OPTIMAL PRECONDITIONING FOR PROBLEMS OF NEGATIVE ORDER

ROB STEVENSON, RAYMOND VAN VENETIE

AsstracT. Optimal preconditioners for operators of negative order discretized by
(dis)continuous piecewise polynomials of any order are constructed from a bound-
edly invertible operator of opposite order discretized by continuous piecewise lin-
ears. Besides the cost of the application of the latter discretized operator, the other
cost of the preconditioner scales linearly with the number of mesh cells. Compared
to earlier proposals, the preconditioner has the following advantages: It does not
require the inverse of a non-diagonal matrix; it applies without any mildly grad-
ing assumption on the mesh; and it does not require a barycentric refinement of
the mesh underlying the trial space.

1. INTRODUCTION

1.1. Operator preconditioning. This paper is about the construction of precon-
ditioners for discretized boundedly invertible linear operators of negative order
using the concept of ‘operator preconditioning’ ([Hip06]). The idea is to precon-
dition the discretized operator by a discretized operator of opposite order. This is
an appealing idea, but it turns out that in order to get a uniformly well-conditioned
system, as well as a preconditioner that can be implemented efficiently, the second
discretization has to be carefully chosen dependent on the first one.

For a Hilbert space .7, and a densely embedded reflexive Banach space %" — ¢,
consider the Gelfand triple

W s H~H W

For A being a boundedly invertible coercive linear operator #' — % ,and ¥4 C A
being a finite dimensional subspace of #”, let (A1 v)(?) := (Av)(?) (v,? € ¥7). For
B being a boundedly invertible coercive linear operator %" — %, and #7 being a
finite dimensional subspace of 7/, let (Brw)(®w) := (Bw)(w) (w,w € #7).

A typical example is given by the case that for the boundary I" of some domain,
A = Ly(T), # = H3(T), Ais the single layer integral operator, B the hypersingu-
lar integral operator, 7 is a partition from an infinite collection of partitions T, 7 is
a trial space of discontinuous piecewise polynomials w.r.t. 7, and #7 is a suitable
subspace of #/, which thus cannot be equal to 7. Besides as boundary integral
equations, coercive linear operators of order —1 also appear in various domain de-
composition type methods in the equations for normal fluxes on interfaces.
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In order to precondition Ay : ¥+ — ¥7 with By : W5 — W] we need to
be able to ‘identify” 77 with #7, similar to the identification of 7" with 7. Let
dim WT = dim 7/7’ and

(1.1) inf inf sup M>O.

TET0tverT ozwenwsr [[vllwllwllw
Then Dy defined by (Dyv)(w) = (v,w)» (v € Y7, w € #7) is a uniformly
boundedly invertible linear map #5 — #7, and so its adjoint D’- is such a map
Y — Wr. We conclude that the preconditioned system D}lBT(D’T)*lAT is uni-
formly boundedly invertible 77 — 77

Equipping ¥ and #; with bases =7 and V-, respectively, the matrix repre-
sentation of the preconditioned system reads as D' By D;" A7, with ‘stiffness
matrices” A7 := (A7E7)(ET) and Bt = (B7¥7)(¥7), and ‘generalized mass
matrix’ Dy := (27, V7). Regardless of the choice of the bases, the spectral
condition number of this matrix is equal to that of D' By (D’)"*Ar, and thus
uniformly bounded.

After an earlier proposal from [Ste02], the currently commonly followed con-
struction of a suitable pair (¥7, #7) is the one from [BC07]. Here #7 is the space
of piecewise constants w.r.t. a partition 7 of a two-dimensional domain or manifold
equipped with the usual basis =7, and %7, defined as the span of a collection ¥,
is a subspace of the space of continuous piecewise linears w.r.t. a barycentric re-
finement of 7 constructed by subdividing each triangle into 6 subtriangles by con-
necting its vertices and midpoints with its barycenter. In [HUT16] the inf-inf-sup
condition (1.1) was demonstrated for families of partitions including locally re-
fined ones that satisfy a certain mildly-grading condition from [Ste03].

A problem with the constructions from both [Ste02, BC07] is that the matrix
D7 is not diagonal, so that its inverse has to be approximated. Knowing that
D7'B7D>" is not well-conditioned, because A7 is not whereas their product is
uniformly well-conditioned, the accuracy with which D! has to be approximated
such that it gives rise to a uniform preconditioner increases with an increasing
(minimal) mesh-size.

1.2. Contributions from this paper. For the aforementioned ¥ and Z7, in this
work a space #7, given as the span of a collection V7, will be constructed such
that (1.1) is valid, and Dy = (Z7,U7) ¢ is diagonal. Thanks to the latter, the
corresponding biorthogonal projector is local, which allows to demonstrate the inf-
inf-sup stability without any mildly grading assumption on the partitions.

Each function in ¥ equals a function from the space 5@%1 of continuous piece-
wise linears w.r.t. T, plus a linear combination of ‘bubble functions’ from a space
denoted as Z7. Since the decomposition of Yﬁ’l @ B into 5”2’1 and %7 is stable
w.r.t. the #-norm, instead of simply defining (Brw)(w) := (Bw)(w), a suitable
boundedly invertible linear operator By : #7 — %7 will be constructed from a
diagonal scaling on the bubble space and a boundedly invertible linear operator
Bfo’l : Yg’l — (5@’1)’, e.g. (Bfo’lw)(tb) := (Bw)(w). The total cost of the re-
sulting preconditioner is the sum of the cost of the application of B o plus a
cost that scales linearly in #7. In any case for 7 being a uniform refinement of
some initial coarse partition, a B7<Z " of multi-level type can be found ([BPV00])
whose cost scales linearly in #7. By this use of the stable decomposition, other
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than in [Ste02, BC07], there is no need to discretize the hypersingular operator on
a refinement of 7. The whole approach relies on existence of bubble functions with
certain properties (which e.g. are verified by continuous piecewise linears w.r.t. the
barycentric refinement), whereas these functions themselves do not enter the im-
plementation.

The construction of the biorthogonal collection ¥, and with that of the precon-
ditioner, is based on a general principle. It applies in any space dimension, and,
as we will see, it applies equally well when 77 is the space of continuous piecewise
linears. Higher order discretizations will be covered as well.

The construction applies equally well on manifolds. The coefficients of the func-
tions from ¥ in terms of functions from y70_,1 and the bubble functions are given
as inner products between functions of ¥ and Yg’l. Since in the manifold case,
however, generally these inner products cannot be evaluated exactly, we present
an alternative slightly modified construction in which the true Ls-inner product is
replaced by a mesh-dependent one by an element-wise freezing of the Jacobian. It
still yields a uniform preconditioner on general, possibly locally refined partitions,
whereas now the formula for the expansion coefficients of the functions of ¥ that
was derived in the domain case, applies verbatim in the manifold case.

1.3. Notations. In this work, by A < 1 we will mean that A can be bounded by a
multiple of i, independently of parameters which A and y may depend on, with the
sole exception of the space dimension d, or in the manifold case, on the parametriza-
tion of the manifold that is used to define the finite element spaces on it. Obviously,
A2 pisdefinedasp S A\ and A~ pas A S pand A 2 p.

For normed linear spaces % and %, in this paper for convenience over R, £L(¥/, &)
will denote the space of bounded linear mappings % — 2 endowed with the op-
erator norm ||-|| (s #). The subset of invertible operators in £(#/, Z) with inverses
in £(Z, %) will be denoted as Lis(#', &). The condition number of a C € Lis(¥ , %)

is defined as Ii@/gg’(C) = ||C||L(gy7gg) ||C71 ||L(gg7gz/).
For % a reflexive Banach space and C' € L(%, %) being coercive, i.e.,
(Cy)(y)

in >0
orye |lyll3, ’

both C' and R(C):=3(C + C’) are in Lis(#, %) with
ROl ez ,20) < IClle@ 27,
_ _ o (Cyyy !
1 oyt < 1 ’ == f (7 .

107 ey < IRC) Moo =, inf, ")

The set of coercive C € Lis(#', %) is denoted as Lis.(%,%"). If C € Lis (%, %),

then C~1! € Lis.(#',%) and ”%R(Cil)*lﬂc(@/,;@') < ||CH%(@,@/)H%(C)AHL(@',@)-

Two countable collections T = (v;); and T = (9;); in a Hilbert space will be

called biorthogonal when (Y, T) = [(v;,¥;)]:; is an invertible diagonal matrix, and
biorthonormal when it is the identity matrix.

1.4. Organization. In Sect. 2 the general principles of operator preconditioning
are recalled. In Sect. 3-6, it is applied to operators of negative order discretized
with discontinuous piecewise polynomials, first in the domain- and then in the
manifold-case, first for piecewise constants, and then for higher order polynomials
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using an additive subspace correction method. In Sect. 7, the same program is
followed for trial spaces of continuous piecewise polynomials.

In Sect. 8 we briefly discuss the case when the partitions underlying the trial
space and that of the preconditioner are different. The application of this setting
is given by the case that for a construction of a preconditioner of multi-level type
one would like to have a partition that is built by recurrent refinements from some
initial coarse partition, whereas the given partition underlying the trial space is not
of this type.

Finally, in Sect. 9 we report on some numerical results obtained with the new
preconditioner, and compare them with those obtained with the preconditioner
from [BC07, HUT16].

2. OPERATOR PRECONDITIONING

The exposition in this section largely follows [Hip06, Sect. 2] closely. Let #', # be
reflexive Banach spaces. We will search a ‘preconditioner’ G foran A € Lis(¥, 7’),
i.e. an operator G € Lis(¥’, 7)) (whose application is ‘easy’ compared to that of
A~1). For future applications in Sect. 6 of constructing additive subspace correction
methods, it is useful when additionally the preconditioner is coercive, i.e., being an
operator in Lis.(?”’, 7). The following result is easily verified.

Proposition 2.1. If B € Lis(#,#')and D € Lis(¥', W), then
G:=D'B(D) e Lis(V', V),
and
1Gleer vy < 1D~ Wi | Bllcow v,
IG N eor vy APz pn 1B~ Hleew w)-
Ifeven B € Lis.(W , W), then G € Lis.(V', V), and
IR(G) ey S IDNZer pn IRB) e w)-

Remark 2.2. We recall that by an application of the closed range theorem, D € L(V , #")
isin Lis(¥, #") if and only if for all w € # there exists a v € ¥ with (Dv)(w) # 0,
and
: (Dv)(w) —1)—1
0< inf sup —F——— =||D y .
oy 20, ol ully (= 1P I2bor)

In particular we are interested in finding a preconditioner G, of the form G =
D}lBT(D’T)*l, for an operator Ay € Lis(¥7, V) where #7 is some finite dimen-
sional space. For that goal, in view of Proposition 2.1 we search some finite dimen-
sional space #7 with

(2.1) dim #7 = dim ¥7,

and operators By € Lis(#7, #7) and Dy € Lis(V7, #7).

A typical setting is that, for some reflexive Banach spaces ¥" and %/, and op-
erators A € Lis.(¥,?’) and B € Lis.(#,#'), we have ¥ C ¥ (thus equipped
with || |v), (A7u)(v) := (Au)(v) and, for a suitable #7 C # (thus equipped with || || ),
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take (Brw)(z) := (Bw)(2). Inthis case Ay € Lis.(¥7, ¥7)and By € Lis.(#7, 7])
with
VAT covr vy < VAl eer s IRAT) " oo, vy < IRA) 2,9,
BTl conr ey < NBlleow oy IRBT) " Mleowg oy < IRB) Heow -
A possible construction of a suitable D is discussed in the next proposition.

Proposition 2.3 (Fortin projector ([For77])). Forsome D € Lis(¥', #"),let (D1v)(w) :=
(Dv)(w). Then Dy € L(V7, #7) and

IDT oz < 1Dl ey -

Assuming (2.1), Dy € Lis(¥7, #7) if, and in case W is a Hilbert space, only if there
exists a projector Pr € L(W , W) onto W7 with (D¥7)((1d — Pr)#') = 0, and

(2:2) IDF e vy S NPTl cow i) ID ™ Hleowr,»)-

Proof. The first statement is obvious. Now let us assume existence of a (Fortin)
projector Pr. Then for vy € ¥7,

D D P
HDleZ(lw/ 41/)”1]7_”7/ < sup M — M
) ozwew |lwllw ozwew  |lwllw
(Dvr)(wr)

<N\Prllcew,wy sup
otwrewy |lwrlw

which together with Remark 2.2 and (2.1) shows that Dy € Lis(¥7, #7), in par-
ticular (2.2).

Conversely (cf. [Bra0l, Remark 4.9]), assume Dy € Lis(¥7, #7). Then given
w € ¥, let wy be the first component of the solution (wy,vr) € #7 x ¥7 of the
well-posed saddle point problem

(wr, 27w + (Do) (27) =(w,21)w (27 € #7),

(Drur)(wr) =(Drur)(w) (ur € 7).
Then Pr := w — w is a valid Fortin projector. O
In applications, one usually has a family of spaces ¥7 and aims at a uniform pre-

conditioner G'7. In the setting of Proposition 2.3 it means that one searches a Fortin
projector Pr such that || Pr|| 2y ) is uniformly bounded.

2.1. Implementation. Given a finite collection T = {v},cy in a linear space, we
set the synthesis operator

Fr :R*¥T S spanT:cr—c' T := Z Cy.
veYT

Equipping R#Y with the Euclidean scalar product (, ), and identifying (R#T)’
with R#T using the corresponding Riesz map, we infer that the adjoint of Fr,
known as the analysis operator, satisfies

Fy: (span) — R¥T: f o f(Y) = [f(v)]ver-

A collection Y is a basis for its span when Fy € Lis(R*Y,spanT) (and so F% €
Lis((span Y)’,R#T).)
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NowletZ7 = {{}ee=, and U = {¢}ycw, bebases for 7 and #7, respectively.
Then in coordinates the preconditioned system reads as

Fz!GrArF=, = GrAr = D7'BrD; " Ar,
where
AT = ./—"/ETAT]:ET, BT = -F\II/TBT]:‘PTv DT = ‘F(I/TDT]:ET'

By identifying a map in £(R#=7 R#Z7) with a #Z7 x #Z7 matrix by equip-
ping R#=7 with the canonical basis {e¢ }¢c=,, one has

(A7) = (FL, ArFe,es ec) = (ArFa eg)(Ferec) = (ATE)(S),
and similarly, )
(BT)yy = (Br¥)(¥),  (D1)pe = (DTE().

Concerning D, preferably it is such that its inverse can be applied in linear com-
plexity, as is the case when D is diagonal.

Remark 2.4. Clearly o(G1 A7) = 0(G1AT) and so for the spectral condition num-
ber we have

ks(GTAT) = p(GTAT)p((GTAT) ™) < Ky v (G AT),
which thus holds true independently of the choice of the basis =7 for #7 (this in
contrast to having an efficient implementation). Furthermore, in view of an ap-
plication of Conjugate Gradients, in case Ay and By are coercive and self-adjoint,
then A7 and G are symmetric and positive definite. Equipping RY™”7 with
Il == I(G7)~= - [ or [|l-f} := [[(A7)= - |, in that case we have

Kgam v ), R o)) (GTAT) = Ks(GTAT).

3. PRECONDITIONING AN OPERATOR OF NEGATIVE ORDER DISCRETIZED BY PIECEWISE
CONSTANTS: CONSTRUCTION OF #7- AND D

For a bounded polytopal domain 2 C R%, a measurable, closed, possibly empty
v C 99, and an s € [0, 1], we take

W o= [LQ(Q),H&W(Q)}S’Q, V=W,

where Hj (1) is the closure in H'(£2) of the C*(Q) N H'(Q2) functions that vanish
at 7. The role of D € Lis(#,#") in Proposition 2.3 is going to be played by the
duality pairing

(Dv)(w) = (v, w) L, (),
which satisfies | D| 2y, = D7 zowr,9) = 1.

Let (7)7et be a family of conforming partitions of €2 into (open) uniformly shape
regular d-simplices, where we assume that y is the (possibly empty) union of (d—1)-
faces of T € T. Thanks to the conformity and the uniform shape regularity, for
d > 1 we know that neighbouring 7, 7" € T, ie. T NT" # (), have uniformly
comparable sizes. For d = 1, we impose this uniform ‘K-mesh property’ explicitly.?
—33)

2For our convenience, throughout this paper we consider trial spaces w.r.t. conforming partitions
into uniformly shape regular d-simplices. It will however become clear that families of non-conforming

partitions into uniformly shape regular d-simplices or hyperrectangles that satisfy a uniform K-mesh
property can be dealt with as well.

1In the domain case, it is easy to generalize the results to s € [0, %), oreventos € (
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For T € T, we define Ny as the set of vertices of 7 that are not on ~, and for
v € Ny we set its valence

dr, =#{T € T:veT}.
For T' € T, with Nt denoting the set of its vertices we set Ny 1 := Ny N Np, and
define hy := |T'|'/.
We take
— S = fue Ly(Q):ulr eP (TET)}C Y,
and, as a first ingredient in the construction of a suitable %7,
IPt = {ue Hy () ulr € PL(T €T},
equipped with the usual bases

(3.1) Er={r:TeT}, @r={¢7.:vENT}
respectively, defined by

1 onT,
(32) fT = { 0 onQ \ T, (157'7”(1//) = (Sl,,,/ (l/, Ve NT).

We are going to construct a collection W C Hy () that is biorthogonal to Zr,
and such that

’WT :=span ¥V C W‘

has ‘approximation properties’. These two properties of ¥+ will allow us to con-
struct a suitable Fortin projector, and they will give rise to a diagonal matrix D7.
The construction of ¥ builds on two collections ©7 and X7 in H , (Q2) whose
cardinalities are equal to that of =, the first being biorthogonal to =, and the
second having approximation properties and being inside 5”7(1’1.3
Let O = {0p: T € T} C H_,(Q) be such that

(3.3) (07, 67) Loty = 11 107 Lo () €17 [ Lo (), (T T €T).
An obvious construction of such ©7 will be presented shortly. Defining ¥ =
{o70:TET}C 5’70—’1 by

1
orT = Z dr ,OT v,

veENT T
we have
E orT = E OT v
TeT veENT

being equal to the constant function 1 on @\ Uyrer. 7, 75@}?, which is an instance
of an ‘approximation property’.
We now define
Ur={Yrr:TeT}C 5”79’1 @ span O,

by

1- /
¢ UT,T;€T>L2(Q)9 B Z <O'T,T7§T>L2(Q)9T/,

3.4 =0 +
(34 Yrr=orr (O7,67) Lo () O, 817) Lo ()

T'eT\{T}

30r inside another subspace 1 C W for which one is able to construct a B7‘5—2 € Lisc(Lr, 527’—)
with uniformly bounded ||B7‘Z||£(j,T 7 and H?R(B?f))_luﬁ(yg,T Sy
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The third term at the right-hand side corrects o7 1 such that it becomes orthogonal
to &pv for T' # T, whereas the second term restores the ‘approximation property’.

Lemma 3.1. It holds that
1 ’ g ’ 5
(3.5) Svrr=Y orr+ Z 2T 0T ET) 1,(9) oo,

= = = (O7,67) Lo ()

and
(36) <ET, \I/T>L2(Q) = diag{(L §T>L2(Q) T e T}

Proof. Writing1—o7,1 = X e (1) o7, 7 + (1= c7 07,17), (3.5) follows from
(3.4). The biorthonormality of 27 and {07 /(01,&1) 1,(0): T € T} shows (3.6). O

An easy construction of © that we consider is to take, on a reference d-simplex 7',
some ‘bubble’ function 0 € H}(T) N C(T) with 6 > 0, that is symmetric in the
barycentric coordinates with [ 0 dax = 7|, and then for each d-simplex T, to set
O = 07 0 Fyp o with Fp 0 T — T being an affine bijection. From S 0rda = |T|
and 07|/, = /|7, (3.3) follows.*

Expanding o 7 in terms of the nodal basis, and using that [,. ¢7, do = %,
with this O we arrive at the expression
(3.7)
vrrm Y dR ot (g Y A Y (Y d )

veENT T vENT T T'eT\{T} vENT NNy 1/
As a consequence of (3.6), the biorthogonal ‘Fortin’ projector Py : Ly(2) —
Hj _(Q) with ran Pr = #7 and ran(Id — Pr) = ”//7{*2(9) exists, and is given by

Prou— Z <ua§T>L2(Q)¢TT

o (L&r)Ly(o)

3.1. Boundedness of Pr. To proceed, we list a few properties of the collections
Z1,07and X7. For T € T, we set w® )( T):=T,and fori =0,1,..., define

RED(T) = (T € T: T 0wl (1) £ 0}, wfUT) i= Upy v oy T
It holds that

(3.8) supp ér C w(TU)(T% 1€l Lo ) = h?ﬁ (L&) L,0) ~ h,
(3.9) supp a7 C WP (T), lor| L@ S hy > (k € {0,1}),
(3.10) supp Or C Wi(T), 07| () S hpt 107 ]| Lae)-

From these properties we infer that

supp Yo7 C wit) (T),
and, by additionally using (3.3), that for k € {0,1}

hd/2 k

ag — (S 1 ’
H T, T 1, ér >L2(Q) < hT ||UTT — 6TT’1HL2(SHPP5T’) ~

ol

(077, &) Lo () H*(Q)

4Although the definition (3.4) of )7 r is independent of the scaling of 6/’s, for convenience here
we fixed some (arbitrary) scaling of these functions.
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showing that
b7 1l mE @) S hIPTR (ke {0,1}).

Remark 3.2. Although we specified (to some extent) a collection ©, we emphasize
that in the end the definition of the preconditioner will not depend on the choice
of ©7. Only the derivation of qualitative properties of this preconditioner builds

on existence of a collection © with properties (3.3), (3.10) (where w%g) (T) can be
read as wg@ (T) for some constant ¢), and the forthcoming (5.1)-(5.2).

Theorem 3.3. It holds that supyct || Pr|cow,w) < oo

Proof. We have

||u||L2(T’) 1% ||L2(T/)

1Prulmey < 3 Wralma =g g v
) 2

7' eRY(T)
(3.11) S hrtllull o gy (k€ {0,1}),

which in particular shows that

(3.12) sup [|Pr( £ (La(e).Lo(0)) < 00
TeT

To continue, we revisit the construction of #7 and its basis ¥ by temporarily
including in N7, and thus in N7 r for T' € 7T, also vertices of 7 that are on the
Dirichlet boundary «. Consequently, for the ‘new’ ¢+ 1, (3.5) shows that

(3.13) S rr= Y é7r.,=1onQ.

TeT veENT

For any v € N7, we select an (d — 1)-faceeofaT € 7 withv € eand e C vy if
v € v, and define the functional

g1 (u) == ][uds.

By the trace theorem and homogeneity arguments (see e.g [SZ90, (3.6)]), one in-
fers that

- -4 —441
(3.14) 970 (W] < lel ™ ullnye) S hp? lullaery + e lulmer).
For T € T, we selectav € Ny with v € v if T N~ # (), and define

97,7 = 9T v

and a Scott-Zhang ([SZ90]) type interpolator I : H'(2) — #7 by

Oru= Y gro(wirr.

TeT

It satisfies

T ull gr(ry S hEkHUHLQ(wg)(T)) + th_k|U|H1(w<Tz>(T)) (k € {0,1}).
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Invoking (3.13) and using that g7 (1) = 1, we infer that for k € {0,1}
[(Id =TI )ull e 1y = pi€n7£O Il(Id — 7 ) (u — p) |l w1y

IN

( ) pienf Hu7pHHk(T)+h;k”u7p”Lz(w%?)(T))+h’;_k|u|H1(w(72)(T))
3.15

~ 1-k

~ h’;—' k‘ulHl(w%?)(T))

by an application of the Bramble-Hilbert lemma (cf. [SZ90, (4.2)]).

Noting that the ‘new’ ¢ r differs only from the ‘old’, original one when T' Ny #
0, and that for those T and u € Hj_(Q) it holds that g7 r(u) = 0, we conclude
that ran IT7| HE () is included in the original space #7, which we consider again

from here on. Usmg that Pr is a projector onto this #7, for u € Hj_ (Q) writing
Pru =Il7u + Pr(Id — II7)u, using (3.11) and (3.15) for k € {0, 1} we arrive at

1Prulla ) S 7 ullm ey + byt |1 = Tir)ul| o)
EJ ”uHHl(wgf)(T)) + h;l ”(Id - HT)UHLQ(wg})(T))
5 ||UHH1(UJ,(7§)(T))’

and consequently,
sup P72y o)1 @) < 0

In combination with (3.12), the proof is completed by an application of the Riesz-
Thorin interpolation theorem. O

Defining D by (Dyv)(w) = (Dv)(w), from Proposition 2.3 we conclude that
Dy € Lis(¥7,#7) with |Drllcery wry < 1and suprer [|D7 | comg w0y < 00,
which result is thus valid without any additional assumptions on the mesh grading. The
latter is a consequence of the fact that we were able to equip ¥4 and #7 with local
biorthogonal bases. (Compare [Ste03, eq. (2.30)] for conditions on the mesh grad-
ing without having local biorthogonal bases). Additionally, the biorthogonality
has the important advantage of the matrix

= (E7, V7)1, () = diag{|T|: T € T}
being diagonal.

Remark 3.4. Other than the spaces 77 = .7/ 19, the spaces #4 cannot be expected
to be nested under refinements of 7. This hampers the use of these spaces for the
construction of a biorthogonal (wavelet) decomposition of ¥/, or more generally,
that of a ‘stable’ bi-orthogonal multilevel decomposition ([Dah%]) substituting for
the common orthogonal multilevel decomposition that, for s > 1, is known not to
be stable in ¥ ([Osw98]).

To see this non-nestedness, let us consider the d = 1 shift-invariant case. In
case of nestedness, there would be a ¢y € H{(—1,2) with ) jez¥(-—Jj) = land

[° wdx = [ dx = 0, such that for some constants ¢;, ¥ = Yo | cb(2 - —i).
Integrating this refinement equation over (—1,0) and (1,2) yields c_; = ¢z = 0,
which, by a repeated application of the refinement equation shows that supp ¢ C
[0,1]. This contradicts with ¢ € H'(R) and 3_ ;5 9(- — j) = 1.
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4. CONSTRUCTION OF #7 AND D IN THE MANIFOLD CASE

Let I' be a compact d-dimensional Lipschitz, piecewise smooth manifold in R%
with or without boundary dT'. For some closed measurable v C dI' and s € [0, 1],
let

W o= [Ly(T),Hy (D)2, ¥ :=W"

We assume that I is given as the essentially disjoint union of Uy_, k;(€2;), with, for
1<i<p, k:RE— R being some smooth regular parametrization, and €2; C R4
an open polytope. W.l.o.g. assuming that for i # j, Q; N Q; = (), we define

ke Qi=U_ Q= U k() by klo, = K.

Let T be a family of conforming partitions 7 of I" such that, for 1 < i < p,
x~H(T)NK; is a uniformly shape regular conforming partition of (2; into d-simplices
(that for d = 1 satisfies a uniform K-mesh property). We assume that v is a (pos-
sibly empty) union of ‘faces’ of T' € T (i.e., sets of type «;(e), where eisa (d — 1)-
dimensional face of x; ! (T)).

As in Sect. 3, for T € T, we define N as the set of vertices of 7 that are not
onv,setdr, = #{T € T:v € T}, and for T € T, define hy := |T|'/? and
Ny 1 := Ny N Np,with Nr being the set of the vertices of T'.

We set

= LS”T_l’O ={ue Lay(l): uokle-1py €Po (T €T)} CV,
y;l’l = {u € H&’Y(F): U o I€|,€—1(T) cePy (T S T)},
equipped with 27 = {&7: T € T} and &7 = {¢7,.: v € Ny}, respectively, de-
fined by &7 := 1 on T, {&r = 0 elsewhere, and ¢, (V') = 6, (v, € Ny).
Furthermore, we define ¥ = {o7r: T € T} C Yﬁ’l and O ={0r: T €T} C
H&,Y(F) by orr = ZVENTT d'}}ﬂﬁT,m O = (9,{71(11) ok tonTand fr := 0
elsewhere. Thanks to our assumption of 0,.-1(7) > 0, it holds that (07, {7) 1, ) =

(Ox—1(1): E1(7)) Lot (1)) ~ 10T | Lo @) 167 || Loy (cf. (3.3)).
Now defining ¥y := {¢yr: T € T}, and #7 :=span U C #, by

S lorr&r)iam,
TeTT) (O, &17) Lo(1)

(L=o77,&r) L,
(07, &7) 1o (1)

Yrri=orr+

(Dv)(w) := (v, w) L, 1y, and (D7v)(w) := (Dv)(w), the analysis from Sect. 3 applies
verbatim by only changing (, )1, ) into (, )z, ). It yields that ||DTHL(“I/T7W+) <1,
supret D7 | cowg vy < 00, and Dy = diag{(1,&r) L,y T € T}

A hidden problem, however, is that the computation of D7, and that of the
scalar products (0771 — o7 1,&17) 1, () involve integrals over I' that generally have
to be approximated using numerical quadrature. Recalling that, for s > 0, the
preconditioner G = D}IBTD;-—r is not a uniformly well-conditioned matrix, it
is a priorily not clear which quadrature errors are allowable, in particular when 7
is far from being quasi-uniform. For this reason, in the next subsection we propose
a slightly modified construction of #7 and D+ that does not require the evaluation
of integrals over I'. (Also the scalar products (67, {r) 1, r) involve integrals over I',
but their accurate evaluation is not critical, cf. Remark 3.2.)

As a preparation, in the next lemma we present a non-standard inverse inequal-
ity on the family (#7)7ct. Proofs of this inequality for d < 3 can be found in
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[DFG*04, GHS05]. It turns out that our construction of “local’ collections ¥ that
are biorthogonal to Z1 and whose spans have approximation properties allows for
a very simple proof.

Lemma 4.1 (inverse inequality). With hy|r := hr, it holds that
Ihrvrllomy S lvrlley oy (o1 € 77).
Proof. For Py : Ly(2) — Hg ., (T') defined by
u, &
Pru= Y Wtn,,

For (L&r) Ly

we have ran Py = #7 and ran(ld — Py) = ”I/TLLQ(F), and as follows from (3.11),

IPrulls vy S 1h7'ullryr)  (u € La(T)).
The proof is completed by

’ , Prh? hrvr, h
||UT||H1 (ry = sup (v, W) Ly () > (vr T2 TUT) La(T) 5< TUT, hTUT) Ly(1) 0
ozweny () lwlma | Prhz-or || 1y [h7v7 || s (r)

4.1. Modified construction. To avoid the need for the evaluation of integrals over
I',given 7 € T, on Lo (I') we define an additional, ‘mesh-dependent’ scalar product

=3 'T‘ k() v (s () da.
|I€ 1 k=T
TET (T)
It is constructed from
(U, v) Ly(r) = /QU(H(JS))U(ﬂ(w))Iaﬁ(I)\dI
by replacing on each x~!(T'), the Jacobian |0«| by its average % over k(7).
We now redefine Uy := {¢p7 r: T € T} and #7 :=span Uy C # by

_ A—ormrér)T, (o7, 81 )T
Yror=orr (O1,81)T o Z (O, &) T bz,

and (Dyvr)(wy) = (vr,wr)T (v, wr) € ¥ x #7). Then, as in the domain
case,

T'eT\{T}

Dy = <ET7 \I/T>T = diag{<1,§T>7-: T e T} = diag{|T|: Te T},

and

(4.1)

brr= 3 drloret (=g Y] drl)or— 30 (7 X drl)or
vENT T vENT T T'eT\{T} vENT NN 7

thus with coefficients that are independent of x.

What remains is to prove the uniform boundedness of || D7 ||z(y,,#;), and that
of || D7 || (w4, ). Because of the definition of D7 in terms of the mesh-dependent
scalar product, for doing so we cannot simply rely on Proposition 2.3.

|T|
== 1(D)]

|0k| on Loo(x~1(T))-distance < hy—1(r), for example |0k (z)| in some 2 € k~Y(T). Then in the

51t will be clear from the following that can be read as any constant approximation to

following, the volumes |T'| in the expression for D7 should be read as |« ~1(T)||0x(z)|, with which
also the computation of |T| is avoided.



OPTIMAL PRECONDITIONING FOR PROBLEMS OF NEGATIVE ORDER 13

Lemma 4.2. It holds that suprct || D7 || (v wy) < 0.

Proof. In case s = 0, i.e,, when # = Ly(I') ~ Lo(T')’ = ¥, the uniform bounded-
ness of || Dr||z(#y,»y) follows directly from (-, )7 = || - H%z(p).

By an interpolation argument in the following it suffices to consider the case
s=1,ie,# = H;_(I')and ¥ = Hj_(T')’. By definition of (, ), it holds that
(4.2) (v, ) = (0, w) L) S Nhrollamllullam  (0,u € La(I)).

By writing (Drur)(wr) = (v, ’w7‘>L2(p) + (v, wr)r — (v, w7’>L2(1—*), the uniform
boundedness of || D[y »y) (for s = 1) now follows by combining (4.2) and
Lemma 4.1. U

The (, )7-biorthogonal projector Py : Ly(Q) — Hj () with ran Pr = %7 and

ran(Id — Pr) = “//#MT exists and is given by Pru = Srer T~ Hu, &y T 1.
Since (, )7 gives rise to a norm that is uniformly equivalent to || ||z, (r), the proof
of Theorem 3.3 again applies, and shows that

sup ]57— . . < oo, Ssup PT 1 ol < o0,
TeTH l£(La(r),L2(r) TeTH lecmy_ ry,my )

as well as
(4.3) I Prullg oy S I1h7 ull,ry  (u € La(I)).

Uniform boundedness of | D7 || c(¥7, ), in case s = 0, follows from

(Dror)(Pror) = (o1, 07)1 = o770 2 107 | Loy | ProT || Lo () -

To conclude, by an interpolation argument, uniform boundedness of || D! | LV W)
forany s € [0, 1], it is sufficient to verify the case s = 1, which can be done with the
following modified inverse inequality.

Lemma 4.3. It holds that
VT, W) T
Mhrorlom S s RTOT ey
0£weH{ () Hw”Hl(r)

Proof. Similar to proof of Lemma 4.1, using (4.3) for v; € ¥ we estimate

» 2
sup (o7, w)r _ {or, Prizor)r o (hror, hror)7

> 2 [h7v7 | Loy O
ozweny () [z @) ~ 1PrhZor|me ™ Ihrorlliam 2(0)

Corollary 4.4. It holds that

VT, WT)T
||UTHH5 (ryy ~  Sup (o7, wr) (v € ¥7),
il 0Awr W T HU}THHI(F)

(with "<’ being the statement supyct || D7 || cowr vy < 00 for s = 1).
Proof. The inequality ‘2’ is the statement of Lemma 4.2 for s = 1.

To prove the other direction, for v € Ly(T"), (4.2) shows that

<'an>7'
lolly oy —  sup T

S 7ol Ly
0£weH] () ||w||H1(F) 20
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Taking v = vy € #7, from Lemma 4.3 we conclude that

< (v, w)r _ (o1, Prw)T
”vT”Héw(F)’ ~ sup = sup
' 0FweH  (T) ||w||H1(F) 0£weH{ (1) ||w||H1(F)

- (vr, wr)T {vr, wr)T
< ||Pr \ ; sup ——t— < T
1Prllecm @m0 e~ 0, ol

by suprer | Prllcom ry.my (ry) < 00 O

5. ConsTrUCTION OF B € Lis.(#W71, #7).

Having established suprer [|[ D7l 2y, 77) < 00, Suprer ||D’;1H£(W7/—77/T) < 00,
for the construction of uniform preconditioners it remains to find By € Lis.(#7, #7)

with suprer || BT || 2oy < 00, supper IR(BT) ™ 2oy ) < 00
We will make use of the following two properties of the collection of ‘bubbles’ © 1
and its span %7 := span ©. It holds that

(5.1) 1Y erbrlfingy = > b3 Fler?, (k€ {0,1}),

TeT TeT
(here the selected scaling of the functions 61 entered, cf. footnote 4), and
(52) e+ olie oy 2 lelipny + IolBpey (0 € 2, v € B7).

Both properties are easily verified by a standard homogeneity argument, for (5.2)
using that 0 & P (T). (Here and in the following, Q should be read as T' in the
manifold case).

Below we give a construction of suitable By that is independent of the particular
bubble 0+ being chosen. Like #7, we equip 5”70—’1, B, and Yg’l @ B with || |-

Proposition 5.1. Given B?—”O’I € Eisc(y70’)17 («77(171)/) and BY € Lis (BT, By), let
B 9%, 990 ¢ g (S0 @ Br) be defined by

(BY" ®7 (u+v))(@+8) = (BF " u)(@) + (BFv) (D).
Then BY""®% € Lis ()" & By, (73" @ #r)), and
SO o B\ —
IR(BF %) 1Hz:((y%l@s%)',y%l@%ﬂ
0,1, _ _
< 2max(|RBF )" gory, g0y, IRBE) ey 20),
0,1 0,1 7
1B 69@\\g(yg*l@%T,(ygvl@@T)')SmaX(HB’? Hﬁ(f%l,(fﬁ'l)’)’”Bﬁg’aﬂc(@ﬂ@;))-
Proof. One has
0,1 . 0,1 1, _ 11—
(B %% (u+))(u+v)| >min(|R(BL ) 1H£(1(5,$,1),,y$,1)a||§R(B7@) 1||z:(1g3’7,gaT))
x (llull + llvl15 ),

and [lully, + [[v]}3 > 4]lu+w]}}. Secondly,

0,1 ~ - 0,1
(B9 (ut0))(@ + )| <max(1BE" [l p0s 1y | BEl ciar.can)

x \Jlully + 1013 /1l + 1513
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which by (5.2), combined with an interpolation argument, completes the proof.
O

Since the splitting ofau € #4- C .77 © %7, givenin terms of its basis {7 r: T €
T}, into its components in .2>"' and &7 w.r.t. the nodal- or bubble-basis can be eas-
ily determined in linear complexity, a suitable definition of By : #7 — #7 is given

by (Brw)(w) = (Bfo’l@%w)(u?). Obviously,

yo‘l@@
”BTHMW%%%)SHBT |u@¢N@@T&%$@@ﬂQ1
- SOl DB~
[R(BT) 1||L(W7L,WT) < ||§R(B7— @ ) 1||,c((y$v1@337—)/,ygvl@537)~
A choice for B € Lis.(%7,(%7)’) such that
% B\~
sup | BE || (@ .,) < 00, sup [|R(BE) |z, 2,) < o0,

TeT TeT

is, in view (5.1), given by

(53) (B7gj Z CTGT)( Z dTHT) = Bo Z h;iﬂ_QsCTdT.

TeT TeT TeT

for some constant 3y > 0.
Possible choices for B """ € Lis, (2", (#21)) with

0,1 0,1
su By ! 0,1 0,1y, < OQ sup ||R By Tyt 20,1, 0,1y < 00
TEI;H T ||1;(yT (F21)) ) TEI;H (Br ) ||z:((/T )2

include (B?—”O’lu)(v) = (Bu)(v) (u,v € Yf?’l) for some B € Lis.(#,#"). For
de{2,3}and # = H () := [L2(T), H&(F)]%Q, one may take the hypersingular
integral operator for B, whereas for ' # ), and # = Hz(T') = [Ly(T), H'(T)]1 ,

the recently introduced modified hypersingular integral operator can be appli2ed
(see [HJHUT18]). (Note that H(T') = H'(T') when oI = {).)

For a family of quasi-uniform partitions generated by a repeated application of
uniform refinements starting from some given initial partition, a computationally at-
tractive alternative is provided by multi-level preconditioner from [BPV00], whose

application can be performed in linear complexity.

5.1. Implementation. For both the domain case and the construction in the mani-
fold case in Subsection 4.1, the matrix representation G = Fz G (FL, ) ™" of our

preconditioner G reads as| G+ = D7' BrD; " |with

= diag{|T|: T € T},

and

= Fly, BrFu,

= Fpy (1B Iy + (1d — I+) BZ(1d — I7)) Fu,

0,1 p
=|prBY pr+arBfar|
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where I is the projector from ,5”70—’1 @ %+ onto 5”%1 with ran(Id — I) = %7
BY" = Fy BY"F. = Fpllr F
T Ve rPT oy, PT = ST VT
B :=F5 BfFo,,  qr:=7F5 (d—1Ir)Fu,.

By substituting the definition of B from (5.3), the definition of the basis U7 =
{7 1}reT for #7 from (3.7) and (4.1), and that of the bases @7 = {¢7.,}ven,

and ©1 = {07}y for 5”%1 and %, respectively, we find that

—2s d=t  ifv € Nrr
B‘@ — D1 d — T, v A
T ﬂO T y (p’T)uT { 0 if v g NT,T,

(a)re]=dvr—g > dr,

V€N7'~TﬁN7—,T/

whereas | BY ot depends on BY e Eisc(Y%l, (Yﬁ’l)’ ) being chosen.

Remark 5.2. So far we determined a suitable constant 5, by comparing different

choices numerically. A possible choice for j; is to pick it such that p(q}B? qrAT) =
p(pr-Bf *'prAz). Another option would be to replace By|T|*~% by (an approx-

imation for) [|0r||%,. In that case, however, the non-trivial question arises which

choice of the bubbles 7 would give the best results.

6. HIGHER ORDER CASE

In this section we denote the space ./ 10 as 720, we write its basis =7 and
biorthogonal collection U7 as Z5- and U9, respectively, and the preconditioner G
that we have developed as G%-.

Let (¥7) et be a family of finite dimensional spaces with ;2 C ¥ C ¥, that
satisfies the following inverse inequality

(6.1) AT - ||L2(Q) IR HH(}W(Q)« on ¥,

i.e., the inequality proven for #;? in Lemma 4.1. For 7 € T, let Ay € Lis(¥r, ¥})
with supyct Ky vy (A7) < 0.

Remark 6.1. For the most relevant example where for some (fixed) ¢ € {1,2,...}
(6.2) Yy C S = {u € Ly(Q): ulr € Po(T)},

aproof of (6.1) ford € {2,3} (d = 1 causes no difficulties) can be found in [GHS05,
Thm. 3.6 (and Rem. 3.8 when 7 # ) |, which applies under our minimal assump-
tions imposed on the family T. Alternatively, it is not difficult to see that U% can
be enlarged to a ‘local’ collection that is biorthogonal to a enlargement of Z5% to a
basis for {u € Ly(Q): ulr € Pe(T)}. Then the same proof as for Lemma 4.1 shows
(6.1).

In order to construct a preconditioner G € Lis(77, #7) we will follow the clas-
sical approach of subspace correction methods. We are going to decompose, in a uni-
formly ‘stable’ way, #7 into #;? and a complement space ¥3. On ¥ we will apply
our preconditioner G- € Lis.((¥7)’, ¥;), whereas on the complement space a di-
agonal preconditioner will suffice.

To do so, an obvious option would be to decompose #7 using the biorthogonal
projector PJ- onto ¥ that we know is uniformly bounded on ¥ (since its adjoint
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Py is unif. bounded on #/, see Thm. 3.3). A computationally more efficient im-
plementation, however, will be yielded by using the L,(2)-orthogonal projector
QY% onto 77 instead. Although for s > 1 it is known not to be uniformly bounded
on ¥, restricted to #7 the projector Q% is uniformly bounded in ¥

Lemma 6.2. It holds that

sup ||Q3—|VT||C("I/,“V) < oo.
TeT

Furthermore, there exist constants M, m > 0 s.t. with Y3 := ran ((Id — Q%) |¥, ),

ml[ -1 < >0 Ny < M -15 on 74
TeT

Proof. For u € ¥7, thanks to (6.1) we have

(u, (Id — QT) Lo Q)
1(0d = QF)ullmy oy = sup [hrull?
TIWH (Q) Ve () ||v||H1(Q 7;_ Ly(T)

S ||UHH1 Q)

so that the first statement follows by interpolation.

Again by interpolation, the inequalities need only to be proven for s = 1, and
thus with # reading as H; ., (€2)’. In that case the right inequality follows from
(6.1), whereas the left mequahty follows from the arguments applied at the begin-
ning of this proof. O

The following abstract result concerns so-called additive subspace correction meth-
ods. The result is well-known in the Hilbert space setting and with self-adjoint coer-
cive preconditioners on the subspaces (e.g. [Xu92, Wid92, NS18, GO95],[Osw94,
HXO07]). Present result is better than [HX07] for multiple subspaces, cf. [HX07,
(2.14)]. In [Osw94] the E; are trivial embeddings. Nowhere is the Banach space
case handled.

Proposition 6.3. Let % and, for some set of i, %; be reflexive Banach spaces. Let E; €
L(U,« )besuchthaty ran E; = % ,andlet G; € Lis.(%;,%). Then G := )", E;G;E] €
Lis. (%', % ) with

ul| |2
(6.3) Gl 2o ary < max |Gill a2y ( sup I
i ozuew |ully

— — U 2
64)  IRG) ew an < max IRG)  Newusan( sup Ldw)?
! orucw |lulle

u = lnf U % i
ilor = e, s,y 2 10

The proof of this proposition is given in the appendix.
Corollary 6.4. For k € {0,1}, let I’ denote the trivial embedding of VF into V7. Let
G% € Eisc((“//T) 7P, and let GY- .= R with Ry € Lis.(V3, (V4)") be defined by
(Rru)(v) := By Srer hi (u, v)LZ(T) for some constant 81 > 0. Then

where

Gr = ZI#G’%(I?—)’ € Lisc(Y7,77),
k=0



18 ROB STEVENSON, RAYMOND VAN VENETIE
and

1Gr ey vy < 2max(IGH vy gy, B ™),
IRGT) " Nl eorr gy < 20QF byl owr o max(IR(GT) "Ml gm0 (=10, By M).
Proof. Using that R = R’;, from Lemlma 6.2 one infers that ||G%-|| Ly hy <
pim~tand [|R(GF) "l g, vy < By M.

Now from 5v/2[ull v, < \/IIQOTUII?;/T +1(Id = QP)ully, < V2IQF s ller»llullvr

(u € ¥7), where we used that ||(Id — Q)| lzcv,%) = Q%% | (v ,#), the proof
is completed by an application of Proposition 6.3. O

Remark 6.5. Although at first sight Proposition 5.1 might look like another applica-
tion of Proposition 6.3, note the reversed roles of the “primal’ space and its adjoint.

6.1. Implementation. With =%, =1, and E being bases for ¥}, ¥}, and 77, re-
spectively, the matrix representation G = ]:E_Tl G7(F%,)~" of the preconditioner
from Corollary 6.4 reads as

1
=2_PrGripy)’
k=0

where

Pri=Fa i Fa, Gp=Fo Gy(Fa) ™

We take =Y from (3.1)-(3.2). Then corresponding our preconditioner
GY% € Lisc((¥3)', ¥7) has been given in Sect. 5.1.
Now let =1 = {7 }reT,i=0,....n be an Ly (Q2)-orthogonal basis for #7 such that
éro=~E&r, suppér; CT, |érille,r) = 7%,

so that 2% = {&r;}reTi=1,.., N is an Ly(Q2)-orthogonal basis for ¥;. One infers
that

= Bidiag(|T] ™D 1d(n 1)< (v —1)lreT

= diag[eI]TGTa = diag[e;—, cee ae]—;]TGT'

Remark 6.6. We determine a suitable constant 5, by comparing different choices
numerically (cf. Rem 5.2). A possible candidate for 5, is found by picking it such

that p (p7G%(PF) " A7) = p (Pr G (PY) " AT).

Remark 6.7. In the manifold case, one may prefer to avoid computing an Lo (I')-
orthogonal basis for #7. In that case, similar to Sect. 4.1, the results in this section

and

remain valid when on all places (u, v) 1, (1) reads as % - ) u(k(x))v(k(x)) dz,
and so (,)r,r) as (, )7, and the Ly(T')-orthogonal projector onto #; reads as the
(,)7-orthogonal projector onto #72.
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7. PRECONDITIONING AN OPERATOR OF NEGATIVE ORDER DISCRETIZED BY CONTINUOUS
PIECEWISE POLYNOMIALS.

7.1. Construction of #7 and D7. Let a bounded polytopal domain 2 C R?, v C
09,5 € [0,1], # = [L2(Q), Hy (V)]s 2, ¥ == #', D € Lis(V, #"), (T)rer, N1,
dr1 ., Ny, Ny and hy be all as in Sect. 3. In addition, for 7 € T let ]\77 be the set

of all vertices of T, and for v € N7, let wr(v) == Ugrer: ,,eNT}T.
We take

= I = {ue HY():ulr e PL (T € T)} C ¥,
and, as in Sect. 3,
It ={ue H} (Q):ulr € PL(T €T)},

equipped with nodal bases 27 = {{7,: v € NT} and &7 = {¢7,: v € N7},
respectively, defined by

Ero(V) =bu  (v,V € Ny),

and ¢1, = &7, for v € Ny. Analogously to the case of discontinuous piecewise
polynomial trial spaces in ¥ studied in Sect. 3-6, using the framework of operator
preconditioning outlined in Sect. 2 we are going to construct a family of precondi-
tioners G € Lis (¥4, ¥7) of type D' By (D’-)~! with uniformly bounded norms
G\ cvg vy and [ R(GT) ™M 272 ]

To construct a collection ¥ = {41, : v € Ny} C Hj () that both is biorthog-
onal to Z and for which

’7/7— = span\I!TCW‘

has “approximation properties’, as in Sect. 3 we need two collections X1 C y;l’l

and O C H(%’,y(Q), where ©7 is biorthogonal to =7, and ¥ has ‘approximation
properties’ and #X1 = #Z7.

We define X7 = {o7,: v € Nt} by o7, := ¢7, whenv € Ny, and o7, :=0
when v € N\ N7. Then, obviously, > veny 07w equals Lon Q\Uyrer, Tm;é@}T

For constructing O, on a reference d-simplex T, for ¢ > 0 we consider a smooth
ne € [0, 1], symmetric in the barycentric coordinates, with 7. (x) = 0 when d(x, 9T) <
e, and 7.(z) = 1 when d(z, dT) > 2¢. Then for some fixed ¢ > 0 small enough, it
holds that

<P7 naq>L2 (1)

(7.1) inf sup
0#pEP1(T) 0£qePy (T) ||p||L2(T) HnquILzm

>0,

meaning that the biorthogonal projector P. € L(Ly(T'), Ly(T')) withran P, = . Py (T)
and ran(Id — P.) = Py (T") 22" exists. Consequently, with ®7 = {¢; ,: v € Ny}
being the nodal basis for P; (T), we have that

(b5, v EN;} = (@7, Ds) ) oy Pelrp C Hy(T)

is Ly(T')-biorthonormal to {¢7,:v €Nz}

Now for T € T, let FT,T : T — T be an affine bijection. Then {&T@y: v € Npr}
defined by

_ e
(72) ¢T,5,V = %ng,e,FT)T(V)
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is Lo (T)—biorthonormaluto the nodal basis for P, (T).
By selecting for v € Ny, aT(v) € T withv € Ny, and defining ©7 = {07, : v €
N7} C Hg, () by
07, = lwr (|1 @) e
where the specific scaling is chosen for convenience, we have for v, v’ € N,
S |lwr (V)| = (O 0, ET 0 ) L) = S 107wl Lo ) 1670 | o)

(7.3) = _
supp 07, C T(v), 070l m1(0) S hpn) 1070|120

i.e., properties analogous to (3.3) and (3.10).
Since furthermore E and X7 satisfy properties analogous to (3.8) and (3.9),
defining similarly to (3.4),

(7.4)
1- 12 v vy v’
wT,V =07, < <9 UT’g €T>v >L2(Q) T — Z <<;-T, 277 >>L2(Q) 0 v
T,wsST,v/La2(Q) V’ENT\{V} T.wH»ST,w']La(2)
01 .. <
(75) _{d:-’l VGNT\NTa
. - 071, wr (V)Nwr (V'
OT + D ~ Lwenr\to) Saor A0S ¥ € NT,

we conclude that with (D7v)(w) := (Dv)(w), we have that HD7—||£(7/T,W%) <1,and
supret [|D7 | owg vy < 00, and

= Fy, DrFz, = diag{(1,£7.,) 1,(0): v € N7} = diag {%HWT(V)P v e NT}

7.2. Construction of By € Lis.(#7,#7). Since, for k € {0,1}, ©7 additionally
satisfies

2 2k
| etralipm = X lor@¥ial,
I/ENT VENT
and
lu+vlF 0y 2 Nl + 1013y (v € S7, v e Br=spanO7).
(cf. (5.1)-(5.2)), we construct By analogously as in Section 5. Assuming that we
0,1 . . . 0,1
havea BY" ¢ Ucllsc(yo*l, (")) available with suprcr | BY || -, 01 (013 < 00,
suprer |R(BE )71||L((y3’1)’75’$’1) < o0, for some constant 5y > 0 we take
_2s
(B?—B Z C”QTW)( Z dVHTvV) = Bo Z |w7—(y)‘l <c,d,,
VEI\77— VENT VENT
and
By = Iy BZ" Iy + (1d — I7) BZ(1d — I),
where I is the projector from 5’%1 ©® A7 onto Y;l’l with ran(Id — I7) = %7. Then
suprer | BTl cowr wyy < oo and suprer [R(B71) ™| 2wy oy < 0.

Substituting the definition of 11 ., one infers that| G = D}lBTD;-—r , where

0,1
=prBY  pr+a;Bfqr,
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and
Syry Y,
] v € N7\ Nr,
1 _ 70,1 0.1
(@r)vv | = 2D ve Ny vV =, B |:=F4 BY  Fo,,

lwr (V) NwT ()]
_2d&+1)‘w:_(y,)| ve Ny v #v,

(p7)ur|:= 6,0 (V' € Nr, v € Ny), = diag{Bolwr ()" : v € N},

7.3. Manifold case. From Sect. 4 recall the definitions of T, v, #, ¥, k: Q —
UP_ ki(£;), and that of the family of conforming partitions T of T".

Asin the domain case discussed in Sect. 7.1, for 7€ T let N be the set of vertices
of T, and N7 its subset of vertices not on ~, for T' € T let Nt be the vertices of T',
Ny 1 :=NyNNp,and forv e ]\77’ let wr(v) := UireT: ueNT}T-

We take

= I = {ue H\T): uoklyrry €ePL(T €T} CV,
5’70-’1 ={ue H&A{(F): wo k|1 € PL(T €T)},

equipped with nodal bases 27 = {{7,: v € Nt} and &7 = {¢7.,: v € N7},
respectively, defined by

fT,y(V/) = 61/,1/’ (l/, ZS NT)a
and ¢, = &7, forv € Ny
Actually exclusively for the deriving an inverse inequality analogous to Lemma 4.1,
first we construct a collection U = {7 ,: v € Ny} C Hj ., (T') that has “approxi-
mation properties” and that is biorthogonal to Z7 w.r.t. the true Ly (I")-scalar prod-
uct. We define ¥y = {o1,: v € NT} by o1, = ¢7, whenv € Ny,and o7, :=0
when v € N7\ Nr. Then, obviously, >en, 0T wequals Lon T\ Uiper, 7oy 0y T
Given a d-simplex T C R?, by means of an affine bijection we transport the
function 7, defined in Sect. 4 on a reference d-simplex T, to a function on T and
denote it by 17 .. Then forany T' € 7 € T, for some ¢ > 0 small enough it holds
that
(por™, (nreq) o K™ 1o(my
nf

i sup — — >0
0#£pEPL (k= 1(T)) 02£qePy (x—()) 1P 0 B Loy | (17,2@) © K | Lo (1)

Moreover, since the “panels’ T' get increasingly flat when diam T" — 0, there exists
an ¢ > 0 such that above inf-sup condition is satistied uniformly overallT € T € T.

By selecting for each v € N a T'(v) € T with v € Ny, as in Sect. 7.1 we obtain
a collection ©7 = {07, : v € Ny} with 6, C H}(T(v)) that is biorthogonal to
Er, in particular that satisfies (7.3), after which we define the 7, by means of
formula (7.4). Having constructed the biorthogonal collections Z7 and ¥, we set

the biorthogonal projector Pr : Lo(T') — Hg (D) u = 3, 5 gf:”ﬂdn—_u
: T Ly ;

which satisfies || Prullgiry < ||h7 ullr,r). With the aid of this projector, as in
Lemma 4.1 one infers that
(7.6) lhrvrlam S lorllar )y (o1 € 77).

Having established this inverse inequality, to arrive at a construction of ¥ that
does not require the evaluation of integrals over I', as in Sect. 4.1 we replace (, ) ., ()
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by (, )7. We redefine ©1 = {07,: v € N7} by

k1 7 —
| ()] ¢H_1(T),E,K_1(l/) oK !

O = |wr (V)|
with the ¢’s defined in (7.2), and following (7.5), set Uy = {47 ,: v € N7} and
Wi = span VUt by

ZQ; ve Ny \ Nr,
Y1 = 07 Mg N
¢T v+ 2(d+1) ZV 'e NP\ {v} 2d(d+D)[wr ()T veNT.

As in Sect. 4.1, we set (Dyvr)(wy) := (v, wr)T (v € ¥, wr € #7), and as in
Sect. 4.1, using (7.6) one shows that supct | D7([c(v7, %) < oc. Similarly as in
Lemma 4.3, one proves that

VT, WT )T
lhrorliam S sup  WDATIT
0£weH} (T) ||w||H1(F)

and with that SUpyeT ||D7_-1 ||L(W7C,"VT) < o0.

Constructing By € Lis.(#7, #7) as in Sect. 7.2, one arrives at the same expres-
sions for D7, G7, B, qr, Bf *' pr, and B as in Sect. 7.1-7.2 in the domain
case.

7.4. Higher order case. For ease of presentation only, let us confine the discussion
to the domain case and

V7] ={ue H'(Q): ulr e P, (T€T)} C ¥,

To construct a preconditioner, i.e.,, a G € ,Cis(”I/T’, ¥7) one can re-use the precon-
ditioner constructed for the continuous piecewise linears by following the method
of subspace correction methods discussed in Sect. 6. It requires a stable splitting
of the current 77 into the space of continuous piecewise linears and a complement
space.

An alternative is to apply the ‘operator preconditioning” approach directly. Let
Er={&r.,:ve NrU M7} be the usual nodal basis of ¥7-, where M is the set of
midpoints of edges of elements in 7, and, as in Sect. 7.1, let &7 = {¢7,: v € N7}
be the nodal basis for the space 5@?’1 of continuous piecewise linears that vanish at
v. WesetEr ={o7,: v e NyUM7z} by o7, := ¢, whenv € Ny,and o7, :=0
when v € (N7 \ Ny) U My. Then ey 0T equals 1 on @\ Urrer. 70y T
It remains to construct O = {07, : NruU M7} that is biorthogonal to Z7. Using
that, similar to (7.1),

" (@) 1, (1)

0#£pePa(T) o¢qe7>2(T ||p||L2<T)H775q||L2<T>

> 0,

such a ©7 can be constructed as in Sect. 7.1. Having =7, ¥7, and ©, a collection
W biorthogonal to Z7 and with ‘approximation properties’ is given by the mean-
while familiar explicit formula. The resulting D7 is diagonal, and the optimal pre-

conditioner follows assuming that we have a BY “e Lis (2, (5”70-’1 )') available

. 0,1
with supy¢t ||B7— ||£(y0 L2ty < 00, SUPT¢T H§R( B )™ 1H£((y2,1),_’y2,1) < o0.
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8. USING A DIFFERENT PARTITION FOR THE CONSTRUCTION OF THE PRECONDITIONER

For ease of presentation, let us restrict ourselves to the case considered in Sect. 3:
Qis a domain in RY, and #' = ¥ D V7 = S 19, being the space of piece-
wise constants w.r.t. 7. We have seen how to build an optimal preconditioner for
an Ay € Lis(Sf Lo (S 19)) assuming we have available an operator BY e
Lise(.Z21 (Yﬁ" 1Y), where Yg’l C W is the space of continuous linears w.r.t. 7 that
vanish on . Apart from the application of BY "', the other ingredients needed for
building this preconditioner require O(#7 ) operations.

In the current section we will show that the construction can be generalized
to the situation that partitions 7 and 7 underlying A7 and Bg "' are unequal, al-
though related. This can be useful in the situation that 7 is “unstructured’, whereas
in order to construct B7~5f " of multi-level type see e.g [BPV00], one would like to
have T to be the result of recursive refinements starting from a coarse initial parti-
tion.

As before, let T be some family of conforming, uniformly shape regular partitions
of Q into (open) d-simplices. Let T be a family of uniformly shape regular partitions
of Q into (open) d-simplices, thus not necessarily conforming, such that for 7 € T,
v is the (possibly empty) union of (d — 1)-faces of T € T. Moreover, we assume
that for any 7 € T, there exists a 7 = 7 (7)) such that for any (7,7) € T x T with
TNT # 0, it holds that |hr| = |hz|.

With =7 being the basis of piecewise constants for .- 9, we need to construct
a biorthogonal collection ¥ consisting of functions each of them being the sum of
a function from X7 =X, 7 C yg’l, which collection should have ‘approximation
properties’, and a linear combinations of ‘bubble functions” from ©7. Compared
to Sect. 3 we slightly adapt the construction of ©7 = {07: T € T} in the sense that
we choose the bubble 0 = 6, 5 € HY(T NT) for some T € T. Thanks to our
assumptions on shape regularity and on the connection between 7 and 7 this can
be done whilst retaining property (3.3).

To define ¥ 7, let N+ be the set of ‘non-hanging’ vertices of T that are not on
7, let @7 = {¢5;: 7 € Nz} be the nodal basis for 5”79_’1, and for 7 € N5, let
drp:=#{T € T: v € T}. Now defining ¥ 7 = {0 7 ;- T € T} by

o -1,
Or o1~ Z dr 507 5>
{DENs: veT}

the whole preceding construction that was developed for 7 = 7 goes through.
That is, defining ¥+ by (3.4), Lemma 3.1 is valid (but the convenient expression
(3.7) for ¥ 1 is not) so in particular Dy = diag{|T|: T € T}, properties (3.8),
(3.9), (3.10) hold true, and so does Theorem 3.3. Equation (5.1) holds true and,
thanks to the modified construction of ©, so does (5.2) concerning the stable split-
ting of 5”73’1 @ span O into 5{%1 and span O~

Given a collection T as above, T can be chosen as the collection of partitions
that can be generated by newest vertex bisection starting from some coarse initial
conforming partition of 2 that satisfies a matching condition ([BDDO04, Ste08]).
Given T € T, the partition T & T can then be constructed by recursive refinements
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of those T € T for which h. is larger than some fixed constant multiple of A for any
T € T withTNT # 0. Theresulting 7 € T will generally be nonconforming, but for
a convenient construction of B it can be refined to a conforming partition T.eT
at the cost of inflating the total number of d-simplices by not more than a constant
factor ([BDDO04, Ste08]). The latter partition 7. might be locally more refined than
T in the sense that hy 2 hr for all (T, Tc) e T x T, with T NT, # () cannot be
guaranteed. Since this condition is needed to guarantee an inverse inequality for
the ‘o-functions’ assumed in (3.9), the intermediate nonconforming partition 7~
remains needed for the construction of X 7.

9. NuMERICAL EXPERIMENTS

Let I' = 9[0,1)®> C R® be the two-dimensional manifold without boundary
given as the boundary of the unit cube, # = HY/?(T), ¥ = H~'/?(I'), and
Vr =7 14 C ¥ the trial space of discontinuous piecewise polynomials of de-
gree { w.r.t. a partition 7. In this section we will evaluate preconditioning of the
discretized single layer operator A € Lis.(¥7, 77 ).

The role of the opposite order operator BY e Lise(F21, (Yﬁ’l)’) from Sec-
tion 5 will be fulfilled by (B “"u)(v) = (Bu)(v) for an adapted hypersingular
operator B € Lis.(#,#"). The hypersingular operator B € L(#,#") itself is
only semi-coercive, but there are various options to change it into a coercive op-
erator ([SW98]). We consider B € Lis.(#,#") given by (Bu)(v) = (Bu)(v) +
afu, 1)1, r){v, 1) L,(r) for some a > 0. By comparing different values numerically,
we find o = 0.05 to give good results in our examples.

Equipping ¥7 with the usual Ly (I')-orthogonal basis (where any basis function
supported on T has norm |T |2), and Yg’l with the nodal basis, the matrix repre-
sentation of the preconditioned system reads, when ¢ = 0, as

_ 0,1 1/2 —
GrAr =D;'(p;BY pr+ 50(1;177/ ar)D7'Ar,

with Dy = diag{|T|: T € T } and uniformly sparse p7 and gt as given in Sect. 5.1;
and when ¢ > 0, writing G% = G7 for the above preconditioner on piecewise
constants, as

GrAr = (PYGY(PH)T +prGr(p)T) AT,
with G} = B diag{|T|=3/*1d(y_1)x(n—1): T € T} where N = (d'f), and uni-
formly sparse pJ- and p}- as given in Sect. 6. The (full) matrix representations

of the discretized singular integral operators A and B " are calculated using
the BETL2 software package [HK12] (alternatively, one may apply low rank ap-
proximations in a hierarchical format). Condition numbers are determined using

Lanczos iteration with respect to ||-|| := ||A$ |I. The constants j3; are selected using
the strategy from Remark 5.2 and 6.6.

We will compare our preconditioner to the diagonal preconditioner diag( A7)~ *,
and in the piecewise constant case, also to the related preconditioner G from
[HUT16], where G = ﬁ}lE;Bf " ErD>" is defined as follows. With 7 be-
ing the barycentric refinement of 7, a collection ¥ C Yg’l is constructed in
[BCO7] such that the Fortin projector Py with ran Pr = Wy := span W and
ran(Id—Pr) = ”1/7} 2 exists, and, under an additional sufficiently mildly-grading



OPTIMAL PRECONDITIONING FOR PROBLEMS OF NEGATIVE ORDER 25

TaBLE 1. Spectral condition numbers of the preconditioned single
layer system, using uniform refinements, discretized by piecewise
constants .- 19 Both matrices G and G- are constructed using
the adapted hypersingular operator with oo = 0.05; and 5y = 1.25
in Gy.

dofs rs(diag(A7)'Ar) ks(GrAT) kKs(GTAT)

12 14.56 2.51 1.29

48 29.30 2.52 1.58

192 58.25 2.66 1.77

768 116.3 2.7 1.89

3072 230.0 2.74 1.94
12288 444.8 2.79

condition on the partition, has a uniformly bounded norm || Pr|| cow,w) (cf. Theo-
rem 3.3); Dy = (E7, \i/ﬂ Lo (r); BT is the representation of the embedding 7/7— —
5”73’1 equipped with ¥ and the nodal basis of 5”%0’1, respectively; and BZ e
[Zisc(yg’l, (Yg’l)’) is an opposite order operator that we take as (Bfo’lu)(v) =
(Bu)(v), with B the adapted hypersingular operator.

Compared to our G = GY%, the preconditioner G'7 has the disadvantages that,
besides the aforementioned mildly grading condition, the matrix D7, although
uniformly sparse, is not diagonal, so that the (sufficiently accurate) application of
its inverse cannot be performed in linear complexity; furthermore that it requires
evaluating the adapted hypersingular operator on the larger space ;7%0’1 2 Y70—’1

(#T = 6#T); and finally that the non-standard barycentric refinement 7 has to
be generated.

9.1. Uniform refinements. Consider a conforming triangulation 7; of I" consisting
of 2 triangles per side, so 12 triangles in total. We let T be the sequence {7 };>1 of
uniform red-refinements, where 7, > 7;_; is found by subdividing each triangle
from 7j_, into 4 congruent subtriangles.

For 77 = Y;l’é, Tables 1 and 2 show the condition numbers of the precon-
ditioned system for £ = 0 and ¢ = 2, respectively. Aside from being uniformly
bounded, the condition numbers of our preconditioner Gt are of modest size. In
the constant case, ¢ = 0, Table 1 reveals that the preconditioner G’T from [BCO07,
HUT16] gives better condition numbers. As described above, this quantitative gain
comes at a price. In the result of dim .7/ 10 — 3072, using full matrices for the dis-
cretized adapted hypersingular operator, we found a setup and application time of
1816s and 0.0971s for Gr, compared to 385s and 0.00284s for G . These differences
are due to numerical inversion of D by LU factorization with partial pivoting, and
the enlargement Yg’l D Yﬁ’l, also causing our test machine to go out of memory
in calculation G- for the last refinement. Although we expect them to be in any
case significant, these differences can be made smaller when the exact inversion of
Dy is avoided, and Bf *" and BY “"are replaced by suitable low rank approxi-
mations.
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TaBLE 2. Spectral condition numbers of the preconditioned single
layer system, using uniform refinements, discretized by discontin-
uous piecewise quadratics .7/ 2. The matrix G is constructed
using the adapted hypersingular operator, with o = 0.05, and
Bo = B1 = 1.25.

dofs kg (diag(AT) -1 AT) Ks (GTAT)

72 167.16 9.58
288 309.12 10.4
1152 616.03 11.1
4608 1211.3 11.3
18432 2337.2 11.4

TaBLE 3. Spectral condition numbers of the preconditioned single
layer system discretized by piecewise constants .7 19 using local
refinements at each of the eight cube corners. Both matrices G-

and G'7 are constructed using the adapted hypersingular operator
with a = 0.05; and 5y = 1.2 in G. The second column is defined

by A1 min := mingpe7 hyp.

dofs  hromin  rs(diag(A7) A7) ks(GTAT) kKs(GTAT)

12 7.0-1071 14.56 2.61 1.29
432 2.2-1072 68.66 2.64 2.91
912 6.9-10* 73.15 2.64 3.14

1872 6.7-107" 73.70 2.64 3.25
2352 2.1-10"8 73.80 2.64 3.26
2976 2.3-1071° 73.66 2.64

9.2. Local refinements. Here we take T to be the sequence {7 },>1 of locally re-
fined triangulations, where 7, > 7j_1 is constructed using conforming newest
vertex bisection to refine all triangles in 7;_; that touch a corner of the cube.

As noted before, the preconditioner G+ provides uniformly bounded condition
numbers if the family T satisfies some sufficiently mildly-grading condition on the
partition [Ste03, HUT16]. It is not directly clear whether T satisfies this condition,
but we included the results nonetheless.

Table 3 gives the results for the preconditioned single layer operator discretized
by piecewise constants .- 10 The condition numbers kg (G7Aqr) arenicely bounded
under local refinements. In this case our preconditioner gives condition numbers
slightly smaller than the ones found with G'7. The calculation of the LU decom-
position with partial pivoting of D7 turns out to break down in the last result
(dim .7 " = 2976).

10. CoNcLusION

In this paper, we have seen how a boundedly invertible operator B " from the
space of continuous piecewise linears 5”7(1’1 w.r.t. any conforming shape regular



OPTIMAL PRECONDITIONING FOR PROBLEMS OF NEGATIVE ORDER 27

partition 7, equipped with the norm of H*(Q2) (or H*(I')) for some s € [0, 1], to its
dual (5”%1 )’ can be used to optimally precondition a boundedly invertible operator
of opposite order discretized by discontinuous or continuous polynomials of some
fixed degree w.r.t. 7 (or even w.r.t. some partition close to 7°). The cost of the
resulting preconditioner is the sum of a cost that scales linearly in #7 and the cost

of the application of B “In any case for 7 being member of a nested sequence
of quasi-uniform partitions, BY *" can be constructed so that it requires linear cost.

APPENDIX A. PROOF OF PROPOSITION 6.3

Lemma A.1. For reflexive Banach spaces % and &, let E € L(¥, %) withran E = Z.
Then ||z|| o := infiyeca . py—2y ||yl defines an alternative norm on the linear space Z,
and

s NE9llz _ 2]l 2 e IEglle oo |zl
P 7 — = , mn —— 2 int .
otgez’ |l9llzr opeez 2y’ o#ecz lgllzr T 0#zez ||z &

Proof. The verification that || || ,» defines a norm is easy. Obviously the supremum
at the left hand side of the next statement equals

Ey| # z|| o
IE" ez o) = |Ellcw,2) = sup |Evlle _ sup sup =1
0AYyeXW ||y||.@/ 0£2€Z {ye¥ : Ey=z} ||y||~@/

|2l 2
ozzc |2l

The last statement follows from

E’ E 5 .
Bl = sup EOW _ o 0By 9l) 2]
ozyer  |yllor ozyew Yl orzzez 2z (yew: By=2) Yl
o LDz g el 9@y Bl
ozse2 lellz Belly = 02e2 ally opecor lell oize2 Izl

Proof of Proposition 6.3. We equip [], % with />, || -113,, and ([, %)’ with the
corresponding dual norm, and equip [], % with />, [ - [|3,,-
We start by showing that ([ [, %)’ ~ [ [, %/. We set

S: H%/ — (H%)/; (fi)i = ((u); = Zfi(ui)),

Given f € ([[, %), taking f; = f(-e;) we see that S(f;); = f, whereas S is clearly

also injective. From ||S(fi)ill([1, 2) = SUPot(us)ie[], % A2 i)l e infer that
s D€L 5

1SCfa)illqn, 2y < /> ||fi||§li,,whereas taking u; such that f;(u;) = ||f2\|g;/7/||ul|

and [|u;|2, = || fillz: gives | Y2, fi(wi)l = 3=, |uill%,, showing that S is an isometry.
We will further use that

(AL)  (f)i(S' (wi)i) = (S(fi))(ui)i = Zfi(ui) ((wi) € H%’ (f) e [T#).

Ui
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We set £ := (w;); — >, Eiu; € L([], %, %). For f € « and (u;); € [, %,
(A.1) shows that

(S(BLf)i)(ui)i = (BL)i(S (wi)i) = > (Bff)(wi)

)

- Z F(Biw) = f(E(ui)i) = (E"f)(ui)i,

thatis, ST'E'f = (E!f);.
The definition of G shows that for f, fo € %/,

2
f2(Gf) =) Eif2(GiE 1) < max ||Gill ¢y az) 11.>2 1B fll %
% k=1 7
The proof of the first bound (6.3) is completed by

>_lIEif

and || E' || ez (11, %)) = SUPotucw Lo by an application of Lemma A.1.

el

The second bound (6.4) follows by, for f € %,
F(GF) =) B (GEf) = min [RG) ™ 2l 0 D IEF

2 = ISTUE fillm, 2 = 1B full a1, 2y < WE et 2 | il

e o
2
Bl = 1B FI3, any 2 11 (jnf ™)
by an application of Lemma A.1. O
REFERENCES
[BCO7] A. Buffa and S.H. Christiansen. A dual finite element complex on the barycentric refine-

ment. Math. Comp., 76(260):1743-1769, 2007.

[BDD04] P Binev, W. Dahmen, and R. DeVore. Adaptive finite element methods with convergence
rates. Numer. Math., 97(2):219 — 268, 2004.

[BPV00] J. H. Bramble, ]J. E. Pasciak, and P. S. Vassilevski. Computational scales of Sobolev norms
with application to preconditioning. Math. Comp., 69(230):463-480, 2000.

[Bra01] D. Braess. Finite Elements. Cambridge University Press, 2001. Second edition.

[Dah96] W. Dahmen. Stability of multiscale transformations. J. Fourier Anal. Appl., 2(4):341-362,
1996.

[DFG104] W. Dahmen, B. Faermann, 1.G. Graham, W. Hackbusch, and S.A. Sauter. Inverse inequal-
ities on non-quasiuniform meshes and application to the mortar element method. Math.
Comp., 73:1107-1138, 2004.

[For77] M. Fortin. An analysis of the convergence of mixed finite element methods. RAIRO Anal.
Numér., 11(4):341-354, iii, 1977.

[GHS05] 1. G. Graham, W. Hackbusch, and S. A. Sauter. Finite elements on degenerate meshes:
inverse-type inequalities and applications. IMA ]. Numer. Anal., 25(2):379-407, 2005.

[GO95] M. Griebel and P. Oswald. On the abstract theory of additive and multiplicative Schwarz
algorithms. Numer. Math., 70:163-180, 1995.

[Hip06] R. Hiptmair. Operator preconditioning. Comput. Math. Appl., 52(5):699-706, 2006.

[HJHUT18] R. Hiptmair, C. Jerez-Hanckes, and C. Urzua-Torres. Closed-form inverses of the
weakly singular and hypersingular operators on disks. Integral Equations Operator Theory,
90(1):Art. 4, 14, 2018.

[HK12] R. Hiptmair and L. Kielhorn. Betl — a generic boundary element template library. Technical
Report 2012-36, Seminar for Applied Mathematics, ETH Ziirich, Switzerland, 2012.



[HUT16]

[HX07]
[NS18]
[Osw94]

[Osw98]
[Ste02]

[Ste03]
[Ste08]

[SW98]

[5290]

[Wid92]

[Xu92]

OPTIMAL PRECONDITIONING FOR PROBLEMS OF NEGATIVE ORDER 29

R. Hiptmair and C. Urziia-Torres. Dual mesh operator preconditioning on 3d screens: Low-
order boundary element discretization. Technical Report 2016-14, Seminar for Applied
Mathematics, ETH Ziirich, Switzerland, 2016.

R. Hiptmair and J. Xu. Nodal auxiliary space preconditioning in H(curl) and H(div)
spaces. SIAM |. Numer. Anal., 45(6):2483-2509, 2007.

M. Neumiiller and I. Smears. Time-parallel iterative solvers for parabolic evolution equa-
tions. Technical report, 2018. To appear in SIAM ]. Sci. Comput.

P. Oswald. Multilevel finite element approximation: Theory and applications. B.G. Teubner,
Stuttgart, 1994.

P. Oswald. Multilevel norms for H /2. Computing, 61(3):235-255, 1998.

O. Steinbach. On a generalized L2 projection and some related stability estimates in
Sobolev spaces. Numer. Math., 90(4):775-786, 2002.

O. Steinbach. Stability estimates for hybrid coupled domain decomposition methods, volume 1809
of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2003.

R.P. Stevenson. The completion of locally refined simplicial partitions created by bisection.
Math. Comp., 77:227-241, 2008.

O. Steinbach and W. L. Wendland. The construction of some efficient preconditioners in the
boundary element method. Adv. Comput. Math., 9(1-2):191-216, 1998. Numerical treatment
of boundary integral equations.

L. R. Scott and S. Zhang. Finite element interpolation of nonsmooth functions satisfying
boundary conditions. Math. Comp., 54(190):483-493, 1990.

O. B. Widlund. Some Schwarz methods for symmetric and nonsymmetric elliptic prob-
lems. In Fifth International Symposium on Domain Decomposition Methods for Partial Differen-
tial Equations (Norfolk, VA, 1991), pages 19-36. SIAM, Philadelphia, PA, 1992.

J. Xu. Iterative methods by space decomposition and subspace correction. SIAM Rev.,
34:581-613, 1992.

KorTtewEeG-DE VRIES INSTITUTE FOR MATHEMATICS, UNIVERSITY OF AMSTERDAM, P.O. Box 94248, 1090 GE
AMSTERDAM, THE NETHERLANDS
Email address: r.p.stevenson@uva.nl, r.vanvenetie@uva.nl



