1. (a) Given different points $x_0, x_1, x_2 \subset [a, b]$ and scalars y_0, y_1, y_2, z_1, show that there exists at most one polynomial $p \in P_3$ with $p(x_i) = y_i, i = 0, 1, 2, p'(x_1) = z_1$.

(b) Construct this p in the form $p(x) = p_2(x) + \alpha(x-x_0)(x-x_1)(x-x_2)$ with p_2 being the Lagrange interpolation polynomial of degree 2 corresponding to the set $\{(x_i, y_i) : i = 0, 1, 2\}$.

(c) Let f be four times differentiable. Show that for the polynomial $p \in P_3$ with $p(x_i) = f(x_i), i = 0, 1, 2, p'(x_1) = f'(x_1)$ and any $x \in [a, b]$, there exists a $\xi = \xi(x) \in (a, b)$ with

$$f(x) - p(x) = (x-x_0)(x-x_1)^2(x-x_2)\frac{f^{(4)}(\xi)}{4!}.$$

2. (a) Find weights $w_0, \bar{w}_0, w_1, \bar{w}_1$ such that

$$\int_a^b f(x)dx = w_0f(a) + \bar{w}_0f'(a) + w_1f(b) + \bar{w}_1f'(b)$$

for any $f \in P_3$.

(b) Show that for $f \in C^4$, the error in this quadrature formula, i.e., true integral minus its approximation, is of the form $C(b-a)^5 f^{(4)}(\xi)$ for some $\xi \in [a, b]$, and give the constant C.

(c) Splitting the interval into m equal subintervals, give the resulting composite quadrature formula.

(d) Show that the error in this composite formula is equal to $C\frac{(b-a)^5}{m^4} f^{(4)}(\xi)$ for some $\xi \in [a, b]$.

3. For $a < b$, $\{x_0, \ldots, x_n\} \subset \mathbb{R}$, show that there are unique weights w_0, \ldots, w_n such that $\sum_{i=0}^n w_i f(x_i) = \int_a^b f(x)dx$ for all $f \in P_n$. Show that $w_i = \int_a^b \prod_{k=0, k \neq i}^n \frac{x-x_k}{x_i-x_k} dx$.

Additional exercises with Numerieke Analyse

March 1, 2019

1. (a) Given different points $x_0, x_1, x_2 \subset [a, b]$ and scalars y_0, y_1, y_2, z_1, show that there exists at most one polynomial $p \in P_3$ with $p(x_i) = y_i, i = 0, 1, 2, p'(x_1) = z_1$.

(b) Construct this p in the form $p(x) = p_2(x) + \alpha(x-x_0)(x-x_1)(x-x_2)$ with p_2 being the Lagrange interpolation polynomial of degree 2 corresponding to the set $\{(x_i, y_i) : i = 0, 1, 2\}$.

(c) Let f be four times differentiable. Show that for the polynomial $p \in P_3$ with $p(x_i) = f(x_i), i = 0, 1, 2, p'(x_1) = f'(x_1)$ and any $x \in [a, b]$, there exists a $\xi = \xi(x) \in (a, b)$ with

$$f(x) - p(x) = (x-x_0)(x-x_1)^2(x-x_2)\frac{f^{(4)}(\xi)}{4!}.$$

2. (a) Find weights $w_0, \bar{w}_0, w_1, \bar{w}_1$ such that

$$\int_a^b f(x)dx = w_0f(a) + \bar{w}_0f'(a) + w_1f(b) + \bar{w}_1f'(b)$$

for any $f \in P_3$.

(b) Show that for $f \in C^4$, the error in this quadrature formula, i.e., true integral minus its approximation, is of the form $C(b-a)^5 f^{(4)}(\xi)$ for some $\xi \in [a, b]$, and give the constant C.

(c) Splitting the interval into m equal subintervals, give the resulting composite quadrature formula.

(d) Show that the error in this composite formula is equal to $C\frac{(b-a)^5}{m^4} f^{(4)}(\xi)$ for some $\xi \in [a, b]$.

3. For $a < b$, $\{x_0, \ldots, x_n\} \subset \mathbb{R}$, show that there are unique weights w_0, \ldots, w_n such that $\sum_{i=0}^n w_i f(x_i) = \int_a^b f(x)dx$ for all $f \in P_n$. Show that $w_i = \int_a^b \prod_{k=0, k \neq i}^n \frac{x-x_k}{x_i-x_k} dx$.

1

6. Let $a < b$, $m \in \mathbb{N}$, $h := \frac{b-a}{m}$, $x_i := a + ih$ for $i \in \{0, \ldots, m\}$, and for $n \in \{1, 2, \ldots\}$, let

$$S_n := \{ s \in C^{n-1}(a,b) : s|_{(x_{i-1},x_i)} \in P_n (1 \leq i \leq m) \}.$$

Furthermore, let $I_1 : C[a,b] \rightarrow S_1$ the continuous piecewise linear interpolator, and let $I_3 : C^1[a,b] \rightarrow S_3$ the “complete cubic spline interpolator” defined by

$$s(x_i) = f(x_i) \quad (i \in \{0, \ldots, m\}), \quad (1)$$
$$s'(x_0) = f'(x_0), \quad s'(x_m) = f'(x_m). \quad (2)$$

where s is here a shorthand notation for $I_3(f)$. The aim of this exercise is to show that $\| f - I_3(f) \|_\infty = O(h^4)$ when f is sufficiently smooth. From formula (11.5) from the book, we know that each $s \in S_3$ can be written as

$$s|_{[x_{i-1},x_i]}(x) = \frac{(x_i - x)^3}{6h} \sigma_{i-1} + \frac{(x - x_{i-1})^3}{6h} \sigma_i + \alpha_i (x - x_{i-1}) + \beta_i (x_i - x),$$

for some scalars $\alpha_1, \ldots, \alpha_m$, β_1, \ldots, β_m and, for $i \in \{0, \ldots, m\}$, with $\sigma_i = s''(x_i)$.

By imposing (1) we obtain

$$\alpha_i = \frac{f(x_i)}{h} - \frac{h}{6} \sigma_i, \quad \beta_i = \frac{f(x_{i-1})}{h} - \frac{h}{6} \sigma_{i-1}.$$

(a) By using the continuity of s' in x_1, \ldots, x_{m-1} and (2), show that

$$A[\sigma_0 \ldots \sigma_m]^\top = b,$$

where $A \in \mathbb{R}^{(m+1) \times (m+1)}$ is defined by

$$A = \begin{bmatrix}
4 & 2 \\
1 & 4 & 1 \\
& & \ddots \\
1 & 4 & 1 \\
& & & 2 & 4
\end{bmatrix},$$

2
and $b \in \mathbb{R}^{m+1}$ by

$$b_i = \begin{cases}
12\left[\frac{f(x_i) - f(x_0)}{h} - \frac{f'(x_0)}{h^2}\right] & \text{when } i = 0, \\
6\left[\frac{f(x_i) - 2f(x_i) + f(x_{i-1})}{h^2}\right] & \text{when } i \in \{1, \ldots, m - 1\}, \\
12\left[\frac{f'(x_m)}{h} - \frac{f(x_m) - f(x_{m-1})}{h^2}\right] & \text{when } i = m.
\end{cases}$$

Elementary linear algebra shows that A is invertible, and that $\|A^{-1}\|_\infty \leq \frac{1}{2}$, i.e., that $\max_i |(A^{-1}x)_i| \leq \frac{1}{2} \max_i |x_i|$ (Indeed, writing $A = 4(I - (I - \frac{1}{4}A))$ and using that $\|I - \frac{1}{2}A\|_\infty = \frac{1}{2}$, shows that $\|A^{-1}\|_\infty \leq \frac{1}{2}$).

(b) Show that $\|I_3(f)''\|_\infty \leq 3\|f''\|_\infty$. (Hint: Show that $\|s''\|_\infty = \max_{0 \leq i \leq m} |\sigma_i|$ and that $\max_{0 \leq i \leq m} |b_i| \leq 6\|f''\|_\infty$.)

(c) Show that I_3 is a projector, i.e., that $I_3(s) = s$ for any $s \in \mathcal{S}_3$.

(d) Show that for any $p \in \mathcal{S}_1$ there exists a $\bar{s} \in \mathcal{S}_3$ with $\bar{s}'' = p$.

(e) Let $\bar{s} \in \mathcal{S}_3$ be such that $\bar{s}'' = I_1(f'')$. Show that $f - I_3(f) = f - \bar{s} - I_3(f - \bar{s})$, and with that, show that

$$\|f'' - I_3(f)''\|_\infty \leq 4\|f'' - \bar{s}''\|_\infty \leq \frac{1}{2}h^2\|f^{(4)}\|_\infty.$$

(f) Show that $I_1(f - I_3(f)) = 0$, and with that show that

$$\|f - I_3(f)\|_\infty \leq \frac{1}{16}h^4\|f^{(4)}\|_\infty,$$

as well as

$$\|f' - I_3(f)'\|_\infty \leq Ch^3\|f^{(4)}\|_\infty$$

for some constant $C > 0$.

7. Let $a < b$, $m \in \mathbb{N}$, $n \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}$, $h := \frac{b-a}{m}$ and

$$\mathcal{S}_n := \{s \in C^{n-1}(a,b) : s_{|_{(a+(i-1)h, a+ih)}} \in P_n \ (1 \leq i \leq m)\},$$

being the spline space of degree n w.r.t. the subdivision of $[a,b]$ in m equal subintervals (and with $C^{n-1}(a,b)$ being the space of bounded functions on $[a,b]$). For convenience, we take $a = 0$. With

$$S_n(x) := \sum_{k=0}^{n+1} (-1)^k \binom{n+1}{k} (x - kh)_+^n,$$

we define $S_{n,\ell}(x) := S_n(x - \ell h)$ for $\ell \in \mathbb{Z}$.

3
Figure 1: The functions $S_{(n,0)}$ for $n = 0, \ldots, 4$.

(a) Show that $S_{(n,\ell)}|_{[0,b]} \in \mathcal{S}_n$.
(b) Show that $\text{supp} S_{(n,\ell)} \subseteq [\ell h, (\ell + n + 1)h]$.
(c) Show that $\dim \mathcal{S}_n = m + n = \# \{ \ell \in \mathbb{Z} : S_{(n,\ell)}|_{[0,b]} \neq 0 \}$.
(d) Show that $S'_{(n+1,\ell)}(x) = (n+1)(S_{(n,\ell)}(x) - S_{(n,\ell+1)}(x))$ (when $n = 0$ only for $x \notin h\mathbb{Z}$).
(e) From Exercise 11.6, we know that $S_{(n+1,\ell)}(x) = (x - \ell h)S_{(n,\ell)}(x) + ((n + 2 + \ell)h - x)S_{(n,\ell+1)}(x)$.

Using induction to n, from this show that
$$\sum_{\ell \in \mathbb{Z}} S_{(n,\ell)}(x) = h^n n!.$$

Now we are going to show that for all $p \in \mathbb{Z}$,
$$\sum_{\ell \in \mathbb{Z}} c_{\ell} S_{(n,\ell)}|_{(ph,(p+1)h)} = 0 \implies c_{\ell} = 0 \text{ for } p - n - 1 < \ell < p + 1. \quad (3)$$

(f) Show that (3) holds for $n = 0$.
(g) Now let (3) be valid for some $n \in \mathbb{N}_0$. Let $\sum_{\ell \in \mathbb{Z}} c_{\ell} S_{(n+1,\ell)}$ and so $\sum_{\ell \in \mathbb{Z}} c_{\ell} S'_{(n+1,\ell)}$ vanish on $(ph, (p+1)h)$. Using (7d), show that this implies that for some constant $c \in \mathbb{R}$, $c_{\ell} = c$ for all
$$p - n - 2 < \ell < p + 1,$$
and with that
$$\sum_{\ell \in \mathbb{Z}} c_{\ell} S_{(n+1,\ell)}|_{(ph,(p+1)h)} = c \sum_{\ell \in \mathbb{Z}} S_{(n+1,\ell)}|_{(ph,(p+1)h)} = ch^{n+1}(n + 1)!$$

Conclude that (3) is valid for $n + 1$, and so for any $n \in \mathbb{N}_0$.

4
(h) Using (7a), (7c), and (3), show that

\[S_{(n, \ell)}|_{[0,b]} : \ell \in \{-n, \ldots, m - 1\} \]

is a basis for \(S_n \).

8. (In case this is a homework assignment: Hand in a Zip file with your code and a PDF document containing answers to the questions.) Consider the initial value problem (IVP):

\[
\begin{align*}
 y'(x) &= f(x, y(x)) & 0 \leq x \leq 1 \\
 y(0) &= 0
\end{align*}
\]

where \(f(x, y) = (1 + x)(1 + y^2) \).

(a) Verify that the exact solution is given by \(y(x) = \tan(x + x^2/2) \).

A possible implementation in Matlab of the Forward Euler method (FE) for solving this IVP is given below:

```matlab
function Euler(N) % N is the number of the time steps
f=@(x,y)(1+x)*(1+y.^2); % defines the function f
y=@(x) tan(x+x.^2/2); % defines exact solution
h=1/N; % time step
x=0:h:1; % time step
xfine=0:0.01:1
FE=zeros(1,N+1); % Forward Euler approximation solution
err=zeros(1,N+1); % Error values of Forward Euler method
FE(1)=0;
for i=1:N
    FE(i+1)=FE(i)+h*f(x(i),FE(i));
end
for i=1:N+1
    err(i)=y(x(i))-FE(i);
end
plot(xfine,y(xfine));
hold on;
plot(x,FE);
```

The same program in Python reads as follows:
import matplotlib.pyplot as plt
import numpy as np

N is the number of time steps
def ForwardEuler(N):
 f = lambda x,y : (1+x)*(1+y**2) # defines function f
 y = lambda x : np.tan(x + x**2 / 2.0) # defines exact solution
 h = 1.0 / N
 x = np.linspace(0, 1, N + 1)
 xfine = np.linspace(0, 1, 100)
 FE = np.zeros(N+1) # Forward Euler approximation solution
 err = np.zeros(N+1) # Error values of Forward Euler method
 FE[0] = 0.0
 for i in range(N):
 FE[i+1] = FE[i] + h * f(x[i], FE[i])

 for i in range(N+1):
 err[i]= y(x[i]) - FE[i];

 plt.plot(xfine, y(xfine), label="Exact solution")
 plt.plot(x,FE, label="Forward Euler approximation");
 plt.legend()
 plt.show()
 return FE, err

(b) Run Forward Euler with $h^{-1} = N = 10, 20, 40, 80, 160$ and compare the errors.

(c) To compare the error of FE with other numerical methods, solve the problem with the modified Euler method:

$$
\begin{align*}
 y_{i+1} &= y_i + \frac{1}{2}(k_1 + k_2) \\
 k_1 &= hf(x_i, y_i), \quad k_2 = hf(x_i + h, y_i + k_1)
\end{align*}
$$

and the following Runge-Kutta scheme:

$$
\begin{align*}
 y_{i+1} &= y_i + \frac{h^6}{6}(k_1 + 2k_2 + 2k_3 + 2k_4 + k_6) \\
 k_1 &= f(x_i, y_i), \quad k_2 = f(x_i + \frac{h}{2}, y_i + \frac{h}{2}k_1), \\
 k_3 &= f(x_i + \frac{h}{2}, y_i + \frac{h}{2}k_2), \quad k_4 = f(x_i + h, y_i + hk_3)
\end{align*}
$$
(d) Plot the error in the point \(\frac{1}{2} \) vs. \(N \) for the three methods, and estimate the order of the methods. To do this, it is most convenient to use a log-log plot.

9. (In case this is a homework assignment: Hand in a Zip file with your code and a PDF document containing answers to the questions.) To illustrate the numerical solution of a so-called stiff ODE, consider the IVP

\[
\begin{aligned}
 y'(x) &= \lambda (\sin(x) - y) + \cos(x) & 0 \leq x \leq 1, \lambda \gg 1 \\
 y(0) &= 0
\end{aligned}
\]

with exact solution \(y(x) = \sin(x) \).

(a) Apply the FE method to this problem with \(\lambda = 200 \) and \(h^{-1} = N = 10, 90, 95, 100, 105, 1000 \). What do you notice?

(b) Implement the Backward Euler method (BE):

\[
y_{i+1} = y_i + hf(x_{i+1}, y_{i+1})
\]

and run it with the same values of \(h \) and \(\lambda \). Compare the results.

(c) With \(x_i = ih \), define the truncation error of the Backward Euler method by

\[
T_{i}^{(BE)} = \frac{y(x_{i+1}) - y(x_i)}{h} - f(x_{i+1}, y(x_{i+1}))
\]

and show that \(T_{i}^{(BE)} = -\frac{h}{2} y''(\xi) \) for some \(\xi \in [x_i, x_{i+1}] \).

Similarly, let \(T_{i}^{(FE)} = \frac{y(x_{i+1}) - y(x_i)}{h} - f(x_i, y(x_i)) \), which is known to be of the form \(\frac{h}{2} y''(\eta) \) for some \(\eta \in [x_i, x_{i+1}] \).

(d) With \(e_{i}^{(FE)} := y(x_i) - y_i^{(FE)} \) and \(e_{i}^{(BE)} := y(x_i) - y_i^{(BE)} \), show that

\[
\begin{aligned}
 e_{i+1}^{(FE)} &= (1 - h\lambda)e_{i}^{(FE)} + hT_{i}^{(FE)}, \\
 e_{i+1}^{(BE)} &= e_{i}^{(BE)} + hT_{i}^{(BE)} \frac{1}{1 + h\lambda}.
\end{aligned}
\]

Show that for \(1 \leq i \leq h^{-1} \), \(|e_{i}^{(BE)}| \leq \frac{1}{2} h\|y''\|_{\infty} \), and, when \(h \leq \frac{1}{100} \), \(|e_{i}^{(FE)}| \leq \frac{1}{2} h\|y''\|_{\infty} \).

Explain the behaviour of the error of FE when \(N < 100 \). Is there a contradiction with the result of Theorem 12.2 applied to FE?
10. For \(x_0 < x_1 < \cdots < x_n \), where \(n \geq 2 \), and \(k \in \mathbb{N} \), consider the spline space

\[S^{(k)} = \{ s \in C^{k-1}(x_0, x_n) : s|_{(x_i, x_{i+1})} \in \mathcal{P}_k, \; i = 0, \ldots, n \}. \]

(a) Show that the only \(s \in S^{(1)} \) with \(s(x_0) = s(x_n) = 0 \) and such that for any \(i \geq 0, \; j \geq 2, \; i + j \leq n \), \(s|_{(x_i, x_{i+j})} \) has \(j - 1 \) zeros, is the zero function. (Hint: Show that if \(s \neq 0 \), then there exists \(i \) and \(j \) as above with \(s(x_i) = 0 \) and \(s(x_{i+j}) = 0 \) and \(s(x_{i+1}) \neq 0, \ldots, s(x_{i+j-1}) \neq 0 \), and derive a contradiction.)

(b) Show that the only \(p \in \mathcal{P}_3(a, b) \) with \(p(a) = p(b) = 0 \) and \(p'' \equiv 0 \) is the zero polynomial.

(c) Show that there exists at most one natural cubic spline interpolant, i.e., an \(t \in S^{(3)} \) with \(t''(x_0) = t''(x_n) = 0 \) that for some given \(y_0, \ldots, y_n \) satisfies \(t(x_i) = y_i \) (\(0 \leq i \leq n \)). (Hint: suppose two, and consider the difference.)

11. Archimedes (250 v. Chr.) obtained upper and lower bounds for \(\pi \) by measuring the perimeter of regular inscribed or circumscribed polygons for a circle with radius 1. In this exercise we consider inscribed polygons only.

(a) Let \(T_0(h) \) be the perimeter of regular inscribed polygon with \(n \) sides, where \(nh = 1 \). Show that \(T_0(h) = 2h^{-1}\sin(\pi h) \).

(b) Show that there exist constants \((c_i) \) such that \(\forall m \in \mathbb{N} \)

\[2\pi - T_1(h/2) = \sum_{i=1}^{m} c_i h^{2i} + \mathcal{O}(h^{2m+2}) \quad (h \to 0). \]

(c) Determine \(\alpha_1, \beta_1 \) such that \(T_1(h/2) := \alpha_1 T_0(h/2) + \beta_1 T_0(h) \) satisfies

\[2\pi - T_1(h/2) = \mathcal{O}(h^4) \quad (h \to 0). \]

Huygens used this idea already in 1654. Archimedes’ measurements went to \(n = 96 \). Assuming that Huygens used these measurements, which we assume to be exact, what were the errors in the best approximations that they both obtained?
Figure 2: The inscribed regular polygons for $h = 1/8$ and $h = 1/16$.

(d) Improve Huygens, i.e., determine α_2, β_2 such that $T_2(h/4) := \alpha_2 T_1(h/4) + \beta_2 T_1(h/2)$ satisfies

$$2\pi - T_2(h/4) = O(h^6) \quad (h \to 0).$$

What is the error in $T_2(1/96)$?

12. To approximate \sqrt{a} ($a > 0$) we apply the Newton scheme to

$$f(x) = x^2 - a = 0.$$

(a) Verify that this yields the following iteration:

$$x_{i+1} = \frac{1}{2}(x_i + \frac{a}{x_i}).$$

(b) Show that for any $x_0 > \sqrt{a}$, the sequence $(x_i)_{i \geq 0}$ is monotone decreasing.

(c) Show that for any $0 < x_0 < \sqrt{a}$, the sequence $(x_i)_{i \geq 1}$ is monotone decreasing.

Now we consider the Newton iteration with $x_0 = \frac{1}{2}(1 + a)$.

9
(d) Show that \(x_0 \) is the result of one step of Newton iteration starting with \("x_{-1}\)" = 1, and thus that \(x_0 > \sqrt{a} \).

(e) Show that if for some \(i \geq 0 \), \(x_i - x_{i+1} < \epsilon \), that then \(x_{i+1} - \sqrt{a} < \epsilon \), which provides a useful stopping criterion.

13. Construct the 3-point Radau formula for the interval \([0, 1]\), being thus the quadrature formula that is exact on \(P_2 \) and that has 0 as one of its three quadrature points.

14. (Interpolation in general). Let \((x_i)_{i \in \mathbb{N}_0} \subset \mathbb{R}\) be a sequence of pairwise disjoint points. Let \((r_i)_{i \in \mathbb{N}_0} \subset \mathbb{N}_0\) such that \(A := \{i : r_i \neq 0\} \) is non-empty and finite, and set \(N := (\sum_{i=0}^{\infty} r_i) - 1 \). Our goal is to show the following:

 For any \(\cup_{i \in A} \{y_{i,j} : 1 \leq j \leq r_i\} \subset \mathbb{R} \),
 \[\exists! p \in P_N \text{ with } p^{(j-1)}(x_i) = y_{i,j} \quad (i \in A, 1 \leq j \leq r_i). \] (4)

 (a) Show that (4) can have at most one solution.
 (b) Show that for any \(j \in \mathbb{N}_0 \),
 \[\left(\frac{d^r_j}{dx^r_j} \prod_{i \in A} (x - x_i)^{r_i} \right)(x_j) \neq 0 \quad \left(\frac{d^0}{dx^0} := \text{Id} \right) \]
 (Hint: Show that \(\left(\frac{d^r_j}{dx^r_j} ((x - x_j)^{r_j}g(x)) \right)(x_j) = g(x_j) \)).
 (c) Assume that \(p \) is a solution of (4). For one \(i \), say \(i^* \), increase \(r_{i^*} \) by one, and add some \(y_{i^*,r_{i^*}+1} \). Show that the solution \(q \) of the new interpolation problem can be found in the form
 \[q(x) = p(x) + c \prod_{i \in A} (x - x_i)^{r_i}. \]

 Now finish the proof of (4).
 (d) For an \(f \) that, for \(i \in A \), is \(r_i - 1 \) times continuously differentiable at \(x_i \), and that is \((N + 1) \) times differentiable on \((a, b) \supset \) \((\min_{i \in A} x_i, \max_{i \in A} x_i) \), and with \(p \in P_N \) the solution of the interpolation problems with \(y_{i,j} := f^{(j-1)}(x_i) \) \((1 \leq j \leq r_i) \), show that for any \(x \in (a, b) \), there exists a \(\xi = \xi(x) \) with
 \[f(x) - p(x) = \frac{f^{(N+1)}(\xi)}{(N+1)!} \prod_{i \in A} (x - x_i)^{r_i}. \]
(Generalizes remainder terms for Lagrange, Hermite and Taylor polynomials.)

(e) Show that the interpolation problem where in (4) one or more conditions for \(j < r_i \) are omitted, is generally not well-posed: With \(N + 1 \) being the number of imposed conditions, there might be no or multiple solutions in \(P_N \).

15. With \(Q(f) \) denoting the \((n+1)\)-point Radau formula from [Book, (10.27)] (where \(x_k \) should read as \(x^*_k \)), show that
\[
\int_a^b w(x)f(x)\,dx - Q(f) = \frac{f^{(2n+1)}(\xi)}{(2n+1)!} \int_a^b w(x)(x-a) \prod_{k=1}^n (x-x_k^*)^2 \,dx.
\]
for some \(\xi \in [a,b] \). (Hint: Use exer. 14).

16. Let \(\| \cdot \| \) be a submultiplicative norm on \(\mathbb{R}^{n \times n} \) (or \(\mathbb{C}^{n \times n} \)), i.e. \(\| AB \| \leq \| A \| \| B \| \), for example a matrix norm induced by a vector norm (\(\| A \| := \sup_{0 \neq x \in \mathbb{R}^n} \frac{\| Ax \|}{\| x \|} \)), sometimes also called a subordinate norm.

Show that if \(\| T \| < 1 \), then \(I - T \) is invertible, \((I - T)^{-1} = \sum_{n=0}^\infty T^n \), \(\|(I - T)^{-1}\| \leq (1 - \| T \|)^{-1} \), and \(\| I - (I - T)^{-1} \| \leq \frac{\| T \|}{1 - \| T \|} \).

17. Consider the 3-term recursion \(\alpha_2 v_{n+2} + \alpha_1 v_{n+1} + \alpha_0 v_n = 0 \), \(n = 0, 1, \ldots \). Give an explicit expression of \(v_n \) in terms of the starting values \(v_0, v_1 \) and the roots of \(\alpha_2 z^2 + \alpha_1 z + \alpha_0 = 0 \). Distinguish between the cases of having two different roots, or one double root.

18. Let the roots \(z_1, \ldots, z_k \) of \(\rho(z) = \alpha_k z^k + \alpha_{k-1} z^{k-1} + \ldots + \alpha_1 z + \alpha_0 \) be single and unequal to zero. Give the eigenvalues of the \(k \times k \) companion matrix
\[
A := \begin{bmatrix}
0 & 1 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 \\
-\alpha_0 & -\alpha_1 & \cdots & -\alpha_{k-1}
\end{bmatrix}
\]
and determine corresponding eigenvectors.

Prove that \(\sup_{p \in \mathbb{N}} \| A^p \| < \infty \) if and only if \(|z_i| \leq 1 \) for \(1 \leq i \leq k \).

What is the corresponding statement when \(\rho \) has one or more multiple roots?