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FURTHER RESULTS ON A SPACE-TIME FOSLS FORMULATION OF

PARABOLIC PDES

GREGOR GANTNER AND ROB STEVENSON

ABSTRACT. In [2019, Space-time least-squares finite elements for parabolic equa-
tions, arXiv:1911.01942] by Führer& Karkulik, well-posedness of a space-time First-
Order System Least-Squares formulation of the heat equation was proven. In the
present work, this result is generalized to general second order parabolic PDEs
with possibly inhomogenoeus boundary conditions, and plain convergence of a
standard adaptive finite element method driven by the least-squares estimator is
demonstrated. The proof of the latter easily extends to a large class of least-squares
formulations.

1. INTRODUCTION

Currently, there is a growing interest in simultaneous space-time methods for
solving parabolic evolution equations originally introduced in [BJ89, BJ90], see
e.g., [GK11, And13, UP14, Ste15, GN16, LMN16, SS17, DS18, NS19, RS18, VR18,
SZ18, FK19]. Main reasons are that, compared to classical time marching methods,
space-time methods are much better suited for a massively parallel implementa-
tion, are guaranteed to give quasi-optimal approximations from the trial space
that is employed, have the potential to drive optimally converging simultanously
space-time adaptive refinement routines, and they provide enhanced possibili-
ties for reduced order modelling of parameter-dependent problems. On the other
hand, space-time methods require more storage. This disadvantage however van-
ishes for problems of optimal control or data assimilation, for which the solution
is needed simultaneously over the whole time interval anyway.

The common space-time variational formulation of a parabolic equation results
in a bilinear form that is non-coercive. For the heat equation ∂tu − ∆xu = f ,

u(0, ·) = u0 on a time-space cylinder I × Ω, where I := (0, T) and Ω ⊂ R
d,

with homogeneous Dirichlet boundary conditions, the corresponding operator is
a boundedly invertible linear mapping between X and Y′ × L2(Ω), where X :=
L2(I; H1

0(Ω)) ∩ H1(I; H−1(Ω)) and Y := L2(I; H1
0(Ω)). As a consequence of the

non-coercivity, it requires a careful selection of the test space to arrive at a stable
Petrov–Galerkin system whose solution is a quasi-best approximation from the
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trial space. To relax the conditions on the test space, a minimal residual Petrov–
Galerkin discretization was introduced in [And13]. It has an equivalent interpreta-
tion as a Galerkin discretization of an extended self-adjoint, indefinite mixed sys-
tem, with the Riesz lift of the residual of the primal variable from the ‘trial space’
being an additional variable from the ‘test space’. In [SW20], uniform inf-sup sta-
bility was demonstrated for both trial and test space being finite element spaces
of comparable dimensions, w.r.t. general partitions of the space-time cylinder into
prismatic elements, which however must be decomposable into ‘time-slabs’. The
latter means that a possibly non-uniform partition of the time interval must be
global in space, which does not align with the aim to permit fully-flexible local
refinements in space and time.

In the recent work [FK19] by Führer and Karkulik, for the aforementioned heat
equation with forcing term f ∈ L2(I × Ω) and initial condition u0 ∈ L2(Ω), it was

proven that with Ũ0 := {u ∈ X × L2(I × Ω)d : div u ∈ L2(I × Ω)} equipped with
the graph norm,

argmin
u=(u1,u2)∈Ũ0

‖u2 +∇xu1‖
2
L2(I×Ω)d + ‖div u2 − f‖2

L2(I×Ω) + ‖u(0, ·)− u0‖
2
L2(Ω)

is a well-posed First-Order System Least-Squares (FOSLS) formulation for the pair
of the solution u = u1 and (minus) its spatial gradient −∇xu = u2. This formula-
tion can already be found in [BG09] without a proof of its well-posedness though.

The FOSLS formulation from [FK19] has major advantages. The Euler–Lagrange
equations resulting from the minimization problem correspond to a symmetric,

coercive bilinear form on Ũ0 × Ũ0, so that the Galerkin approximation from any
conforming trial space is a quasi-best approximation from that space. In other
words, there are no issues with stability or restrictions on the partitions of the
space-time cylinder underlying the finite element spaces. The minimization is
w.r.t. L2-norms, so that the arising stiffness matrix is computable and sparse and
can be easily computed. The least-squares functional provides an a posteriori esti-

mator that is equivalent to the norm on Ũ0 of the error. The squared estimator is a
sum of squared local error indicators associated to the individual elements, which
immediately suggests an adaptive solution method.

Considering general least-squares methods, we mention that although a least-
squares estimator is efficient and reliable, and the resulting adaptive routine is
generally observed to converge, even with an optimal rate, a proof of (Q-linear)
convergence of such an adaptive routine has only been given for a FOSLS for-
mulation of Poisson’s equation with Dörfler marking for a bulk parameter that is
sufficiently close to 1, see [CPB17].

A disadvantage of the FOSLS method from [FK19] is that the graph norm on Ũ0

for the error in the pair (u,−∇xu) is considerably stronger than the X-norm for
the error in u. This appears from the low convergence rates reported in [FK19] for
the adaptive routine with standard Lagrange finite element spaces applied to non-
smooth solutions, e.g., as those that result from a discontinuity in the transition of
initial and boundary data. Furthermore, as far as we know, an open problem is the

development of optimal preconditioners for the space Ũ0, which is an important
issue in view of the fact that with space-time methods, a PDE posed on a (d + 1)-
dimensional domain has to be solved.
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In the current work, we contribute to a further development of the FOSLS
method from [FK19]. In particular,

• we show that Ũ0 is isomorphic to U0 := {u ∈ L2(I; H1
0(Ω)) × L2(I ×

Ω)d : div u ∈ L2(I × Ω)} equipped with the graph norm (Proposition 2.1),
which circumvents the dual norm incorporated in the definition of X. It
is a key ingredient in the derivation of most of the other results from this
work;

• we show that the FOSLS method applies to general parabolic equations
of second order with homogeneous Dirichlet, homogeneous Neumann, or
mixed homogeneous Dirichlet and Neumann boundary conditions (Theo-
rem 2.3 and Proposition 2.5);

• we extend the FOSLS method to forcing functions f 6∈ L2(I × Ω) (Propo-
sition 2.5);

• by appending an additional term to the least-squares functional measuring
the squared error in the boundary data, we extend the FOSLS method to
inhomogeneous Dirichlet (Theorem 2.8) or Neumann data (Theorem 2.9),
where, however, the norms in which these errors are measured are not of
L2-type;

• finally, using the framework developed by Siebert ([Sie11]), which par-
ticularly allows for relatively general marking strategies (Remark 3.2), we
prove plain convergence (Theorem 3.3) of the adaptive FOSLS method (Al-
gorithm 3.1) for homogeneous Dirichlet boundary conditions driven by
the least-squares estimator. This convergence proof generalizes to a large
class of least-squares formulations (Remark 3.7), including, e.g., the afore-
mentioned FOSLS formulation of the Poisson model problem. Indepen-
dently, [FP20] has recently used a similar proof idea to derive convergence
of various least-squares formulations, excluding however the considered
space-time FOSLS.

The remainder of the current section fixes some notation (Subsection 1.1), re-
calls abstract parabolic evolution equations (Subsection 1.2), and introduces the
particular instance of parabolic PDEs of second order (Subsection 1.3) that will be
considered throughout the manuscript.

1.1. Notation. In this work, by C . D we will mean that C can be bounded by
a multiple of D, independently of parameters on which C and D may depend.
Obviously, C & D is defined as D . C, and C h D as C . D and C & D.

For normed linear spaces E and F, we will denote by L(E, F) the normed linear
space of bounded linear mappings E → F, and by Lis(E, F) its subset of bound-
edly invertible linear mappings E → F. We write E →֒ F to denote that E is
continuously embedded into F. For simplicity only, we exclusively consider linear
spaces over the scalar field R.

For a Hilbert space W that is densely and continuously embedded in a space
of type L2(Σ), we mostly use the scalar product on L2(Σ) to denote its unique
extension to the duality pairing on W ′ ×W.

1.2. Abstract parabolic evolution equation. Let V and H be separable Hilbert
spaces such that V →֒ H with dense and compact embedding. Identifying H
with its dual, we obtain the Gelfand triple V →֒ H h H′ →֒ V′. For almost all
t ∈ I := (0, T), let a(t; ·, ·) be a bilinear form on V × V such that for any µ, λ ∈ V,
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t 7→ a(t; µ, λ) is measurable on I, and such that for some constant ̺ ≥ 0, for
a.e. t ∈ I, and all µ, λ,

|a(t; µ, λ)| . ‖µ‖V‖λ‖V (boundedness),

a(t; µ, µ) + ̺‖µ‖2 & ‖µ‖2
V (Gårding inequality).

With (A(t)·)(·) := a(t; ·, ·), we consider the parabolic initial value problem of finding
u : I → V such that

{
du
dt (t) + A(t)u(t) = g(t) for a.e. t ∈ I,

u(0) = u0.

A proof of the following result is found in [SS09], see also [Wlo82, Chapter IV,
§26] and [DL92, Chapter XVIII, §3].

Theorem 1.1. With X := L2(I; V) ∩ H1(I; V′), Y := L2(I; V),

(Bu)(v) :=
∫

I

{
(∂tu(t, ·))(v(t, ·))+ a(t; u(t), v(t))

}
dt,

and γ0 := u 7→ u|t=0, it holds that
[

B
γ0

]
∈ Lis

(
X, (Y × H)′

)
,

with upper bounds for the norm of the operator and that of its inverse only dependent on
upper bounds for the boundedness constant, the reciprocal of the constant in the Gårding
inequality, and ̺.

So for (g, u0) ∈ Y′ × H, a well-posed variational formulation of the parabolic
problem reads as finding u ∈ X such that (Bu, γ0u) = (g, u0).

1.3. Parabolic equations of second order. For a bounded Lipschitz domain Ω ⊂
R

d with outer normal nx ∈ R
d, relatively open subsets ΓD and ΓN of ∂Ω with

ΓD ∩ ΓN = ∅ and ΓD ∪ ΓN = ∂Ω, b ∈ L∞(I × Ω)d, c ∈ L∞(I × Ω), and A =
A⊤ ∈ L∞(I × Ω)d×d uniformly positive definite, we consider the problem of find-
ing u : I × Ω → R that for given data f , φ, uD, and u0 satisfies

(1.1)





∂tu − divx A∇xu + b · ∇xu + cu = f on I × Ω,
(A∇xu) · nx = φ on I × ΓN ,

u = uD on I × ΓD,
u(0, ·) = u0 on Ω.

Taking until Section 2.2 a homogeneous Dirichlet datum uD = 0, a variational

formulation of (1.1) leads to a problem as in Theorem 1.1, where V := H1
D(Ω) =

{u ∈ H1(Ω) : u|ΓD
= 0} and H := L2(Ω), so that

X = L2(I; H1
D(Ω)) ∩ H1(I; H1

D(Ω)′), Y = L2(I; H1
D(Ω)),

the bilinear form reads as

a(t; µ, λ) :=
∫

Ω
A(t, x)∇µ(x) · ∇λ(x) + (b(t, x) · ∇µ(x) + c(t, x)µ(x))λ(x) dx,

and the forcing term reads as

g(v) :=
∫

I×Ω
f v dx dt +

∫

I×ΓN

φv ds.(1.2)
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As follows from Theorem 1.1, this variational problem is actually well-posed for
any g ∈ Y′. For a discussion in which sense the solution of the variational problem
can be interpreted as a solution of (1.1), we refer to [DL92, pages 524–528].

Concerning the bilinear form a, both its boundedness constant, the reciprocal
of the constant in the Gårding inequality, and ̺ can be bounded in terms of upper

bounds for ‖b‖L∞(I×Ω)d , ‖c‖L∞(I×Ω), ‖A‖L∞(I×Ω)d×d, and ‖A−1‖L∞(I×Ω)d×d.

2. FORMULATION AS A FIRST-ORDER SYSTEM

2.1. Homogeneous boundary conditions. For the case that g ∈ L2(I × Ω), we
will derive a system for u = (u1, u2) = (u,−A∇xu) with u being the solution
of the variational problem (Bu, γ0u) = (g, u0) from Section 1.3. Recall that such
a problem arises from (1.1) when besides uD = 0, it holds that f ∈ L2(I × Ω)
and φ = 0. Generally at the expense of having to solve an additional (elliptic)
PDE, general g ∈ Y′ (i.e. f 6∈ L2(I × Ω) and/or Neumann datum φ 6= 0) will be
handled as well.

Let

U := {u = (u1, u2) ∈ L2(I; H1(Ω))× L2(I × Ω)d : div u ∈ L2(I × Ω)}

equipped with graph norm

‖u‖2
U := ‖u1‖

2
L2(I;H1(Ω))

+ ‖u2‖
2
L2(I;L2(Ω)d)

+ ‖div u‖2
L2(I×Ω)).(2.1)

Knowing that div : L2(I × Ω)d+1 ⊃ dom(div) → L2(I × Ω) is a closed linear
operator (a necessary condition for H(div; I × Ω) being a Hilbert space), from

L2(I; H1(Ω))× L2(I × Ω)d →֒ L2(I × Ω)d+1, it follows that div : L2(I; H1(Ω))×
L2(I × Ω)d ⊃ dom(div) → L2(I × Ω) is a closed linear operator. Together with

the facts that L2(I; H1(Ω)) × L2(I × Ω)d and L2(I × Ω) are Hilbert spaces, this
shows that U is a Hilbert space.

With n = (nt, nx) denoting the outer normal vector on the boundary of I × Ω,

using that u 7→ u|I×ΓN
· n ∈ L

(
H(div; I × Ω), H

1
2
00(I × ΓN)

′
)

we define the closed
subspace U0 of U by

U0 := {u ∈ L2(I; H1
D(Ω))× L2(I × Ω)d : div u ∈ L2(I × Ω), u|I×ΓN

· n = 0}.

We start with showing that U0 is isomorphic to a seemingly smaller space that
was employed in [FK19].

Proposition 2.1. It holds that

U0 h Ũ0 := {u ∈ X × L2(I × Ω)d : div u ∈ L2(I × Ω), u|I×ΓN
· n = 0},

equipped with the graph norm

‖u‖2
Ũ0

:= ‖u1‖
2
L2(I;H1(Ω))

+ ‖∂tu1‖
2
L2(I;H1

D(Ω)′)
+ ‖u2‖

2
L2(I;L2(Ω)d)

+ ‖div u‖2
L2(I×Ω).

This proposition is a direct consequence of the following lemma.

Lemma 2.2. For u ∈ H0,I×ΓN
(div; I × Ω) := {u ∈ H(div; I × Ω) : u|I×ΓN

· n = 0},

it holds that ∂tu1 ∈ L2(I; H1
D(Ω)′) with

‖∂tu1‖L2(I;H1
D(Ω)′) ≤ ‖u‖H(div;I×Ω).
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Proof. For smooth u ∈ H0,I×ΓN
(div; I × Ω), we have div u = ∂tu1 + divx u2. For

smooth v ∈ L2(I; H1
D(Ω)) we have

∫

I×Ω
u2 · ∇xv dx dt = −

∫

I×Ω
v divx u2 dx dt +

∫

I×ΓN

u2 · nx v ds

= −
∫

I×Ω
v divx u2 dx dt +

∫

I×ΓN

u · n v ds

= −
∫

I×Ω
v divx u2 dx dt.

Since the set of such v is dense in L2(I; H1
D(Ω)), we conclude

‖∂tu1‖L2(I;H1
D(Ω)′) ≤ ‖div u‖L2(I;H1

D(Ω)′) + ‖divx u2‖L2(I;H1
D(Ω)′)

≤ ‖div u‖L2(I×Ω) + ‖u2‖L2(I×Ω)d ≤ ‖u‖U .

Since the set of such u is dense in H0,I×ΓN
(div; I × Ω), the proof is completed. �

The following theorem generalizes [FK19], see Remark 2.6 for a discussion.

Theorem 2.3 (homogeneous Dirichlet). It holds that

G : (u1, u2) 7→ (u2 + A∇xu1, div u − b · A−1u2 + cu1, u1(0, ·))

∈ Lis(U0, L2(I × Ω)d × L2(I × Ω)× L2(Ω)).

Remark 2.4. Analogously, one can prove the same result for (u1, u2) 7→ (u2 +
A∇xu1, div u + b · ∇xu1 + cu1, u1(0, ·)).

Proof. Boundedness of G follows from the definition of U0, and the fact that X →֒
C( Ī; L2(Ω)) ([LM72a, Chapter 1, Theorem 3.1]) in combination with Proposition 2.1.

As we have seen in the proof of Lemma 2.2, for u ∈ U0 and v ∈ L2(I; H1
D(Ω)),

it holds that (−∇′
xu2)(v) =

∫
I×Ω

v divx u2 dx dt. From Theorem 1.1 we infer that

‖u1‖L2(I;H1(Ω)) ≤ ‖u1‖X . ‖Bu1‖L2(I;H1
D(Ω)′) + ‖u1(0, ·)‖L2(Ω),

where

‖Bu1‖L2(I;H1
D(Ω)′) = ‖∂tu1 +∇′

xA∇xu1 + b · ∇xu1 + cu1‖L2(I;H1
D(Ω)′)

≤ ‖∂tu1 −∇′
xu2 + b · ∇xu1 + cu1‖L2(I;H1

D(Ω)′) + ‖∇′
x(u2 + A∇xu1)‖L2(I;H1

D(Ω)′)

. ‖div u + b · ∇xu1 + cu1‖L2(I×Ω) + ‖u2 + A∇xu1‖L2(I×Ω)d

. ‖div u − b · A−1u2 + cu1‖L2(I×Ω) + ‖u2 + A∇xu1‖L2(I×Ω)d.

From

‖u2‖L2(I×Ω)d ≤ ‖u2 + A∇xu1‖L2(I×Ω)d + ‖A∇xu1‖L2(I×Ω)d

. ‖u2 + A∇xu1‖L2(I×Ω)d + ‖u1‖L2(I;H1(Ω)),

and

‖div u‖L2(I×Ω). ‖div u−b · A−1u2+cu1‖L2(I×Ω)+‖u‖L2(I×Ω)d+1,

we conclude that ‖u‖U . ‖Gu‖L2(I×Ω)d×L2(I×Ω)×L2(Ω), and thus in particular that

G is injective.
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Given (q, h, u0) ∈ L2(I × Ω)d × L2(I × Ω)× L2(Ω), let u1 ∈ X be the solution
of[

B
γ0

]
u1 =

[
v 7→

∫
I×Ω

(h + b · A−1q)v + q · ∇xv dx dt

u0

]
∈ L2(I; H1

D(Ω)′)× L2(Ω),

so that for v ∈ L2(I; H1
D(Ω))

∫

I×Ω
∂tu1 v + A∇xu1 · ∇xv + b · ∇xu1 v + c u1 v dx dt

=
∫

I×Ω
(h + b · A−1q)v + q · ∇xv dx dt,

and thus for u2 := q − A∇xu1 ∈ L2(I × Ω)d

∫

I×Ω
∂tu1 v − u2 · ∇xv dx dt =

∫

I×Ω
(h + b · A−1u2 − cu1)︸ ︷︷ ︸

=:h̃∈L2(I×Ω)

v dx dt.

For smooth v ∈ H1(I ×Ω) that vanish at ∂(I ×Ω) \ I ×ΓN , one has
∫

I×Ω
∂tu1 v dx dt

=−
∫

I×Ω
u1∂tv dx dt, and therefore

∫
I×Ω

∂tu1 v−u2 ·∇xv dx dt = −
∫

I×Ω
u ·∇v dx dt,

which shows div u = h̃. Moreover, for such v, it holds that
∫

I×ΓN

u · n v ds =
∫

I×Ω
v div u + u · ∇v dx dt =

∫

I×Ω
vh̃ + u1∂tv + u2 · ∇xv dx dt

=
∫

I×Ω
vh̃ − (∂tu1 v − u2 · ∇xv) dx dt = 0,

which proves that u|I×ΓN
·n = 0, and so u ∈ U0. We conclude that Gu = (q, h, u0),

i.e., G is surjective, which completes the proof. �

Next, using Theorem 2.3, we show that the well-posed standard variational
formulation of the parabolic problem discussed in Subsections 1.2–1.3, thus with
homogeneous Dirichlet datum uD = 0, has an equivalent formulation as a well-
posed first-order system. As a preparation, we note that any forcing term g ∈
L2(I; H1

D(Ω)′) can (non-uniquely) be written in the form

(2.2) g(v) =
∫

I×Ω
g1v + g2 · ∇xv dx dt for all v ∈ L2(I; H1

D(Ω)),

for some g1 ∈ L2(I; L2(Ω)) and g2 ∈ L2(I; L2(Ω)d). Take, e.g., g1 = w and g2 =
∇xw with w ∈ L2(I; H1

D(Ω)) being the Riesz lift of g defined by

(2.3)
∫

I×Ω
wv +∇xw · ∇xv dx dt = g(v) for all v ∈ L2(I; H1

D(Ω)).

Proposition 2.5. With a splitting of g ∈ L2(I; H1
D(Ω)′) as in (2.2), where (g1, g2) ∈

L2(I; L2(Ω))× L2(I; L2(Ω)d), and u0 ∈ L2(Ω), it holds that u1 ∈ X = L2(I; H1
D(Ω))∩

H1(I; H1
D(Ω)′) solves (Bu1, γ0u1) = (g, u0) and u2 = −A∇xu1 + g2 if and only if

u = (u1, u2) ∈ U0 solves

Gu = (g2, g1 − b · A−1g2, u0).

Proof. With u2 = −A∇xu1 + g2, i.e., (Gu)1 = g2, the equation Bu1 = g, i.e.,
∫

I×Ω
(∂tu1 + b · ∇xu1 + cu1)v + A∇xu1 · ∇xv dx dt = g(v) (v ∈ L2(I; H1

D(Ω))),
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is equivalent to

∫

I×Ω
∂tu1v − u2 · ∇xv dx dt =

∫

I×Ω
(b · A−1(u2 − g2)− cu1 + g1)︸ ︷︷ ︸

=:g̃∈L2(I×Ω)

v dx dt(2.4)

(v ∈ L2(I; H1
D(Ω))).

As we have seen in the last paragraph of the proof of Theorem 2.3, (2.4) implies

div u = g̃, i.e., (Gu)2 = g1 − b · A−1g2, and u|I×ΓN
= 0.

Conversely, let u ∈ U0 satisfy Gu = (g2, g1 − b · A−1g2, u0). Then, Proposi-
tion 2.1 shows that u1 ∈ X. Since div u = g̃, it remains to show that

∫

I×Ω
∂tu1v − u2 · ∇xv dx dt =

∫

I×Ω
v div u dx dt (v ∈ L2(I; H1

D(Ω))).

The latter relation is already valid for arbitrary u ∈ H0,I×ΓN
(div; I × Ω) and v ∈

L2(I; H1
D(Ω)). Indeed, for smooth u and v in these spaces, it follows by integration

by parts, and so by using Lemma 2.2, it follows by the density of the sets of those
functions in these spaces. �

When f ∈ L2(I × Ω) and φ = 0 in (1.1), one has g = f ∈ L2(I × Ω) and one ob-

viously takes (g1, g2) = (g, 0) in the previous proposition. For g ∈ L2(I; H1
D(Ω)′) \

L2(I × Ω) (i.e., f 6∈ L2(I × Ω) and/or φ 6= 0) generally the splitting of g requires
solving (2.3). For the case that ΓN = ∂Ω, an alternative approach for inhomoge-
neous Neumann datum φ 6= 0 will be presented in Theorem 2.9.

Remark 2.6. Theorem 2.3 extends the crucial result from [FK19]. For the case that
A = Id, b = 0 = c, and ΓD = ∂Ω, there it was shown that the harmlessly dif-

ferent operator G̃ : u 7→ G(u,−u2) : Ũ0 7→ L2(I; L2(Ω)d)× L2(I; L2(Ω))× L2(Ω)

is in Lis(Ũ0, ran G̃), and that ran G̃ ⊇ {0} × L2(I; L2(Ω)) × L2(Ω). We showed

that G, and thus G̃, is also surjective. Notice that for well-posedness of a least-
squares formulation, this surjectivity is not required. Indeed, bounded invertibil-
ity of the operator between its domain and its range is equivalent to boundedness
and coercivity of the bilinear form corresponding to the Euler–Lagrange equations
resulting from the least-squares functional.

Our motivation to replace u2 by −u2 is that ∂tu1 + divx u2 is the divergence of

the vector field u : I × Ω → R
d+1. When imposing, as we do, that the latter di-

vergence is in L2(I × Ω), we know that u has a normal trace at ∂(I × Ω), which
allowed an easy extension to homogeneous Neumann boundary conditions. Fur-

thermore, in Proposition 2.1, we made the observation that Ũ0 h U0, which freed

ourselves from the dual norm which is part of the definition of Ũ0. This will also
play an essential role in the proofs of Theorem 2.8 and 2.9 dealing with inhomoge-
neous boundary conditions, and that of Theorem 3.3 concerning plain convergence
of a standard adaptive algorithm.

2.2. Inhomogeneous boundary conditions. We extend the first-order formula-
tion to cover both inhomogeneous (pure) Dirichlet boundary conditions and in-
homogeneous (pure) Neumann boundary conditions, the latter now without the
need to compute a Riesz lift of the boundary datum.
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The following lemma is essentially a slight generalization of [Ste14, Theorem 2.1].
Thinking of S as being a trace operator, it shows how to append (essential) inho-
mogeneous boundary conditions to an equation that is well-posed for the corre-
sponding homogeneous boundary conditions.

Lemma 2.7. Let X and Y2 be Banach spaces, and Y1 be a normed linear space. Let S ∈
L(X ,Y2) be surjective, let F ∈ L(X ,Y1) be such that with X0 := {x ∈ X : Sx = 0},

F|X0
∈ Lis(X0,Y1). Then,

[
F
S

]
∈ Lis

(
X ,Y1 × Y2

)
.

Proof. Knowing that S maps the open unit ball of X onto an open neighborhood
of 0 ∈ Y2 (according to the open mapping theorem), there exists a constant r > 0
such that for any y ∈ Y2 there exists an x ∈ X with Sx = y and ‖x‖X ≤ r‖y‖Y2

.
Denoting this mapping y 7→ x by E, from ran(Id − ES) ⊆ X0 we have for x ∈ X

‖x‖X ≤ ‖ESx‖X + ‖(Id − ES)x‖X . ‖Sx‖Y2
+ ‖F(Id − ES)x‖Y1

≤ ‖Sx‖Y2
+ ‖Fx‖Y1

+ ‖FESx‖Y1
. ‖Sx‖Y2

+ ‖Fx‖Y1
. ‖x‖X .

Given (y1, y2) ∈ Y1 × Y2, let x2 ∈ X be such that Sx2 = y2, and x0 ∈ X0 be such

that Fx0 = y1 − Fx2. Then,

[
F
S

]
(x0 + x2) =

[
y1

y2

]
showing that

[
F
S

]
is surjective,

which completes the proof. �

In combination with Theorem 2.3, Lemma 2.7 allows to prove the following
theorem for inhomogeneous pure Dirichlet boundary conditions.

Theorem 2.8 (Inhomogeneous (pure) Dirichlet). It holds that

GD : u = (u1, u2) 7→ (u2 + A∇xu1, div u − b · A−1u2 + cu1, u1(0, ·), u1|I×∂Ω)

∈ Lis
(

U, L2(I × Ω)d × L2(I × Ω)× L2(Ω)×
(

L2(I; H
1
2 (∂Ω)) ∩ H

1
4 (I; L2(∂Ω))

))
.

Proof. An application of Lemma 2.2 for ΓN = ∅ shows that for u = (u1, u2) ∈ U,

(2.5) ‖u1‖L2(I;H1(Ω))∩H1(I;H−1(Ω)) . ‖u‖U .

We will combine this observation with the fact that

L2(I; H1(Ω)) ∩ H1(I; H−1(Ω)) →֒ C( Ī; L2(Ω)) ∩ H
1
2 (I; L2(Ω)),(2.6)

which follows from [H−1(Ω), H1(Ω)] 1
2
= L2(Ω), see, e.g. [DL92, pages 480 & 494].

As shown in [LM72b, Chapter 4, Theorem 2.1],

u1 7→ u1|I×∂Ω ∈ L
(

L2(I; H1(Ω)) ∩ H
1
2 (I; L2(Ω)), L2(I; H

1
2 (∂Ω)) ∩ H

1
4 (I; L2(∂Ω))

)
.

Together with (2.5)–(2.6), it shows that GD is bounded.
Since in the current case of ΓD = ∂Ω, we have {u ∈ U : u1|I×∂Ω = 0} = U0,

knowing the result of Theorem 2.3, Lemma 2.7 shows that the proof will be com-
pleted once we have shown that

(2.7) U → L2(I; H
1
2 (∂Ω)) ∩ H

1
4 (I; L2(∂Ω)) : u 7→ uD := u1|I×∂Ω is surjective.
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As shown in [Cos90, Thm. 2.9], the mapping

u1 7→ (h, uD) :=
(

v 7→
∫

I×Ω
∂tu1 v +∇xu1 · ∇xv dx dt, u1|I×∂Ω

)

∈ Lis
(

L2(I; H1(Ω)) ∩ H
1
2

00,{0}
(I; L2(Ω)),

(
L2(I; H1

0(Ω)) ∩ H
1
2

00,{T}
(I; L2(Ω))

)′
× L2(I; H

1
2 (∂Ω)) ∩ H

1
4 (I; L2(∂Ω))

)
,

where, with H1
0,{0}

(I) := {w ∈ H1(I) : w(0) = 0}, H
1
2

00,{0}
(I) := [L2(I), H1

0,{0}
(I)] 1

2
,

with a similar definition of H
1
2

00,{T}
(I). For given h and uD, the corresponding u1

is in L2(I; H1(Ω)). Taking h ∈ L2(I; L2(Ω)) (e.g., h = 0) and u2 = −∇xu1 ∈
L2(I × Ω)d, from

∫
I×Ω

∂tu1 v − u2 · ∇xv dx dt =
∫

I×Ω
hv dx dt for v ∈ D(I × Ω) ⊂

L2(I; H1
0(Ω)) ∩ H

1
2

00,{T}
(I; L2(Ω)), it follows that div u = h ∈ L2(I × Ω), i.e., (2.7)

is valid. �

Using Theorem 2.8, we formulate the parabolic problem with inhomogeneous
pure Dirichlet boundary conditions as a well-posed first-order system. Let (g1, g2) ∈

L2(I; L2(Ω))× L2(I; L2(Ω)d), u0 ∈ L2(Ω), and uD ∈ L2(I; H
1
2 (∂Ω))∩ H

1
4 (I; L2(∂Ω)),

and set g := v 7→
∫

I×Ω
g1v + g2 · ∇xv dx dt ∈ L2(I; H−1(Ω)). Then the solution

u = (u1, u2) ∈ U of

GDu = (g2, g1 − b · A−1g2, u0, uD),(2.8)

satisfies

(Bu1, γ0u1, u1|I×∂Ω) = (g, u0, uD),

i.e., u1 satisfies the parabolic PDE in standard variational form and both the ini-
tial and Dirichlet boundary condition. Indeed, knowing u2 + A∇xu1 = g2, the
second equation in (2.8) is equivalent to

∫
I×Ω

(∂tu1 + b · ∇xu1 + cu1)v + A∇xu1 ·

∇xv dx dt = g(v) for all v ∈ L2(I; H1
0(Ω)).

Analogously to the case of inhomogeneous pure Dirichlet boundary conditions,
the combination of Theorem 2.3 and Lemma 2.7 allows to prove the following
theorem for inhomogeneous pure Neumann boundary conditions.

Theorem 2.9 (Inhomogeneous (pure) Neumann). It holds that

GN : u = (u1, u2) 7→ (u2 + A∇xu1, div u − b · A−1u2 + cu1, u1(0, ·), u|I×∂Ω · n)

∈ Lis
(

U, L2(I × Ω)d × L2(I × Ω)× L2(Ω)×
(

L2(I; H
1
2 (∂Ω)) ∩ H

1
4 (I; L2(∂Ω))

)′)
.

Proof. Clearly, the first two components of GN are continuous. Recall from (2.5)–
(2.6) that also the third one is bounded, and that ‖u1‖

H
1
2 (I;L2(Ω))

. ‖u‖U . To see

boundedness of the fourth one, we first remark that for smooth u and v on I × Ω,
integration by parts shows that

(2.9)
∫

I×∂Ω
u · n v ds =

∫

I×Ω
u2 · ∇xv + div u v − ∂tu1v dx dt.

As we have seen in the proof of Theorem 2.8, v ∈ L2(I; H
1
2 (∂Ω)) ∩ H

1
4 (I; L2(∂Ω))

has a bounded extension to a v1 ∈ L2(I, H1(Ω)) ∩ H
1
2

00,{0}
(I; L2(Ω)). Equally well
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it has a bounded extension to a v2 ∈ L2(I, H1(Ω)) ∩ H
1
2

00,{T}
(I; L2(Ω)). Taking

a smooth χ : I → [0, 1] with χ ≡ 1 in a neighborhood of 0 and χ ≡ 0 in a
neighborhood of T, and v3(t, x) := χ(t)v1(x, t) + (1 − χ(t))v2(x, t), we obtain

a bounded extension to a v3 ∈ L2(I; H1(Ω)) ∩ H
1
2
00(I; L2(Ω)), where H

1
2
00(I) :=

[L2(I), H1
0(I)] 1

2
. Given such an extension of v ∈ L2(I; H

1
2 (∂Ω)) ∩ H

1
4 (I; L2(∂Ω)),

for u ∈ U the right-hand side of (2.9) can be bounded by a multiple of ‖u‖U

‖v‖
L2(I;H

1
2 (∂Ω))∩H

1
4 (I;L2(∂Ω))

, where the term
∫

I×Ω
∂tu1v3dx dt is bounded via in-

terpolation as follows
∣∣∣
∫

I×Ω
∂tu1v3 dx dt

∣∣∣ . ‖u1‖[L2(I;L2(Ω)),H1(I;L2(Ω))] 1
2

‖v3‖[H1
0 (I;L2(Ω)),L2(I;L2(Ω))] 1

2

h ‖u1‖
H

1
2 (I;L2(Ω))

‖v3‖
H

1
2

00(I;L2(Ω))
. ‖u‖U ‖v‖

L2(I;H
1
2 (∂Ω))∩H

1
4 (I;L2(∂Ω))

.

This yields that GN is bounded.
Since in the current case of ΓN = ∂Ω, we have {u ∈ U : u|I×∂Ω · n = 0} =

U0, knowing the result of Theorem 2.3, Lemma 2.7 shows that the proof will be
completed once we have shown that

(2.10) U →
(

L2(I; H
1
2 (∂Ω)) ∩ H

1
4 (I; L2(∂Ω))

)′
: u 7→ u|I×∂Ω · n is surjective.

In [Cos90, Corollary 3.17], it has been shown that for any ψ ∈
(

L2(I; H
1
2 (∂Ω)) ∩

H
1
4 (I; L2(∂Ω))

)′
there exists a u1 ∈ L2(I; H1(Ω)) ∩ H

1
2
00,{0}

(I; L2(Ω)) with ∂tu1 −

∆xu1 = 0 on I × Ω, and (∇xu1)|I×∂Ω · nx = −ψ. Taking u2 = −∇xu1, it means
div u = 0 and u|I×∂Ω · n = ψ, so that u ∈ U and (2.10) is valid. �

Using Theorem 2.9, we formulate the parabolic problem with inhomogeneous
pure Neumann boundary conditions as a well-posed first-order system. Let (g1, g2) ∈

L2(I; L2(Ω))× L2(I; L2(Ω)d) with g2|I×∂Ω ·nx ∈
(

L2(I; H
1
2 (∂Ω))∩ H

1
4 (I; L2(∂Ω))

)′
,

u0 ∈ L2(Ω), and φ ∈ (L2(I; H
1
2 (∂Ω)) ∩ H

1
4 (I; L2(∂Ω)))′, and set g := v 7→∫

I×Ω
g1v + g2 · ∇xv dx dt ∈ L2(I; H−1(Ω)). Then, the solution u = (u1, u2) ∈ U of

GNu = (g2, g1 − b · A−1g2, u0, g2|I×∂Ω · nx − φ),(2.11)

satisfies

(Bu1, γ0u1, A∇xu1|I×∂Ω · nx) = (g, u0, φ),

i.e., u1 satisfies the parabolic PDE in standard variational form and both the initial
and Neumann boundary condition. Indeed, knowing u2 + A∇xu1 = g2, it holds
that A∇xu1|I×∂Ω · nx = (g2 − u2)|I×∂Ω · nx = φ, and the second equation in (2.11)
is equivalent to

∫
I×Ω

(∂tu1 + b · ∇xu1 + cu1)v + A∇xu1 · ∇xv dx dt = g(v) for all

v ∈ L2(I; H1
0(Ω)).
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3. PLAIN CONVERGENCE OF ADAPTIVE ALGORITHM FOR

HOMOGENEOUS PURE DIRICHLET BOUNDARY CONDITIONS

Consider the setting of Subsection 1.3 with ΓD = ∂Ω and homogeneous Dirich-

let datum uD = 0. Let ( f1, f2) ∈ L2(I; L2(Ω))× L2(I; L2(Ω)d), f := v 7→
∫

I×Ω
f1v

+f2 · ∇xv dx dt ∈ L2(I; H−1(Ω)) and u0 ∈ L2(Ω). Since no Neumann boundary
conditions are present, g from (1.2) coincides with f . Then, with u being the so-
lution u of (1.1), Proposition 2.5 states that u = (u,−A∇xu) ∈ U0 is the unique
solution of

Gu = f,

where

f := (f2, f1 − b · A−1f2, u0) ∈ L := L2(I × Ω)d × L2(I × Ω)× L2(Ω).

For an arbitrary discrete subspace Uδ
0 ⊂ U0, the corresponding least-squares

approximation uδ ∈ Uδ
0 of u is given by

uδ := argmin
v∈Uδ

0

‖f − Gv‖2
L.(3.1)

The resulting Euler–Lagrange equation reads as

〈Guδ, Gv〉L = 〈f, Gv〉L for all v ∈ Uδ
0 .(3.2)

As G is a linear isomorphism, the left-hand side defines an elliptic bilinear form
and the Lax–Milgram lemma indeed guarantees unique solvability of (3.1)–(3.2).

Throughout the remainder of this section, for p ∈ N some fixed polynomial
degree we consider discrete spaces of the form

Uδ
0 := S

p
0 (T

δ)× Sp(T δ)d ⊂ U0

for conforming simplicial meshes T δ of I × Ω, where

Sp(T δ) := {u ∈ C(I × Ω) : u|K polynomial of degree p for all K ∈ T δ},

S
p
0 (T

δ) := {u ∈ Sp(T δ) : u|I×∂Ω = 0}.

In particular, we consider such meshes that can be created by newest vertex bisec-

tion ([Ste08]) starting from a given initial partition T 0.
Finally, we define the reliable and efficient a posteriori error estimator

η(f, uδ) := ‖f − Guδ‖L h ‖u − uδ‖U ,(3.3)

with corresponding error indicators

η(K; f, uδ) := ‖f − Guδ‖L(K) for all K ∈ T δ,(3.4)

where

L(ω) := L2(ω)d × L2(ω)× L2(∂0ω) for all measurable ω ⊆ I × Ω.

Here and throughout the remainder of this section, we use the notation ∂0ω :=
∂ω ∩ ({0} × Ω).

We consider the following adaptive algorithm.

Algorithm 3.1. Input: Right-hand side f ∈ L, initial mesh T 0 = T δ0 , marking function
M : [0, ∞) → [0, ∞) that is continuous at 0 with M(0) = 0.
Loop: For each ℓ = 0, 1, 2, . . . , iterate the following steps (i)–(iv):
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(i) Compute least-squares approximation uℓ = uδℓ of u.

(ii) Compute error indicators η(K; f, uℓ) for all elements K ∈ T ℓ = T δℓ .

(iii) Determine a set of marked elements Mℓ ⊆ T ℓ with the following marking property

max
K∈T ℓ\Mℓ

η(K; f, uℓ) ≤ M( max
K∈Mℓ

η(K; f, uℓ)).

(iv) Generate refined conforming simplicial mesh T ℓ+1 by refining at least all marked

elements Mℓ via newest vertex bisection.

Output: Refined meshes T ℓ, corresponding exact discrete solutions uℓ, and error estima-

tors η(f, uℓ) for all ℓ ∈ N0.

Remark 3.2. The criterion (iii) is satisfied for standard marking strategies:

• Suppose that the Dörfler criterion is used for fixed 0 < θ ≤ 1 , i.e.,

θ η(f, uℓ)2 ≤ ∑
K∈Mℓ

η(K; f, uℓ)2.

While this does not directly imply (iii), with the aim to realize optimal

rates, the set Mℓ is constructed in practice via sorting of the indicators
such that also

max
K∈T ℓ\Mℓ

η(K; f, uℓ) ≤ min
K∈Mℓ

η(K; f, uℓ),

see [PP19]. Then, (iii) holds with M(t) := t.
• Suppose the maximum criterion is used for fixed 0 ≤ θ ≤ 1, i.e.,

Mℓ := {K ∈ T ℓ : η(K; f, uℓ) ≥ (1 − θ) max
K′∈T ℓ

η(K′; f, uℓ)}.

Then, (iii) holds with M(t) := t. To see this, let K ∈ T ℓ \Mℓ and note that

η(K; f, uℓ) < (1 − θ) max
K′∈T ℓ

η(K′; f, uℓ) ≤ min
K′∈Mℓ

η(K′; f, uℓ).

The following theorem states convergence of Algorithm 3.1. For the heat equa-
tion with A = Id, b = 0, and c = 0, the performance of the algorithm has been
numerically investigated in [FK19].

Theorem 3.3 (Convergence for homogeneous (pure) Dirichlet). There holds plain
convergence of the error

‖u − uℓ‖U → 0 as ℓ → ∞.(3.5)

As the considered estimator (3.3) is equivalent to the error, convergence to zero also trans-
fers to the estimator.

Proof. It suffices to verify that the considered problem fits into the abstract frame-
work of [Sie11], which gives sufficient conditions for error convergence. This will
be done in the following three steps.

Step 1: Define another equivalent norm on U0

‖v‖2
U(I×Ω) := ‖v1‖

2
L2(I;H1(Ω))

+ ‖v2‖
2
L2(I;L2(Ω)d)

+ ‖div v‖2
L2(I×Ω) + ‖v1(0, ·)‖2

L2(Ω)

for all v = (v1, v2) ∈ U. Moreover, define the following semi-norms for all mea-
surable subsets ω ⊆ I × Ω

‖v‖2
U(ω) := ‖v1‖

2
L2(ω) + ‖∇xv1‖

2
L2(ω) + ‖v2‖

2
L2(ω) + ‖div v‖2

L2(ω) + ‖v1|∂0ω‖
2
L2(∂0ω).
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The additional term ‖v1|∂0ω‖
2
L2(∂0ω)

will be required to prove local stability (3.11).

The semi-norms are additive as well as absolutely continuous in the sense of [Sie11,
Section 2.1], i.e.,

‖v‖2
U(ω1∪ω2)

= ‖v‖2
U(ω1)

+ ‖v‖2
U(ω2)

for all v ∈ U, ω1, ω2 ⊆ I × Ω

with ω1 ∩ ω2 = ∅;
(3.6)

as well as

lim
|ω|→0

‖v‖2
U(ω) = 0 for all v ∈ U.(3.7)

Remark 3.4. For this proof step it was essential that we got rid of the dual norm in
Proposition 2.1, see also Remark 2.6.

Step 2: We next show a local approximation property in the sense of [Sie11, Sec-
tion 2.2.2], i.e., existence of a dense subspace W ⊆ U equipped with additive semi-
norms ‖ · ‖W(ω), ω ⊆ I × Ω, such that ‖ · ‖W(I×Ω) = ‖ · ‖W , and a corresponding

Πδ ∈ L(W, Uδ
0) with

‖v − Πδv‖U(K) . |K|
q

d+1 ‖v‖W(K) for all v ∈ W, K ∈ T δ,(3.8)

where q > 0 is some fixed exponent. For k := min{k′ ∈ N : k′ ≥ p + 1, k′ > d+1
2 },

let

W := {v = (v1, v2) ∈ Hk(I × Ω)× Hk(I × Ω)d : v1|I×∂Ω = 0} ⊂ U,

and let Iδ ∈ L(Hk(I × Ω), Sp(T δ)) be the standard point-wise interpolation oper-

ator, which is well-defined because of k >
d+1

2 . Then, the operator Πδ := Iδ
d+1 :=

(Iδ, . . . , Iδ) (of length d + 1) is in L(W, Uδ
0), and with Iδ

d defined analogously, it
holds that

‖v − Πδv‖2
U(K) = ‖v1 − Iδv1‖

2
L2(K) + ‖∇x(v1 − Iδv1)‖

2
L2(K) + ‖(v1 − Iδv1)|∂0K‖

2
L2(∂0K)

+ ‖v2 − Iδ
dv2‖

2
L2(K) + ‖div(v − Iδ

d+1v)‖2
L2(K)

. ‖(v1 − Iδv1)|∂0K‖
2
L2(∂0K) + ‖v1 − Iδv1‖

2
H1(K) + ‖v2 − Iδ

dv2‖
2
H1(K).

A standard trace inequality [BS08, Equation (10.3.8)] further shows that

‖(v1 − Iδv1)|∂0K‖
2
L2(∂0K) ≤ ‖(v1 − Iδv1)|∂K‖

2
L2(∂K)

. |K|−
1

d+1 ‖v1 − Iδv1‖
2
L2(K) + |K|

1
d+1 |v1 − Iδv1|

2
H1(K).

To finish the proof, we show for m ∈ {0, 1} and v ∈ Hk(I × Ω) that

‖v − Iδv‖Hm(K) . |K|
p+1−m

d+1 ‖v‖Hk(K).

While this is standard if p + 1 > (d + 1)/2, i.e., k = p + 1, it is not evident if
p + 1 ≤ (d + 1)/2, and we thus provide a short proof. We first assume that K is

the reference simplex, i.e., the convex hull of the canonical basis vectors in R
d+1.

Let ṽ ∈ Pk−1 be the best approximation of v with respect to ‖ · ‖Hk in the space of
polynomials of degree k − 1, and let v̂ ∈ Pp be the best approximation of ṽ with
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respect to ‖ · ‖Hk in the space of polynomials of degree p. The projection property

as well as continuity of Iδ on Hk(K) show that

‖v − Iδv‖Hm(K) = ‖(Id − Iδ)(v − v̂)‖Hm(K)

. ‖v − v̂‖Hk(K) ≤ ‖v − ṽ‖Hk(K) + ‖ṽ − v̂‖Hk(K).

Equivalence of norms on finite-dimensional spaces and two applications of the
Bramble–Hilbert lemma further yield that

‖v − ṽ‖Hk(K) + ‖ṽ − v̂‖Hk(K) h ‖v − ṽ‖Hk(K) + ‖ṽ − v̂‖Hp+1(K)

. ‖v − ṽ‖Hk(K) + |ṽ|Hp+1(K) ≤ ‖v − ṽ‖Hk(K) + |v − ṽ|Hp+1(K) + |v|Hp+1(K)

≤ 2‖v − ṽ‖Hk(K) + |v|Hp+1(K) . |v|Hk(K) + |v|Hp+1(K).

If K is arbitrary, the fact that we use newest vertex bisection allows to apply a
standard scaling argument, which yields that

‖v − Iδv‖Hm(K) . |K|
k−m
d+1 |v|Hk(K) + |K|

p+1−m
d+1 |v|Hp+1(K) . |K|

p+1−m
d+1 ‖v‖Hk(K).

Overall, we thus conclude (3.8) with q = p.

Step 3: With the patch ωδ(K) :=
⋃
{K′ ∈ T δ : K ∩ K′ 6= ∅} of an element

K ∈ T δ, we finally show that the employed error estimator is locally stable as in
[Sie11, Section 2.2.3], i.e.,

η(K; f, uδ) . ‖uδ‖U(ωδ(K)) + ‖D‖
W̃(ωδ(K)) for all K ∈ T δ(3.9)

for a suitable D depending only on the data in a normed space W̃ equipped with
additive and absolutely continuous semi-norms ‖ · ‖

W̃(ω), ω ⊆ I × Ω, such that

‖ · ‖
W̃(I×Ω) = ‖ · ‖

W̃
; as well as strongly reliable as in [Sie11, Section 2.2.3]

〈f − Guδ, Gv〉L . ∑
K∈T δ

η(K; f, uδ)‖v‖U(ωδ(K)) for all v ∈ U.(3.10)

Remark 3.5. Actually, [Sie11] assumes that W̃ = L2(I × Ω). It is, however, straight-
forward to see that our mildly relaxed assumption is already sufficient for the con-
vergence proof. Indeed, local stability is only employed in the elementary [Sie11,
Lemma 3.5].

Local stability (3.9) follows from the triangle inequality

η(K) = η(K; f, uδ) = ‖f − Guδ‖L(K) ≤ ‖f‖L(K) + ‖Guδ‖L(K)

and the following local stability of G

‖Guδ‖2
L(K) . ‖uδ

2‖
2
L2(K) + ‖∇xuδ

1‖
2
L2(K) + ‖div uδ‖2

L2(K) + ‖uδ
1‖

2
L2(K)

+ ‖uδ
1(0, ·)‖2

L2(∂0K) = ‖uδ‖2
U(K).

(3.11)

Strong reliability (3.10) follows from the Cauchy–Schwarz inequality together with
the previous local stability of G

〈f − Guδ, Gv〉L ≤ ∑
K∈T δ

η(K; f, uδ) ‖Gv‖L(K) . ∑
K∈T δ

η(K; f, uδ)‖v‖U(K),

which concludes the proof. �



16 GREGOR GANTNER AND ROB STEVENSON

Remark 3.6. Together with the Céa lemma and with hδ
max := max{|K|1/(d+1) : K ∈

T δ}, Step 2 from the proof particularly yields the a priori estimate

‖u − uδ‖U . inf
v∈Uδ

0

‖u − v‖U ≤ ‖u − Πδu‖U . (hδ
max)

p‖u‖Hk(I×Ω)×Hk(I×Ω)d

whenever the solution u satisfies the additional regularity u ∈ Hk(I ×Ω)× Hk(I ×

Ω)d, where k = min{k′ ∈ N : k′ ≥ p + 1, k′ >
d+1

2 }. Instead of the stan-

dard interpolation operator Iδ, one can also consider the Scott–Zhang operator Ĩδ

from [SZ90] which preserves homogeneous Dirichlet boundary conditions. Then,
[SZ90, Equation (4.3)] gives an alternative local bound for the resulting operator

Π̃δ

‖v − Π̃δv‖U(K) . |K|
p

d+1 ‖v‖Hp+1(ωδ(K))×Hp+1(ωδ(K))d

for all v ∈ Hp+1(I × Ω) × Hp+1(I × Ω)d with v|I×∂Ω = 0 and all K ∈ T δ. In
particular this yields the a priori estimate

‖u − uδ‖U . (hδ
max)

p‖u‖Hp+1(I×Ω)×Hp+1(I×Ω)d(3.12)

under the milder assumption that u ∈ Hp+1(I × Ω)× Hp+1(I × Ω)d. We mention
that [FK19, Theorem 14] already proved the latter inequality in the lowest-order
case p = 1 under even weaker assumptions on u. However, their proof is re-
stricted to simplicial meshes that directly result from a tensor-product mesh [FK19,
Section 4.1.2].

Remark 3.7. (a) We stress that the proof of Theorem 3.3 is relatively abstract in the
sense that it generalizes to a large class of least-squares formulations: Suppose that
U (instead of U0) and L are arbitrary Hilbert spaces. Consider the equation

Gu = f for given G ∈ Lis(U, L) and f ∈ L.

Moreover, suppose that U as well as L are equipped with additive and absolutely
continuous (see (3.6)–(3.7)) semi-norms ‖ · ‖U(ω), ‖ · ‖L(ω) for all measurable sub-

sets ω of some set Ω ⊆ R
n being the union of an initial conforming simplicial mesh

T 0. To any conforming simplicial mesh T δ of Ω, we associate a finite-dimensional

subspace Uδ ⊆ U such that Uδ ⊆ U δ̂ for all refinements T δ̂ of T δ. We define the

least-squares approximation uδ as in (3.1)–(3.2) and the error estimator η( f , uδ)
with indicators η(K; f , uδ) as in (3.3)–(3.4). In this setting, Algorithm 3.1 can be
applied. Then, the (analogous) local approximation property of Step 2 (where one

could also allow for W((ωδ)m(K)) for fixed m ∈ N instead of W(K) in (3.8)) and lo-

cal stability of G as in (3.11) (where again U(K) could be replaced by U((ωδ)m(K)))
yield error and estimator convergence

‖u − uℓ‖U h η( f , uℓ) → 0 as ℓ → ∞.(3.13)

Independently, it has also been recently observed in [FP20] that the given abstract
assumptions yield (3.13) for least-squares methods. However, we stress that The-
orem 3.3 is not available in [FP20].

(b) The setting of (a) is for instance satisfied for a standard least-squares for-
mulation of the Poisson model problem [BG09, page 56], the Helmholtz prob-
lem [CLMM94], the linear elasticity problem [CKS05], and the Stokes problem
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[CLW04], see also [Sto19, Chapter 3] for a brief overview of all these formula-

tions. The involved spaces H1(Ω) and H(div; Ω) can be discretized by usual finite
element spaces, i.e., continuous piecewise polynomials and Raviart–Thomas func-
tions, respectively. The required corresponding approximation properties (3.8) are
well-known, see, e.g., [EG04, Section 1.5].

Only for the Stokes problem [CLW04], one requires a special interpolation op-

erator on (a dense subspace of) {v ∈ H(div; Ω)d :
∫

Ω
tr(v) dx = 0}, where tr

denotes the trace of square matrices. Since S1(T δ)d is contained in the Raviart–
Thomas space of order ≥ 1 (excluding the lowest-order case), such an operator

can be defined component-wise as an integral-preserving Jδ ∈ L(H2(Ω), S1(T δ))
with a local approximation property, i.e.,

∫
Ω

v dx =
∫

Ω
Jδv dx and

‖v − Jδv‖H1(K) . |K|
1
d ‖v‖H2((ωδ)m(K))(3.14)

for all v ∈ H2(Ω), K ∈ T δ, and some fixed m ∈ N0. The operator Jδ is for
instance constructed as follows: Inspired by [SvV19, Section 4.1] and given the
nodal Lagrange basis {φi : i ∈ {1, . . . , N}} with corresponding local dual basis
{ψi : i ∈ {1, . . . , N}} as in [SZ90], one first defines

ψ̃i :=
φi +

∫
Ω
(1 − φi)φi dx ψi − ∑j 6=i

( ∫
Ω

φiφj dx ψj

)
∫

Ω
φi dx

for all i ∈ {1, . . . , N}. This provides a second local dual basis in the sense that

supp(ψ̃i) ⊂ supp(φi) and
∫

supp(ψ̃j)
φiψ̃j dx = δij for all i, j ∈ {1, . . . , N}. Moreover,

from ∑i φi = 1, one verifies that ∑i(
∫

Ω
φidx)ψ̃i = 1 meaning that this dual basis

has (lowest-order) approximation properties. Defining

Jδ : H1(Ω) → S1(T δ), v 7→
N

∑
i=1

∫

supp ψ̃i

vψ̃i dx φi,

the latter property implies that this biorthogonal projector is integral-preserving,
and the desired approximation property (3.14) with m = 2 follows as in [SZ90].

Moreover, [FP20] verifies the setting of (a) for another least-squares formulation
of the Stokes problem as well as the Maxwell problem.

(c) Optimal convergence of adaptive least-square finite element methods driven
by an equivalent weighted error estimators has been already proved for the Pois-
son problem in [CP15, Car20], the linear elasticity problem [BCS18], and the Stokes
problem [BC17]. However, apart from the very recent and independent work [FP20],
convergence for adaptive algorithms driven by the natural estimator is only known
for the Poisson problem if Dörfler marking with a sufficiently large bulk parameter
is used, see [CPB17], where Q-linear convergence has been demonstrated.
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