1.1. **Construction of Gauss quadrature.** This subsection replaces [Book, §10.1, §10.2 until Thm. 10.2].

For \(a < b \), \(w(x) > 0 \) on \([a, b]\) almost everywhere (a.e.) with \(\int_a^b w(x)dx < \infty \), let for \(f \in C[a, b] \),

\[
I(f) := \int_a^b w(x)f(x)dx.
\]

For \(\{x_0, \ldots, x_n\} \in [a, b] \), \(w_0, \ldots, w_n \in \mathbb{R} \), let

\[
Q_n(f) := \sum_{i=0}^n w_i f(x_i).
\]

Theorem 1.1. Let \(Q_n \) be exact on \(P_n \) (so \(w_i = \int_a^b w(x)L_i^{(n)}(x)dx \)). Then it is exact on \(P_m \) for an \(m > n \) if and only if

\[
\pi_{n+1} \perp_{\langle \cdot, \cdot \rangle_w} P_{m-n-1},
\]

where \(\pi_{n+1}(x) := \prod_{i=0}^n (x - x_i) \) and \(\langle g, k \rangle_w := \int_a^b w(x)g(x)k(x)dx \).

Proof. Suppose \(Q_n \) is exact on \(P_m \). Then for all \(p \in P_{m-n-1} \), it holds that

\[
\int_a^b w(x)p(x)\pi_{n+1}(x)dx = \sum_{i=0}^n w_i p(x_i)\pi_{n+1}(x_i) = 0.
\]

Conversely, let \(\pi_{n+1} \perp_{\langle \cdot, \cdot \rangle_w} P_{m-n-1} \). Each \(p \in P_m \) can be written as \(p = q\pi_{n+1} + r \) where \(q \in P_{m-n-1} \) and \(r \in P_n \). We have

\[
\int_a^b w(x)p(x)dx = \int_a^b w(x)q(x)\pi_{n+1}(x)dx + \int_a^b w(x)r(x)dx = \int_a^b w(x)r(x)dx,
\]

and

\[
\sum_{i=0}^n w_i p(x_i) = \sum_{i=0}^n w_i q(x_i)\pi_{n+1}(x_i) + \sum_{i=0}^n w_i r(x_i) = \sum_{i=0}^n w_i r(x_i).
\]

From the fact that \(Q_n \) is exact on \(P_n \), we infer that the expressions on both right-hand sides are equal, and so \(I(p) = Q_n(p) \), meaning that \(Q_n \) is exact on \(P_m \). \(\square \)

By selecting \(\pi_{n+1} \) such that \(\pi_{n+1} \perp_{\langle \cdot, \cdot \rangle_w} P_n \), that is, by taking \(\{x_0, \ldots, x_n\} \) the roots of the orthogonal polynomial of degree \(n+1 \), and by determining the weights \(w_0, \ldots, w_n \) such that \(Q_n \) is exact on \(P_n \), the resulting \((n+1) \)-point formula, known as the Gauss formula, is thus exact on \(P_{2n+1} \).

An example of a Gauss formula for \(n = 1 \), \([a, b] = [0, 1]\) and \(w \equiv 1 \) is given in [Book, Example 10.1]. There the weights are computed as \(w_i = \int_a^b w(x)L_i^{(n)}(x)^2 dx \).

Date: April 30, 2019.
Apparently, with this choice of quadrature points it holds that \(\int_a^b w(x)L_i^{(n)}(x)^2 \, dx = \int_a^b w(x)L_i^{(n)}(x) \, dx \), cf. [Book, Exer. 10.2].

Proposition 1.2. For the \((n+1)\)-point Gauss formula \(Q_n\), and \(f \in C^{(2n+2)}[a,b]\), it holds that

\[
I(f) - Q_n(f) = \frac{f^{(2n+2)}(\xi)}{(2n+2)!} \int_a^b w(x)\pi_{n+1}^2(x) \, dx,
\]

for some \(\xi \in [a,b]\).

Proof. With \(p \in \mathcal{P}_{2n+1}\) being the Hermite interpolation polynomial of \(f\) on \(\{x_0, \ldots, x_n\}\), it holds that \(Q_n(f) = Q_n(p) = I(p)\), and so

\[
I(f) - Q_n(f) = I(f - p)
\]

\[
= \int_a^b w(x)\pi_{n+1}^2(x) \frac{f^{(2n+2)}(\xi(x))}{(2n+2)!} \, dx = \frac{f^{(2n+2)}(\xi)}{(2n+2)!} \int_a^b w(x)\pi_{n+1}^2(x) \, dx,
\]

for some \(\xi \in [a,b]\), where we have used that \(w(x)\pi_{n+1}^2(x) \geq 0\) on \([a,b]\). \(\square\)
2. Additions to Chapter 11 book

2.1. A upper bound for the error of best approximation from a spline space. For \(a = x_0 < x_1 < \ldots < x_m = b \), and \(n \in \mathbb{N}_0 := \mathbb{N} \cup \{0\} \), let

\[
S_n^{(-1)} := \{ f : [a, b] \to \mathbb{R} : f|_{[x_i, x_{i+1}]} \in \mathcal{P}_n, \ i = 0, \ldots, m - 1 \}.
\]

For \(k \in \{0, \ldots, n\} \), we set

\[
S_n^{(k)} := C^k[a, b] \cap S_n^{(-1)}.
\]

Obviously \(\mathcal{P}_n(a, b) \subseteq S_n^{(n)} \supseteq \ldots \supseteq S_n^{(-1)} \). It holds that

\[
\dim S_n^{(k)} = (n + 1)m - (k + 1)(m - 1) = m(n - k) + k + 1,
\]

where the subtraction of \((k + 1)(m - 1)\) corresponds to the loss of \(k + 1 \) degrees of freedom at each of the points \(x_1, \ldots, x_{m-1} \) as a consequence of the \(C^k \) constraint.

So in particular \(\dim S_n^{(n)} = n + 1 \), meaning that \(S_n^{(n)} \) is simply equal to \(\mathcal{P}_n(a, b) \). From here on we exclude this non-interesting case, and consider \(k \in \{0, \ldots, n - 1\} \). In some books, any of these spaces \(S_n^{(k)} \) are called spline spaces, and in other books the name spline is used exclusively for functions from \(S_n^{(n-1)} \). The piecewise polynomial functions discussed in [Book, §11.2-3], [Book, §11.4], [Book, §11.5], and [Book, §11.6] are in \(S_1^{(0)} \), \(S_3^{(2)} \), \(S_3^{(1)} \), and \(S_n^{(n-1)} \), respectively.

For simplicity in the following let us now consider the equidistant case \(x_i = a + ih \), where \(h = \frac{b-a}{m} \). From [Book, Ch. 6], we know that for \(n \in \mathbb{N}_0 \),

\[
\inf_{s \in S_n^{(-1)}} \| f - s \|_{\infty} \leq \inf_{s \in S_n^{(0)}} \| f - s \|_{\infty} = \mathcal{O}(h^{n+1}\| f^{(n+1)} \|_{\infty}).
\]

Indeed, for example take \(s|_{[x_i, x_{i+1}]} \in S_n^{(0)} \) to be the Lagrange interpolant of degree \(n \in \mathbb{N} \) w.r.t. equidistant interpolation points \(x_i = y_0 < y_1 < \cdots < y_{n+1} = x_{i+1} \), then \(\| (f - s)|_{[x_i, x_{i+1}]} \|_{\infty} = \mathcal{O}(h^{n+1}\| f^{(n+1)} \|_{\infty}) \).

Remarkably, a bound as in (2.2) is also valid for approximation from the much smaller 'true' spline space \(S_n^{(n-1)} \):

\[
\inf_{s \in S_n^{(n-1)}} \| f - s \|_{\infty} = \mathcal{O}(h^{n+1}\| f^{(n+1)} \|_{\infty})
\]

(and thus also for approximation from any 'intermediate space' \(S_n^{(k)} \)). Note that \(\dim S_n^{(n-1)} = m + n \), which thinking of \(m \) 'large' and say \(n = 10 \), is only slightly larger than \(\dim S_n^{(0)} = m + 1 \).

We do not provide a proof for (2.3) in the general case. Instead, in Exer. 6 (first statement of part (f)), the statement is proven for \(n = 3 \). In this exercise, an interpolant \(s \in S_3^{(2)} \) is constructed that realizes this upper bound on the approximation error. Other than the continuous piecewise Lagrange interpolant in \(S_3^{(0)} \), or the \(C^1 \) piecewise cubic Hermite interpolant in \(S_3^{(1)} \), the construction of the interpolant in \(S_3^{(2)} \) is not local, i.e., \(s|_{[x_i, x_{i+1}]} \) does not depend exclusively on \(f|_{[x_i, x_{i+1}]} \).
Exer. 6. Let $I_1 : C[a, b] \to S_1^{(0)}$ the continuous piecewise linear interpolator (i.e., the mapping from a continuous function to its continuous piecewise linear interpolant), and let $I_3 : C^1[a, b] \to S_3^{(2)}$ the “complete cubic spline interpolator” defined by

\begin{equation}
\tag{2.4}
\begin{align*}
 s(x_i) &= f(x_i) \quad (i \in \{0, \ldots, m\}), \\
 s'(x_0) &= f'(x_0), \quad s'(x_m) = f'(x_m).
\end{align*}
\end{equation}

where s is here a shorthand notation for $I_3(f)$. Note that the number of conditions equals dim $S_3^{(2)}$.

The aim of this exercise is to show that \(\|f - I_3(f)\|_\infty = O(h^4\|f^{(4)}\|_\infty) \) assuming \(f \in C^4[a, b] \).

For \(s \in S_3^{(2)} \), it holds that \(s'' \in S_1^{(0)} \), so that for \(i = 1, \ldots, m \),

\[s''|_{[x_{i-1}, x_i]}(x) = \frac{x_i - x}{h} \sigma_{i-1} + \frac{x - x_{i-1}}{h} \sigma_i, \]

where, for \(i \in \{0, \ldots, m\} \), \(\sigma_i := s''(x_i) \). By integrating this relation twice, we obtain

\begin{equation}
\tag{2.6}
s|_{[x_{i-1}, x_i]}(x) = \frac{(x_i - x)^3}{6h} \sigma_{i-1} + \frac{(x - x_{i-1})^3}{6h} \sigma_i + \alpha_i(x - x_{i-1}) + \beta_i(x_i - x),
\end{equation}

for some scalars \(\alpha_1, \ldots, \alpha_m, \beta_1, \ldots, \beta_m \).

By imposing (2.4) we obtain

\[\alpha_i = \frac{f(x_i)}{h} - \frac{h}{6} \sigma_i, \quad \beta_i = \frac{f(x_{i-1})}{h} - \frac{h}{6} \sigma_{i-1}. \]

(a) By using the continuity of \(s' \) in \(x_1, \ldots, x_{m-1} \) and (2.5), show that

\[A[\sigma_0 \ldots \sigma_{m-1}]^\top = b, \]

where \(A \in \mathbb{R}^{(m+1) \times (m+1)} \) is defined by

\[A = \begin{bmatrix}
 4 & 2 \\
 1 & 4 & 1 \\
 & \ddots & \ddots & \ddots \\
 1 & 4 & 1 \\
 2 & 4
\end{bmatrix}, \]

and \(b \in \mathbb{R}^{m+1} \) by

\[b_i = \begin{cases}
 12 \left[\frac{f(x_{i+1}) - f(x_i)}{h} - \frac{f'(x_0)}{h} \right] & \text{when } i = 0, \\
 6 \left[\frac{f(x_{i+1}) - 2f(x_i) + f(x_{i-1})}{h^2} \right] & \text{when } i \in \{1, \ldots, m-1\}, \\
 12 \left[\frac{f'(x_m)}{h} - \frac{f(x_{m}) - f(x_{m-1})}{h} \right] & \text{when } i = m.
\end{cases} \]

Answer: By differentiating (2.6) we infer that

\[s'|_{[x_{i-1}, x_i]}(x) = -\frac{(x_i - x)^2}{2h} \sigma_{i-1} + \frac{(x - x_{i-1})^2}{2h} \sigma_i + \alpha_i - \beta_i, \]

and so in particular that

\[s'|_{[x_{i-1}, x_i]}(x_{i-1}) = -\frac{1}{2} h \sigma_{i-1} + \alpha_i - \beta_i = h(\frac{1}{3} \sigma_i - \frac{1}{6} \sigma_{i-1}) + h^{-1}(f(x_i) - f(x_{i-1})), \]

\[s'|_{[x_{i-1}, x_i]}(x_i) = \frac{1}{2} h \sigma_{i-1} + \alpha_i - \beta_i = h(\frac{1}{3} \sigma_i + \frac{1}{6} \sigma_{i-1}) + h^{-1}(f(x_i) - f(x_{i-1})). \]
Imposing that \(s'\big|_{[x_{i-1}, x_i]}(x_i) = s'\big|_{[x_i, x_{i+1}]}(x_i) \) for \(i = 1, \ldots, m-1 \) yields \(h^3 \sigma_i + \frac{1}{6} \sigma_{i-1} + h^{-1}(f(x_i) - f(x_{i-1}) = h(-\frac{1}{3} \sigma_{i+1} - \frac{1}{6} \sigma_i) + h^{-1}(f(x_{i+1}) - f(x_i)) \) or

\[
\tag{2.7} h \sigma_{i-1} + 4h \sigma_i + h \sigma_{i+1} = 6 \left(\frac{f(x_{i+1}) - f(x_i)}{h} - \frac{f(x_i) - f(x_{i-1})}{h} \right),
\]

The conditions \(s'(x_0) = f'(x_0) \) and \(s'(x_m) = f'(x_m) \) yield

\[
\tag{2.8} h \left(\frac{1}{3} \sigma_m - \frac{1}{6} \sigma_{m-1} \right) + h^{-1}(f(x_m) - f(x_{m-1})) = f'(x_m)
\]

Together (2.7) and (2.8) complete the proof.

Elementary linear algebra shows that \(A \) is invertible, and that \(\|A^{-1}\|_{\infty} \leq \frac{1}{2} \), i.e., that \(\max_i \|A^{-1}x_i\| \leq \frac{1}{2} \max_i |x_i| \). (Indeed, writing \(A = 4(I - (I - \frac{1}{4} A)) \) and using that \(\|I - \frac{1}{4} A\|_{\infty} = \frac{1}{2} \), shows that \(\|A^{-1}\|_{\infty} \leq \frac{1}{2} \).

(b) Show that \(\|I_3(f)'\|_{\infty} \leq 3 \|f''\|_{\infty} \). (Hint: Show that for \(s \in S^3_3 \), \(\|s''\|_{\infty} = \max_{0 \leq i \leq m} |s''(x_i)| \), and that \(\max_{0 \leq i \leq m} |b_i| \leq 6 \|f''\|_{\infty} \).

Answer: \(s' \in S^0_1 \), and for any \(g \in S^0_1 \), \(\|g\|_{\infty} = \max_{0 \leq i \leq m} |g(x_i)| \).

Taylor gives

\[
f(x_{i+1}) = f(x_i) + hf'(x_i) + \frac{h^2}{2!} f''(\xi_1)\]
\[
f(x_{i-1}) = f(x_i) - hf'(x_i) + \frac{h^2}{2!} f''(\xi_2)
\]

for some \(\xi_1 \in (x_i, x_{i+1}) \), \(\xi_2 \in (x_{i-1}, x_i) \). It shows that for \(1 \leq i \leq m - 1 \), \(b_i = 6(f''(\xi_1) + f''(\xi_2))/2 = 6f''(\xi) \) for some \(\xi \in [\xi_2, \xi_1] \subset [x_{i-1}, x_{i+1}] \). From \(f(x_1) = f(x_0) + hf'(x_0) + \frac{h^2}{2!} f''(\xi_0) \) for some \(\xi_0 \in (x_0, x_1) \), one infers that \(b_0 = 6f''(\xi_0) \). Since similarly \(b_m = 6f''(\xi_m) \) for some \(\xi_m \in (x_{m-1}, x_m) \), we conclude that \(\max_{0 \leq i \leq m} |b_i| \leq 6 \|f''\|_{\infty} \).

Combining this with \(\max_{0 \leq i \leq m} |\sigma_i| \leq \frac{1}{2} \max_{0 \leq i \leq m} |b_i| \), the proof is completed.

(c) Show that \(I_3 \) is a projector, i.e., that \(I_3(s) = s \) for any \(s \in S^3_3 \).

Answer: From the fact that \(A \) is invertible, we conclude that there exists exactly one -one- \(s \in S^3_3 \) that solves the interpolation problem given by (2.4)-(2.5). In other words given \(y_0, \ldots, y_m, z_0, z_m \in \mathbb{R} \), there is exactly one -one- \(s \in S^3_3 \) with \(s(x_i) = y_i \) (0 \(\leq i \leq m \)) and \(s'(x_i) = z_i \) (i = 0, m).

The latter means that \(I_3(s) = s \) for any \(s \in S^3_3 \).

(d) Show that for any \(p \in S^0_1 \) there exists an \(\bar{s} \in S^3_3 \) with \(\bar{s''} = p \).

Answer: Defining \(\bar{s}(x) := \int_{x_0}^{x} \int_{y}^{y} p(z) \, dz \, dy \), i.e., taking the antiderivative twice, gives a globally \(C^2 \), piecewise cubic function, i.e., a function in \(S^3_3 \), with \(s'' = p \).
(e) Let \(s \in S_3^{(2)} \) be such that \(\bar{s}'' = I_1(f'') \). Show that \(f - I_3(f) = f - \bar{s} - I_3(f - \bar{s}) \), and with that, show that

\[
\|f'' - I_3(f)''\|_{\infty} \leq 4\|f'' - \bar{s}''\|_{\infty} \leq \frac{1}{2}h^2\|f^{(4)}\|_{\infty}.
\]

Answer: The mapping \(I_3 \) is linear (indeed (2.4)-(2.5) show that \(s := I_3(f) \) depends linearly on \(f \)). So \(f - I_3(f) = f - \bar{s} - I_3(f - \bar{s}) \) by (c). So, using (b), we have

\[
\|f'' - I_3(f)''\|_{\infty} = \|f'' - \bar{s}'' - I_3(f - \bar{s})''\|_{\infty}
\]
\[
\leq \|f'' - \bar{s}''\|_{\infty} + \|I_3(f - \bar{s})''\|_{\infty} \leq (1 + 3)\|f'' - \bar{s}''\|_{\infty}.
\]

Now use that \(\bar{s}'' = I_1(f'') \) and that for a \(g \in C^2([a,b]) \),

(2.9)

\[
\|g - I_1(g)\|_{\infty} \leq h^2 \frac{k^2}{8}\|g''\|_{\infty},
\]

which follows from an application of [Book, Thm. 6.2.] on each \([x_i, x_{i+1}]\).

(f) Show that \(I_1(f - I_3(f)) = 0 \), and with that show that

\[
\|f - I_3(f)\|_{\infty} \leq \frac{1}{16}h^4\|f^{(4)}\|_{\infty},
\]

as well as

\[
\|f' - I_3(f)\|_{\infty} \leq \frac{1}{2}h^3\|f^{(4)}\|_{\infty}.
\]

Answer: \(I_1(f - I_3(f)) = 0 \) follows from the fact that \(f \) and \(I_3(f) \) take equal values in \(x_0, \ldots, x_m \). So, using (2.9) and (e), we have

\[
\|f - I_3(f)\|_{\infty} = \|f - I_3(f) - I_1(f - I_3(f))\|_{\infty}
\]
\[
\leq \frac{h^2}{8}\|(f - I_3(f))''\|_{\infty} \leq \frac{h^2}{8}\frac{1}{2}h^2\|f^{(4)}\|_{\infty}.
\]

The second statement follows similarly, by using instead of (2.9),

\[
\|g' - I_1(g)\|_{\infty} \leq h\|g''\|_{\infty},
\]

being a consequence of [Book, Corol. 6.1].
2.2. Construction of a local basis for $S_n^{(n-1)}$. For storing functions from $S_n^{(n-1)}$, or for computing the best approximation w.r.t. the (weighted) $L_2(a,b)$-norm of some function by an element of $S_n^{(n-1)}$, one needs a basis of $S_n^{(n-1)}$. Preferably this basis is local, meaning that the number of basis functions that are non-zero at a point $x \in [a,b]$ is bounded uniformly in m (and x).

Remark 2.1. Other than for $n = 1$ (cf. [Book, §11.3]), for $n > 1$, such a local basis that additionally is interpolating does not exist (recall: A basis is (Lagrange) interpolating, when for each basis function there exists a point in $[a,b]$ in which it doesn’t vanish, but in which all other basis functions do vanish.)

A local basis for $S_n^{(n-1)}$ is constructed in Exer. 7. It generalizes the construction of the basis from [Book, §11.3] for $n = 1$ to $n \in \mathbb{N}_0$.

Exer. 7. For convenience, let $a = 0$. With

$$S_{(n)}(x) := \sum_{k=0}^{n+1} (-1)^k \binom{n+1}{k} (x - kh)^n_+,$$

see Figure 1, we define $S_{(n,\ell)}(x) := S_{(n)}(x - \ell h)$ for $\ell \in \mathbb{Z}$.

![Figure 1. The functions $S_{(n)}$ for $n = 0, \ldots, 4$.](image)

(a) Show that $S_{(n,\ell)}|_{[0,b]} \in S_n^{(n-1)}$.
(b) Show that supp$S_{(n,\ell)} \subseteq [\ell h, (\ell + n + 1)h]$.
(c) Show that $\dim S_n^{(n-1)} = m + n = \# \{\ell \in \mathbb{Z} : S_{(n,\ell)}|_{[0,b]} \neq 0\}$.
(d) Show that $S_{(n+1,\ell)}(x) = (n+1)(S_{(n,\ell)}(x) - S_{(n,\ell+1)}(x))$ (when $n = 0$ only for $x \notin h\mathbb{Z}$).
(e) From [Book, Exer. 11.6], we know that

$$S_{(n+1,\ell)}(x) = (x - \ell h)S_{(n,\ell)}(x) + ((n+2+\ell)h - x)S_{(n,\ell+1)}(x).$$

Using induction to n, from this show that

$$\sum_{\ell \in \mathbb{Z}} S_{(n,\ell)}(x) = h^n n!.$$

Now we are going to show that for all $p \in \mathbb{Z}$,

$$\sum_{\ell \in \mathbb{Z}} c_\ell S_{(n,\ell)}|_{[ph,(p+1)h]} = 0 \implies c_\ell = 0 \text{ for } p - n - 1 < \ell < p + 1. \quad (2.10)$$

(f) Show that (2.10) holds for $n = 0$.

(g) Now let (2.10) be valid for some \(n \in \mathbb{N}_0 \). Let \(\sum_{\ell \in \mathbb{Z}} c_{\ell} S_{(n+1,\ell)} \) and so \(\sum_{\ell \in \mathbb{Z}} c_{\ell} S'_{(n+1,\ell)} \) vanish on \((ph,(p+1)h)\). Using (d), show that this implies that for some constant \(c \in \mathbb{R} \), \(c_{\ell} = c \) for all \(p - n - 2 < \ell < p + 1 \), and with that, that
\[
\sum_{\ell \in \mathbb{Z}} c_{\ell} S_{(n+1,\ell)}|_{(ph,(p+1)h)} = c \sum_{\ell \in \mathbb{Z}} S_{(n+1,\ell)}|_{(ph,(p+1)h)} = ch^{n+1}(n + 1)!
\]
Conclude that (2.10) is valid for \(n + 1 \), and so for any \(n \in \mathbb{N}_0 \).

(h) Using (a), (c), and (2.10), show that
\[
\{ S_{(n,\ell)}|_{[0,b]} : \ell \in \{-n, \ldots, m - 1\} \}
\]
is a basis for \(S_{n}^{(n-1)} \).
3. Additions to Chapter 12 book

From the book we skip
- the proof of Picard’s Theorem, Thm 12.1.
- §12.3 with the exception of Definition 12.2
- §12.4

The reason to skip §12.4 is that an implicit (1-step) ODE solver cannot be written as $y_{n+1} = y_n + h\Phi(x_n, y_n; h)$ since Φ doesn’t has y_{n+1} as one of its arguments (in the book they try to solve this by defining Φ in an implicit way, but this doesn’t lead to an analysis that is correct). Therefore, we replace §12.4 by the analysis of the trapezium rule given below in §3.1.

3.1. Trapeziunrule. Writing

$$y(x_{n+1}) - y(x_n) = \int_{x_n}^{x_{n+1}} f(x, y(x)) \, dx,$$

and approximating the integral by the trapezium rule leads to the following implicit one-step method

$$(3.1) \quad y_{n+1} = y_n + \frac{1}{2} h[f(x_n, y_n) + f(x_{n+1}, y_{n+1})].$$

For each $n = 0, \ldots, N - 1$, y_{n+1} is given implicitly as the solution of an equation. The first question is whether this equation has a solution:

3.1.1. Existence.

Lemma 3.1 (Banach’s fixed point theorem). Let (X, d) be a non-empty complete metric space, and let $F : X \to X$ be a contraction, meaning that for some $K < 1$,

$$d(F(x), F(y)) \leq K d(x, y) \quad (x, y \in X).$$

Then $\exists x \in X$ with $F(x) = x$.

Proof. Select $x_0 \in X$ arbitrarily, and define $(x_n)_{n \in \mathbb{N}} \subset X$ by $x_{n+1} = F(x_n)$. Then $d(x_{n+1}, x_n) \leq K d(x_n, x_{n-1}) \leq \cdots \leq K^n d(x_1, x_0)$, and so for $m \geq n$,

$$d(x_m, x_n) \leq d(x_m, x_{m-1}) + \cdots + d(x_{n+1}, x_n) \leq (K^{m-1} + \cdots + K^n) d(x_1, x_0) \leq \frac{K^n}{1 - K} d(x_1, x_0).$$

So $(x_n)_n$ is a Cauchy sequence, and because X is complete, therefore convergent, say with limit x. A consequence of F being a contraction is that F is continuous. So $x = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} F(x_n) = F(\lim_{n \to \infty} x_n) = F(x)$.

Now let z be another fixed point of F. Then $d(x, z) = d(F(x), F(z)) \leq K d(x, z)$, and so $d(x, z) = 0$, or $x = z$. \qed

Returning to the trapeziunrule, let f be continuous on

$$D := [x_0, x_M] \times [y_0 - C, y_0 + C],$$

and Lipschitz continuous w.r.t. its second variable, i.e., for some constant $L > 0$,

$$|f(x, u) - f(x, v)| \leq L |u - v| \quad ((x, u), (x, v) \in D).$$

Set $Q := \max_{(x, u) \in D} |f(x, u)|$. Fixing n, let

$$y_n \in [y_0 - C + hQ, y_0 + C - hQ],$$

and so
which interval is non-empty when \(h \leq \frac{C}{Q} \). Then \(F \) defined by \(F(y) := y_n + \frac{1}{2}h[f(x_n, y_n) + f(x_{n+1}, y)] \) maps \([y_0 - C, y_0 + C]\) into \([y_0 - C, y_0 + C]\). Furthermore it holds that for \(y, z \in [y_0 - C, y_0 + C] \),

\[
|F(y) - F(z)| = \frac{1}{2}h|f(x_{n+1}, y) - f(x_{n+1}, z)| \leq \frac{1}{2}hL|y - z|,
\]

Applying the fixed point theorem, with \(M := [y_0 - C, y_0 + C] \), \(d(x, y) := |x - y| \), we conclude that \((3.1)\) has a unique solution whenever \(h \) is sufficiently small such that additionally \(hL < 2 \).

3.1.2. **Approximation of** \(y_{n+1} \). Generally the solution \(y_{n+1} \) of \((3.1)\) cannot be determined exactly. An obvious way to approximate it is to apply a number of iterations \(y^{(i+1)} = F(y^{(i)}) \) starting with say \(y^{(0)} = y_n \), or even better, \(y^{(0)} = y_n + h f(x_n, y_n) \). It holds that

\[
(3.2) \quad |y_{n+1} - y^{(i+1)}| = |F(y_{n+1}) - F(y^{(i)})| \leq \frac{1}{2}hL|y_{n+1} - y^{(i)}|.
\]

Assuming that \(f \) is \(2 \times \) continuous differentiable as function of its second variable a much faster converging iteration is given by the Newton iteration, described in Book §1.4 starting from Definition 1.6, applied to the equation \(G(y) := y - y_n - \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y)] = 0 \). If \(G''(y_{n+1}) = 1 - \frac{h}{2} \frac{df}{dx}(x_{n+1}, y) \neq 0 \), which is the case when \(h \) is sufficiently small, then for \(y^{(0)} \) being sufficiently close to the solution \(y_{n+1} \), the Newton iteration converges, and

\[
(3.3) \quad \lim_{i \to \infty} \frac{y_{n+1} - y^{(i+1)}}{(y_{n+1} - y^{(i)})^2} = - \frac{G''(y_{n+1})}{2G'(y_{n+1})},
\]

i.e., quadratic convergence, being way more favourable than the ‘\(R \)–linear’ convergence \((3.2)\).

3.1.3. **Truncation error.** Knowing that the recursion \((3.1)\) is well-defined, and that we can approximate its solution at any desired accuracy, we study the accuracy of the approximations for \(y(x_n) \) that are produced by it. First we define a truncation error:

\[
T_n := \frac{y(x_{n+1}) - y(x_n)}{h} - \frac{1}{2} (f(x_{n+1}, y(x_{n+1})) + f(x_n, y(x_n))) = \frac{y(x_{n+1}) - y(x_n)}{h} - \frac{1}{2} (y'(x_{n+1}) + y'(x_n)).
\]

To determine the order of the trapezium rule, the usual (and recommended) way is to Taylor all terms in the right-hand side around some suitable point:

\[
\begin{align*}
 y(x_{n+1}) &= y(x_n + \frac{1}{2}h) + \frac{1}{2}h y'(x_n + \frac{1}{2}h) + \frac{1}{2} (\frac{1}{2}h)^2 y''(x_n + \frac{1}{2}h) + \frac{1}{6} (\frac{1}{2}h)^3 y'''(\xi_1) \\
 y(x_n) &= y(x_n + \frac{1}{2}h) - \frac{1}{2}h y'(x_n + \frac{1}{2}h) + \frac{1}{2} (\frac{1}{2}h)^2 y''(x_n + \frac{1}{2}h) - \frac{1}{6} (\frac{1}{2}h)^3 y'''(\xi_2)
\end{align*}
\]

yielding

\[
\frac{y(x_{n+1}) - y(x_n)}{h} = y'(x_n + \frac{1}{2}h) + \frac{1}{24} h^2 y'''(\xi_1) + y'''(\xi_2) + \frac{1}{24} h^2 y'''(\xi).
\]
for some $\xi \in [\xi_1, \xi_2] \subset [x_n, x_{n+1}]$ using the intermediate value theorem. From
\begin{align*}
 y'(x_{n+1}) &= y'(x_n + \frac{1}{2}h) + \frac{1}{2} h y''(x_n + \frac{1}{2}h) + \frac{1}{2} (\frac{1}{2}h)^2 y'''(\eta_1) \\
 y'(x_n) &= y'(x_n + \frac{1}{2}h) - \frac{1}{2} h y''(x_n + \frac{1}{2}h) + \frac{1}{2} (\frac{1}{2}h)^2 y'''(\eta_2)
\end{align*}
we have
\begin{equation}
\frac{1}{2}(y'(x_{n+1}) + y'(x_n)) = y'(x_n + \frac{1}{2}h) + \frac{1}{8} h^2 y'''(\eta)
\end{equation}
for some $\eta \in [\eta_1, \eta_2] \subset [x_n, x_{n+1}]$ again using the intermediate value theorem. This yields
\begin{equation}
T_n = \frac{1}{12} h^2 y'''(\xi) - \frac{1}{8} h^2 y'''(\eta) = -\frac{1}{12} h^2 y'''(\xi) + o(h^2),
\end{equation}
where we have assumed that $y \in C^2$. Consequently, the trapeziumrule has order 2.

An analysis that avoids the $o(h^2)$-term exploits the following trick:

\[
\int_{x_n}^{x_{n+1}} (x - x_{n+1})(x - x_n)y'''(x) \, dx = (x - x_{n+1})(x - x_n)y'''(x)|_{x_n}^{x_{n+1}} + \int_{x_n}^{x_{n+1}} (x_{n+1} + x_n - 2x)y'''(x) \, dx = (x_{n+1} + x_n - 2x)y'(x)|_{x_n}^{x_{n+1}} + \int_{x_n}^{x_{n+1}} 2y'(x) \, dx = 2hT_n.
\]

On the other hand, thanks to $(x - x_{n+1})(x - x_n) \leq 0$ on $[x_n, x_{n+1}]$, it holds that
\[
\int_{x_n}^{x_{n+1}} (x - x_{n+1})(x - x_n)y'''(x) \, dx = y'''(\xi) \int_{x_n}^{x_{n+1}} (x - x_{n+1})(x - x_n) \, dx = -\frac{1}{6} h^3 y'''(\xi)
\]
for some $\xi \in [x_n, x_{n+1}]$, showing that
\[
T_n = -\frac{1}{12} h^2 y'''(\xi).
\]

3.1.4. Global error. Subtracting
\[
y_{n+1} = y_n + \frac{1}{2} h(f(x_{n+1}, y_{n+1}) + f(x_n, y_n))
\]
from
\[
y(x_{n+1}) = y(x_n) + \frac{1}{2} h(f(x_{n+1}, y(x_{n+1})) + f(x_n, y(x_n))) + hT_n
\]
yields the following recursion for the global error $e_n = y(x_n) - y_n$:
\[
e_{n+1} = e_n + \frac{1}{2} h(f(x_{n+1}, y(x_{n+1})) - f(x_{n+1}, y_{n+1}) + f(x_n, y(x_n)) - f(x_n, y_n)) + hT_n
\]
and so using the Lipschitz continuity of f w.r.t. the second variable with constant L,
\[
|e_{n+1}| \leq |e_n| + \frac{1}{2} h L (|e_{n+1}| + |e_n|) + h |T_n|
\]
and so for $hL < 2$,\[
(1 - \frac{1}{2} h L)|e_{n+1}| \leq (1 + \frac{1}{2} h L)|e_n| + h |T_n|
\]
giving
\[
|e_{n+1}| \leq \frac{1 + \frac{1}{2} h L}{1 - \frac{1}{2} h L} |e_n| + \frac{h |T_n|}{1 - \frac{1}{2} h L}.
\]
Using that \(e_0 = 0 \), with \(M := \sup_{x \in [x_0, X_M]} |y''(x)| \) one infers that

\[
|e_{n+1}| \leq \sum_{j=0}^{n} \left(1 + \frac{3}{2}hL \right)^{n-j} \frac{h |T_j|}{1 - \frac{1}{2}hL} \leq \frac{\frac{1}{12} h^3 M}{1 - \frac{1}{2}hL} \sum_{j=0}^{n} \left(1 + \frac{\frac{1}{2}hL}{1 - \frac{1}{2}hL} \right)^j
\]

\[
= \frac{\frac{1}{12} h^3 M}{1 - \frac{1}{2}hL} \frac{1 - \left(\frac{1 + \frac{1}{2}hL}{1 - \frac{1}{2}hL} \right)^{n+1}}{1 - \left(\frac{1 + \frac{1}{2}hL}{1 - \frac{1}{2}hL} \right)} = h^2 M \left(\frac{(1 + \frac{1}{2}hL)^{n+1}}{1 - \frac{1}{2}hL} - 1 \right).
\]

Now from \(\frac{1}{1 - \frac{1}{2}hL} = 1 + \frac{1}{2}hL + O(h^2) \), thus \(\frac{1 + \frac{1}{2}hL}{1 - \frac{1}{2}hL} = 1 + hL + O(h^2) \leq e^{hL + O(h^2)} \), and so \(\left(\frac{1 + \frac{1}{2}hL}{1 - \frac{1}{2}hL} \right)^n \leq e^{(hL + O(h^2))n} = e^{nhL + O(h)} = e^{nhL}e^{O(h)} = e^{nhL}(1 + O(h)) \) we infer that \(\sup_{nh \leq X_m - x_0} \left(\frac{1 + \frac{1}{2}hL}{1 - \frac{1}{2}hL} \right)^n < \infty \). We conclude the following result:

Theorem 3.2 (trapeziumrule). Let \(f \) be continuous on \(D := [x_0, X_M] \times [y_0 - C, y_0 + C] \), and Lipschitz continuous w.r.t. its second variable with constant \(L > 0 \), i.e.,

\[
|f(x, u) - f(x, v)| \leq L|u - v| \quad ((x, u), (x, v) \in D).
\]

Let the exact solution \(y \in C^3([x_0, X_M]) \). Then \(e_n = O(h^2) \) uniform in \(n \) and \(h \) with \(nh \leq X_M - x_0 \), and \(hL < 2 \).

3.2. Homogeneous recursions.

Together with the next two subsections §3.3 and §3.4, this subsection replaces [Book, §12.7-9]. In particular we provide a proof for Dahlquist’s Equivalence Theorem ([Book, Thm. 12.5]).

As a preparation for the next subsection, we study solutions of homogeneous recursions of the form

\[
(3.5) \quad \alpha_k v_{n+k} + \ldots + \alpha_0 v_n = 0 \quad n = 0, 1, \ldots
\]

where \(\alpha_k \neq 0, \alpha_0 \neq 0 \). In particular, we will be interested in finding conditions on the coefficients \(\alpha_i \) so that \(|v_n| \) remains bounded when \(n \to \infty \).

Theorem 3.3. Let \(z_1, \ldots, z_\ell \neq 0 \) be the roots of the characteristic polynomial

\[
\rho(z) := \alpha_k z^k + \ldots + \alpha_0,
\]

where \(z_r \) has multiplicity \(m_r \), so that \(m_1 + \ldots + m_\ell = k \). Then \((v_n)_{n \geq 0} \) is a linear combination of

\[
(3.6) \quad \left\{ \left(\frac{d^r}{dz^r} z^n \right)|_{z=z_r} \right\}_{n \geq 0} : 1 \leq r \leq \ell, 0 \leq q \leq m_r - 1 \}
\]

Proof. Because each solution of (3.5) is uniquely determined by \(v_0, \ldots, v_{k-1} \), these solutions span a linear space of dimension \(\leq k \). It remains to show that the \(k \) sequences given in (3.6) are solutions, and that they are linearly independent.
For each root \(z_r \), and \(0 \leq q \leq m_r - 1 \), it holds that
\[
\alpha_k \left(\frac{d^n}{dz^n} z^{n+k} \right) \big|_{z=z_r} + \cdots + \alpha_0 \left(\frac{d^n}{dz^n} z^n \right) \big|_{z=z_r} = \left(\frac{d^q}{dz^q} \rho(z) \right) \big|_{z=z_r} = 0,
\]
so that indeed \(\left(\frac{d^q}{dz^q} z^n \right) \big|_{z=z_r} \) satisfies the recursion.

For \(z_1, \ldots, z_k \) being simple roots, using induction one can show that
\[
\begin{vmatrix}
1 & 1 & \cdots & 1 \\
\gamma_1 & \gamma_2 & \cdots & \gamma_k \\
\vdots & \vdots & \ddots & \vdots \\
\gamma_1 & \gamma_2 & \cdots & \gamma_k \\
\end{vmatrix}
= \prod_{1 \leq r < s \leq k} (z_s - z_r) \neq 0.
\]
This means that \(\{ (z^n_1)_{0 \leq n \leq k-1}, \ldots, (z^n_k)_{0 \leq n \leq k-1} \} \) are linearly independent, and so are the infinite sequences.

For the general case, one can show that the determinant of the \(k \times k \) matrix with columns given by the first \(k \) elements of the sequences from (3.6) is equal to
\[
\prod_{1 \leq r < s \leq l} (z_s - z_r)^{m_r} \neq 0.
\]
so that again the infinite sequences are independent. \(\square \)

Theorem 3.3 shows that the solution \((v_n)_{n \geq 0} \) is a (unique) linear combination of the \(k \) special solutions given in (3.6). The coefficients in this linear combination can be found by solving a \(k \times k \) linear system obtained by equating the linear combination of the \(k \) special solutions, restricted to their first \(k \) entries, to \((v_0, \ldots, v_{k-1}) \). In other words, denoting the \(k \) special solutions as \((z_n^{(i)})_{n \geq 0} \) for \(1 \leq i \leq k \) (where thus \(z_n^{(i)} = z^n \) in case all roots are simple), it holds that \((v_n)_{n \geq 0} = \sum_{i=1}^{k} \gamma_i (z_n^{(i)})_{n \geq 0} \), where
\[
\begin{bmatrix}
z^{(1)}_0 & \cdots & z^{(k)}_0 \\
\vdots & \ddots & \vdots \\
z^{(1)}_{k-1} & \cdots & z^{(k)}_{k-1}
\end{bmatrix}
\begin{bmatrix}
\gamma_1 \\
\vdots \\
\gamma_k
\end{bmatrix}
= \begin{bmatrix} v_0 \\
v_1 \\
\vdots \\
v_{k-1} \end{bmatrix}.
\]

Corollary 3.4. If, and only if, all roots \(z \) of the characteristic polynomial \(\rho \) satisfy
\[
|z| \leq 1, \text{ with any of them with modulus } 1 \text{ being simple}
\]
(root condition), then
\[
\sup_{0 \neq (v_0, \ldots, v_{k-1}) \in \mathbb{R}^k} \frac{\sup_{n \geq k} |v_n|}{\max\{|v_0|, \ldots, |v_{k-1}|\}} < \infty.
\]

Proof. From \((v_n)_{n \geq 0} = \sum_{i=1}^{k} \gamma_i (z_n^{(i)})_{n \geq 0}\) the sufficiency follows from \(\max_{1 \leq n \leq k} |\gamma_n| \leq ||B^{-1}||_{\infty} \max_{0 \leq n \leq k-1} |v_n|\), and the necessity follows by letting \((v_n)_{0 \leq n \leq k-1}\) run over the special solutions \((z_n^{(i)})_{0 \leq n \leq k-1}\). \(\square \)
3.3. Multi-step methods. We consider
\[
\begin{align*}
 y'(x) &= f(x, y(x)) \quad x \in [x_0, X_M], \\
 y(x_0) &= y_0,
\end{align*}
\]
and assume that the conditions of the Picard theorem are fulfilled on \(D = [x_0, X_M] \times [y_0 - C, y_0 + C] \).

For a given stepsize \(h \), we set \(x_n := x_0 + nh, \ n = 0, \ldots, N := \frac{X_M - x_0}{h} \).

Given starting values \(y_0, \ldots, y_{k-1} \subset [y_0 - C, y_0 + C] \), we consider the multi-step
\[
(3.8) \quad \sum_{j=0}^{k} \alpha_j y_{n+j} = h \sum_{j=0}^{k} \beta_j f(x_{n+j}, y_{n+j}) \quad n = 0, 1, \ldots, N - k,
\]
where \(\alpha_k \neq 0, \ \alpha_0^2 + \beta_0^2 \neq 0. \)

Example 3.5. A way to arrive at such an approximation scheme is to apply a \((k+1)\)-point Newton-Cotes formula (e.g. the Simpson rule where \(k = 2 \)) to the right-hand side of
\[
y(x_{n+k}) - y(x_n) = \int_{x_n}^{x_{n+k}} y'(s) \, ds = \int_{x_n}^{x_{n+k}} f(s, y(s)) \, ds.
\]

In case \(k > 1 \), a common way to provide suitable \(y_1, \ldots, y_{k-1} \) is to start with \((k-1)\)-steps of a Runge-Kutta method of sufficiently high order (cf. the forthcoming Thm. 3.9).

Possibly after rescaling, for notational convenience in the following we assume that
\[
\alpha_k = 1,
\]
and define the \textit{first} and \textit{second characteristic polynomial} of the multi-step by
\[
\rho(z) := \sum_{j=0}^{k} \alpha_j z^j \quad \text{(cf. Thm. 3.3)}, \quad \sigma(z) := \sum_{j=0}^{k} \beta_j z^j.
\]

For the moment (cf. however Sect. 3.4), we will assume existence and uniqueness of the solution \((y_n)_{0 \leq n \leq N}\), which isn’t obvious for the implicit case \(\beta_k \neq 0 \), and furthermore that \((y_n)_{0 \leq n \leq N} \subset [y_0 - C, y_0 + C] \).

3.3.1. Truncation error. In correspondence with earlier definitions for one-step methods, we define the truncation error \(T_n \) by
\[
(3.9) \quad T_n := h^{-1} \sum_{j=0}^{k} \alpha_j y_{n+j} - \sum_{j=0}^{k} \beta_j f(x_{n+j}, y(x_{n+j})) / \sigma(1).
\]

The division by \(\sigma(1) \) is made to make the definition independent of arbitrary scalings of \((3.8) \) as the one we applied to make \(\alpha_k = 1 \). The current definition of \(T_n \) coincides with ones given earlier for the Forward Euler and trapezoidal rule. Later, cf. footnote 1, we will see that for a valid multi-step \(\sigma(1) \neq 0 \).

Definition 3.6. The multi-step is said to have \textit{order} \(p \) when, for sufficiently smooth solutions \(x \mapsto y(x) \) on \([x_0, X_M]\), for \(n = 0, \ldots, N - k \), it holds that \(|T_n| = O(h^p) \). (When \(p > 0 \), the method is called \textit{consistent}).
The determination of the order of a multi-step can follow the same lines as in Sect. 3.1.3 for the trapezium rule. That is, using that
\[T_n = \frac{h^{-1} \sum_{j=0}^{k} \alpha_j y(x_{n+j}) - \sum_{j=0}^{k} \beta_j y'(x_{n+j})}{\sigma(1)}, \]
the order can be determined by replacing each of the terms in the numerator by a Taylor expansion of sufficiently high order around some arbitrary point \(\bar{x} \in [x_n, x_{n+k}] \). When doing so, the leading \(h^{-1} \)– and \(h^0 \)–terms disappear iff
\[\rho(1) = 0 \text{ and } h^{-1} \sum_{j=0}^{k} \alpha_j (x_{n+j} - \bar{x}) = \sigma(1), \]
respectively. Writing
\[h^{-1} \sum_{j=0}^{k} \alpha_j (x_{n+j} - \bar{x}) = \sum_{j=0}^{k} \alpha_j \beta_j + h^{-1} (x_n - \bar{x}) \sum_{j=0}^{k} \alpha_j = \rho'(1) - h^{-1} (x_n - \bar{x}) \rho(1), \]
we conclude that the method is consistent if and only if \(^1\)
\[\rho(1) = 0 \text{ and } \rho'(1) = \sigma(1). \]

Example 3.7. Some examples of multi-step methods, where \(f(x_n, y_n) \) is abbreviated by \(f_n \), are the Euler, implicit Euler, trapezium rule, Adams-Bashforth, Adams-Moulton methods, given by
\[
\begin{align*}
 y_{n+1} &= y_n + hf_n, & \rho(z) &= z - 1, & \sigma(z) &= 1, \\
 y_{n+1} &= y_n + hf_{n+1}, & \rho(z) &= z - 1, & \sigma(z) &= z, \\
 y_{n+1} &= y_n + \frac{1}{2} hf_{n+1} + f_n, & \rho(z) &= z - 1, & \sigma(z) &= \frac{1}{2} (z + 1), \\
 y_{n+4} &= y_{n+3} + \frac{1}{24} h(55f_{n+3} - 59f_{n+2} + 37f_{n+1} - 9f_n), & \rho(z) &= z^4 - z^3, & \sigma(z) &= z, \\
 y_{n+3} &= y_{n+2} + \frac{1}{24} h(9f_{n+3} + 19f_{n+2} - 5f_{n+1} + f_n), & \rho(z) &= z^3 - 2z, & \sigma(z) &= \frac{9z^3 + 19z^2 - 5z + 1}{24},
\end{align*}
\]
respectively.

3.3.2. Global error. Subtracting (3.8) from (3.9), the latter written as \(\sum_{j=0}^{k} \alpha_j y(x_{n+j}) = h \sum_{j=0}^{k} \beta_j f(x_{n+j}, y(x_{n+j})) + h\sigma(1)T_n \), yields for the global error
\[e_n := y(x_n) - y_n \]
the recursion
\[\sum_{j=0}^{k} \alpha_j e_{n+j} = h \sum_{j=0}^{k} \beta_j (f(x_{n+j}, y(x_{n+j})) - f(x_{n+j}, y_{n+j})) + h\sigma(1)T_n \quad n = 0, 1, \ldots, N - k. \]
The Lipschitz continuity of \(f \) on \(D \) w.r.t. the second variable means that
\[|f(x_{n+j}, y(x_{n+j})) - f(x_{n+j}, y_{n+j})| \leq L |e_{n+j}|, \]
or, in other words, that \(f(x_{n+j}, y(x_{n+j})) - f(x_{n+j}, y_{n+j}) = \ell_{n+j} e_{n+j} \) for some \(|\ell_{n+j}| \leq L \). By substituting this we obtain the recursion
\[\sum_{j=0}^{k} \alpha_j e_{n+j} = h \sum_{j=0}^{k} \beta_j \ell_{n+j} e_{n+j} + h\sigma(1)T_n \quad n = 0, 1, \ldots, N - k. \]

\(^1\) Later we will see that a multi-step can only be convergent when \(\rho \) has no multiple roots with modulus 1. In addition to consistency it means that \(\rho'(1) \neq 0 \), and so indeed \(\sigma(1) \neq 0 \).
We write this scalar k-step recursion as an 1-step recursion for k-vectors. With the k-vectors and the $k \times k$-matrices

$$
\tilde{z}_n := \begin{bmatrix} e_n \\ e_{n+1} \\ \vdots \\ e_{n+k-1} \end{bmatrix}, \quad \tilde{r}_n := \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}, \quad E_n := \text{diag} [0 \cdots 0 \beta_k \ell_{n+k}],
$$

$$
D_n := \begin{bmatrix} 0 \\ \vdots \\ \beta_0 \ell_n & \cdots & \beta_{k-1} \ell_{n+k-1} \\ 0 \\ 1 \end{bmatrix}, \quad A := \begin{bmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}
$$

(the latter known as the companion matrix), (3.10) reads as

$$
(I - hE_n) \tilde{z}_{n+1} = (A + hD_n) \tilde{z}_n + h \tilde{r}_n \quad n = 0, 1, \ldots, N - k.
$$

where we have used that $\alpha_k = 1$.

We consider stepsizes with

$$
hL|\beta_k| \leq \frac{1}{2}.
$$

Then $\|hE_n\| \leq \frac{1}{2}$, showing that $I - hE_n$ is invertible, $(I - hE_n)^{-1} = \sum_{i=0}^{\infty} (hE_n)^i$, and $(I - hE_n)^{-1} \leq (1 - \|hE_n\|)^{-1} \leq 2$, so that $\|I - (I - hE_n)^{-1}\| \leq \frac{\|hE_n\|}{1 - \|hE_n\|} = O(h)$. Writing

$$
\tilde{z}_{n+1} = (I - hE_n)^{-1}(A + hD_n) \tilde{z}_n + h (I - hE_n)^{-1} \tilde{r}_n,
$$

we infer

$$
\tilde{z}_{n+1} = A_n \cdots A_0 \tilde{z}_0 + h \sum_{j=0}^n A_n \cdots A_{j+1} \tilde{\sigma}_j.
$$

We have $\|\tilde{\sigma}_j\| \leq 2|\sigma(1)||T_j|$ and from $(n+1)h \leq X_M - x_0$, we conclude that

$$
\|\tilde{z}_{n+1}\| \leq \left[\|\tilde{z}_0\| + (X_M - x_0)2|\sigma(1)| \right] \max_{0 \leq j \leq n} |T_j| \max_{0 \leq j \leq n} \|A_n \cdots A_j\|.
$$

Writing A_i as $A + F_i$, $F_i = hD_i + ((I - hE_i)^{-1} - I)(A + hD_i)$ so that $\|F_i\| \leq \gamma h$ for some constant γ. We expand $(A + F_n) \cdots (A + F_j)$ into a sum of $(n-j+1)$-fold products of matrices A and F_i. For each $0 \leq \ell \leq n-j + 1$ there are \(\binom{n-j+1}{\ell} \) terms in this sum with ℓ factors F_i, and so each of these terms contains at most $\ell + 1$ factors of the form A^p for some $1 \leq p \leq n-j + 1$. We conclude that, with

$$
R_N := \max_{1 \leq p \leq N-1} \|A^p\|,
$$

for $0 \leq j \leq n \leq N - k$ it holds that

$$
\|(A + F_n) \cdots (A + F_j)\| \leq \sum_{\ell=0}^{n-j+1} \binom{n-j+1}{\ell} (h\gamma)^\ell R_N^{\ell+1} = R_N (1 + h\gamma R_N)^{n-j+1} \leq R_N (1 + h\gamma R_N)^N \leq R_N e^{h\gamma R_N N} \leq R_N e^{(X_M - x_0)\gamma R_N}.
$$

It remains to find conditions under which R_N is bounded uniformly in $N \to \infty$, i.e., in $h \downarrow 0$. Noting that $\|A^p\| = \sup_{\|\tilde{v}_0\|_2 \leq 1} \|A^p \tilde{v}_0\|_2$, given $\tilde{v}_0 = \begin{bmatrix} v_0 & \cdots & v_{k-1} \end{bmatrix}^T$, with
let \(\vec{v}_p := A^p \vec{v}_0 \). The equivalence of (3.10) and (3.11) in the case \(\beta_0 = \ldots = \beta_k = 0 \), and \(T_n = 0 \) (\(\forall n \)) shows that \(\vec{v}_p = [v_p \cdots v_{p+k-1}]^\top \) where \((v_n)_{n \geq k}\) is defined by
\[
(3.14) \quad \alpha_k v_{n+k} + \ldots + \alpha_0 v_n = 0 \quad n = 0, 1, \ldots
\]
From Corollary 3.4 we conclude that if, and only if all roots \(z \) of \(\rho(z) = \sum_{j=0}^k \alpha_j z^j \) satisfy the root criterion (3.7), then \(R_N \) from (3.13) is bounded uniformly in \(N \), so that the following theorem is valid.

Remark 3.8. Despite being excluded in §3.2, this conclusion also holds true when for some \(\ell \geq 1 \), \(\alpha_0 = \ldots = \alpha_{\ell-1} = 0 \), as with the Adams-Bashforth and Adams-Moulton methods. In that case \(\rho \) has a root \(z = 0 \) with multiplicity \(\ell \), and instead of being a \(k \)-step-recursion (3.14) is actually a \((k-\ell)\)-step recursion.

Theorem 3.9. Let \((y_n)_{0 \leq n \leq N} \subset [y_0 - C, y_0 + C]\) be a solution of the multi-step (3.8), and let (3.12) be valid. Then if, and generally only if the first characteristic polynomial \(\rho \) satisfies the root condition (3.7), then there exists a constant \(R > 0 \), such that
\[
|e_n| \leq R \{ \max\{|e_0|, \ldots, |e_{k-1}|\} + (X_M - x_0)|\sigma(1)| \max_{0 \leq j \leq n-k} |T_j| \},
\]
\((n = k, \ldots, N := \frac{X_M - x_0}{h})\), with the truncation errors \(T_j \) as defined in (3.9). In particular, if in that case the method is of order \(p \), i.e. \(|T_j| = \mathcal{O}(h^p) \), and \(\max\{|e_0|, \ldots, |e_{k-1}|\} = \mathcal{O}(h^p) \), then \(\max_{0 \leq n \leq N} |e_n| = \mathcal{O}(h^p) \).

The statement of this theorem is often abbreviated by saying that a multi-step is convergent if and only if it is consistent and stable.

To show that the root condition in Theorem 3.9 is generally necessary, consider a consistent multi-step applied to the simple initial value problem
\[
\begin{align*}
y'(x) &= 0, \\
y(x_0) &= y_0,
\end{align*}
\]
which has solution \(y(x) \equiv y_0 \). Given \(y_1, \ldots, y_{k-1} \), the solution of the multi-step is the solution of the recursion \(\sum_{j=0}^k \alpha_j y_{n+j} = 0 \) for \(n = 0, \ldots, N - k \). From \(T_n = 0 \), and \(\sum_{j=0}^k \alpha_j y_{n+j} = y_0 \sum_{j=0}^k \alpha_j = y_0 \rho(1) = 0 \) we have \(\sum_{j=0}^k \alpha_j e_{n+j} = 0 \) for \(n = 0, \ldots, N - k \), and Theorem 3.3 shows that the root condition is generally needed to guarantee boundedness of \((e_n)_{n \geq 0}\).

3.4. Existence and uniqueness of discrete solutions in the implicit case.
What is left to discuss is existence and uniqueness of a solution \((y_n)_{0 \leq n \leq N} \subset [y_0 - C, y_0 + C]\) of (3.8). Possibly by decreasing \(X_M \), we may assume that for some \(\varepsilon \in (0, C) \), \(|y(x) - y_0| \leq C - \varepsilon \) for \(x \in [x_0, X_M] \).

We proceed by induction. For some \(n \geq 0 \), let \(y_0, \ldots, y_{n+k} \) exist uniquely in \([y_0 - C, y_0 + C]\). If the root condition is fulfilled, and for some \(p > 0 \), \(\max\{|e_0|, \ldots, |e_{k-1}|\} = \mathcal{O}(h^p) \), and \(|T_j| = \mathcal{O}(h^p) \), then Thm. 3.9 shows that for some constant \(Q \), independent of \(n \), it holds that \(|e_j| \leq Q h^p \), \(1 \leq j \leq n + k \).

By subtracting (3.8) from (3.9) (the latter multiplied by \(\sigma(1)h \)), and by using that for \(j \leq k - 1 \), \(f(x_{n+1+j}, y(x_{n+1+j})) - f(x_{n+1+j}, y_{n+j+1}) = \ell_{n+1+j} e_{n+1+j} \) all as before, existence and uniqueness of \(y_{n+k+1} \in [y(x_{n+k+1}) - \varepsilon, y(x_{n+k+1}) + \varepsilon] \) is

\[2\text{In the book, a multi-step whose first characteristic polynomial } \rho \text{ satisfies the root condition is called zero-stable.}\]
equivalent to existence and uniqueness of a solution \(e_{n+k+1} \in [-\varepsilon, \varepsilon] \) of

\[
e_{n+k+1} = h\beta_k(f(x_{n+k+1}, y(x_{n+k+1})) - f(x_{n+k+1}, y(x_{n+k+1} - e_{n+k+1})) + \sum_{j=0}^{k-1} h\beta_j e_{n+1+j} + h\sigma(1)T_{n+1} - \sum_{j=0}^{k-1} \alpha_j e_{n+1+j}.
\]

By the induction hypothesis, it holds that \(\Phi(0) = \sum_{j=0}^{k-1} (h\beta_j \ell_{n+1+j} - \alpha_j) e_{n+1+j} + h\sigma(1)T_{n+1} = O(h^p) \), so for \(h \) sufficiently small we have \(|\Phi(0)| \leq \varepsilon/2 \). Furthermore, for \(\xi, \nu \in [-\varepsilon, \varepsilon] \), it holds that \(|\Phi(\xi) - \Phi(\nu)| \leq h|\beta_k|L|\xi - \nu| \leq \frac{1}{2}|\xi - \nu| \). From \(|\Phi(\xi)| \leq |\Phi(0)| + |\Phi(0)| \leq \frac{1}{2}|\xi| + \frac{\xi}{2} \), it follows that \(\Phi : [-\varepsilon, \varepsilon] \to [-\varepsilon, \varepsilon] \). An application of Banach’s fixed point theorem (Lemma 3.1) shows that there exists an unique \(e_{n+k+1} \in [-\varepsilon, \varepsilon] \) with \(e_{n+k+1} = \Phi(e_{n+k+1}) \), and thus that there exists a unique \(y_{n+1+k} \in [y(x_{n+k+1}) - \varepsilon, y(x_{n+k+1}) + \varepsilon] \subset [y_0 - C, y_0 + C] \) that solves (3.8).