Additional exercises with Numerieke Analyse

April 15, 2020

1. (a) Given different points xg, 1, 2 C [a,b] and scalars yo, y1, Y2,
21, show that there exists at most one polynomial p € P; with
p(z;) =y, 1 =0,1,2, p/(x1) = 2.

(b) Construct this p in the form p(z) = pa(x)+a(z—20)(x—21)(x—122)
with p, being the Langange interpolation polynomial of degree 2
corresponding to the set {(x;,y;) : i =0,1,2}.

(c) Let f be four times differentiable. Show that for the polynomial
p € P53 with p(z;) = f(:), 1 = 0,1,2, p'(z1) = f'(x1) and any
x € [a,b], there exists a & = £(z) € (a,b) with

(4)
F(@) = ple) = (& — 20)(@ — ) (& — 20) ).

4]

2. (a) Find weights wy, wq, wq, w; such that

/ F(@)dz = wof (a) + @of (a) + wr f(b) + @1 1'(D)

for any f € Ps.

(b) Show that for f € C*, the error in this quadrature formula, i.e.,
true integral minus its approximation, is of the form
C(b— a)®fD(¢) for some & € [a,b], and give the constant C.

(c) Splitting the interval into m equal subintervals, give the resulting
composite quadrature formula.

(d) Show that the error in this composite formula is equal to C' (b;—‘i)g) F® ()
for some £ € [a, b].

3. For a < b, {xg,...,2,} C R, show that there are unique weights
Wo, . .., w, such that > "  w,;f(z;) = f: f(z)dz for all f € P,. Show
that w; = fab [0, ki 3 da.

T;—Tk
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4. (Runge phenomenon). See Canvas.
5. (Adaptive quadrature). See Canvas.

6. Let a < b, meN, h := bﬁ, z; = a+ih for i € {0,...,m}, and for
ne{l,2,...}, let

Spi={s€C" Y a,b):s

(i) € Pa (1< i <m)}.

Furthermore, let I; : C[a,b]) — S; the continuous piecewise linear
interpolator, and let I3 : C'[a,b]) — S3 the “complete cubic spline
interpolator” defined by

s(zi) = f(x:) (i €{0,...,m}), (1)

§'(x0) = f'(x0), 5" (xm) = f'(wm)- (2)

where s is here a shorthand notation for I3(f). The aim of this exercise
is to show that ||f — I3(f)||ec = O(h*) when f is sufficiently smooth.

From formula (11.5) from the book, we know that each s € S3 can be
written as

T; — X 3 T — Tj— 3
e () = (6—]1)01‘1 +(6—hl)0z+ai($_5€i1) + Bi(x; — x),

S

for some scalars oy, ..., am, B1,..., 0, and, for i € {0,...,m}, with
g; = S//(Zl'i).

By imposing (1) we obtain

_ flw)  h _ flwia) A
o = h 601', Bi = A - g i—1-

(a) By using the continuity of s in z1,...,z,,_1 and (2), show that

Alog...on|" =,

where A € R(m+1)x(m+1) is defined by
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and b € R™*! by

12[f($1)}:§f($0) _ f‘ (;0)]
b, = { @LEi)= fgi)Jrf(l“zfl)
f’(itm) f(acm)—f(sz )
12[ h h2 : }

when ¢ = 0,
when i € {1,...,m — 1},
when ¢ = m.

Elementary linear algebra shows that A is invertible, and that || A7 ||

1, ie., that max; [(A™'z);| < 3 max;|z;| (Indeed, writing A = 4(I —

(I — 1A)) and using that ||/ — 1A||, = 3, shows that [[A7 | < 1),

IN

(b) Show that ||I5(f)"||cc < 3||f"||cc. (Hint: Show that |||« =

maxop<i<m |0'Z| and that maxo<i<m |b7,| S 6||f”||oo)
(c) Show that I3 is a projector, i.e., that I3(s) = s for any s € S;.
(d) Show that for any p € S; there exists a § € S3 with §” = p.

(e) Let 5 € S3 be such that 3" = I;(f”). Show that f — I5(f) =
f—5—1I3(f — 3), and with that, show that

1F" = I3(f) lloo < 4l1F" = 5"lloc < 3A%]1 F Y |cc-
(f) Show that I,(f — I3(f)) = 0, and with that show that

1f = Z3()lloe < 552" 17V |,

as well as
Lf = () lse < CRPIf Y0

for some constant C' > 0.
7. Leta<b,m€N,n€N0::NU{O},h::b’?“and
S, ={se Cm*l(a’ b) : S|(at(i—1)harin) € Pu (1 <i <m)},

being the spline space of degree n w.r.t. the subdivision of [a,b] in
m equal subintervals (and with C~!(a,b) being the space of bounded
functions on [a, b]). For convenience, we take a = 0. With

St (@) == 3 (~1)* (” 7{‘ 1) (¢ — kR)™,

we define S, p)(x) := Sgny(z — h) for £ € Z.
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Figure 1: The functions S, ) for n =0, ..., 4.

a) Show that S(n,e)’[(),b] €S,.

b) Show that supp Sp.e C [€h, ({ +n + 1)h].

(C) Show that dimS,, =m +n = #{E €7 S(n,é)‘[o,b} #+ 0}.
)

(d) Show that S, 5 (z) = (n+1)(Sne)(2) = Sene+1)(x)) (Whenn =0
only for « & hZ).

(e) From Exercise 11.6, we know that

S(nJ’»l?e) (IB) = ($ - gh)S(mg) (.1') + ((n + 2+ g)h — $)S(n,g+1)(l‘).

(
(

Using induction to n, from this show that

Z S(mg)(l‘) = h"nl.
ez
Now we are going to show that for all p € Z,
ZCES(n,€)|(ph,(p+1)h) =0=c¢=0forp—nmn—1<l<p+1. (3)
tez

(f) Show that (3) holds for n = 0.

(g) Now let (3) be valid for some n € Ny. Let Y, ., csSni1, and
SO D pez €051 0 Vanish on (ph, (p+ 1)h). Using (7d), show that
this implies that for some constant ¢ € R, ¢, = ¢ for all

p—n—2<l<p+1,
and with that

Z ceStm+1,0) | ph(p+1)n) = € Z Stni1.0lh i = ch" T (n +1)!
LeZ LeZ

Conclude that (3) is valid for n + 1, and so for any n € Ny.
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(h) Using (7a), (7c), and (3), show that

{S(n,£)|[0,b] e {—n, cee,m — 1}}

is a basis for S,,.

8. (In case this is a homework assignment: Hand in a Zip file
with your code and a PDF document containing answers to
the questions.) Consider the initial value problem(IVP):

{ y'(z) = f(z,y(xr)) 0<x<1
y(0) =0

where f(z,y) = (14 z)(1 + y?).
(a) Verify that the exact solution is given by y(x) = tan(x + 22/2).

A possible implementation in Matlab of the Forward Euler method
(FE) for solving this IVP is given below:

function Euler(N) % N is the number of the time steps
f=0(x,y) (1+x)*(1+y."2); % defines the function f
y=0(x) tan(x+x."2/2); % defines exact solution
h=1/N; % time step
x=0:h:1;
xfine=0:0.01:1
FE=zeros(1,N+1); % Forward Euler approximation solution
err=zeros(1,N+1); % Error values of Forward Euler method
FE(1)=0;
for i=1:N
FE(i+1)=FE(i)+hxf (x(i) ,FE(i));
end
for i=1:N+1
err(i)=y(x(1))-FE(i);
end
plot(xfine,y(xfine));
hold on;
plot(x,FE);

The same program in Python reads as follows:



import matplotlib.pyplot as plt
import numpy as np

# N is the numer of time steps
def ForwardEuler (N):

f = lambda x,y : (1+x)*(1+y**2) # defines function f

y = lambda x : np.tan(x + x**2 / 2.0) # defines exact solution
h=1.0/N

x = np.linspace(0, 1, N + 1)

xfine = np.linspace(0, 1, 100)

FE = np.zeros(N+1) # Forward Euler approximation solution
err = np.zeros(N+1) # Error values of Forward Euler methdo
FE[0] = 0.0

for i in range(N):
FE[i+1] = FE[i] + h * f(x[i], FE[il)

for i in range(N+1):
err[i]l= y(x[i]) - FE[i];

plt.plot(xfine, y(xfine), label="Exact solution")
plt.plot(x,FE, label="Forward Euler approximation");
plt.legend ()

plt.show()

return FE, err

(b) Run Forward Euler with h=! = N = 10, 20, 40, 80, 160 and com-
pare the errors.

(¢) To compare the error of FE with other numerical methods, solve
the problem with the modified Euler method:

{ Yitrl = Yi + %(/ﬁ + ko) where
k1= hf(xi,yi), ko=hf(z,+hy + k)

and the following Runge-Kutta scheme:

Yivr1 = Y -+ %(kl -+ 2/€2 -+ 2k3 + k4) where
kl = f(sz/x)? k? = f(‘rl + %73/1 + hk_21)7
ks = f(wi+ 5,y + W), ha = f (@i + hyys + hks)



(d) Plot the error in the point 5 vs. N for the three methods, and es-
timate the order of the methods. To do this, it is most convenient
to use a log-log plot.

9. (In case this is a homework assignment: Hand in a Zip file
with your code and a PDF document containing answers to
the questions.) To illustrate the numerical solution of a so-called stiff
ODE, consider the IVP

{ y'(xr) = Asin(z) —y)+cos(z) 0<z<1,A>1
y(0) =0
with exact solution y(x) = sin(z).

(a) Apply the FE method to this problem with A = 200 and h~! =
N = 10,90, 95,100, 105,1000. What do you notice?

(b) Implement the Backward Euler method (BE):
Yir1 = Yi + hf (@ig1, Yir1)

and run it with the same values of h and A\. Compare the results.

(c) With x; = ih, define the truncation error of the Backward Euler

method by
Ti(BE) _ y(%ﬂ)h— y(z:) — F(@ir1, y(isn))
and show that Ti(BE) = —Ly"(¢) for some § € [z;, Ti41).
Similarly, let TZ-(FE) = w — f(x;,y(x;)), which is known to be

of the form 2y”(n) for some n € [z;, T;41).

(BE
i

(d) With eEFE) =y(z;) — y ) and eEBE) =y(z;) —vy ), show that

ey = (1= mNel™ 4 hr),

BE) €£BE) + hﬂ(BE)

i1 T 1+ hA
Show that for 1 < i < h™", [e!”™| < 1h|ly"|lw, and, when h < 75,
e 1 < 5h1Y e
Explain the behaviour of the error of FE when N < 100. Is there
a contradiction with the result of Theorem 12.2 applied to FE?
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10. For xp < 21 < --- < x,, where n > 2, and k € N, consider the spline
space

S®) = {s e C* Yag,xp) : s

(zi,2i41) S Pk, 1= 0, NN ,n},

(a) Show that the only s € S with s(z¢) = s(z,) = 0 and such
that for any i > 0, j > 2, i+ 7 < n, 8|(z;2:,,) has j — 1 zeros,
is the zero function. (Hint: Show that if s # 0, then there exists
i and j as above with s(z;) = 0 and s(z;4;) = 0 and s(x;11) #
0,...,8(xi+j—1) # 0, and derive a contradiction.)

(b) Show that the only p € Ps(a,b) with p(a) = p(b) =0 and p”" =0
is the zero polynomial.

(c) Show that there exists at most one natural cubic spline inter-
polant, i.e., an t € S® with t"(2¢) = t"(z,) = 0 that for some
given yo, ..., y, satisfies t(z;) = y; (0 < i < n). (Hint: suppose
two, and consider the difference.)

11. Archimedes (250 v. Chr.) obtained upper and lower bounds for = by
measuring the perimeter of regular inscribed or circumscribed polygons
for a circle with radius 1. In this exercise we consider inscribed polygons
only.

(a) Let To(h) be the perimeter of regular inscribed polygon with n
sides, where nh = 1. Show that Ty(h) = 2h~! sin(rh).

(b) Show that there exist constants (¢;) such that Ym € N

o1 — To(h) = Y k™ + O(*™*?)  (h—0).

=1

(¢) Determine aq, 1 such that Ty (h/2) := ayTo(h/2) + 1 Ty(h) sat-
isfies
2 — Ti(h/2) = O(h*)  (h—0).

Huygens used this idea already in 1654. Archimes’ measurements
went to n = 96. Assuming that Huygens used these measure-
ments, which we assume to be exact, what were the errors in the
best approximations that they both obtained?



Figure 2: The inscribed regular polygons for h = 1/8 and h = 1/16.
(d) Improve Huygens, i.e., determine aw, (B2 such that Ty(h/4) =
agTy(h/4) + BT (h/2) satisfies
2 — Ty(h/4) = O(h°) (h —0).

What is the error in 75(1/96)?

12. To approximate v/a (a > 0) we apply the Newton scheme to
fz) =2 —a=0.
(a) Verify that this yields the following iteration:

1 a
Tiy1 = —(CEZ‘ + —)
2 i
(b) Show that for any xy > +/a, the sequence (z;);>¢ is monotone
decreasing.
(c) Show that for any 0 < x¢ < /a, the sequence (z;);>1 is monotone
decreasing.

Now we consider the Newton iteration with zg = (1 + a).
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(d)
(e)

Show that xq is the result of one step of Newton iteration starting
with “x_y”=1, and thus that xy > \/a.

Show that if for some i > 0, x; — 2,41 < €, that then ;.1 —+/a < €,
which provides a useful stopping criterion.

13. Construct the 3-point Radau formula for the interval [0, 1], being thus
the quadrature formula that is exact on P, and that has 0 as one of its
three quadrature points.

14.

(Interpolation in general). Let xy, ..., z, be different points in [a, b],

oy .-

rn € N={1,2,...}, and N := =1+ 3" (r;. Our goal is to

show the following:

(a)
(b)

Forany{yi,jroﬁiﬁn,1§j§ri}CR’

' 4
dpe Py Withp(ﬁl)(xi):yi,j 0<i<n, 1<j<m). @

Show that (4) can have at most one solution.

Assume that p is a solution of (4). For one i, add one data point
Yir;+1. Show that the solution g of the new interpolation problem
can be found in the form

Now finish the proof of (4).

For an f that, for 0 < i < n, is r; — 1 times continuously differ-
entiable at x;, and that is (N + 1) times differentiable on (a,b),
and with p € Py the solution of the interpolation problem with
yij = fU™Y(z;) (1 < j <ry), show that for any x € (a,b), there
exists a £ = {(x) € [a,b] with

f(N+1) n

f(z) —p(r) = Ha:—xl

(Generalizes remainder terms for Lagrange, Hermite and Taylor
polynomials.)
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15.

16.

17.

18.

(d) Show that the interpolation problem where in (4) one or more
conditions for 5 < r; are omitted, is generally not well-posed:
With N + 1 being the number of imposed conditions, there might
be no or multiple solutions in Py. (Hint: An example can already
be found for n = 0).

With Q(f) denoting the (n + 1)-point Radau formula from [Book,
(10.27)] (where x; should be read as z}), show that

[ -an =Gy [ e - o e -
for some € € [a,b]. (Hint: Use exer. 14).
Let || - || be a submultiplicative norm on R™™ (or C**"), i.e. ||AB| <
IIA|||| B||), for example a matrix norm induced by a vector norm (|| A|| :=
SUDgz M) sometimes also called a subordinate norm

0£ECR" Ta] /> :

Show that if ||T]| < 1, then I — T is invertible, (I —T)~t =3 "> T™,
I(T=T)7 ) < (1= TN~ and [T — (T = T)7Y| < {15

=T~

Consider the 3-term recursion asv,, 19+ a1, +aov, =0, n=20,1,....
Give an explicit expression of v, in terms of the starting values vy, vy
and the roots of as2? + a2z 4+ ap = 0. Distinguish between the cases of
having two different roots, or one double root.

Let the roots 21, ..., 2z, of p(2) = 2¥ + ap_12¥ 1 +. .. a12 + ag be single
and unequal to zero. Give the eigenvalues of the £ x k£ companion
matrix

0 1 0
0 0 0
A= :
0 0 1
| @ —ar —Qg—1 |

and determine corresponding eigenvectors.
Prove that sup,cy ||A?]| < oo if and only if |z <1 for 1 <i < k.

What is the corresponding statement when p has one or more multiple
roots?
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19. We equip C|a, b] with inner product (f,g) = fabw(x)f(:v)g(x)dx where

w is a valid weight function. With qo := 1, ¢; := 2 — %, we define
<me Qn> <xqq‘u Qn—1>
qn1:=<x——> — il (neN={1,2,...
" <Qn7 Qn> <Qn—1; Qn—1> ( { }>

(a) Show inductively that {qo,...,q,} is an orthogonal basis for P,
with ¢, — 2™ € P,_1.
Hints: Show ¢,11 L Pr_2, Gui1 L Gn, i1 L 1.

(b) Prove that ¢, has n different roots on (a,b).

(c) For n > 1, show that <<zq"’q"—1> — ) S
Gn—1,qn—1) (@n—1,qn—1)

(d) For n > 1, show that the roots of ¢, and ¢,_1 interlace, meaning
that between any pair of consecutive roots of g, there is a root of
Gn_1, and that between any pair of consecutive roots of ¢,_; there
is a root of ¢,.

— & —@ S —0—<S—0—

Figure 3: Interlacing of roots of g3 and g.

Hints: Noting that this property holds for n = 1 by definition, let
it be true for some n > 1. Use 19¢ to show that at each root z of
¢n, it holds that

n+1(7)gn—1(x) <O. (5)
Conclude from limy,|—,0 ¢nt1(2)gn-1(2) = 0o (why?), (5), and the
induction hypothesis the existence of roots of ¢, left and right
of the interval spanned by the roots of g,. Next, again from (5)
and the induction hypothesis, conclude the existence of a root of
Gn+1 between any pair of consecutive roots of ¢,.

20. Let f € C™"[a,b], and let p be the Lagrange interpolation polynomial
of fon {xg,...,z,} Cla,b]. In the expression

frD(E())
(n+1)!

for © € {xg,...,z,} the choice of &(x) € |a,b] is arbitrary. In this
exercise it will be shown that there exists a choice which makes

z = fOTV(E(2) € Cla, ], (6)

f(2) = p() = T (2) for z € [a,b],

12



and an application of this result will be given.

Note that g(z) := £8=2E) (4 1)1is continuous at = € [a, b]\{zo, . .., Zn}.

Tn+1()
(a) Show that
. (n+1)! , /
lim g(z;) = =% [ (xi) — p'(x4)),
Jim g(r) = g =S ()~ (@)

meaning that ¢ has a unique extension to a function in C|a, b].

(b) Show that there exists a &(x;) € [a,b] with g(x;) = f™+D(&(x;))
(use the intermediate value theorem), so that (6) is valid.

(c) Using the definition of a derivative, show that (m,11(x)g(x)) |s=s;, =
7 1(2:)g(x;), and conclude that

FUrr(E ()
fl(ai) —p'(z:) = W;H(%)W'
(Note that this improves upon Book §6.5).

21. (Euler backward) To approximate the solution of the usual initial value
problem, consider the scheme

Yn+1l = Yn + hf(xn—&—la yn—i—l)«

(%o = y(x0))-
(a) Define a truncation error 7),, and show that 7,, = O(h).
(b) With e, := y(x,) — yn, prove that when hL; < 1, |e,| = O(h),

uniformly in nh < X, — xo.
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