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Abstract. In this paper we formulate and analyze a Discontinuous Petrov

Galerkin formulation of linear transport equations with variable convection
fields. We show that a corresponding infinite dimensional mesh-dependent

variational formulation, in which besides the principal field also its trace on

the mesh skeleton is an unknown, is uniformly stable with respect to the mesh,
where the test space is a certain product space over the underlying domain

partition.

Our main result states then the following. For piecewise polynomial trial
spaces of degree m, we show under mild assumptions on the convection field

that piecewise polynomial test spaces of degree m+ 1 over a refinement of the

primal partition with uniformly bounded refinement depth give rise to uni-
formly (with respect to the mesh size) stable Petrov-Galerkin discretizations.

The partitions are required to be shape regular but need not be quasi-uniform.
An important startup ingredient is that for a constant convection field one can

identify the exact optimal test functions with respect to a suitably modified

but uniformly equivalent broken test space norm as piecewise polynomials.
These test functions are then varied towards simpler and stably computable

near-optimal test functions for which the above result is derived via a pertur-

bation analysis. We conclude indicating some consequences of the results that
will be treated in forthcoming work.

1. Introduction

There has been a recent vibrant development of the so called Discontinuous
Petrov Galerkin (DPG) method, initiated and developed mainly by L. Demkowicz
and J. Gopalakrishnan, see e.g. [DG11, GQ14]. The general underlying method-
ology aims, in particular, at an improved treatment of problem classes that are,
roughly speaking, much less understood than classical second order elliptic prob-
lems. Of course, “improved” leaves much room for interpretation but for us, pre-
dominant aspects are the following:

(i) Ideally, even though the original problem may be unsymmetric or indefinite,
the arising system matrices are symmetric positive definite and sparse, so
that one has a chance to keep the computational complexity proportional
to the problem size.
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(ii) Ideally, the method is based on a DG-type variational formulation that
establishes a tight relation between errors and residuals.

We emphasize that we mean in (ii) the outer residual, i.e., the residual in a full
infinite dimensional space where it is well defined. Once a suitable topology for this
space is identified such a residual can be used as a rigorous foundation for deriving
error indicators that could steer adaptive techniques. Being able to do this beyond
the class of elliptic problems is a major motivation for this paper. Specifically, the
central objective of this paper is to discuss (i) and (ii) for a class of linear transport
equations with possibly variable convection field.

We explain next the relevance of (i), (ii) for us in more detail, relate our findings
to the state of the art, and lay out the objectives of the present work.

1.1. Conceptual background and motivation. Both issues (i), (ii) above rely
crucially on the notion of optimal test bases. The key underlying idea is easily
described in an abstract framework and has been presented in the literature in
different variants for different purposes [BM84, BS15, DG11, GQ14, DSMMO04,
DHSW12, DPW14]. To explain this let U,V denote Hilbert spaces over R, endowed
with norms ‖ · ‖U, ‖ · ‖V, respectively, and assume that b(·, ·) : U × V → R is a
continuous bilinear form. Given f ∈ V′, the normed dual of V, endowed with the
norm

‖w‖V′ := sup
v∈V

|w(v)|
‖v‖V

,

consider the variational problem

(1.1) b(u, v) = f(v), v ∈ V.

Since the form b(·, ·) is continuous, i.e.,

‖B‖ := sup
‖v‖V≤1

sup
‖w‖U≤1

b(w, v) <∞,

the operator B : U→ V′, defined by (Bw)(v) = b(w, v), w ∈ U, v ∈ V, is continuous
and (1.1) is equivalent to the operator equation

(1.2) Bu = f.

Its unique solvability is well known to be equivalent to the validity of the inf-sup
conditions

(1.3) inf
w∈U

sup
v∈V

b(w, v)

‖w‖U‖v‖V
≥ β, inf

v∈V
sup
w∈U

b(w, v)

‖w‖U‖v‖V
≥ β,

for some positive β, i.e., B ∈ Lis(U,V′) where Lis(X,Y) denotes the collection of
norm-isomorphisms from a Hilbert space X onto a Hilbert space Y. Moreover,
denoting by L(X,Y) the space of bounded linear operators from the normed linear
space X to the normed linear space Y, it is well known that ‖B−1‖L(V′,U) ≤ β−1.
Thus, the condition number of B ∈ Lis(U,V′)

κU,V′(B) := ‖B‖L(U,V′)‖B−1‖L(V′,U)

satisfies

κU,V′(B) ≤ ‖B‖/β,
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i.e., the smaller ‖B‖ and the larger β, the better. In particular, since in these terms
‖w‖U ≤ β−1‖Bw‖V′ , ‖Bw‖V′ ≤ ‖B‖‖w‖U, we do have for any approximation ū to
the solution u of (1.1) the error-residual relation

(1.4) ‖B‖−1‖f − Bū‖V′ ≤ ‖u− ū‖U ≤ β−1‖f − Bū‖V′ .

Of course, the larger κU,V′(B) the harder time has a numerical method based on the
above variational formulation to perform well. Moreover, the residual in V′ does
then not provide accurate information about the error in U.

In general one may have to face two types of obstructions: first, κU,V′(B) -
although finite - could be very large. A typical example is a convection dominated
convection diffusion problem for U = V = H1

0 (Ω). Fixing ‖ · ‖U and appropriately
varying ‖ · ‖V, or vice versa, may lead to a different variational formulation with
a much smaller condition number, ideally even equal to one, see [DHSW12]. The
prize to be paid is that one has to accept that trial and test space (already on
the infinite dimensional level) are different. This is the second obstruction, namely
having to deal with an asymmetric variational formulation - U 6= V - so that the
uniform discrete stability of projected versions of (1.1) is no longer for granted even
though the inf-sup constant β in (1.3) may be close to one.

The present paper is concerned with this second issue, starting with a well-
conditioned infinite dimensional variational formulation – later for a class of trans-
port equations. Then, given a (finite dimensional) trial space Uh ⊂ U we wish to
find a test space Th ⊂ V that inherits the stability (1.3) of the infinite dimensional
problem (for a positive constant possibly smaller than β, but h-independent), and
therefore deserves to be called (uniformly) (near–)optimal. To identify such a near–
optimal test space, notice first that the trial-to-test-map T ∈ Lis(U,V), defined by

(1.5) 〈T u, v〉V = b(u; v) (u ∈ U, v ∈ V),

yields the supremizer in the first relation of (1.3), i.e.,

(1.6) ‖T u‖V = sup
v∈V

b(u, v)

‖v‖V
,

which means

(1.7) ‖T u‖2V = b(u, T u).

Therefore, the (truly) optimal test space for a given subspace Uh ⊂ U is

(1.8) T (Uh) = {T uh : uh ∈ Uh},

in the sense that the Petrov-Galerkin scheme: find uh ∈ Uh such that

(1.9) b(uh, vh) = f(vh), vh ∈ T (Uh),

is uniquely solvable and the corresponding finite dimensional operator has at most
the same condition number as the infinite dimensional problem (1.1). Moreover,
(1.9) is easily seen to form the normal equations for minimizing the residual ‖f −
Bw‖V′ over Uh, i.e.,

(1.10) uh = argmin
ūh∈Uh

‖f − Būh‖V′ .

Denoting by RU ∈ Lis(U,U′) the Riesz-map defined by

(1.11) 〈z, w〉U = (RUz)(w), z, w ∈ U,
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we have, of course, T = R−1
V B = RV′B. Hence, the application of T amounts to

solving an infinite dimensional Galerkin problem in V. Thus, for each basis function
φ ∈ Uh, finding the corresponding test-basis function ψ = T φ, would require solving
an infinite dimensional variational problem, possibly even of the same complexity
as the one for solving (1.1).

A natural idea propagated in many works (see e.g. [DG11, CDW12, DHSW12,
BS15]) is to reduce this V-projection to a finite dimensional subspace Vh ⊂ V which
we refer to as the test-search-space. Specifically, this amounts to replacing T by

the mapping T h = T Vh ∈ L(U,Vh), defined by

(1.12) 〈T hu, vh〉V = b(u; vh) (u ∈ U, v ∈ Vh),

whose existence is guaranteed by Riesz’ representation theorem. Given a closed
linear trial space Uh ⊂ U, and denoting by PVh the V-orthogonal projection onto
Vh, defined by 〈PVhv, z〉V = 〈v, z〉V, v ∈ V , z ∈ Vh, we see that T h = PVh ◦ T . The
range of its restriction to Uh

T h(Uh) = (PVh ◦ T )(Uh),

known as the projected optimal test space, will now be used as test space in the
Petrov-Galerkin problem of finding ũh ∈ Uh such that

(1.13) b(ũh; vh) = f(vh) (vh ∈ T h(Uh)).

Our key requirement on Vh is that

(1.14) γh := inf
06=wh∈Uh

sup
06=vh∈Vh

b(wh; vh)

‖wh‖U‖vh‖V
≥ γ > 0,

holds uniformly in h. Then the (projected optimal) test space T h(Uh) is near-
optimal. In particular, a generalized Céa’s lemma shows that

(1.15) ‖u− ũh‖U ≤
‖B‖L(U,V′)

γh
inf

wh∈Uh
‖u− wh‖U,

see e.g. [GQ14, Thm. 2.1], [BS14, Prop. 2.3], [CDW12, DHSW12].
Recall that a necessary condition for realizing our initial objective (i) of linearly

scaling computational complexity is that

(1.16) dim Vh h dim Uh,

uniformly in h.
Note, however, that even when (1.16) holds, determining the corresponding pro-

jected optimal test space still requires solving for each basis function a discrete
problem which, generally, has the same size as the corresponding Petrov-Galerkin
problem itself.

Therefore a central objective is to keep also the cost for computing T h(Uh) under
control, which is the primary focus of this paper. One strategy is to localize the
computation of the projected optimal test functions. As advocated by Demkowicz
and Gopalakrishnan in several of their works, this localization can be achieved
by replacing the “original” formulation (1.1) from the start by a mesh-dependent
Discontinuous-Petrov-Galerkin formulation

(1.17) bh(U, v) = (BhU)(v) = f(v), v ∈ V,

see e.g. [DG11]. Here, the “new” unknown U may now involve in addition to
the original field u also a “skeleton-component” that lives on the union ∂Ωh of cell
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interfaces of the underlying mesh Ωh. For smooth solutions this skeleton-component
agrees with the traces of u on ∂Ωh but these traces may not a priori exist for all
elements in the function space for u. Choosing now the (infinite dimensional) test
space as a “broken” space

(1.18) V :=
∏
K∈Ωh

VK , ‖v‖2V :=
∑
K∈Ωh

‖v‖2VK
,

the trial-to-test-mapping T : U→ V indeed localizes, i.e., for bh(u, v) =
∑
K∈Ωh

bK(u, v)
we have

(1.19) T u =
∑
K∈Ωh

TKu, where 〈TKu, v〉VK
= bK(u, v), v ∈ VK .

One now faces two main issues:

(I) Imposing the structure (1.18) on the test space, it is not clear that the in-
finite dimensional (new) variational formulation (1.17) is well-posed. More
precisely, one has to establish uniform inf-sup stability with respect to a
given family of partitions Ωh with decreasing mesh size parameter h.

(II) For a given finite dimensional trial space Uh associated with Ωh, one still
has to find a finite dimensional test search space

Vh =
∏
K∈Ωh

VhK ,

that satisfies (1.14).

Regarding our introductory issues (i) and (ii), realizing a linear scaling of the
computational work for the uniformly stable Petrov-Galerkin problems one would
need to assure that dim Vh . dim Uh, uniformly in h. This would be the case if one
were able to assert that for some fixed M ∈ N,

(1.20) dim
(
VhK
)
≤M, h→ 0,

suffices to warrant the desired uniform inf-sup stability, and as a consequence, the
desired rigorous error-residual relation (1.4).

Cases where these desiderata have been rigorously established include the Poisson
and linear elasticity problems (in [GQ14]), and the Maxwell equations (in [CDG16]).
After having established (I), in those cases (II) (with (1.20)) was proven by con-
structing a suitable ‘Fortin’ projector in ‘broken’ H1, H(div), or H(curl) spaces,
respectively.

The topic of the current work is to obtain such results for a class of linear
transport equations with a generally variable convection field b. The main obstacle
is then that the arising spaces U and V depend on b. Any perturbation argument
affecting the field b, which is generally unavoidable, is therefore rather delicate.
Related obstructions are expected to arise also in more general problems involving
strongly dominating transport. Nevertheless, we will obtain results that are valid
uniformly in the relative orientation of the (local) mesh and b, and, of course, in
the mesh itself. The proofs of these results and necessary prerequisites turn out to
be quite elaborate.

Our motivation for investing in a rigorous stability analysis for transport equa-
tions stems in part from several envisaged applications that will be addressed in
more detail in forthcoming work. This concerns, in particular, the design and
analysis of rigorous adaptive methods for transport equations and, in fact, for a
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somewhat wider scope of problems where transport plays a dominant role such as
kinetic models.

1.2. Layout of the paper. In Section 2 we formulate the first order linear trans-
port equations treated in this paper. Section 3 is devoted to its variational formula-
tion and the proof of its well-posedness, addressing the aforementioned issue (I). In
Section 4 we derive and analyse optimal test functions along with their computable
near-optimal counterparts culminating in the uniform stability of the DPG scheme,
i.e., this section deals with issue (II).

In this work, by C . D we will mean that C can be bounded by a multiple of D,
independently of parameters which C and D may depend on. Obviously, C & D is
defined as D . C, and C h D as C . D and C & D.

2. Transport equation

For a bounded Lipschitz domain Ω ⊂ Rn, let b ∈W 0
∞(div; Ω), i.e., b ∈ L∞(Ω)n

with div b ∈ L∞(Ω). We set

H(b; Ω) := {u ∈ L2(Ω): b · ∇u ∈ L2(Ω)},
equipped with the norm ‖u‖2H(b;Ω) := ‖u‖2L2(Ω) + ‖b · ∇u‖2L2(Ω).

In order to define the characteristic, outflow, and inflow boundary portions
Γ0,Γ+,Γ− ⊂ ∂Ω, respectively, under the above assumptions on the velocity field b
we use the (formal) integration-by-parts formula∫

Ω

2wb · ∇w + w2 div b dx =

∫
∂Ω

w2b · n ds,

to define the characteristic boundary Γ0 as the largest measurable subset of ∂Ω such
that the left-hand side vanishes for all w ∈ H(b; Ω)∩C(Ω̄) that vanish on ∂Ω \ Γ0.
Similarly, we set the outflow boundary Γ+ as the largest measurable subset of ∂Ω\Γ0

such that
∫

Ω
2wb · ∇w+w2 div b dx ≥ 0 for all w ∈ H(b; Ω)∩C(Ω̄) that vanish on

(∂Ω \ Γ0) \ Γ+, and finally, we define the inflow boundary as Γ− = ∂Ω \ (Γ0 ∪ Γ+).
For continuous b, it means that Γ0 := {x ∈ ∂Ω: b(x) · n(x) = 0} whenever n(x) is
uniquely defined, and Γ± := {x ∈ ∂Ω: ± b(x) · n(x) > 0}.

For a b ∈ W 0
∞(div; Ω), and an c ∈ L∞(Ω), we consider the transport equation

of finding u : Ω→ R that, for given f : Ω→ R and g : Γ− → R, solves

(2.1)

{
b · ∇u+ cu = f on Ω,

u = g on Γ−.

When g = 0 a first canonical variational formulation of the transport problem
reads: find u, zero at Γ−, such that

(2.2)

∫
Ω

(b · ∇u+ cu)v dx =

∫
Ω

fv dx

holds for all smooth test functions v ∈ C∞(Ω̄). A second variant seeks u such that

(2.3)

∫
Ω

(cv − div vb)u dx =

∫
Ω

fv −
∫

Γ−

gvb · n dx

holds for all smooth test functions v that vanish on Γ+. Note that in the sec-
ond formulation, the Dirichlet boundary condition enters as a natural condition,
and therefore this formulation applies equally well for an inhomogeneous boundary
condition on Γ−.
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Applying Cauchy-Schwarz followed by taking closures, shows that the Hilbert
spaces

H0,Γ±(b; Ω) := closH(b;Ω){u ∈ H(b; Ω) ∩ C(Ω̄) : u = 0 on Γ±}.

are relevant for these variational formulations. In fact, the operators

B := u 7→ b · ∇u+ cu,

and its formal adjoint

B∗ := v 7→ cv − div vb,

are obviously continuous as mappings into L2(Ω), i.e.,

B ∈ L(H0,Γ−(b; Ω), L2(Ω)), B∗ ∈ L(H0,Γ+
(b; Ω), L2(Ω)).

In addition, we assume that

B ∈ Lis(H0,Γ−(b; Ω), L2(Ω)),(2.4)

B∗ ∈ Lis(H0,Γ+
(b; Ω), L2(Ω)),(2.5)

meaning that the first (for g = 0) or second variational form of the problem is
well-posed over H0,Γ−(b; Ω) × L2(Ω) or L2(Ω) × H0,Γ+

(b; Ω), respectively. These
assumptions are readily verified for non-zero, constant b, but are not necessarily
satisfied for every vector field b as, for instance, when flow curves associated to
±b do not reach the boundary. Sufficient conditions for both assumptions are
b ∈ C1(Ω̄) with b(x) 6= 0 for x ∈ Ω̄, or c − 1

2 div b ≥ κ > 0 a.e. on Ω, for some
constant κ, see [DHSW12, Remark 2.2].

For completeness, note that B∗ should not be confused with the adjoint of B as
a mapping from L2(Ω) onto H0,Γ−(b; Ω)′, which is an isomorphism if and only if B
is.

3. A variational formulation of the transport equation with broken
test and trial spaces

In order to allow us to eventually localize the determination of the optimal test
functions we follow the approach introduced by Demkowicz and Gopalakrishnan
[DG11] replacing (2.3) by a Discontinuous Galerkin formulation. We introduce first
the relevant notation. For any h from an index of mesh parameters, let Ωh be a
collection of disjoint open Lipschitz domains (‘elements’) such that Ω̄ =

⋃
K∈Ωh

K̄.
We will refer to such an Ωh as a partition of Ω. For each K ∈ Ωh, we split its
boundary into characteristic and in- and outflow boundaries, i.e., ∂K = ∂K0 ∪
∂K+ ∪ ∂K−, and denote by

∂Ωh := ∪K∈Ωh
∂K \ ∂K0

the mesh skeleton, i.e., the union of the non-characteristic boundary portions of the
elements.

Let us first assume that g = 0 referring to Remark 3.6 for g 6= 0. More-
over, denoting by ∇h the piecewise gradient operator, let us introduce the spaces
H(b; Ωh) = {v ∈ L2(Ω): b · ∇hv ∈ L2(Ω)}, equipped with squared “broken” norm
‖v‖2H(b;Ωh) := ‖v‖2L2(Ω) + ‖b · ∇hv‖2L2(Ω), and let

H0,Γ−(b; ∂Ωh) := {w|∂Ωh
: w ∈ H0,Γ−(b; Ω)},
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equipped with quotient norm

(3.1) ‖θ‖H0,Γ− (b;∂Ωh) := inf{‖w‖H(b;Ω) : θ = w|∂Ωh
, w ∈ H0,Γ−(b; Ω)}.

A standard piecewise integration-by-parts of the transport equation (2.1) leads to
the following problem:

(3.2)


For U := L2(Ω)×H0,Γ−(b; ∂Ωh), V := H(b; Ωh),

given f ∈ H(b; Ωh)′,find (u, θ) ∈ U such that for all v ∈ V,

bh(u, θ; v) :=

∫
Ω

(cv − b · ∇hv − v div b)u dx +

∫
∂Ωh

JvbKθ ds = f(v).

Here we define as usual for x ∈ ∂K ∩ ∂K ′,

JvbK(x) := (vb|K · nK)(x) + (vb|K′ · nK′)(x),

and JvK(x) := (vb|K · nK)(x) for x ∈ ∂Ω ∩ ∂K, and set Bh : U→ V′ by

(Bh(u, θ))(v) := bh(u, θ; v).

The additional independent variable θ replaces the trace u|∂Ωh
which is not defined

for general u ∈ L2(Ω). If f ∈ L2(Ω), or, equivalently, u ∈ H0,Γ−(b; Ω), then a
reversed integration by parts shows that indeed θ = u|∂Ωh

.
Well-posedness of the variational formulation (3.2) is demonstrated in the next

theorem. It is an adaptation of [BS15, Thm. 5.1] where we employ here slightly
different spaces U and V, and where we exhibit explicit bounds on the norms of
the operator and its inverse. In [BS15], the spaces were chosen such that both θ
and v vanish on Γ+. Also the transport equation here is more general since it may
contains a reaction term. For convenience we include the proof.

In the following, we abbreviate ‖B−1‖L(L2(Ω),H0,Γ− (b;Ω)), ‖(B∗)−1‖L(L2(Ω),H0,Γ+
(b;Ω)),

‖div b‖L∞(Ω), ‖c‖L∞(Ω), and ‖c− div b‖L∞(Ω) as ‖B−1‖, ‖B−∗‖, ‖ div b‖, ‖c‖, and
‖c − div b‖ respectively. The operators B, B∗, induced by the conforming formu-
lations (2.2), (2.3), should not be confused with the operators Bh induced by the
DPG formulation.

Theorem 3.1. Assume that b ∈ W 0
∞(div; Ω), c ∈ L∞(Ω) and that conditions

(2.4), (2.5) hold. Then one has Bh ∈ Lis(U,V′) with

‖Bh‖L(U,V′) ≤ 2 + ‖div b‖+ ‖c− div b‖,

‖B−1
h ‖L(V′,U) ≤

√
‖B−∗‖2 + C̃2

B,

where C̃B := (1 + ‖B−∗‖(1 + ‖c− div b‖))‖B−1‖(‖c− div b‖+ 1).

Remark 3.2. As the bilinear form bh and the operator Bh, obviously also the spaces
U and V, and the solution (u, θ) depend on h, but we supress these latter depen-
dencies in the notation.

Remark 3.3. A consequence of Theorem 3.1 is thatH(b; Ωh)→ H0,Γ−(b; ∂Ωh)′; v 7→
JvbK is surjective.

Anticipating this latter fact, we can say that the following lemma, which is the
first tool for proving Theorem 3.1, provides an equivalent norm for H0,Γ−(b; ∂Ωh)′.
In particular, it shows that H0,Γ−(b; ∂Ωh)′ ' H(b; Ωh)/H0,Γ+

(b; Ω).
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Lemma 3.4. For v ∈ H(b; Ωh), one has JvbK ∈ (H0,Γ−(b; ∂Ωh))′ with

(‖B−1‖(‖c− div b‖+ 1)
)−1 ≤

‖JvbK‖H0,Γ− (b;∂Ωh)′

infz∈H0,Γ+
(b;Ω) ‖v − z‖H(b;Ωh)

≤ 1 + ‖ div b‖

(v ∈ H(b; Ωh) \H0,Γ+(b; Ω)).

Proof. For v ∈ H(b; Ωh), w ∈ H0,Γ−(b; Ω) ⊂ H(b; Ω), we have∫
∂Ωh

JvbKw ds =
∑
K∈Ωh

∫
K

∇v · bw + v(b · ∇w + w div b) dx

≤ (1 + ‖ div b‖)‖v‖H(b;Ωh)‖w‖H(b;Ω),

(3.3)

showing that ‖JvbK‖H0,Γ− (b;∂Ωh)′ ≤ (1+‖ div b‖)‖v‖H(b;Ωh). Since for z ∈ H0,Γ+(b; Ω)

and w ∈ H0,Γ−(b; Ω),
∫

Ω
∇z · bw + z(b · ∇w + w div b) dx = 0, it follows that

‖JzbK‖H0,Γ− (b;∂Ωh)′ = 0. This shows that for v ∈ H(b; Ωh), ‖JvbK‖H0,Γ− (b;∂Ωh)′ ≤
(1 + ‖ div b‖) infz∈H0,Γ+

(b;Ω) ‖v − z‖H(b;Ωh).

To prove the converse estimate let divh denote the piecewise divergence operator.
Given v ∈ H(b; Ωh), let z ∈ H0,Γ+(b; Ω) be the solution of

B∗z = cz − div(zb) = cv − divh(vb),

whose existence is guaranteed by (2.5). From

(3.4) c(v − z) = divh
(
(v − z)b

)
= (v − z) div b + b · ∇h(v − z),

we derive that

(3.5) ‖b · ∇h(v − z)‖L2(Ω) ≤ (‖c− div b‖)‖v − z‖L2(Ω).

By (2.4), there exists a w ∈ H0,Γ−(b; Ω) such that Bw = b · ∇w + cw = v − z and

(3.6) ‖w‖H(b;Ω) ≤ ‖B−1‖‖v − z‖L2(Ω).

From the definitions of w and z, we have

‖v−z‖2L2(Ω) =

∫
Ω

(v − z)(b · ∇w + cw) dx =
∑
K∈Ωh

∫
K

(v − z)(b · ∇w + cw) dx

=
∑
K∈Ωh

∫
K

(
div
(
(z − v)b

)
+ c(v − z)

)
w dx +

∫
∂K

(v − z)wb · nK ds

=

∫
∂Ωh

JvbKw ds,

where we have used (3.4) in the last step. Thus, invoking (3.6), we have

‖v − z‖2L2(Ω) ≤ ‖JvbK‖H0,Γ− (b;∂Ωh)′‖w‖H(b;Ω)

≤ ‖JvbK‖H0,Γ− (b;∂Ωh)′‖B−1‖‖v − z‖L2(Ω).

In other words ‖v − z‖L2(Ω) ≤ ‖B−1‖‖JvbK‖H0,Γ− (b;∂Ωh)′ , which, in combination

with (3.5), completes the proof. �

The second tool for the proof of Theorem 3.1 is the following well-known conse-
quence of the closed range theorem.

Lemma 3.5. For reflexive Banach spaces X and Y , let G : X → Y ′ be linear.
Then G ∈ Lis(X,Y ′) if and only if
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(i) G ∈ L(X,Y ′),

(ii) β := inf0 6=y∈Y sup06=x∈X
(Gx)(y)
‖x‖X‖y‖Y > 0,

(iii) ∀0 6= x ∈ X, ∃y ∈ Y , with (Gx)(y) 6= 0.

Moreover, one has ‖G−1‖L(Y ′,X) = 1
β .

Since G ∈ Lis(X,Y ′) is equivalent to G′ ∈ Lis(X ′, Y ), the roles of X and Y in (ii)
and (iii) can be interchanged.

Proof of Theorem 3.1. The bound on ‖Bh‖L(U,V ′) follows easily from (3.3).
We will establish the remaining claim with the aid of Lemma 3.5. To verify first

(iii), let (u, θ) ∈ U be such that bh(u, θ; v) = 0 for all v ∈ H(b; Ωh). Considering
first all v from the subspace H0,Γ+(b; Ω), (2.5) yields u = 0 because B agrees with
Bh on this subspace. By considering now for any K ∈ Ωh all v with supp v ⊂ K,
we infer that θ|∂K = 0, and so θ = 0.

Finally, let v ∈ H(b; Ωh) be given. By (2.5), there exists a v1 = v1(v) ∈
H0,Γ+

(b; Ω) with

(3.7) cv1 − div(v1b) = cv − divh(vb), ‖v1‖H(b;Ω) ≤ ‖B−∗‖‖cv − divh(vb)‖L2(Ω)

Thus ‖v1‖H(b;Ω) ≤ ‖B−∗‖(1 + ‖c− div b‖)‖v‖H(b;Ωh), which says

(3.8) ‖v1 − v‖H(b;Ωh) ≤ (1 + ‖B−∗‖(1 + ‖c− div b‖))‖v‖H(b;Ωh).

Moreover, we have v1 = v when v ∈ H0,Γ+(b; Ω), so that for any z ∈ H0,Γ+(b; Ω)
we have v1(v − z)− (v − z) = v1(v)− v so that (3.8) actually gives

‖v1 − v‖H(b;Ωh) ≤ (1 + ‖B−∗‖(1 + ‖c− div b‖)) inf
z∈H0,Γ+

(b;Ω)
‖v − z‖H(b;Ωh)

≤ C̃B‖JvbK‖H0,Γ− (b;∂Ωh)′

(3.9)

by an application of Lemma 3.4.

There exists a θ ∈ H0,Γ−(b; ∂Ωh) with ‖JvbK‖H0,Γ− (b;∂Ωh)′ =

∫
∂Ωh

JvbKθ ds
‖θ‖H0,Γ− (b;∂Ωh)

. By

selecting ‖θ‖H0,Γ− (b;∂Ωh) = C̃−1
B ‖v1 − v‖H(b;Ωh), and invoking (3.9), we have

(3.10) ‖θ‖2H0,Γ− (b;∂Ωh) = C̃−2
B ‖v1 − v‖2H(b;Ωh) ≤

∫
∂Ωh

JvbKθ ds.

Similarly, there exists a u ∈ L2(Ω) with ‖B∗v1‖L2(Ω) =
∫
Ω
cuv1−u div(v1b) dx

‖u‖L2(Ω)
. By

selecting ‖u‖L2(Ω) = ‖B−∗‖−1‖v1‖H(b;Ω), and using the first relation in (3.7), we
infer that

(3.11) ‖u‖2L2(Ω) = ‖B−∗‖−2‖v1‖2H(b;Ω) ≤
∫

Ω

cuv − udivh(vb) dx.
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The combination of (3.10) and (3.11) shows that

(‖B−∗‖2 + C̃2
B)−

1
2 ‖v‖H(b;Ωh)

≤ (‖B−∗‖2 + C̃2
B)−

1
2 (‖v1‖H(b;Ω) + ‖v1 − v‖H(b;Ωh))

≤
√
‖B−∗‖−2‖v1‖2H(b;Ω) + C̃−2

B ‖v1 − v‖2H(b;Ωh)

=
‖B−∗‖−2‖v1‖2H(b;Ω) + C̃−2

B ‖v1 − v‖2H(b;Ωh)√
‖u‖2L2(Ω) + ‖θ‖2H0,Γ− (b;∂Ωh)

≤ b(u, θ; v)√
‖u‖2L2(Ω) + ‖θ‖2H0,Γ− (b;∂Ωh)

.

Invoking Lemma 3.5 completes the proof. �

Remark 3.6 (Inhomogenous boundary condition). The variational formulation (3.2)
is not suited for an inhomogeneous boundary condition u = g on Γ−, because the ho-
mogeneous condition u = 0 on Γ− has been incorporated in the space H0,Γ−(b; ∂Ωh)
for the variable θ.

Therefore, for g 6= 0, let ḡ ∈ H(b,Ω) be an extension of g. Then with ū := u− ḡ,
one may apply the variational formulation (3.2) to the transport equation{

b · ∇ū+ cū = f − b · ∇ḡ − cḡ on Ω,
ū = 0 on Γ−,

which gives the problem of finding (ū, θ̄) ∈ U such that for all v ∈ V,

bh(ū, θ̄; v) = f(v)−
∫

Ω

(b · ∇ḡ + cḡ)v dx

= f(v) +

∫
Ω

(b · ∇hv + v div b− cv)ḡ dx−
∫
∂Ωh

JvbKḡ ds.

When f ∈ L2(Ω), it holds that θ̄ = ū|∂Ωh
= (u− ḡ)|∂Ωh

.
Alternatively, using that only the space for θ is inappropriate for g 6= 0, by

subtracting
∫

Ωh
JvbKḡ ds from both sides of (3.2), and introducing θ̄ := θ − ḡ|∂Ωh

,

one arrives at the problem of finding (u, θ̄) ∈ U such that for all v ∈ V,

bh(u, θ̄; v) = f(v)−
∫
∂Ωh

JvbKḡ ds.

4. Optimal test functions

4.1. Preliminary remarks and a roadmap. Given a family of finite dimensional
piecewise polynomial trial spaces Uh ⊂ U = L2(Ω)×H0,Γ−(b; ∂Ωh), parametrized
by the mesh size parameter h, we wish to construct a uniformly stable finite dimen-
sional family of test search spaces Vh ⊂ V = H(b; Ωh) which, due to the product
structure of V, have the form

Vh =
∏
K∈Ωh

VhK .
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By uniformly stable we mean of course that there exists a positive constant γ > 0
such that (1.14) holds for the present setting, i.e.,

(4.1) inf
(u,θ)∈Uh

sup
v∈Vh

bh(u, θ; v)

‖(u, θ)‖U‖v‖V
=: γh ≥ γ, (h > 0).

In view of (3.1), it suffices to establish inf-sup stability for a slightly modified
formulation replacing the component θ ∈ H0,Γ−(b; ∂Ωh) by a suitable “lifting”
w ∈ H0,Γ−(b; Ω), i.e., w|∂Ωh

= θ, which we express by writing

bh(u,w; v) :=
∑
K∈Ωh

bK(u,w; v),

where

bK(u,w; v) :=

∫
K

(cv − div(bv))udx +

∫
∂K

b · nKvwds

=

∫
K

(c− div b)vu+ (w − u)b · ∇v + vb · ∇w + vw div bdx.

(4.2)

In consequence we endow L2(Ω) ×H0,Γ−(b; Ω), that with some abuse of notation
we again denote as U, with the norm

(4.3) |||(u,w)|||2U := ‖u‖2L2(Ω) + ‖w‖2H(b;Ω)

(
≥ ‖(u,w|∂Ωh

)‖2U
)
,

and recall from (1.19) that the trial-to-test map T : U → V has now also product
form

T (u,w) =
(
TK(u|K , w|∂K)

)
K∈Ωh

,

where each local optimal test-function tK = tK(u,w) := TK(u|K , w|∂K) is defined
by

(4.4) 〈tK , v〉H(b;K) = bK(u,w; v) (v ∈ H(b;K)).

Our goal is to identify stable formulations for variable fields b subject to the
assumptions made earlier. For such general fields one cannot expect to find truly
optimal test functions, but essentially we will be able to do so for piecewise constant
fields. Therefore we will introduce a perturbed bilinear form

(4.5) b̆h(u,w; v) :=
∑
K∈Ωh

b̆K(u,w; v),

where the summands b̆K(u,w; v) are defined as follows. Suppose that cK ,bK , dK
are approximations on K to the fields c − div b,b,div b, respectively. Then in
accordance to (4.2), we set

b̆K(u,w; v) :=

∫
K

cKvu+ (w − u)bK · ∇v + vbK · ∇w + dKvwdx

=

∫
K

(
(cK + div bK)v − div(bKv)

)
u+ (dK − div bK)wv dx

+

∫
∂K

bK · nKvwds.

(4.6)

These approximations will be specified later in Sect. 4.5. At this point note that
dK vanishes when b is constant and will generally differ from div bK . Its effect is
that, for dK 6= div bK , the corresponding (near) optimal test functions no longer
depend only on the traces w|∂Ωh

.
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Given such a perturbed form b̆h and a finite dimensional (piecewise polynomial)
trial space Uh ⊂ U, we then have to carry out two main tasks:

(i) for any (u,w) ∈ Uh we wish to find a t̆ = t̆(u,w; b̆h) ∈ V, preferably piecewise

polynomial, such that b̆h(u,w; t̆) & |||(u,w)|||U‖t̆‖V, of course, uniformly in h and in
(u,w) ∈ Uh.

(ii) Starting from the simple decomposition

(4.7) bh(u,w; t̆) = b̆h(u,w; t̆) + (bh(u,w; t̆)− b̆h(u,w; t̆)),

the choice of t̆ allows us to handle the first summand. It then remains to show for
the second summand that

(4.8) |bh(u,w; t̆)− b̆h(u,w; t̆)| ≤ δ|||(u,w)|||U‖t̆‖V,

holds for a sufficiently small δ > 0 , depending on the inf-sup constant for the first
summand. Note that after having established (i)-(ii), any test search space

Vh ⊇ span{t̆(u,w; b̆h) : (u,w) ∈ Uh}

will be uniformly stable in the sense of (4.1).
Concerning (i), in Sect. 4.3 we will see that after equipping the test space by

a different but equivalent norm, the trial-to-test map can be evaluated exactly. It
turns out, however, that the resulting truly optimal test functions corresponding to

b̆h are possibly very sensitive to perturbations in the convection field. Therefore,
in order to be able to simultaneously establish (ii), we will have to replace them by
near optimal test functions.

Another issue we will have to deal with is the following: If one has a bilinear
form for which the corresponding operator, in the infinite dimensional setting, is
boundedly invertible, then for given finite dimensional trial space, the corresponding
optimal test space gives an inf-sup stable pair. The convection field corresponding

to the perturbed bilinear form b̆h, however, will generally not be in W 0
∞(div; Ω),

and so the theory about well-posedness in the infinite dimensional setting developed
in Sect. 3 will not be applicable to this perturbed form. We will establish the inf-
sup stability needed in (i) partly by direct calculations, and partly by invoking the
well-posedness of the original bilinear form.

4.2. Reduction to two-point boundary value problems. Recall from (4.2)–
(4.4) that the local optimal test functions are given by local variational problems
of the form 〈tK , v〉H(b;K) = bK(u,w; v). To determine the structure of such test
functions also when the coefficients c,b are approximated we consider the local
variational problems

(4.9) 〈tK , v〉H(b;K) =

∫
K

(cv − div(bv))u+ dwv dx +

∫
∂K

b · nKvw ds,

where the bilinear form on the right hand side “extends” the one in (4.2) by includ-
ing the additional term dwv. This allows us, in particular, to accommodate forms
of the type (4.6). Thus, for the moment, the coefficients c, d stand for specifications

used later to construct approximations b̆h to the bilinear form bh, see (4.28).
When u|K ∈ H(b;K), as is the case when u is piecewise polynomial, integra-

tion by parts shows that −
∫
K

div(bv)u dx =
∫
K
v∂bu dx −

∫
∂K

b · nKvu ds, and∫
K
∂btK∂bv dx = −

∫
K

(∂2
btK +∂btK div b)v dx+

∫
∂K

b ·nKv∂btK ds, which reveals
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that the strong form of (4.9) is given by

(4.10)

{
−[∂2

btK + ∂btK div b] + tK = ∂bu+ cu+ dw in K,
∂btK = w − u on ∂K+ ∪ ∂K−.

Using a transformation to characteristic coordinates defined by

d

dλ
χ(λ, s) = b(χ(λ, s)), χ(0, s) = s ∈ K−,

(4.10) can be viewed as a family of ordinary two-point boundary value problems.
In fact, defining t̂K := tK ◦ χ, û := u ◦ χ, and denoting by L(s) > 0 the smallest
number for which χ(L(s), s) ∈ K+, (4.10) takes the form

−[d
2 t̂K
dλ2 + dt̂K

dλ (div b) ◦ χ] + t̆K = dû
dλ + c ◦ χ û+ (dw) ◦ χ in (0, L(s)),

dt̂K
dλ = w ◦ χ− û at {0, L(s)},

which, in principle, we can solve for each s at any desired accuracy and, for certain
b, u, w even exactly.

4.3. (Piecewise) constant convection field. A simple explicit representation of
tK can be obtained when b|K = b is constant, K is polyhedral, and the restrictions
of u, w, c and d to each K are polynomial. The characteristics are then straight
lines and the local optimal test function tK , can then be determined analytically. It
fails, however, to be itself a piecewise polynomial. In order to arrive in this case at
(piecewise) polynomial local optimal test functions we follow an idea from [DG11].
Namely, we equip H(b;K) with an alternative, but equivalent Hilbertian norm.
The key is the following simple lemma.

Lemma 4.1. For k ≥ h > 0, it holds that

k2‖v′‖2L2(0,h) + ‖v‖2L2(0,h) h k2‖v′‖2L2(0,h) + h|v(0)|2 (v ∈ H1(0, h)),

where the (hidden) constants are independent of h, k ≥ h, and v.

Proof. First note that it is sufficient to prove the result for k = h > 0. Next, a
homogeneity argument shows that it is sufficient to consider the case that h = 1.
For this case, the statement follows from ‖v‖L2(0,1) ≤ ‖v − v(0)‖L2(0,1) + |v(0)| .
‖v′‖L2(0,1) + |v(0)| by Friedrich’s inequality, together with |v(0)| . ‖v‖H1(0,1) by
Sobolev’s inequality. �

Remark 4.2. Obviously, the condition k ≥ h can be replaced by k ≥ Ch for some
C > 0. Since this constant would then propagate through essentially all subsequent
developments combined with further unspecified constants, we keep for convenience
C = 1.

Proposition 4.3. Let K ⊂ Rn be a Lipschitz domain, and assume that 0 6= b ∈ Rn

is a constant. Denoting by r(s) the distance from s ∈ ∂K− to ∂K+ along b, one
has for qK ≥ |b|−1 diam(K),

q2
K‖∂bv‖2L2(K) + ‖v‖2L2(K)

h q2
K‖∂bv‖2L2(K) −

∫
∂K−

|v(s)|2 b·nK(s)
|b| r(s)ds, (v ∈ H(b;K)),

where the constants are those from Lemma 4.1.
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Proof. Obviously, it is sufficient to prove the statement for qK = |b|−1 diam(K), so
that q2

K‖∂bv‖2L2(K) = diam(K)2‖∂b/|b|v‖2L2(K). Without loss of generality we may

consider the case that b/|b| = e1. Given x2, . . . , xn, let s denote the projection of
(x2, . . . , xn) on ∂K− along the x1-direction. We apply Lemma 4.1 for the integration
in the x1-direction, where we use that for each s the quantity r(s) plays the role of
h in Lemma 4.1 while diam(K) ≥ r(s) plays the role of k in Lemma 4.1. Integrating

the result over x2, . . . , xn and using that ds = |b|
|b·nK(s)|dx2 . . . dxn and b · nK < 0

on ∂K−, confirms the claim. �

Remark 4.4. Proposition 4.3 can be generalized to non-constant b by applying the
coordinate transformation χ involving the characteristic coordinates. The constants
absorbed by the equivalence symbol h depend then also on the Jacobian of χ,
and the length of the characteristic curve sections connecting the in- and outflow
boundary, see also [DSMMO04].

The above lines of thought were already used in [DG11, (3.22)] where, however,

the (necessary) factor −b·nK(s)
|b| r(s) in the integrand of the integral over ∂K− is

missing.
For later use we record the following consequence of Proposition 4.3.

Remark 4.5. For a constant b 6= 0, and

diam(K) ≤ |b|,

the scalar product

〈〈v, z〉〉K,b := 〈∂bv, ∂bz〉L2(K) −
∫
∂K−

v(s)z(s)b·nK(s)
|b| r(s)ds.

gives rise to an equivalent norm on H(b;K), so that this scalar product can be used
to determine the local optimal test function.

Assuming that u|K ∈ H(b;K), the local optimal test function tK = TK(u|K , w|K)
that results from replacing 〈 , 〉H(b;K) by 〈〈 , 〉〉K,b in (4.9), is the solution of

(4.11)


−∂2

btK = ∂bu+ cu+ dw on K,

∂btK − r|b|−1tK = w − u on ∂K−,
∂btK = w − u on ∂K+.

We consider the case of K being convex. By a rotation of coordinates, for solving
(4.11) it is sufficient to consider the case of

b = |b|e1,

or, equivalently, to read (x1, . . . , xn) as Cartesian coordinates with the first basis
vector being equal to b/|b|. For x = (x,y) ∈ K, let x±(y) be such that (x±(y),y) ∈
∂K±, see Figure 1.

Furthermore, although not essential, we will think of c and d as being constant.
Then the solution

tK = TK,b,c,d(u|K , w|K)
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F

bK = |bK |e1

x

y

K

(x−(y), y) (x+(y), y)
K = K̄

(x+(y), y)

(x+(y), y)

(x−(y), y)

(x−(y), y)
(x+(y), y)

K̄

(x−(y), y)(x̄−(y), y)

F

Figure 1. x± on a triangle K with two (left) or one (right) inflow
faces (the meaning of the inflow face F , triangle K̄ ⊇ K, and the
function x̄−(y) will become clear in Sect. 4.4)

of (4.11) is given by

|b| tK(x,y) = −|b|−1

∫ x

x−(y)

∫ z

x−(y)

(∂bu+ cu+ dw)(q,y)dqdz

+
(
w(x+(y),y)− u(x−(y),y) + |b|−1

∫ x+(y)

x−(y)

(cu+ dw)(q,y)dq
)(
x− x−(y)

)
+ |b|2

w(x+(y),y)− w(x−(y),y) + |b|−1
∫ x+(y)

x−(y)
(cu+ dw)(q,y)dq

x+(y)− x−(y)
.

(4.12)

For K being polyhedral, the function y 7→ x±(y) is continuous piecewise linear.

Using that for any univariate polynomial p of degree m ≥ 1, (α, β) 7→ p(β)−p(α)
β−α is

a bivariate polynomial of degree m − 1, we infer that for u, w being polynomials
on K, tK is a continuous piecewise polynomial on K.

4.4. A stability issue. Unfortunately, depending on the angle between b and a
face, the derivatives of x+ or x− can be arbitrarily large. Therefore, generally the
problem of determining an optimal test function is not stable regarding its depen-
dence on b. Consequently, a serious impediment arises when the piecewise constant
b is an approximation to a variable field b. As will be seen later (last statement
of Lemma 4.10), when treating the second summand in (4.7), one eventually has
to control the H1-norm of the test functions via inverse estimates which requires
controling the derivatives of x±(y).

To tackle this problem, for K being an n-simplex, we define an approximation t̆K
to tK by discarding higher order terms, which is stable as a function of b. Moreover,
whereas, for polynomial u and w, tK is only piecewise polynomial w.r.t. a partition
of K that depends on the field b, t̆K will be polynomial.

To define t̆K , first we construct a polyhedral set K̄ that contains K as follows.
The number of inflow faces of K is between 1 and n − 1. Let F be an inflow face
whose inward pointing normal makes the smallest angle with b, and let v denote the
vertex of K that does not belong to F . Finally let HF denote the (n−1)-hyperplane
containing F . The “shadow” of K on HF , i.e.,

F̄ :=
{
x ∈ HF : {x + tb : t ∈ R} ∩K 6= ∅

}
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is an (n − 1)-dimensional polyhedron containing F and let K̄ denote the convex
hull of v and F̄ , cf. Figure 1 for n = 2. Then, by construction, K̄ has only one
inflow face K̄− := F̄ , and K ⊆ K̄ with equality if and only if K has only one inflow
face, namely K− = F .

For x = (x,y) ∈ K̄ ⊃ K, let x̄−(y) be the linear function with (x̄−(y),y) ∈ ∂K̄−,
i.e., x̄(y) agrees with x(y) on F . Then we have

diam(K̄) . diam(K),(4.13)

|x̄−|W 1
∞(K̄) . 1,(4.14)

where both constants depend only on (an upper bound for) the shape regularity
parameter

%K :=
diam(K)

sup{diam(B) : B a ball in K}
.

For polynomials u and w on K, say of degree m, we define now the local test
function

t̆K = t̆K,b,c,d(u|K , w|K) ∈ Pm+1

by

|b| t̆K(x,y) :=
(
w(x̄−(y),y)− u(x̄−(y),y)

)(
x− x̄−(y)

)
+ |b|(∂bw(x̄−(y),y) + cu(x̄−(y),y) + dw(x̄−(y),y)).

(4.15)

Since u and w are uniquely defined as polynomials on all of Rn, the polynomial t̆K
is well-defined outside K and in particular on K̄.

We will show that t̆K deserves to be termed near-optimal local test function and
as a first step we quantify the effect of the above modification.

Lemma 4.6. Let u|K and w|K be polynomials of degree m. Then, with tK =
tK,b,c,d(u|K , w|K) as given in (4.12), we have

‖tK−t̆K‖H(b;K) . |b|−1 diam(K)
[
‖u‖L2(K)+‖w‖H(b;K)+‖∂bu‖L2(K)+‖∂2

bw‖L2(K)

]
,

only dependent on upper bounds for m, |c|, |d| and %K , and, as always, assuming
that diam(K) ≤ |b|.

Proof. In view of the definitions of tK and t̆K , we split their difference, as well as
the difference of ∂btK and ∂bt̆K , into a number of terms whose L2(K)-norms we
bound in a straightforward way. We start with the first task. It holds that

‖(x,y) 7→ |b|−2

∫ x

x−(y)

∫ z

x−(y)

(∂bu+ cu+ dw)(q,y)dqdz‖L2(K)

. |b|−2 diam(K)2‖∂bu+ cu+ dw‖L2(K),

and

‖(x,y) 7→ |b|−2(x− x−(y))

∫ x+(y)

x−(y)

(cu+ dw)(q,y)dq‖L2(K)

. |b|−2 diam(K)2‖cu+ dw‖L2(K).
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Writing

|b|−1
{

(w(x+(y),y)− u(x−(y),y))(x− x−(y))

− (w(x̄−(y),y)− u(x̄−(y),y))(x− x̄−(y))
}

=

|b|−1
(
w(x,y)− u(x,y)

)(
x̄−(y)− x−(y)

)
+ |b|−2

(∫ x+(y)

x

∂bw(z,y)dz +

∫ x

x−(y)

∂bu(z,y)dy
)(
x̄−(y)− x−(y)

)
+ |b|−2

(∫ x+(y)

x̄−(y)

∂bw(z,y) dz +

∫ x̄−(y)

x−(y)

∂bu(z,y) dz
)(
x− x̄−(y)

)
,

the L2(K)-norm of the expression on the first line at the right-hand side can be
bounded by a constant multiple of

|b|−1 diam(K̄)
(
‖w‖L2(K) + ‖u‖L2(K)

)
.

The terms on the second and third lines are bounded by constant multiples of

|b|−2 diam(K̄)2
(
‖∂bu‖L2(K̄) + ‖∂bw‖L2(K̄)

)
.

Proceeding to the difference of the last lines in (4.12), respectively (4.15), we
have

‖(x,y) 7→ |b|w(x+(y),y)− w(x−(y),y)

x+(y)− x−(y)
− ∂bw(x̄−(y),y)‖L2(K)

. |b|−1 diam(K̄)‖∂2
bw‖L2(K̄),

and

‖(x,y) 7→

∫ x+(y)

x−(y)
(cu+ dw)(q,y)dq

x+(y)− x−(y)
− (cu(x̄−(y),y) + dw(x̄−(y),y))‖L2(K)

. |b|−1 diam(K̄)(|c|‖∂bu‖L2(K̄) + |d|‖∂bw‖L2(K̄)).

Secondly, we find upper bound for the L2(K)-norms for the different terms in
∂b(tK − t̆K). Since

∂btK(x,y) =−
[
u(x,y)− u(x−(y),y) + |b|−1

∫ x

x−(y)

(cu+ dw)(q,y)dq
]

+ w(x+(y),y)− u(x−(y),y) + |b|−1

∫ x+(y)

x−(y)

(cu+ dw)(q,y)dq,

and

∂bt̆K(x,y) = w(x̄−(y),y)− u(x̄−(y),y),

we derive that

‖(x,y) 7→ u(x−(y),y)− u(x,y)‖L2(K) . |b|−1 diam(K)‖∂bu‖L2(K),

‖(x,y) 7→ |b|−1

∫ x+(y)

x

(cu+ dw)(q,y)dq‖L2(K)

. |b|−1 diam(K)(|c|‖u‖L2(K) + |d|‖w‖L2(K)),
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and

‖(x,y) 7→ w(x+(y),y)− w(x̄−(y),y) + u(x̄−(y),y)− u(x−(y),y)‖L2(K)

. |b|−1 diam(K̄)(‖∂bw‖L2(K̄) + ‖∂bu‖L2(K̄)).

The proof is completed by collecting all upper bounds, by using that diam(K̄) .

diam(K) ((4.13)), and that, for any polynomial p, ‖p‖L2(K̄) .
|K̄|
|K|‖p‖L2(K) with a

constant depending only on its degree. �

As discussed earlier below (4.8), inf-sup stability of a perturbed bilinear form

b̆h with respect to a given piecewise polynomial trial space and corresponding test
space based on (4.15) will be partly established by direct calculations. The next
major step is given by the following lemma. Its result will be used to prove the
forthcoming Lemma 4.10.

Lemma 4.7. Let u|K and w|K be polynomials of degree m and assume that diam(K) ≤
|b|. For any ε > 0, one has

‖t̆K‖2H(b;K) −
[

1
2+4|c|2 ‖∂bw + (c+ d)w‖2L2(K) + ε

1+4ε‖u‖
2
L2(K) − ε‖w‖

2
L2(K)

]
& −|b|−2 diam(K)2[‖u‖2L2(K) + ‖w‖2H(b;K) + ‖∂bu‖2L2(K) + ‖∂2

bw‖2L2(K)],(4.16)

where the constant depends only on upper bounds for m, |c|, |d| and %K .

Proof. By applying Young’s inequality twice, in the form ‖σ‖2 ≥ (1−η)‖τ‖2 +(1−
η−1)‖σ − τ‖2 for η ∈ (0, 1), here for η = 1

2 , we have

‖t̆K‖2H(b;K) =‖t̆K‖2L2(K) + ‖∂bt̆K‖2L2(K)

≥ 1
2

[
‖∂bw + cu+ dw‖2L2(K) + ‖w − u‖2L2(K)

]
−
[
‖t̆K − (∂bw + cu+ dw)‖2L2(K) + ‖∂bt̆K − (w − u)‖2L2(K))

]
.

The same arguments that were used in the proof of Lemma 4.6 show that

‖t̆K − (∂bw + cu+ dw)‖L2(K) .

|b|−1 diam(K)
{
‖∂2

bw‖L2(K) + |c|‖∂bu‖L2(K) + |d|‖∂bw‖L2(K)

+ ‖w‖L2(K) + ‖u‖L2(K) + |b|−1 diam(K)
(
‖∂bw‖L2(K) + ‖∂bu‖L2(K)

)}
,

and

‖∂bt̆K − (w − u)‖L2(K)) . |b|−1 diam(K)[‖∂bw‖L2(K) + ‖∂bu‖L2(K)].

Recalling that c is constant on K and taking η = 1 − 1
1+2|c|2 , two applications

of Young’s inequality provide

‖w − u‖2L2(K) + ‖∂bw + cu+ dw‖2L2(K)

≥ ‖w − u‖2L2(K) + (1− η)‖∂bw + (c+ d)w‖2L2(K) + (1− 1
η )‖c(u− w)‖2L2(K)

= 1
2‖w − u‖

2
L2(K) + 1

1+2|c|2 ‖∂bw + (c+ d)w‖2L2(K)

≥ 2ε
1+4ε‖u‖

2
L2(K) − 2ε‖w‖2L2(K) + 1

1+2|c|2 ‖∂bw + (c+ d)w‖2L2(K),

with which the proof is easily completed. �
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4.5. The main result. Let us fix

(4.17) b ∈W 1
∞(div; Ω), c ∈W 1

∞(Ω) such that (2.4) is valid, and |b|−1 ∈ L∞(Ω),

and with that, for any partition Ωh of Ω, the bilinear form bh given in (3.2). For
any K ∈ Ωh, we set

bK := |K|−1

∫
K

b dx, cK := |K|−1

∫
K

c− div b dx, dK := |K|−1

∫
K

div b dx,

and define bh ∈ L∞(Ω)n, ch ∈ L∞(Ω), and dh ∈ L∞(Ω) by

(4.18) bh|K := bK , ch|K := cK , dh|K := dK (K ∈ Ωh),

with which we have defined the perturbed bilinear form b̆h given in (4.5)–(4.6).
Our subsequent analysis of the terms on the right hand side of (4.7) along the

strategy outlined in Section 4.1 is guided by the following comments. First, note
that generally bh 6∈W 0

∞(div; Ω), meaning that well-posedness of the corresponding
variational form on the infinite dimensional level is not ensured. Indeed, since
for φ ∈ C∞0 (Ω),

∫
Ω
φ div bh dx =

∫
Ω
φdivh bh dx +

∫
∂Ωh

JbhKφ, and, unless bh is

constant over Ω, the right hand side cannot be bounded by a multiple of ‖φ‖L1(Ω),

we have div bh 6∈ L∞(Ω). However, the perturbed form b̆h is only applied to
functions from finite dimensional spaces, which is also essential for treating the
second summand in (4.7).

In this latter regard, another problem is that bh is an approximation to b that
is only first order accurate. In order to show that for a piecewise polynomial trial
space, the second summand in (4.7) is sufficiently small relative to the first one,

a central ingredient is to show that for a piecewise polynomial wh,
∫
Ω

(b−bh)·∇wh

‖w‖H(b;Ωh)

is sufficiently small. A combination of ‖b − bh‖L∞(K) . diam(K), and the in-

verse inequality |w|H1(K) . diam(K)−1‖w‖L2(K) shows only that this quotient is
bounded.

We are going to solve this problem by considering trial spaces that are piecewise
polynomial w.r.t. trial (macro-)partitions ΩH , such that the ratio of the local mesh
sizes h/H is less than some sufficiently small constant. This will allow us also to
take care of those ‘higher order’ terms in Lemma 4.6 which involve derivatives of u
and w.

Specifically, let {ΩH : H ∈ I} be a family of partitions of a polyhedron Ω ⊂ Rn

into uniformly shape regular n-simplices, meaning that

(4.19) % := sup
H∈I

max
K′∈ΩH

%K′ <∞.

For any H ∈ I, let Ωh = Ωh(H) be a refinement of ΩH . We set

(4.20) σ := sup
H∈I

max
K′∈ΩH

(
max

{K∈Ωh : K⊂K′}

diam(K)

diam(K ′)
,diam(K ′)

)
,

which later will be assumed to be sufficiently small. This means that we will assume
that any partition ΩH is sufficiently fine, and that the (minimal) subgrid refinement
factor when going from any ΩH to Ωh is sufficiently large. We consider only regular
refinements Ωh of ΩH , in the sense that

(4.21) %̄ := sup
H∈I

max
K∈Ωh

%K . %,

uniformly in σ.
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Given u, w ∈
∏
K∈Ωh

Pm(K), let t = T (u,w), t̆ ∈ H(bh; Ωh) be defined for
K ∈ Ωh by

(4.22) t|K := TK,bK ,cK ,dK
(u|K , w|K), t̆|K := t̆K ∈ Pm+1(K),

so that t|K is the optimal local test function defined in (4.12) corresponding to
the approximate, constant coefficients bK , cK , and dK , and the replacement of
the standard scalar product on H(b;K) by 〈〈 , 〉〉K,b; and t̆|K is its polynomial
approximation defined in (4.15).

We can now formulate the main result of this paper.

Theorem 4.8. Assume the validity of (4.19), (4.21), and (4.17). Then there exists
a σ0 > 0 such that for 0 < σ ≤ σ0 (i.e., for sufficiently fine ΩH and sufficiently
large fixed subgrid refinement depth)

(u,w) ∈ UH :=
∏

K∈ΩH

Pm(K)×H0,Γ−(b; Ω) ∩
∏

K∈ΩH

Pm(K),

and with t̆ = t̆(u,w) ∈
∏
K∈Ωh

Pm+1(K) as defined in (4.22), for bh defined in (3.2)
it holds that

bh(u,w|∂Ωh
; t̆) & |||(u,w)|||U‖t̆‖V,

where the constant depends only on (upper bounds for) m, %, %̄, ‖b‖W 1
∞(div;Ω),

‖|b|−1‖L∞(Ω), ‖c‖W 1
∞(Ω), and ‖B−1‖L(L2(Ω),H0,Γ− (b;Ω)).

Remark 4.9. Theorem 4.8 guarantees inf-sup stability for a fixed, but otherwise
unspecified subgrid refinement depth. In this latter aspect, our results are weaker
than those from [GQ14, CDG16] for Poisson, elasticity and Maxwell problems,
where the required dimension of the test search space could be made concrete.

Numerical experiments suggest that it is sufficient to take h = H.

The remainder of this section is devoted to the proof of Theorem 4.8. We begin
with collecting some simple frequently needed technical preliminaries.

Obviously, we have

‖ch‖L∞(Ω) ≤ ‖c− div b‖L∞(Ω), ‖dh‖L∞(Ω) ≤ ‖div b‖L∞(Ω).

Moreover, for any n-simplex K ⊂ Ω, it holds that

‖cK − (c− div b))‖L∞(K) . diam(K)|c− div b|W 1
∞(K),

‖dK − div b‖L∞(K) . diam(K)|div b|W 1
∞(K),

‖|bK − b|‖L∞(K) ≤ D diam(K)|b|W 1
∞(K)n ,

(4.23)

where, as the constant in the first two inequalities, D > 0 is some constant depend-
ing only on n, which we name for use in (4.26) below.

In particular, we let

(4.24) σ̄ > 0

be such that for any 0 < σ ≤ σ̄ and H ∈ I, Ωh is sufficiently fine to ensure that

(4.25) diam(K) ‖|b|−1‖L∞(K) max
(
1, D|b|W 1

∞(K)n
)
≤ 1

2 (K ∈ Ωh).

Then for any K ∈ Ωh, we have

|bK | ≥ ‖|b|−1‖−1
L∞(K) − ‖|bK − b|‖L∞(K)

≥ ‖|b|−1‖−1
L∞(K) −D diam(K)|b|W 1

∞(K)n

≥ 1
2‖|b|

−1‖−1
L∞(K) ≥ max

(
1
2‖|b|

−1‖−1
L∞(Ω),diam(K)

)
,

(4.26)
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where we have used (4.25).
Finally, for H ∈ I, K ∈ ΩH ∪Ωh, and k ≥ ` ∈ N0, we will make repeated use of

the inverse inequality

| · |Hk(K) . diam(K)−(k−`)‖ · ‖H`(K) on Pm(K),

where the constant depends only on m, %, %̄, and k.

The main technical ingredients needed to prove Theorem 4.8 are collected in the
following lemma.

Lemma 4.10. Assume (4.19), (4.21), and (4.17). Then there exists a 0 < σ0 ≤ σ̄
(cf. (4.24)), such that for any σ ≤ σ0, one has for all (u,w) ∈

∏
K∈ΩH

Pm(K) ×∏
K∈ΩH

Pm(K) ∩H0,Γ−(b; Ω))

‖t̆‖H(bh;Ωh) & |||(u,w)|||U, ‖t− t̆‖H(bh;Ωh) . σ‖t̆‖H(bh;Ωh),∑
K∈Ωh

diam(K)2‖t̆|K‖2H1(K) . σ
2‖t̆‖2H(bh;Ωh),

(4.27)

where the constants depend only on (upper bounds for) m, %, %̄, ‖b‖W 1
∞(div;Ω),

‖|b|−1‖L∞(Ω), ‖c‖W 1
∞(Ω), and ‖B−1‖L(L2(Ω),H0,Γ− (b;Ω)).

We defer the proof of this lemma to the end of this section and show first how it
is used to complete the proof of Theorem 4.8 following steps (i) and (ii) announced
in Sect. 4.1.

Proof of Theorem 4.8. For the selection of bh, ch and dh from (4.18), the perturbed
bilinear form on (L2(Ω)×H(b; Ω))×H(bh; Ωh), first mentioned in (4.5)–(4.6), reads
as

b̆h(u,w; v) :=

∫
Ω

(chv − bh · ∇hv)u+ dhvw dx +

∫
∂Ωh

JvbhKw ds

=
∑
K∈Ωh

∫
K

cKvu+ (w − u)bK · ∇v + vbK · ∇w + dKvw dx.(4.28)

Recall from (4.11) that the optimal test function t, defined in (4.22), was con-
structed such that∑

K∈Ωh

〈〈t|K , v|K〉〉K,bK
= b̆h(u,w; v) (v ∈ H(bh; Ωh)).

Therefore, since for σ ≤ σ̄, diam(K) ≤ |bK | by (4.26), upon taking σ0 ≤ σ̄,
Proposition 4.3 applies and Remark 4.5 ensures that

(4.29) ‖t‖2H(bh;Ωh) h
∑
K∈Ωh

〈〈t|K , t|K〉〉K,bK
= b̆h(u,w; t).

For (u,w) ∈ UH , applying the inverse inequality in combination with (4.23),
shows that ‖(bK − b|K) · ∇t̆|K‖L2(K) . ‖t̆|K‖L2(K) so that

(4.30) ‖t̆‖H(bh;Ωh) h ‖t̆‖V.

For σ0 > 0 sufficiently small, the second inequality in Lemma 4.10 gives ‖t̆‖H(bh;Ωh) h
‖t‖H(bh;Ωh). We infer that

b̆h(u,w; t) h ‖t̆‖2H(bh;Ωh) h ‖t̆‖H(bh;Ωh)‖t̆‖V & |||(u,w)|||U‖t̆‖V,
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by the first inequality in Lemma 4.10.
Writing

∫
∂Ωh

JvbhKw ds =
∑
K∈Ωh

∫
K
wbK ·∇v+vb|K ·∇w+(bK−b|K) ·∇w dx,

we infer that b̆h is bounded on UH ×H(bh; Ωh), uniformly in H. Consequently, we
have

(4.31) |b̆h(u,w; t̆)− b̆h(u,w; t)| . |||(u,w)|||U‖t− t̆‖H(bh;Ωh) . σ|||(u,w)|||U‖t̆‖V,

where we have again used the second inequality in Lemma 4.10 and (4.30). We
conclude that for σ ≤ σ0 sufficiently small,

b̆h(u,w; t̆) & |||(u,w)|||U‖t̆‖V,

which is step (i) from Sect. 4.1.
As for step (ii), we have for (u,w) ∈ U

bh(u,w|∂Ωh
; v) :=

∑
K∈Ωh

∫
K

(c− div b)vu+ (w − u)b · ∇v + vb · ∇w + vw div b dx.

Applying (4.23) and subsequently the third inequality of (4.27) in Lemma 4.10, we
obtain for (u,w) ∈ UH

|bh(u,w|∂Ωh
; t̆)− b̆h(u,w; t̆)|

.
∑
K∈Ωh

diam(K)
[
|||(u,w)|||U‖t̆‖H1(K) + ‖t̆‖L2(K)‖w‖H1(K)

]
. |||(u,w)|||U

√ ∑
K∈Ωh

diam(K)2‖t̆‖2H1(K)

+ ‖t̆‖L2(Ω)σ

√ ∑
K′∈ΩH

diam(K ′)2‖w‖2H1(K′)

. σ|||(u,w)|||U‖t̆‖H(bh;Ωh) . σ|||(u,w)|||U‖t̆‖V

(4.32)

where we have applied the inverse inequality to w|K′ for K ′ ∈ ΩH , and, finally
(4.30). Estimate (4.32) is step (ii) from Sect. 4.1 which, together with step (i)
completes the proof of Theorem 4.8. �

Proof of Lemma 4.10: To show the first inequality in (4.27), we will sum over
K ∈ Ωh the inequality (4.16) in Lemma 4.7. We start with showing below in (4.37)
that the resulting right-hand side can be made small enough. To exploit that u and
w are piecewise polynomial w.r.t. the ‘coarse grid’ ΩH , we collect all K ∈ Ωh that
are contained in one K ′ ∈ ΩH .

To arrive at (4.37) we need, in particular, to get rid of the derivatives of u and
to switch from ‖w‖H(bh;Ω) to ‖w‖H(b;Ω). To this end, an easy consequence of the
third estimate in (4.23) is ‖|bK |‖L∞(K) . ‖b‖W 1

∞(K)n for K ∈ Ωh. Together with
an application of the inverse inequality on K ′ ∈ ΩH , this shows that

(4.33)
∑

{K∈Ωh : K⊂K′}

‖∂bK
u‖2L2(K) . |u|

2
H1(K′) . diam(K ′)−2‖u‖2L2(K′),

with a constant depending on m, %, and ‖b‖W 1
∞(Ω)n . Next, combining again the

third inequality in (4.23) with an inverse estimate on K ′′ ∈ {K,K ′} yields

‖∂bK′′
w‖2L2(K′′) ≤ 2

{
‖∂bw‖2L2(K′′) + ‖(b− bK′′) · ∇w‖2L2(K′′)

}
. ‖w‖2H(b;K′′),

(4.34)
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with a constant depending on ρ or ρ̄, and on m,D, ‖b‖W 1
∞(Ω)n .

The terms ‖∂2
bK
w‖2L2(K) require a little more care than ‖∂bK

u‖2L2(K) since unlike

u, ∂bK
w is generally not piecewise polynomial w.r.t. ΩH . Therefore, we first use

that for Ωh 3 K ⊂ K ′ ∈ ΩH ,

‖∂2
bK
w‖2L2(K) ≤ 2

{
‖∂bK

(∂bK
− ∂bK′

)w‖2L2(K) + ‖∂bK
∂bK′

w‖2L2(K)

}
For the second term on the right an application of (4.33) with u reading as ∂bK′

w
shows that ∑

{K∈Ωh : K⊂K′}

‖∂bK
∂bK′

w‖2L2(K) . diam(K ′)−2‖∂bK′
w‖2L2(K′)

. diam(K ′)−2‖w‖2H(b;K′),(4.35)

where we have used (4.34) for K ′′ = K ′. For the first term on the right we derive
that

‖∂bK
(∂bK

− ∂bK′
)w‖2L2(K) = ‖(∂bK

− ∂bK′
)∂bK

w‖2L2(K)

. diam(K ′)2|∂bK
w|2H1(K) .

diam(K ′)2

diam(K)2
‖∂bK

w‖2L2(K)

.
diam(K ′)2

diam(K)2
‖w‖2H(b;K),(4.36)

where both (4.35) and (4.36) depend on m, %, %̄, and ‖b‖W 1
∞(Ω)n .

By combining these four estimates (4.33), (4.34) for K ′′ = K, (4.35), (4.36), and
using |bK |−1 ≤ 2‖|b|−1‖L∞(Ω) ((4.26)), diam(K) ≤ σ diam(K ′), and diam(K ′) ≤
σ, we infer that∑
{K∈Ωh : K⊂K′}

diam(K)2

|bK |2

[
‖u‖2L2(K) + ‖w‖2H(bK ;K) + ‖∂bK

u‖2L2(K) + ‖∂2
bK
w‖2L2(K)

]
. σ2

[
‖u‖2L2(K′) + ‖w‖2H(b;K′)

]
,

and so ∑
K∈Ωh

diam(K)2

|bK |2

[
‖u‖2L2(K) + ‖w‖2H(bK ;K) + ‖∂bK

u‖2L2(K) + ‖∂2
bK
w‖2L2(K)

]
. σ2|||(u,w)|||2U,

(4.37)

where the constant depends on m, %, %̄, ‖b‖W 1
∞(Ω)n , and ‖|b|−1‖L∞(Ω).

To treat next the terms on the left hand side of (4.16) analogous arguments,
preceded by applications of the triangle inequality, show that∣∣∣‖bh · ∇hw + (ch + dh)w‖L2(Ω) − ‖b · ∇w + cw‖L2(Ω)

∣∣∣2
≤

∑
K′∈ΩH

∑
{K∈Ωh : K⊂K′}

‖(bK − b) · ∇w + (cK + dK − c)w‖2L2(K)

.
∑

K′∈ΩH

σ2‖w‖2L2(K′) = σ2‖w‖2L2(Ω),
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which, upon using
∣∣‖f‖2 − ‖g‖2∣∣ ≤ ∣∣‖f‖ − ‖g‖∣∣(2‖g‖+

∣∣‖f‖ − ‖g‖∣∣), yields∣∣∣‖bh · ∇hw + (ch + dh)w‖2L2(Ω) − ‖b · ∇w + cw‖2L2(Ω)

∣∣∣
. σ‖w‖L2(Ω)

[
(‖b · ∇w + cw‖L2(Ω) + σ‖w‖L2(Ω)

]
. σ‖w‖2H(b;Ω)

(4.38)

dependent on m, %, %̄, ‖b‖W 1
∞(div;Ω), and ‖c‖W 1

∞(Ω).
Now by summing the inequality (4.16) in Lemma 4.7 over K ∈ Ωh, substituting

the estimates (4.37) and (4.38), and using that

‖w‖H(b;Ω) ≤ ‖B−1‖L(L2(Ω),H0,Γ− (b;Ω))‖b · ∇w + cw‖L2(Ω),

for any ε > 0 we arrive at

‖t̆‖2H(bh;Ωh) −
[‖B−1‖−2

L(L2(Ω),H0,Γ− (b;Ω))

2+4‖c−div b‖2
L∞(Ω)

‖w‖2H(b;Ω) + ε
1+4ε‖u‖

2
L2(Ω) − ε‖w‖

2
L2(Ω)

]
& −σ2‖u‖2L2(Ω) − σ‖w‖

2
H(b;Ω),

with a constant depending on m, %, ‖b‖W 1
∞(div;Ω), ‖|b|−1‖L∞(Ω), and ‖c‖W 1

∞(Ω).
By selecting ε and, subsequently, σ0 small enough, the proof of the first estimate
in (4.27) is completed.

Lemma 4.6 in combination with (4.37) shows that

‖t− t̆‖H(bh;Ωh) . σ|||(u,w)|||U.

Now the second estimate follows from the first.

To prove the last estimate, we split t̆ = t̆1 + t̆2 + t̆3 (see (4.15)), where, for
K ′ ∈ ΩH , K ∈ Ωh with K ⊂ K ′,

t̆1|K(x,y) := |bK |−1
(
w(x̄−(y),y)− u(x̄−(y),y)

)(
x− x̄−(y)

)
,

t̆2|K(x,y) := ∂bK′
w(x̄−(y),y) + cKu(x̄−(y),y) + dKw(x̄−(y),y)

t̆3|K(x,y) := (bK − bK′) · ∇w(x̄−(y),y).

Since t̆1|K ∈ Pm+1(K) vanishes on ∂K̄−, the inverse inequality, Proposition 4.3
and (4.13) show that

‖t̆1|K‖H1(K) . diam(K)−1‖t̆1|K‖L2(K) ≤ diam(K)−1‖t̆1|K‖L2(K̄)

. diam(K̄)
diam(K)‖∂bK

t̆1|K‖L2(K̄) . ‖∂bK
t̆|K‖L2(K) ≤ ‖t̆|K‖H(bK ;K),

(4.39)

with a constant depending on %̄.
To treat t̆2, let K ∈ Ωh and p ∈ Pm(K). Recalling from (4.14) that |x̄−|W 1

∞(K) .
1, we have

‖x 7→ p(x̄−(y),y)‖H1(K) . |K|
1
2 ‖x 7→ p(x̄−(y),y)‖W 1

∞(K) . |K|
1
2 ‖p‖W 1

∞(K),

also with a constant depending on %̄. Now consider a p ∈ Pm(K ′) for a K ′ ∈ ΩH .
Then the combination of the previous result and the inverse inequality on K ′ show
that ∑
{K∈Ωh : K⊂K′}

diam(K)2‖x 7→ p(x̄−(y),y)‖2H1(K) . σ
2 diam(K ′)2|K ′|‖‖p‖2W 1

∞(K′)

. σ2|K ′|‖‖p‖2L∞(K′) . σ
2‖p‖2L2(K′),
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dependent on %, %̄, and m. By applying this to t̆2, we obtain

∑
K∈Ωh

diam(K)2‖t̆2|K‖2H1(K) . σ
2
[
‖u‖2L2(Ω) + ‖w‖2L2(Ω) +

∑
K′∈ΩH

‖∂bK′
w‖2L2(K′)

]
. σ2|||(u,w)|||2U . σ2‖t̆‖2H(bh;Ωh),

(4.40)

with a constant depending on %, %̄, m, ‖c‖L∞(Ω), and ‖b‖W 1
∞(div;Ω), where we used

(4.34) in the second but last step as well as the first inequality in (4.27) in the last
step.

For Ωh 3 K ⊂ K ′ ∈ ΩH , using (4.14) and ‖bK−bK′‖L∞(K) . diam(K ′)|b|W 1
∞(K′)n ,

we estimate∑
{K∈Ωh : K⊂K′}

diam(K)2‖t̆3|K‖2H1(K) ≤
∑

{K∈Ωh : K⊂K′}

diam(K)2|K|‖t̆3|K‖2W 1
∞(K)

.
∑

{K∈Ωh : K⊂K′}

diam(K)2|K|diam(K ′)2‖w|K′‖2W 2
∞(K′)

.
∑

{K∈Ωh : K⊂K′}

diam(K)2|K|diam(K ′)−2‖w|K′‖2L∞(K′)

≤ σ2|K ′|‖w|K′‖2L∞(K′) . σ
2‖w|K′‖2L2(K′),

with a constant depending on %, %̄, m and |b|W 1
∞(K′)n . Thus, we conclude that

(4.41)
∑
K∈Ωh

diam(K)2‖t̆3|K‖2H1(K) . σ
2‖w‖2L2(Ω) . σ

2‖t̆‖2H(bh;Ωh)

using again the first inequality in (4.27) of this lemma. Combining (4.39), (4.40),
and (4.41), completes the proof of the last claim of this lemma. �

5. Some numerical results

On Ω = (0, 1)2, and for b ∈W 1
∞(div; Ω) with |b|−1 ∈ L∞(Ω) and u 7→ b · ∇u ∈

Lis(H0,Γ−(b; Ω), L2(Ω)), we consider the transport problem{
b · ∇u = f on Ω,

u = 0 on Γ−.

We let ΩH be a partition of Ω into uniformly shape regular triangles, and let Ωh be
the refinement of ΩH by applying ` recursive red-refinements to each K ∈ Ω where
` ∈ N0 is a fixed number. We let

UH =
∏

K∈ΩH

Pm−1(K) ×
{
w|∂Ω : w ∈ C(Ω) ∩

∏
K∈ΩH

Pm(K), w = 0 on Γ−

}
,

Vh =
∏
K∈Ωh

Pm+1(K).

One infers that for w|∂Ωh
to belong to H0,Γ−(b; ∂Ωh), w ∈

∏
K∈ΩH

Pm(K) has

to be continuous at any intersection of an in- and outflow face of a K ∈ ΩH (cf.
[GMS15, Thm. 4.7]).
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We solve (uH , θH) ∈ UH from

bh(uH , θH ; vh) :=−
∫

Ω

(b · ∇hvh + vh div b)uH dx +

∫
∂Ωh

JvhbKθH ds

= f(vh) (vh ∈ T h(UH)),

(5.1)

with T h ∈ L(L2(Ω)×H0,Γ−(b; ∂Ωh),Vh) being defined by

(5.2) 〈T h(u, θ), vh〉H(b;Ωh) = bh(u, θ; vh) (vh ∈ Vh).

Note that for (u, θ) running over an obvious localized basis for UH , finding each of
the T h(u, θ) amounts to solving a fixed finite dimensional problem on a few mesh
cells. Having determined such a basis for T h(UH), the solution of (5.1) can be
found by solving the sparse, symmetric positive definite system

〈T h(uH , θH), T h(ũH , θ̃H)〉H(b;Ωh) = f(T h(ũH , θ̃H)) ((ũH , θ̃H) ∈ UH).

As shown in Theorem 4.8, by taking a sufficiently large, but fixed `,

‖u− uH‖L2(Ω)+‖θ − θH‖H0,Γ− (b;∂Ωh)

. inf
(ūH ,θ̄H)∈UH

{
‖u− ūH‖L2(Ω) + ‖θ − θ̄H‖H0,Γ− (b;∂Ωh)

}
.

(5.3)

In all our experiments, we only measure ‖u − uH‖L2(Ω), being the quantity
of our main interest. We report on cases where m = 1, so piecewise constant
approximations for u, and piecewise linear approximations for θ. It appears that in
all these cases it is sufficient to take ` = 0, i.e., Ωh = ΩH . Increasing ` leaves the
numerical solutions essentially unchanged. This holds for true for m = 1, as well
as in experiments that we performed where m > 1.

In our first experiment, we take constant b = (b1, b2)> ∈ R>0 × R≥0, ΩH being
a uniform partition of Ω into isosceles right angled triangles with legs of length
H ∈ 2−N0 and hypothenuses parallel to the vector (1, 1), and Ωh = ΩH so ` = 0.
We take f(x) = 1− x1 so that the exact solution, given by

u(x) =

{
x1

b1
− x2

1

2b1
, −b2x1 + b1x2 ≥ 0,

x2

b2
− x2(2b2x1−b1x2)

2b22
, −b2x1 + b1x2 < 0,

is continuous, piecewise quadratic, whose normal derivative over the line x ·b⊥ = 0
has a jump. The numerical results for various b, illustrated in Figure 2 for b =
(1, 1)> and b = (1, 1/16)>, show that ‖u − uH‖L2(Ω) is close to the error of best
L2(Ω)-approximation from the space of piecewise constants.

In our second experiment, we change f into

(5.4) f(x) =

{
1− x1, −b2x1 + b1x2 ≥ 1

4 ,
0, −b2x1 + b1x2 < 1

4 ,

so that the solution, given by

u(x1, x2) =

{
x1

b1
− x2

1

2b1
, −b2x1 + b1x2 ≥ 1

4 ,

0, −b2x1 + b1x2 < 1
4 ,

is piecewise quadratic with a discontinuity over the line x · b⊥ = 1
4 .

When h = 2−k for k ≥ 2 and b ∈ {(1, 0)>, (1, 1)>}, then this discontinuity
is over a grid line, and the right-hand side of (5.3) will be strongly dominated
by the approximation error in θ, because the approximation error in u benefits
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Figure 2. L2(Ω)-error in uH and that in the best approximation
versus 1/h2 (h dim UH), for f(x) = 1− x1, b = (1, 1)> (left) and
b = (1, 1

16 )> (right).

from the discontinuous approximation. In this, rather special situation, the error
‖u−uH‖L2(Ω) might therefore be much larger than the error of best approximation
in u. Unfortunately, this is indeed what happens as illustrated in Figure 3.
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10 0 10 1 10 2 10 3 10 4
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10 -1

10 0
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Figure 3. L2(Ω)-error in uH and that in the best approximation
versus 1/h2, for the discontinuous f from (5.4), b = (1, 1)> (left)
and b = (1, 1

16 )> (right).

To deal with this difficulty, we replaced the trial space for θ by the space of dis-
continuous polynomials

∏
e P1(e) with e running over all edges of the mesh skeleton

∂ΩH without the inflow edges, and determined the new test space T h(UH) from
(5.2) again with Vh =

∏
K∈Ωh

P2(K). With this modification, the curve of the

L2(Ω)-error in the resulting uH is indistinguishable from that of the error in the
best approximation. Since, as we have seen, (

∏
e P1(e))|∂Ωh

6⊂ H0,Γ−(b; Ω) we are
now dealing with a nonconforming DPG method.

Remark 5.1. This discontinuous trial space was already considered in the first paper
[DG11] in which such DPG discretizations (there called DPG-A) for the transport
problem were considered. Since instead of the correct space H0,Γ−(b; ∂Ωh), there
the space L2(∂Ωh) was considered as the space for the traces θ, the use of a non-
conforming trial space was unintended. In [HKS14] one can find an analysis of a
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nonconforming DPG discretization for the Poisson problem. The analysis of the
above nonconforming DPG discretization of the transport problem is open.

In our third experiment we took b(x) = (x2,−x1)>, f = 0, and the inhomo-
geneous boundary condition u = g on Γ−, where g(x1, 1) = 0, and g(0, x2) ={

1, x2 ≥ 1
4 ,

0, x2 < 1
4 .

To implement this inhomogeneous boundary condition, following

the second approach discussed in Remark 3.6 we solved (uH , θH) ∈ UH from

bh(uH , θH ; vh) = −
∫
∂Ωh

JvhbKḡ ds (vh ∈ T h(UH)),

with ḡ ∈ H(b; Ω) being an extension of g. We took ḡ(x) =

{
1, |x| ∈ [ 1

4 , 1],
0, elsewhere,

which in this case equals the exact solution.
In this experiment, we employed an adaptive refinement strategy, that we im-

plemented using the package iFEM by L. Chen ([C09]). By an application of
Theorem 3.1 and Riesz’ representation theorem, r ∈ H(b; Ωh), defined by

〈r, v〉H(b;Ωh) =

∫
∂Ωh

JvbKḡ ds− bh(uH , θH ; v) (v ∈ H(b; Ωh)),

satisfies ‖r‖2H(b;Ωh) h ‖u − uH‖2L2(Ω) + ‖θ − θH‖2H0,Γ− (b;∂Ωh). We approximated r

by the solution r̃ ∈ Vh of

〈r̃, vh〉H(b;Ωh) =

∫
∂Ωh

JvhbKḡ ds− bh(uH , θH ; vh) (vh ∈ Vh).

Based on the decomposition ‖r̃‖2H(b;Ωh) =
∑
K∈ΩH ‖r̃‖2H(b;K), as local error indi-

cators we used {‖r̃‖2H(b;K) : K ∈ ΩH} to drive the common adaptive finite element

method (AFEM) with Dörfler marking parameter ϑ = 1
2 . Examples of a resulting

mesh and approximate solution are given in Figure 4, and the L2(Ω)-errors vs. the
number of unknowns are illustrated in Figure 5.
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Figure 4. Mesh generated after some iterations (left) and the
approximate solution (right) for the third experiment.
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Figure 5. L2(Ω)-error in uH and that in the best approximation
versus the number of triangles in the mesh for the third experiment.

6. Conclusion

For a family of uniformly shape regular partitions ΩH , H ∈ I and given piece-
wise polynomial trial spaces on ΩH and on the skeleton ∂ΩH , we have constructed
uniformly inf-sup stable (with respect to H ∈ I) DPG discretizations for linear
transport equations with variable convection fields by associating with each cell
K ′ ∈ ΩH a piecewise polynomial test space VK′ on a subgrid Ωh|K′ with the fol-
lowing properties. The polynomial degree of each VK′ exceeds the degree of the
trial functions by one and the refinement depth of each subgrid Ωh|K′ is uniformly
bounded. The stability implies that the DPG scheme provides near-best approx-
imations from the trial space as well as uniform error-residual relations that form
essential prerequisits for a posteriori error control and adaptive refinement strate-
gies, see (1.15), (1.4). The control of the polynomial degrees in the test space as well
as that of the subgrid refinement depth entail an asymptotically optimal complex-
ity scaling since the size of the linear systems stays proportional to the dimensions
of the trial spaces. Several consequences of the findings in the present paper such
as rigorous computable a posteriori error bounds or applications in more complex
problem settings such as kinetic models will be addressed in forthcoming work.
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