
Additional exercises with Numerieke Analyse

April 15, 2020

1. (a) Given different points x0, x1, x2 ⊂ [a, b] and scalars y0, y1, y2,
z1, show that there exists at most one polynomial p ∈ P3 with
p(xi) = yi, i = 0, 1, 2, p′(x1) = z1.

(b) Construct this p in the form p(x) = p2(x)+α(x−x0)(x−x1)(x−x2)
with p2 being the Langange interpolation polynomial of degree 2
corresponding to the set {(xi, yi) : i = 0, 1, 2}.

(c) Let f be four times differentiable. Show that for the polynomial
p ∈ P3 with p(xi) = f(xi), i = 0, 1, 2, p′(x1) = f ′(x1) and any
x ∈ [a, b], there exists a ξ = ξ(x) ∈ (a, b) with

f(x)− p(x) = (x− x0)(x− x1)2(x− x2)
f (4)(ξ)

4!
.

2. (a) Find weights w0, w̄0, w1, w̄1 such that∫ b

a

f(x)dx = w0f(a) + w̄0f
′(a) + w1f(b) + w̄1f

′(b)

for any f ∈ P3.

(b) Show that for f ∈ C4, the error in this quadrature formula, i.e.,
true integral minus its approximation, is of the form
C(b− a)5f (4)(ξ) for some ξ ∈ [a, b], and give the constant C.

(c) Splitting the interval into m equal subintervals, give the resulting
composite quadrature formula.

(d) Show that the error in this composite formula is equal to C (b−a)5
m4 f (4)(ξ)

for some ξ ∈ [a, b].

3. For a < b, {x0, . . . , xn} ⊂ R, show that there are unique weights

w0, . . . , wn such that
∑n

i=0wif(xi) =
∫ b
a
f(x)dx for all f ∈ Pn. Show

that wi =
∫ b
a

∏n
k=0, k 6=i

x−xk
xi−xk

dx.
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4. (Runge phenomenon). See Canvas.

5. (Adaptive quadrature). See Canvas.

6. Let a < b, m ∈ N, h := b−a
m

, xi := a + ih for i ∈ {0, . . . ,m}, and for
n ∈ {1, 2, . . .}, let

Sn := {s ∈ Cn−1(a, b) : s|(xi−1,xi) ∈ Pn (1 ≤ i ≤ m)}.

Furthermore, let I1 : C[a, b]) → S1 the continuous piecewise linear
interpolator, and let I3 : C1[a, b]) → S3 the “complete cubic spline
interpolator” defined by

s(xi) = f(xi) (i ∈ {0, . . . ,m}), (1)

s′(x0) = f ′(x0), s′(xm) = f ′(xm). (2)

where s is here a shorthand notation for I3(f). The aim of this exercise
is to show that ‖f − I3(f)‖∞ = O(h4) when f is sufficiently smooth.
From formula (11.5) from the book, we know that each s ∈ S3 can be
written as

s|[xi−1,xi](x) =
(xi − x)3

6h
σi−1 +

(x− xi−1)3

6h
σi+αi(x−xi−1) +βi(xi−x),

for some scalars α1, . . . , αm, β1, . . . , βm and, for i ∈ {0, . . . ,m}, with
σi = s′′(xi).

By imposing (1) we obtain

αi =
f(xi)

h
− h

6
σi, βi =

f(xi−1)

h
− h

6
σi−1.

(a) By using the continuity of s′ in x1, . . . , xm−1 and (2), show that

A[σ0 . . . σm]> = b,

where A ∈ R(m+1)×(m+1) is defined by

A =


4 2
1 4 1

. . .

1 4 1
2 4

 ,
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and b ∈ Rm+1 by

bi =


12
[
f(x1)−f(x0)

h2
− f ′(x0)

h

]
when i = 0,

6f(xi+1)−2f(xi)+f(xi−1)
h2

when i ∈ {1, . . . ,m− 1},
12
[f ′(xm)

h
− f(xm)−f(xm−1)

h2

]
when i = m.

Elementary linear algebra shows thatA is invertible, and that ‖A−1‖∞ ≤
1
2
, i.e., that maxi |(A−1x)i| ≤ 1

2
maxi |xi| (Indeed, writing A = 4(I −

(I − 1
4
A)) and using that ‖I − 1

4
A‖∞ = 1

2
, shows that ‖A−1‖∞ ≤ 1

2
),

(b) Show that ‖I3(f)′′‖∞ ≤ 3‖f ′′‖∞. (Hint: Show that ‖s′′‖∞ =
max0≤i≤m |σi| and that max0≤i≤m |bi| ≤ 6‖f ′′‖∞.)

(c) Show that I3 is a projector, i.e., that I3(s) = s for any s ∈ S3.
(d) Show that for any p ∈ S1 there exists a s̄ ∈ S3 with s̄′′ = p.

(e) Let s̄ ∈ S3 be such that s̄′′ = I1(f
′′). Show that f − I3(f) =

f − s̄− I3(f − s̄), and with that, show that

‖f ′′ − I3(f)′′‖∞ ≤ 4‖f ′′ − s̄′′‖∞ ≤ 1
2
h2‖f (4)‖∞.

(f) Show that I1(f − I3(f)) = 0, and with that show that

‖f − I3(f)‖∞ ≤ 1
16
h4‖f (4)‖∞,

as well as
‖f ′ − I3(f)′‖∞ ≤ Ch3‖f (4)‖∞

for some constant C > 0.

7. Let a < b, m ∈ N, n ∈ N0 := N ∪ {0}, h := b−a
m

and

Sn := {s ∈ Cn−1(a, b) : s|(a+(i−1)h,a+ih) ∈ Pn (1 ≤ i ≤ m)},

being the spline space of degree n w.r.t. the subdivision of [a, b] in
m equal subintervals (and with C−1(a, b) being the space of bounded
functions on [a, b]). For convenience, we take a = 0. With

S(n)(x) :=
n+1∑
k=0

(−1)k
(
n+ 1

k

)
(x− kh)n+,

we define S(n,`)(x) := S(n)(x− `h) for ` ∈ Z.
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Figure 1: The functions S(n,0) for n = 0, . . . , 4.

(a) Show that S(n,`)|[0,b] ∈ Sn.

(b) Show that suppS(n,`) ⊆ [`h, (`+ n+ 1)h].

(c) Show that dimSn = m+ n = #{` ∈ Z : S(n,`)|[0,b] 6= 0}.
(d) Show that S ′(n+1,`)(x) = (n+1)(S(n,`)(x)−S(n,`+1)(x)) (when n = 0

only for x 6∈ hZ).

(e) From Exercise 11.6, we know that

S(n+1,`)(x) = (x− `h)S(n,`)(x) + ((n+ 2 + `)h− x)S(n,`+1)(x).

Using induction to n, from this show that∑
`∈Z

S(n,`)(x) = hnn!.

Now we are going to show that for all p ∈ Z,∑
`∈Z

c`S(n,`)|(ph,(p+1)h) = 0 =⇒ c` = 0 for p− n− 1 < ` < p+ 1. (3)

(f) Show that (3) holds for n = 0.

(g) Now let (3) be valid for some n ∈ N0. Let
∑

`∈Z c`S(n+1,`) and
so
∑

`∈Z c`S
′
(n+1,`) vanish on (ph, (p+ 1)h). Using (7d), show that

this implies that for some constant c ∈ R, c` = c for all

p− n− 2 < ` < p+ 1,

and with that∑
`∈Z

c`S(n+1,`)|(ph,(p+1)h) = c
∑
`∈Z

S(n+1,`)|(ph,(p+1)h) = chn+1(n+ 1)!

Conclude that (3) is valid for n+ 1, and so for any n ∈ N0.
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(h) Using (7a), (7c), and (3), show that{
S(n,`)|[0,b] : ` ∈ {−n, . . . ,m− 1}

}
is a basis for Sn.

8. (In case this is a homework assignment: Hand in a Zip file
with your code and a PDF document containing answers to
the questions.) Consider the initial value problem(IVP):{

y′(x) = f(x, y(x)) 0 ≤ x ≤ 1
y(0) = 0

where f(x, y) = (1 + x)(1 + y2).

(a) Verify that the exact solution is given by y(x) = tan(x+ x2/2).

A possible implementation in Matlab of the Forward Euler method
(FE) for solving this IVP is given below:

function Euler(N) % N is the number of the time steps

f=@(x,y)(1+x)*(1+y.^2); % defines the function f

y=@(x) tan(x+x.^2/2); % defines exact solution

h=1/N; % time step

x=0:h:1;

xfine=0:0.01:1

FE=zeros(1,N+1); % Forward Euler approximation solution

err=zeros(1,N+1); % Error values of Forward Euler method

FE(1)=0;

for i=1:N

FE(i+1)=FE(i)+h*f(x(i),FE(i));

end

for i=1:N+1

err(i)=y(x(i))-FE(i);

end

plot(xfine,y(xfine));

hold on;

plot(x,FE);

The same program in Python reads as follows:
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import matplotlib.pyplot as plt

import numpy as np

# N is the numer of time steps

def ForwardEuler(N):

f = lambda x,y : (1+x)*(1+y**2) # defines function f

y = lambda x : np.tan(x + x**2 / 2.0) # defines exact solution

h = 1.0 / N

x = np.linspace(0, 1, N + 1)

xfine = np.linspace(0, 1, 100)

FE = np.zeros(N+1) # Forward Euler approximation solution

err = np.zeros(N+1) # Error values of Forward Euler methdo

FE[0] = 0.0

for i in range(N):

FE[i+1] = FE[i] + h * f(x[i], FE[i])

for i in range(N+1):

err[i]= y(x[i]) - FE[i];

plt.plot(xfine, y(xfine), label="Exact solution")

plt.plot(x,FE, label="Forward Euler approximation");

plt.legend()

plt.show()

return FE, err

(b) Run Forward Euler with h−1 = N = 10, 20, 40, 80, 160 and com-
pare the errors.

(c) To compare the error of FE with other numerical methods, solve
the problem with the modified Euler method:{

yi+1 = yi + 1
2
(k1 + k2) where

k1 = hf(xi, yi), k2 = hf(xi + h, yi + k1)

and the following Runge-Kutta scheme:
yi+1 = yi + h

6
(k1 + 2k2 + 2k3 + k4) where

k1 = f(xi, yi), k2 = f(xi + h
2
, yi + hk1

2
),

k3 = f(xi + h
2
, yi + hk2

2
), k4 = f(xi + h, yi + hk3)
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(d) Plot the error in the point 1
2

vs. N for the three methods, and es-
timate the order of the methods. To do this, it is most convenient
to use a log-log plot.

9. (In case this is a homework assignment: Hand in a Zip file
with your code and a PDF document containing answers to
the questions.) To illustrate the numerical solution of a so-called stiff
ODE, consider the IVP{

y′(x) = λ(sin(x)− y) + cos(x) 0 ≤ x ≤ 1, λ� 1
y(0) = 0

with exact solution y(x) = sin(x).

(a) Apply the FE method to this problem with λ = 200 and h−1 =
N = 10, 90, 95, 100, 105, 1000. What do you notice?

(b) Implement the Backward Euler method (BE):

yi+1 = yi + hf(xi+1, yi+1)

and run it with the same values of h and λ. Compare the results.

(c) With xi = ih, define the truncation error of the Backward Euler
method by

T
(BE)
i =

y(xi+1)− y(xi)

h
− f(xi+1, y(xi+1))

and show that T
(BE)
i = −h

2
y′′(ξ) for some ξ ∈ [xi, xi+1].

Similarly, let T
(FE)
i = y(xi+1)−y(xi)

h
− f(xi, y(xi)), which is known to be

of the form h
2
y′′(η) for some η ∈ [xi, xi+1].

(d) With e
(FE)
i := y(xi)− y(FE)

i and e
(BE)
i := y(xi)− y(BE)

i , show that

e
(FE)
i+1 = (1− hλ)e

(FE)
i + hT

(FE)
i ,

e
(BE)
i+1 =

e
(BE)
i + hT

(BE)
i

1 + hλ
.

Show that for 1 ≤ i ≤ h−1, |e(BE)
i | ≤ 1

2
h‖y′′‖∞, and, when h ≤ 1

100
,

|e(FE)
i | ≤ 1

2
h‖y′′‖∞.

Explain the behaviour of the error of FE when N < 100. Is there
a contradiction with the result of Theorem 12.2 applied to FE?
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10. For x0 < x1 < · · · < xn, where n ≥ 2, and k ∈ N, consider the spline
space

S(k) = {s ∈ Ck−1(x0, xn) : s|(xi,xi+1) ∈ Pk, i = 0, . . . , n}.

(a) Show that the only s ∈ S(1) with s(x0) = s(xn) = 0 and such
that for any i ≥ 0, j ≥ 2, i + j ≤ n, s|(xi,xi+j) has j − 1 zeros,
is the zero function. (Hint: Show that if s 6≡ 0, then there exists
i and j as above with s(xi) = 0 and s(xi+j) = 0 and s(xi+1) 6=
0, . . . , s(xi+j−1) 6= 0, and derive a contradiction.)

(b) Show that the only p ∈ P3(a, b) with p(a) = p(b) = 0 and p′′ ≡ 0
is the zero polynomial.

(c) Show that there exists at most one natural cubic spline inter-
polant, i.e., an t ∈ S(3) with t′′(x0) = t′′(xn) = 0 that for some
given y0, . . . , yn satisfies t(xi) = yi (0 ≤ i ≤ n). (Hint: suppose
two, and consider the difference.)

11. Archimedes (250 v. Chr.) obtained upper and lower bounds for π by
measuring the perimeter of regular inscribed or circumscribed polygons
for a circle with radius 1. In this exercise we consider inscribed polygons
only.

(a) Let T0(h) be the perimeter of regular inscribed polygon with n
sides, where nh = 1. Show that T0(h) = 2h−1 sin(πh).

(b) Show that there exist constants (ci) such that ∀m ∈ N

2π − T0(h) =
m∑
i=1

cih
2i +O(h2m+2) (h→ 0).

(c) Determine α1, β1 such that T1(h/2) := α1T0(h/2) + β1T0(h) sat-
isfies

2π − T1(h/2) = O(h4) (h→ 0).

Huygens used this idea already in 1654. Archimes’ measurements
went to n = 96. Assuming that Huygens used these measure-
ments, which we assume to be exact, what were the errors in the
best approximations that they both obtained?
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Figure 2: The inscribed regular polygons for h = 1/8 and h = 1/16.

(d) Improve Huygens, i.e., determine α2, β2 such that T2(h/4) :=
α2T1(h/4) + β2T1(h/2) satisfies

2π − T2(h/4) = O(h6) (h→ 0).

What is the error in T2(1/96)?

12. To approximate
√
a (a > 0) we apply the Newton scheme to

f(x) = x2 − a = 0.

(a) Verify that this yields the following iteration:

xi+1 =
1

2
(xi +

a

xi
).

(b) Show that for any x0 >
√
a, the sequence (xi)i≥0 is monotone

decreasing.

(c) Show that for any 0 < x0 <
√
a, the sequence (xi)i≥1 is monotone

decreasing.

Now we consider the Newton iteration with x0 = 1
2
(1 + a).
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(d) Show that x0 is the result of one step of Newton iteration starting
with “x−1”= 1, and thus that x0 >

√
a.

(e) Show that if for some i ≥ 0, xi−xi+1 < ε, that then xi+1−
√
a < ε,

which provides a useful stopping criterion.

13. Construct the 3-point Radau formula for the interval [0, 1], being thus
the quadrature formula that is exact on P2 and that has 0 as one of its
three quadrature points.

14. (Interpolation in general). Let x0, . . . , xn be different points in [a, b],
r0, . . . , rn ∈ N = {1, 2, . . .}, and N := −1 +

∑n
i=0 ri. Our goal is to

show the following:

For any {yi,j : 0 ≤ i ≤ n, 1 ≤ j ≤ ri} ⊂ R,
∃! p ∈ PN with p(j−1)(xi) = yi,j (0 ≤ i ≤ n, 1 ≤ j ≤ ri).

(4)

(a) Show that (4) can have at most one solution.

(b) Assume that p is a solution of (4). For one i, add one data point
yi,ri+1. Show that the solution q of the new interpolation problem
can be found in the form

q(x) = p(x) + c
n∏
i=0

(x− xi)ri .

Now finish the proof of (4).

(c) For an f that, for 0 ≤ i ≤ n, is ri − 1 times continuously differ-
entiable at xi, and that is (N + 1) times differentiable on (a, b),
and with p ∈ PN the solution of the interpolation problem with
yi,j := f (j−1)(xi) (1 ≤ j ≤ ri), show that for any x ∈ (a, b), there
exists a ξ = ξ(x) ∈ [a, b] with

f(x)− p(x) =
f (N+1)(ξ)

(N + 1)!

n∏
i=0

(x− xi)ri .

(Generalizes remainder terms for Lagrange, Hermite and Taylor
polynomials.)
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(d) Show that the interpolation problem where in (4) one or more
conditions for j < ri are omitted, is generally not well-posed:
With N + 1 being the number of imposed conditions, there might
be no or multiple solutions in PN . (Hint: An example can already
be found for n = 0).

15. With Q(f) denoting the (n + 1)-point Radau formula from [Book,
(10.27)] (where xk should be read as x∗k), show that∫ b

a

w(x)f(x) dx−Q(f) =
f (2n+1)(ξ)

(2n+ 1)!

∫ b

a

w(x)(x− a)
n∏
k=1

(x− x∗k)2 dx.

for some ξ ∈ [a, b]. (Hint: Use exer. 14).

16. Let ‖ · ‖ be a submultiplicative norm on Rn×n (or Cn×n), i.e. ‖AB‖ ≤
‖A‖‖B‖), for example a matrix norm induced by a vector norm (‖A‖ :=

sup06=~x∈Rn
‖Ax‖
‖x‖ ), sometimes also called a subordinate norm.

Show that if ‖T‖ < 1, then I − T is invertible, (I − T )−1 =
∑∞

n=0 T
n,

‖(I − T )−1‖ ≤ (1− ‖T‖)−1, and ‖I − (I − T )−1‖ ≤ ‖T‖
1−‖T‖ .

17. Consider the 3-term recursion α2vn+2+α1vn+1+α0vn = 0, n = 0, 1, . . ..
Give an explicit expression of vn in terms of the starting values v0, v1
and the roots of α2z

2 +α1z+α0 = 0. Distinguish between the cases of
having two different roots, or one double root.

18. Let the roots z1, . . . , zk of ρ(z) = zk +αk−1z
k−1 + . . . α1z+α0 be single

and unequal to zero. Give the eigenvalues of the k × k companion
matrix

A :=


0 1 · · · 0
0 0 · · · 0
...

...
. . . . . .

...
0 0 · · · 1
−α0 −α1 · · · −αk−1


and determine corresponding eigenvectors.

Prove that supp∈N ‖Ap‖ <∞ if and only if |zi| ≤ 1 for 1 ≤ i ≤ k.

What is the corresponding statement when ρ has one or more multiple
roots?
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19. We equip C[a, b] with inner product 〈f, g〉 =
∫ b
a
w(x)f(x)g(x)dx where

w is a valid weight function. With q0 := 1, q1 := x− 〈x,q0〉
〈q0,q0〉 , we define

qn+1 :=
(
x− 〈xqn, qn〉

〈qn, qn〉

)
qn −

〈xqn, qn−1〉
〈qn−1, qn−1〉

qn−1 (n ∈ N = {1, 2, . . .})

(a) Show inductively that {q0, . . . , qn} is an orthogonal basis for Pn
with qn − xn ∈ Pn−1.
Hints: Show qn+1 ⊥ Pn−2, qn+1 ⊥ qn, qn+1 ⊥ qn−1.

(b) Prove that qn has n different roots on (a, b).

(c) For n ≥ 1, show that 〈xqn,qn−1〉
〈qn−1,qn−1〉 = 〈qn,qn〉

〈qn−1,qn−1〉 > 0.

(d) For n ≥ 1, show that the roots of qn and qn−1 interlace, meaning
that between any pair of consecutive roots of qn, there is a root of
qn−1, and that between any pair of consecutive roots of qn−1 there
is a root of qn.

Figure 3: Interlacing of roots of q3 and q4.

Hints: Noting that this property holds for n = 1 by definition, let
it be true for some n ≥ 1. Use 19c to show that at each root x of
qn, it holds that

qn+1(x)qn−1(x) < 0. (5)

Conclude from lim|z|→∞ qn+1(z)qn−1(z) =∞ (why?), (5), and the
induction hypothesis the existence of roots of qn+1 left and right
of the interval spanned by the roots of qn. Next, again from (5)
and the induction hypothesis, conclude the existence of a root of
qn+1 between any pair of consecutive roots of qn.

20. Let f ∈ Cn+1[a, b], and let p be the Lagrange interpolation polynomial
of f on {x0, . . . , xn} ⊂ [a, b]. In the expression

f(x)− p(x) = πn+1(x)
f (n+1)(ξ(x))

(n+ 1)!
for x ∈ [a, b],

for x ∈ {x0, . . . , xn} the choice of ξ(x) ∈ [a, b] is arbitrary. In this
exercise it will be shown that there exists a choice which makes

x 7→ f (n+1)(ξ(x)) ∈ C[a, b], (6)
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and an application of this result will be given.

Note that g(x) := f(x)−p(x)
πn+1(x)

(n+1)! is continuous at x ∈ [a, b]\{x0, . . . , xn}.

(a) Show that

lim
x→xi

g(xi) =
(n+ 1)!∏n

j=1, j 6=i(xi − xj)
(f ′(xi)− p′(xi)),

meaning that g has a unique extension to a function in C[a, b].

(b) Show that there exists a ξ(xi) ∈ [a, b] with g(xi) = f (n+1)(ξ(xi))
(use the intermediate value theorem), so that (6) is valid.

(c) Using the definition of a derivative, show that (πn+1(x)g(x))′|x=xi =
π′n+1(xi)g(xi), and conclude that

f ′(xi)− p′(xi) = π′n+1(xi)
f (n+1)(ξ(xi))

(n+ 1)!
.

(Note that this improves upon Book §6.5).

21. (Euler backward) To approximate the solution of the usual initial value
problem, consider the scheme

yn+1 = yn + hf(xn+1, yn+1).

(y0 = y(x0)).

(a) Define a truncation error Tn, and show that Tn = O(h).

(b) With en := y(xn) − yn, prove that when hLf < 1, |en| = O(h),
uniformly in nh ≤ XM − x0.
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