f(vk) (vk ∈ STk)
}
SOLVE

compute {η(uk, T ) : T ∈ Tk}
if η(uk, Tk) ≤ TOL then break endif

}
ESTIMATE

select a smallest Mk ⊂ Tk such that
η(uk,Mk) ≥ θη(uk, Tk)

}
MARK

while Tk ∩Mk 6= ∅ do
for some T ∈ Tk ∩Mk, Tk :=refine(T, Tk)

endwhile

Tk+1 := Tk

 REFINE

endfor

The marking strategy is known as bulk chasing, and also, after its
inventor, as Dörfler marking. In REFINE, the smallest T 3 Tk+1 ≥ Tk
is determined in which all T ∈Mk have been bisected.

10. AFEM is linearly convergent

In this and the next section, let (Tk)k≥0, (uk)k≥0, and (Mk)k≥0 be as
produced by AFEM.

Theorem 10.1. ∃ constants γ > 0, α ∈ (0, 1), such that

|u− uk+1|2H1(Ω) + γη(uk+1, Tk+1)2 ≤ α(|u− uk|2H1(Ω) + γη(uk, Tk)2).

To prove this theorem, first we give two lemmas.

Lemma 10.2. For v, w ∈ ST , T ∈ T , we have

|η(v, T )− η(w, T )| . ‖v − w‖H1(S(T ,T )).

Proof. Recall η(z, T )2 := h2
T‖f + ∆z‖2

L2(T ) + hT‖J∇zK‖2
L2(∂T\∂Ω). Now

use that
√
a2 + b2−

√
ã2 + b̃2 ≤

√
(a− ã)2 + (b− b̃)2, and |‖·‖−‖·‖|2 ≤

‖ · − · ‖2. So

|η(v, T )− η(w, T )|2 ≤ h2
T‖∆(v − w)‖2

L2(T ) + hT‖J∇(v − w)K‖2
L2(∂T\∂Ω).
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Now use that for z ∈ Pk, ‖∆z‖L2(T ) . h−1
T ‖z‖H1(T ), and ‖∇z‖L2(e)n .

h
− 1

2

T ′ ‖z‖2
H1(T ′), when e is an edge of T ′ ∈ T . �

Lemma 10.3. ∃ constant Λ such that for any δ > 0, and with λ :=
1− 2−1/n,

η(uk+1, Tk+1)2 ≤ (1+δ)(η(uk, Tk)2−λη(uk,Mk)
2)+(1+δ−1)Λ|uk+1−uk|2H1(Ω).

Proof. The previous lemma shows that, for some constant C > 0, for
T ∈ Tk+1,

η(uk+1, T ) ≤ η(uk, T ) + C‖uk+1 − uk‖H1(S(T ,T )).

We apply Young’s inequality (a + b)2 ≤ (1 + δ)a2 + (1 + δ−1)b2 (from

(
√
δa + 1√

δ
b)2 ≥ 0), sum over T ∈ Tk+1, use ‖ · ‖H1(Ω) h | · |H1(Ω) on

H1
0 (Ω), to arrive at

η(uk+1, Tk+1)2 ≤ (1 + δ)η(uk, Tk+1)2 + (1 + δ−1)Λ|uk+1 − uk|2H1(Ω)

for some constant Λ > 0.
Any T ∈ Mk is split into 2 or more triangles. Let us consider the

most unfortunate situation that it is split into two triangles, T1 and T2.
From hTi = 1

2

√
2hT , we have

∑
i=1,2 η(uk, Ti)

2 ≤ 1
2

√
2 η(uk, T )2. We

conclude that

η(uk, Tk+1)2 ≤ η(uk, Tk \Mk)
2 +

1

2

√
2 η(uk,Mk)

2

= η(uk, Tk)2 − (1− 1

2

√
2)η(uk,Mk)

2,

which completes the proof (for n = 2). �

Proof of Thm. 10.1. From u−uk+1 ⊥〈∇·,∇·〉L2(Ω)
STk+1

, and uk+1−uk ∈
STk+1

, we have

|u− uk+1|2H1(Ω) = |u− uk|2H1(Ω) − |uk+1 − uk|2H1(Ω).

From the previous lemma and the marking procedure, which yields
η(uk,Mk) ≥ θη(uk, Tk), we have

η(uk+1, Tk+1)2 ≤ (1+ δ)(1−λθ2)η(uk, Tk)2 +(1+ δ−1)Λ|uk+1−uk|2H1(Ω).

By choosing δ such that (1+δ)(1−λθ2) = 1−λθ2/2, and by multiply-
ing the second estimate with γ, choosing γ such that γ(1 + δ−1)Λ = 1,
and by adding both estimates, we infer that

|u− uk+1|2H1(Ω) + γη(uk+1, Tk+1)2 ≤ |u− uk|2H1(Ω) + γ(1− λθ2/2)η(uk, Tk)2

≤ (1− λθ2/2

1 + C/γ
)(|u− uk|2H1(Ω) + γη(uk, Tk)2)

with C > 0 such that |u− uk|2H1(Ω) ≤ Cη(uk, Tk)2 (Thm. 7.1). �

Literature with this section: [Dör96, MNS00, MN05].
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11. AFEM converges with the best possible rate

Definition 11.1. For s > 0, we define the approximation class

As := {u ∈ H1
0 (Ω) : ∆u ∈ L2(Ω),

|u|As := sup
N∈N

(N + 1)s min
{T ∈T : #T −#T0≤N}

√
|u− uT |2H1(Ω) + osc(f, T )2 <∞}.

So u ∈ As means that for a best partition with N + #T0 triangles,
the total error in the Galerkin approximation is ≤ (N + 1)−s|u|As .

Remark 11.2. If u ∈ As, then for any ε > 0, ∃T ∈ T that realizes a

total error ≤ ε where #T −#T0 ≤ ε−1/s|u|1/sAs . Indeed, denoting with
e(N) the total error in a best partition with N + #T0 triangles, let N
be such that e(N) ≤ ε ≤ e(N − 1). Then εN s ≤ N se(N − 1) ≤ |u|As .

Example 11.3. If u is smooth –sufficient is u ∈ Hk+1(Ω)∩H1
0 (Ω)–, take

T to be a (quasi-) uniform mesh with mesh-size h. Then |u−uT |H1(Ω) .
hk|u|Hk+1(Ω). Assuming that even u ∈ Hk+2(Ω), then f ∈ Hk(Ω),

and by taking r ≥ k − 1, one infers that osc(f, T ) . hk+1|f |Hk(Ω) .
hk+1|u|Hk+2(Ω) (so the oscillation is of higher order). Since N := #T −
#T0 h (h−1)n, we have that hk h N−k/n, i.e., s = k/n is the best
possible convergence order that generally can be expected. In other
words, for s > k/n, the class As is basically empty.

On the other hand, for s ≤ k/n, the class As is much bigger than
H1

0 (Ω)∩H1+sn(Ω). As shown in [BDDP02], it containsH1
0 (Ω)∩W 1+sn

p (Ω)

whenever p > (s+ 1
2
)−1. These spaces W 1+sn

p (Ω) are only just embed-

ded in H1(Ω).
For the Poisson problem on a two-dimensional polygon, in [DD97] it

was shown that for any given s > 0, for sufficiently smooth right-hand
side f , the solution u ∈ H1

0 (Ω) ∩W 1+sn
p (Ω) for some p > (s+ 1

2
)−1.

The following result about newest vertex bisection will be an essential
ingredient in the optimality proof.

Theorem 11.4 ([BDD04]; [Ste08] for a generalization to n > 2.). Let
(Ti)i ⊂ T be such that Ti+1 is the smallest refinement in T of Ti in
which all triangles from some subsetMi ⊂ Ti have been bisected. Then

#Tk −#T0 .
k−1∑
i=0

#Mi.

Note that in contrast, #Ti+1

#Ti+#Mi
can be arbitrarily large.

Lemma 11.5. Let C1, C2 > 0 be constants such that for T ≤ T̃ ∈ T,

η(uT , T )2 ≤ C1[|u− uT |2H1(Ω) + osc(f, T )2],

|uT̃ − uT |
2
H1(Ω) ≤ C2η(uT , RT →T̃ )2,
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see Thms. 7.2 and 7.1. Let the marking parameter be sufficiently small
such that θ2 < (C1(C2 + 1))−1. Then for T 3 T ≥ Tk with

|u−uT |2H1(Ω)+osc(T , f)2 ≤ [1−θ2C1(C2+1)][|u−uk|2H1(Ω)+osc(Tk, f)2],

it holds that
η(uk, RTk→T ) ≥ θη(uk, Tk)

(and so #Mk ≤ #RTk→T (!)).

Proof. It holds that

|u− uk|2H1(Ω) = |u− uT |2H1(Ω) + |uT − uk|2H1(Ω),

osc(Tk, f)2 ≤ osc(RTk→T , f)2 + osc(T , f)2,

which yields

θ2(C2 + 1)η(uk, Tk)2 ≤ θ2C1(C2 + 1)(|u− uk|2H1(Ω) + osc(Tk, f)2)

≤ |u− uk|2H1(Ω) + osc(Tk, f)2 − |u− uT |2H1(Ω) − osc(T , f)2

≤ |uT − uk|2H1(Ω) + osc(RTk→T , f)2

≤ (C2 + 1)η(uk, RTk→T )2. �

Corollary 11.6. Let θ2 < (C1(C2 +1))−1. For some s > 0, let u ∈ As.
Then

#Mk . |u|1/sAs

(√
|u− uk|2H1(Ω) + osc(Tk, f)2

)−1/s

.

Proof. By definition of As, there exists a T̃ ∈ T with

#T̃ −#T0 ≤ |u|1/sAs

(√
1− θ2C1(C2 + 1)

√
|u− uk|2H1(Ω) + osc(Tk, f)2

)−1/s

,

and

|u−uT̃ |
2
H1(Ω)+osc(T̃ , f)2 ≤ [(1−θ2C1(C2+1)][|u−uk|2H1(Ω)+osc(Tk, f)2]

(see Remark 11.2). Take T = Tk ⊕ T̃ . Then

|u−uT |2H1(Ω)+osc(T , f)2 ≤ [(1−θ2C1(C2+1)][|u−uk|2H1(Ω)+osc(Tk, f)2],

and so by the previous lemma, the fact that each refined triangle is
splitted into at least two, and Lemma 8.3,

#Mk ≤ #RTk→T ≤ #T −#Tk ≤ #T̃ −#T0

. |u|1/sAs

(√
|u− uk|2H1(Ω) + osc(Tk, f)2

)−1/s

. �

Theorem 11.7. Let θ2 < (C1(C2 + 1))−1. For some s > 0, let u ∈ As.
Then it holds that

#Tk −#T0 . |u|1/sAs

(√
|u− uk|2H1(Ω) + osc(Tk, f)2

)−1/s

.

That is, the total errors of the sequence of Galerkin approximations
produced by AFEM decay with the best possible rate s.
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Proof. By applications of Theorem 11.4, the previous corollary, Corol-
lary 7.3, and Thm. 10.1, we have

#Tk −#T0 .
k−1∑
i=0

#Mi . |u|1/sAs

k−1∑
i=0

(√
|u− ui|2H1(Ω) + osc(Ti, f)2

)−1/s

h |u|1/sAs

k−1∑
i=0

(
|u− ui|2H1(Ω) + γη(ui, Ti)2

)− 1
2s

. |u|1/sAs (
k∑
i=1

α
i

2s )
(
|u− uk|2H1(Ω) + γη(uk, Tk)2

)− 1
2s

h |u|1/sAs

(√
|u− uk|2H1(Ω) + osc(Tk, f)2

)−1/s

. �

Literature with this section: [Ste07, CKNS08].
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