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Abstract. Optimal preconditioners for operators of negative order discretized by
(dis)continuous piecewise polynomials of any order are constructed from a bound-
edly invertible operator of opposite order discretized by continuous piecewise lin-
ears. Besides the cost of the application of the latter discretized operator, the other
cost of the preconditioner scales linearly with the number of mesh cells. Compared
to earlier proposals, the preconditioner has the following advantages: It does not
require the inverse of a non-diagonal matrix; it applies without any mildly grad-
ing assumption on the mesh; and it does not require a barycentric refinement of
the mesh underlying the trial space.

1. Introduction

1.1. Operator preconditioning. This paper is about the construction of precon-
ditioners for discretized boundedly invertible linear operators of negative order
using the concept of ‘operator preconditioning’ ([Hip06]). The idea is to precon-
dition the discretized operator by a discretized operator of opposite order. This is
an appealing idea, but it turns out that in order to get a uniformly well-conditioned
system, as well as a preconditioner that can be implemented efficiently, the second
discretization has to be carefully chosen dependent on the first one.

For a Hilbert space H , and a densely embedded reflexive Banach space W ↪→H ,
consider the Gelfand triple

W ↪→H 'H ′ ↪→ W ′.

ForA being a boundedly invertible coercive linear operator W ′ → W , and VT ⊂H
being a finite dimensional subspace of W ′, let (AT v)(ṽ) := (Av)(ṽ) (v, ṽ ∈ VT ). For
B being a boundedly invertible coercive linear operator W → W ′, and WT being a
finite dimensional subspace of W , let (BT w)(w̃) := (Bw)(w̃) (w, w̃ ∈ WT ).

A typical example is given by the case that for the boundary Γ of some domain,
H = L2(Γ), W = H

1
2 (Γ), A is the single layer integral operator,B the hypersingu-

lar integral operator, T is a partition from an infinite collection of partitions T, VT is
a trial space of discontinuous piecewise polynomials w.r.t. T , and WT is a suitable
subspace of W , which thus cannot be equal to VT . Besides as boundary integral
equations, coercive linear operators of order−1 also appear in various domain de-
composition type methods in the equations for normal fluxes on interfaces.
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In order to precondition AT : VT → V ′T with BT : WT → W ′
T we need to

be able to ‘identify’ V ′T with WT , similar to the identification of W ′′ with W . Let
dim WT = dim VT and

(1.1) inf
T ∈T

inf
06=v∈VT

sup
0 6=w∈WT

〈v, w〉H
‖v‖W ′‖w‖W

> 0.

Then DT defined by (DT v)(w) := 〈v, w〉H (v ∈ VT , w ∈ WT ) is a uniformly
boundedly invertible linear map VT → W ′

T , and so its adjoint D′T is such a map
V ′T → WT . We conclude that the preconditioned system D−1

T BT (D′T )−1AT is uni-
formly boundedly invertible VT → VT .

Equipping VT and WT with bases ΞT and ΨT , respectively, the matrix repre-
sentation of the preconditioned system reads as D−1

T BTD
−T
T AT , with ‘stiffness

matrices’ AT := (AT ΞT )(ΞT ) and BT := (BT ΨT )(ΨT ), and ‘generalized mass
matrix’ DT := 〈ΞT ,ΨT 〉H . Regardless of the choice of the bases, the spectral
condition number of this matrix is equal to that of D−1

T BT (D′T )−1AT , and thus
uniformly bounded.

After an earlier proposal from [Ste02], the currently commonly followed con-
struction of a suitable pair (VT ,WT ) is the one from [BC07]. Here VT is the space
of piecewise constants w.r.t. a partition T of a two-dimensional domain or manifold
equipped with the usual basis ΞT , and WT , defined as the span of a collection ΨT ,
is a subspace of the space of continuous piecewise linears w.r.t. a barycentric re-
finement of T constructed by subdividing each triangle into 6 subtriangles by con-
necting its vertices and midpoints with its barycenter. In [HUT16] the inf-inf-sup
condition (1.1) was demonstrated for families of partitions including locally re-
fined ones that satisfy a certain mildly-grading condition from [Ste03].

A problem with the constructions from both [Ste02, BC07] is that the matrix
DT is not diagonal, so that its inverse has to be approximated. Knowing that
D−1
T BTD

−T
T is not well-conditioned, because AT is not whereas their product is

uniformly well-conditioned, the accuracy with which D−1
T has to be approximated

such that it gives rise to a uniform preconditioner increases with an increasing
(minimal) mesh-size.

1.2. Contributions from this paper. For the aforementioned VT and ΞT , in this
work a space WT , given as the span of a collection ΨT , will be constructed such
that (1.1) is valid, and DT = 〈ΞT ,ΨT 〉H is diagonal. Thanks to the latter, the
corresponding biorthogonal projector is local, which allows to demonstrate the inf-
inf-sup stability without any mildly grading assumption on the partitions.

Each function in ΨT equals a function from the space S 0,1
T of continuous piece-

wise linears w.r.t. T , plus a linear combination of ‘bubble functions’ from a space
denoted as BT . Since the decomposition of S 0,1

T ⊕BT into S 0,1
T and BT is stable

w.r.t. the W -norm, instead of simply defining (BT w)(w̃) := (Bw)(w̃), a suitable
boundedly invertible linear operator BT : WT → W ′

T will be constructed from a
diagonal scaling on the bubble space and a boundedly invertible linear operator
BS 0,1

T : S 0,1
T → (S 0,1

T )′, e.g. (BS 0,1

T w)(w̃) := (Bw)(w̃). The total cost of the re-
sulting preconditioner is the sum of the cost of the application of BS 0,1

T plus a
cost that scales linearly in #T . In any case for T being a uniform refinement of
some initial coarse partition, a BS 0,1

T of multi-level type can be found ([BPV00])
whose cost scales linearly in #T . By this use of the stable decomposition, other
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than in [Ste02, BC07], there is no need to discretize the hypersingular operator on
a refinement of T . The whole approach relies on existence of bubble functions with
certain properties (which e.g. are verified by continuous piecewise linears w.r.t. the
barycentric refinement), whereas these functions themselves do not enter the im-
plementation.

The construction of the biorthogonal collection ΨT , and with that of the precon-
ditioner, is based on a general principle. It applies in any space dimension, and,
as we will see, it applies equally well when VT is the space of continuous piecewise
linears. Higher order discretizations will be covered as well.

The construction applies equally well on manifolds. The coefficients of the func-
tions from ΨT in terms of functions from S 0,1

T and the bubble functions are given
as inner products between functions of VT and S 0,1

T . Since in the manifold case,
however, generally these inner products cannot be evaluated exactly, we present
an alternative slightly modified construction in which the true L2-inner product is
replaced by a mesh-dependent one by an element-wise freezing of the Jacobian. It
still yields a uniform preconditioner on general, possibly locally refined partitions,
whereas now the formula for the expansion coefficients of the functions of ΨT that
was derived in the domain case, applies verbatim in the manifold case.

1.3. Notations. In this work, by λ . µ we will mean that λ can be bounded by a
multiple ofµ, independently of parameters which λ andµmay depend on, with the
sole exception of the space dimension d, or in the manifold case, on the parametriza-
tion of the manifold that is used to define the finite element spaces on it. Obviously,
λ & µ is defined as µ . λ, and λ h µ as λ . µ and λ & µ.

For normed linear spaces Y and Z , in this paper for convenience over R,L(Y ,Z )
will denote the space of bounded linear mappings Y → Z endowed with the op-
erator norm ‖·‖L(Y ,Z ). The subset of invertible operators inL(Y ,Z ) with inverses
inL(Z ,Y ) will be denoted asLis(Y ,Z ). The condition number of aC ∈ Lis(Y ,Z )
is defined as κY ,Z (C) := ‖C‖L(Y ,Z )‖C−1‖L(Z ,Y ).

For Y a reflexive Banach space and C ∈ L(Y ,Y ′) being coercive, i.e.,

inf
06=y∈Y

(Cy)(y)

‖y‖2Y
> 0,

both C and <(C) := 1
2 (C + C ′) are in Lis(Y ,Y ′) with

‖<(C)‖L(Y ,Y ′) ≤ ‖C‖L(Y ,Y ′),

‖C−1‖L(Y ′,Y ) ≤ ‖<(C)−1‖L(Y ′,Y ) =
(

inf
06=y∈Y

(Cy)(y)

‖y‖2Y

)−1

.

The set of coercive C ∈ Lis(Y ,Y ′) is denoted as Lisc(Y ,Y ′). If C ∈ Lisc(Y ,Y ′),
then C−1 ∈ Lisc(Y ′,Y ) and ‖<(C−1)−1‖L(Y ,Y ′) ≤ ‖C‖2L(Y ,Y ′)‖<(C)−1‖L(Y ′,Y ).

Two countable collections Υ = (υi)i and Υ̃ = (υ̃i)i in a Hilbert space will be
called biorthogonal when 〈Υ, Υ̃〉 = [〈υj , υ̃i〉]ij is an invertible diagonal matrix, and
biorthonormal when it is the identity matrix.

1.4. Organization. In Sect. 2 the general principles of operator preconditioning
are recalled. In Sect. 3-6, it is applied to operators of negative order discretized
with discontinuous piecewise polynomials, first in the domain- and then in the
manifold-case, first for piecewise constants, and then for higher order polynomials
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using an additive subspace correction method. In Sect. 7, the same program is
followed for trial spaces of continuous piecewise polynomials.

In Sect. 8 we briefly discuss the case when the partitions underlying the trial
space and that of the preconditioner are different. The application of this setting
is given by the case that for a construction of a preconditioner of multi-level type
one would like to have a partition that is built by recurrent refinements from some
initial coarse partition, whereas the given partition underlying the trial space is not
of this type.

Finally, in Sect. 9 we report on some numerical results obtained with the new
preconditioner, and compare them with those obtained with the preconditioner
from [BC07, HUT16].

2. Operator preconditioning

The exposition in this section largely follows [Hip06, Sect. 2] closely. Let V , W be
reflexive Banach spaces. We will search a ‘preconditioner’G for anA ∈ Lis(V ,V ′),
i.e. an operator G ∈ Lis(V ′,V ) (whose application is ‘easy’ compared to that of
A−1). For future applications in Sect. 6 of constructing additive subspace correction
methods, it is useful when additionally the preconditioner is coercive, i.e., being an
operator in Lisc(V ′,V ). The following result is easily verified.

Proposition 2.1. If B ∈ Lis(W ,W ′) and D ∈ Lis(V ,W ′), then

G := D−1B(D′)−1 ∈ Lis(V ′,V ),

and

‖G‖L(V ′,V ) ≤ ‖D−1‖2L(W ′,V )‖B‖L(W ,W ′),

‖G−1‖L(V ,V ′) ≤ ‖D‖2L(V ,W ′)‖B
−1‖L(W ′,W ).

If even B ∈ Lisc(W ,W ′), then G ∈ Lisc(V ′,V ), and

‖<(G)−1‖L(V ,V ′) ≤ ‖D‖2L(V ,W ′)‖<(B)−1‖L(W ′,W ).

Remark 2.2. We recall that by an application of the closed range theorem,D ∈ L(V ,W ′)
is in Lis(V ,W ′) if and only if for all w ∈ W there exists a v ∈ V with (Dv)(w) 6= 0,
and

0 < inf
0 6=v∈V

sup
06=w∈W

(Dv)(w)

‖v‖V ‖w‖W

(
= ‖D−1‖−1

L(W ′,V )

)
.

In particular we are interested in finding a preconditionerGT , of the formGT =

D−1
T BT (D′T )−1, for an operator AT ∈ Lis(VT ,V ′T ) where VT is some finite dimen-

sional space. For that goal, in view of Proposition 2.1 we search some finite dimen-
sional space WT with

(2.1) dim WT = dim VT ,

and operators BT ∈ Lis(WT ,W ′
T ) and DT ∈ Lis(VT ,W ′

T ).
A typical setting is that, for some reflexive Banach spaces V and W , and op-

erators A ∈ Lisc(V ,V ′) and B ∈ Lisc(W ,W ′), we have VT ⊂ V (thus equipped
with ‖ ‖V ), (AT u)(v) := (Au)(v) and, for a suitable WT ⊂ W (thus equipped with ‖ ‖W ),
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take (BT w)(z) := (Bw)(z). In this caseAT ∈ Lisc(VT ,V ′T ) andBT ∈ Lisc(WT ,W ′
T )

with

‖AT ‖L(VT ,V ′T ) ≤ ‖A‖L(V ,V ′), ‖<(AT )−1‖L(V ′T ,VT ) ≤ ‖<(A)−1‖L(V ′,V ),

‖BT ‖L(WT ,W ′T ) ≤ ‖B‖L(W ,W ′), ‖<(BT )−1‖L(W ′T ,WT ) ≤ ‖<(B)−1‖L(W ′,W ).

A possible construction of a suitable DT is discussed in the next proposition.

Proposition 2.3 (Fortin projector ([For77])). For someD ∈ Lis(V ,W ′), let (DT v)(w) :=
(Dv)(w). Then DT ∈ L(VT ,W ′

T ) and

‖DT ‖L(VT ,W ′T ) ≤ ‖D‖L(V ,W ′).

Assuming (2.1), DT ∈ Lis(VT ,W ′
T ) if, and in case W is a Hilbert space, only if there

exists a projector PT ∈ L(W ,W ) onto WT with (DVT )((Id− PT )W ) = 0, and
‖D−1
T ‖L(W ′T ,VT ) ≤ ‖PT ‖L(W ,W )‖D−1‖L(W ′,V ).(2.2)

Proof. The first statement is obvious. Now let us assume existence of a (Fortin)
projector PT . Then for vT ∈ VT ,

‖D−1‖−1
L(W ′,V )‖vT ‖V ≤ sup

06=w∈W

(DvT )(w)

‖w‖W
= sup

06=w∈W

(DvT )(PT w)

‖w‖W

≤ ‖PT ‖L(W ,W ) sup
06=wT ∈WT

(DvT )(wT )

‖wT ‖W
,

which together with Remark 2.2 and (2.1) shows that DT ∈ Lis(VT ,W ′
T ), in par-

ticular (2.2).
Conversely (cf. [Bra01, Remark 4.9]), assume DT ∈ Lis(VT ,W ′

T ). Then given
w ∈ W , let wT be the first component of the solution (wT , vT ) ∈ WT × VT of the
well-posed saddle point problem

〈wT , zT 〉W + (DT vT )(zT ) =〈w, zT 〉W (zT ∈ WT ),

(DT uT )(wT ) =(DT uT )(w) (uT ∈ VT ).

Then PT := w 7→ wT is a valid Fortin projector. �

In applications, one usually has a family of spaces VT and aims at a uniform pre-
conditionerGT . In the setting of Proposition 2.3 it means that one searches a Fortin
projector PT such that ‖PT ‖L(W ,W ) is uniformly bounded.

2.1. Implementation. Given a finite collection Υ = {υ}υ∈Υ in a linear space, we
set the synthesis operator

FΥ : R#Υ → span Υ: c 7→ c>Υ :=
∑
υ∈Υ

cυυ.

Equipping R#Υ with the Euclidean scalar product 〈 , 〉, and identifying (R#Υ)′

with R#Υ using the corresponding Riesz map, we infer that the adjoint of FΥ,
known as the analysis operator, satisfies

F ′Υ : (span Υ)′ → R#Υ : f 7→ f(Υ) := [f(υ)]υ∈Υ.

A collection Υ is a basis for its span when FΥ ∈ Lis(R#Υ, span Υ) (and so F ′Υ ∈
Lis((span Υ)′,R#Υ).)
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Now let ΞT = {ξ}ξ∈ΞT and ΨT = {ψ}ψ∈ΨT be bases for VT and WT , respectively.
Then in coordinates the preconditioned system reads as

F−1
ΞT
GT AT FΞT = GTAT := D−1

T BTD
−>
T AT ,

where
AT := F ′ΞT AT FΞT , BT := F ′ΨT BT FΨT , DT := F ′ΨTDT FΞT .

By identifying a map in L(R#ΞT ,R#ΞT ) with a #ΞT × #ΞT matrix by equip-
ping R#ΞT with the canonical basis {eξ}ξ∈ΞT , one has

(AT )ξξ̃ = 〈F ′ΞT AT FΞT eξ̃, eξ〉 = (AT FΞT eξ̃)(FΞT eξ) = (AT ξ̃)(ξ),

and similarly,
(BT )ψψ̃ = (BT ψ̃)(ψ), (DT )ψξ = (DT ξ)(ψ).

Concerning DT , preferably it is such that its inverse can be applied in linear com-
plexity, as is the case when DT is diagonal.

Remark 2.4. Clearly σ(GTAT ) = σ(GT AT ) and so for the spectral condition num-
ber we have

κS(GTAT ) := ρ(GTAT )ρ((GTAT )−1) ≤ κVT ,VT (GT AT ),

which thus holds true independently of the choice of the basis ΞT for VT (this in
contrast to having an efficient implementation). Furthermore, in view of an ap-
plication of Conjugate Gradients, in case AT and BT are coercive and self-adjoint,
then AT and GT are symmetric and positive definite. Equipping Rdim VT with
|||·||| := ‖(GT )−

1
2 · ‖ or |||·||| := ‖(AT )

1
2 · ‖, in that case we have

κ(Rdim VT ,|||·|||),(Rdim VT ,|||·|||)(GTAT ) = κS(GTAT ).

3. Preconditioning an operator of negative order discretized by piecewise
constants: Construction of WT and DT .

For a bounded polytopal domain Ω ⊂ Rd, a measurable, closed, possibly empty
γ ⊂ ∂Ω, and an s ∈ [0, 1], we take

W := [L2(Ω), H1
0,γ(Ω)]s,2, V := W ′,

whereH1
0,γ(Ω) is the closure inH1(Ω) of the C∞(Ω)∩H1(Ω) functions that vanish

at γ.1 The role of D ∈ Lis(V ,W ′) in Proposition 2.3 is going to be played by the
duality pairing

(Dv)(w) := 〈v, w〉L2(Ω),

which satisfies ‖D‖L(V ,W ′) = ‖D−1‖L(W ′,V ) = 1.
Let (T )T ∈T be a family of conforming partitions of Ω into (open) uniformly shape

regular d-simplices, where we assume that γ is the (possibly empty) union of (d−1)-
faces of T ∈ T . Thanks to the conformity and the uniform shape regularity, for
d > 1 we know that neighbouring T, T ′ ∈ T , i.e. T ∩ T ′ 6= ∅, have uniformly
comparable sizes. For d = 1, we impose this uniform ‘K-mesh property’ explicitly.2

1In the domain case, it is easy to generalize the results to s ∈ [0, 3
2
), or even to s ∈ (− 1

2
, 3
2
).

2For our convenience, throughout this paper we consider trial spaces w.r.t. conforming partitions
into uniformly shape regular d-simplices. It will however become clear that families of non-conforming
partitions into uniformly shape regular d-simplices or hyperrectangles that satisfy a uniform K-mesh
property can be dealt with as well.
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For T ∈ T, we define NT as the set of vertices of T that are not on γ, and for
ν ∈ NT we set its valence

dT ,ν := #{T ∈ T : ν ∈ T}.
For T ∈ T , with NT denoting the set of its vertices we set NT ,T := NT ∩ NT , and
define hT := |T |1/d.

We take
VT = S −1,0

T := {u ∈ L2(Ω): u|T ∈ P0 (T ∈ T )} ⊂ V ,

and, as a first ingredient in the construction of a suitable WT ,

S 0,1
T := {u ∈ H1

0,γ(Ω): u|T ∈ P1 (T ∈ T )},
equipped with the usual bases
(3.1) ΞT = {ξT : T ∈ T }, ΦT = {φT ,ν : ν ∈ NT },
respectively, defined by

(3.2) ξT :=

{
1 on T,
0 on Ω \ T, φT ,ν(ν′) = δν,ν′ (ν, ν′ ∈ NT ).

We are going to construct a collection ΨT ⊂ H1
0,γ(Ω) that is biorthogonal to ΞT ,

and such that
WT := span ΨT ⊂ W

has ‘approximation properties’. These two properties of ΨT will allow us to con-
struct a suitable Fortin projector, and they will give rise to a diagonal matrix DT .

The construction of ΨT builds on two collections ΘT and ΣT in H1
0,γ(Ω) whose

cardinalities are equal to that of ΞT , the first being biorthogonal to ΞT , and the
second having approximation properties and being inside S 0,1

T .3
Let ΘT = {θT : T ∈ T } ⊂ H1

0,γ(Ω) be such that
(3.3) 〈θT , ξT ′〉L2(Ω) h δTT ′‖θT ‖L2(Ω)‖ξT ′‖L2(Ω), (T, T ′ ∈ T ).

An obvious construction of such ΘT will be presented shortly. Defining ΣT =

{σT ,T : T ∈ T } ⊂ S 0,1
T by

σT ,T :=
∑

ν∈NT ,T

d−1
T ,νφT ,ν ,

we have ∑
T∈T

σT ,T =
∑
ν∈NT

φT ,ν ,

being equal to the constant function 1 on Ω\∪{T∈T : T∩γ 6=∅}T , which is an instance
of an ‘approximation property’.

We now define
ΨT := {ψT ,T : T ∈ T } ⊂ S 0,1

T ⊕ span ΘT ,

by

(3.4) ψT ,T = σT ,T +
〈1− σT ,T , ξT 〉L2(Ω)

〈θT , ξT 〉L2(Ω)
θT −

∑
T ′∈T \{T}

〈σT ,T , ξT ′〉L2(Ω)

〈θT ′ , ξT ′〉L2(Ω)
θT ′ ,

3Or inside another subspace ŜT ⊂ W for which one is able to construct a BŜ
T ∈ Lisc(ŜT , Ŝ

′
T )

with uniformly bounded ‖BŜ
T ‖L(ŜT ,Ŝ ′T )

and ‖<(BŜ
T )−1‖L(Ŝ ′T ,ŜT )

.
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The third term at the right-hand side corrects σT ,T such that it becomes orthogonal
to ξT ′ for T ′ 6= T , whereas the second term restores the ‘approximation property’.

Lemma 3.1. It holds that

(3.5)
∑
T∈T

ψT ,T =
∑
T∈T

σT ,T +
∑
T∈T

〈1−
∑
T ′∈T σT ,T ′ , ξT 〉L2(Ω)

〈θT , ξT 〉L2(Ω)
θT ,

and
(3.6) 〈ΞT ,ΨT 〉L2(Ω) = diag{〈1, ξT 〉L2(Ω) : T ∈ T }.

Proof. Writing 1−σT ,T =
∑
T ′∈T \{T} σT ,T ′+(1−

∑
T ′∈T σT ,T ′), (3.5) follows from

(3.4). The biorthonormality of ΞT and {θT /〈θT , ξT 〉L2(Ω) : T ∈ T } shows (3.6). �

An easy construction of ΘT that we consider is to take, on a reference d-simplex T̂ ,
some ‘bubble’ function θT̂ ∈ H1

0 (T̂ ) ∩ C(T̂ ) with θT̂ ≥ 0, that is symmetric in the
barycentric coordinates with

´
T̂
θT̂ dx = |T̂ |, and then for each d-simplex T , to set

θT := θT̂ ◦ FT̂ ,T with FT̂ ,T : T → T̂ being an affine bijection. From
´
T
θT dx = |T |

and ‖θT ‖L2(Ω) h
√
|T |, (3.3) follows.4

Expanding σT ,T in terms of the nodal basis, and using that
´
T
φT ,ν dx = |T |

d+1 ,
with this ΘT we arrive at the expression
(3.7)
ψT ,T :=

∑
ν∈NT ,T

d−1
T ,νφT ,ν +

(
1− 1

d+1

∑
ν∈NT ,T

d−1
T ,ν
)
θT −

∑
T ′∈T \{T}

(
1
d+1

∑
ν∈NT ,T∩NT ,T ′

d−1
T ,ν
)
θT ′ .

As a consequence of (3.6), the biorthogonal ‘Fortin’ projector PT : L2(Ω) →
H1

0,γ(Ω) with ranPT = WT and ran(Id− PT ) = V
⊥L2(Ω)

T exists, and is given by

PT u =
∑
T∈T

〈u, ξT 〉L2(Ω)

〈1, ξT 〉L2(Ω)
ψT ,T .

3.1. Boundedness of PT . To proceed, we list a few properties of the collections
ΞT , ΘT and ΣT . For T ∈ T , we set ω(0)

T (T ) := T , and for i = 0, 1, . . ., define

R
(i+1)
T (T ) := {T ′ ∈ T : T ′ ∩ ω(i)

T (T ) 6= ∅}, ω
(i+1)
T (T ) := ∪

T ′∈R(i+1)
T (T )

T ′.

It holds that
supp ξT ⊂ ω(0)

T (T ), ‖ξT ‖L2(Ω) h h
d/2
T , 〈1, ξT 〉L2(Ω) h hdT ,(3.8)

suppσT ,T ⊂ ω(1)
T (T ), ‖σT ‖L2(Ω) . h

d/2−k
T (k ∈ {0, 1}),(3.9)

supp θT ⊂ ω(0)
T (T ), |θT |H1(Ω) . h

−1
T ‖θT ‖L2(Ω).(3.10)

From these properties we infer that

suppψT ,T ⊂ ω(1)
T (T ),

and, by additionally using (3.3), that for k ∈ {0, 1}∥∥∥ 〈σT ,T − δTT ′1, ξT ′〉L2(Ω)

〈θT ′ , ξT ′〉L2(Ω)
θT ′
∥∥∥
Hk(Ω)

. h−kT ‖σT ,T − δTT ′1‖L2(supp ξT ′ )
. hd/2−k,

4Although the definition (3.4) of ψT ,T is independent of the scaling of θT ′ ’s, for convenience here
we fixed some (arbitrary) scaling of these functions.
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showing that

‖ψT ,T ‖Hk(Ω) . h
d/2−k
T (k ∈ {0, 1}).

Remark 3.2. Although we specified (to some extent) a collection ΘT , we emphasize
that in the end the definition of the preconditioner will not depend on the choice
of ΘT . Only the derivation of qualitative properties of this preconditioner builds
on existence of a collection ΘT with properties (3.3), (3.10) (where ω(0)

T (T ) can be
read as ω(`)

T (T ) for some constant `), and the forthcoming (5.1)-(5.2).

Theorem 3.3. It holds that supT ∈T ‖PT ‖L(W ,W ) <∞.

Proof. We have

‖PT u‖Hk(T ) ≤
∑

T ′∈R(1)
T (T )

‖ψT ,T ′‖Hk(T )

‖u‖L2(T ′)‖ξT ′‖L2(T ′)

|〈1, ξT ′〉L2(Ω)|

. h−kT ‖u‖L2(ω
(1)
T (T ))

(k ∈ {0, 1}),(3.11)

which in particular shows that

(3.12) sup
T ∈T
‖PT ‖L(L2(Ω),L2(Ω)) <∞.

To continue, we revisit the construction of WT and its basis ΨT by temporarily
including in NT , and thus in NT ,T for T ∈ T , also vertices of T that are on the
Dirichlet boundary γ. Consequently, for the ‘new’ ψT ,T , (3.5) shows that

(3.13)
∑
T∈T

ψT ,T =
∑
ν∈NT

φT ,ν = 1 on Ω.

For any ν ∈ NT , we select an (d − 1)-face e of a T ∈ T with ν ∈ e and e ⊂ γ if
ν ∈ γ, and define the functional

gT ,ν(u) :=

 
e

u ds.

By the trace theorem and homogeneity arguments (see e.g [SZ90, (3.6)]), one in-
fers that

(3.14) |gT ,ν(u)| ≤ |e|−1‖u‖L1(e) . h
− d2
T ‖u‖L2(T ) + h

− d2 +1

T |u|H1(T ).

For T ∈ T , we select a ν ∈ NT with ν ∈ γ if T ∩ γ 6= ∅, and define

gT ,T := gT ,ν ,

and a Scott-Zhang ([SZ90]) type interpolator ΠT : H1(Ω)→ WT by

ΠT u =
∑
T∈T

gT ,T (u)ψT ,T .

It satisfies

‖ΠT u‖Hk(T ) . h
−k
T ‖u‖L2(ω

(2)
T (T ))

+ h1−k
T |u|

H1(ω
(2)
T (T ))

(k ∈ {0, 1}).
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Invoking (3.13) and using that gT ,T (1) = 1, we infer that for k ∈ {0, 1}
‖(Id−ΠT )u‖Hk(T ) = inf

p∈P0

‖(Id−ΠT )(u− p)‖Hk(T )

≤ inf
p∈P0

‖u− p‖Hk(T )+h−kT ‖u− p‖L2(ω
(2)
T (T ))

+h1−k
T |u|

H1(ω
(2)
T (T ))

h inf
p∈P0

h−kT ‖u− p‖L2(ω
(2)
T (T ))

+ h1−k
T |u|

H1(ω
(2)
T (T ))

h h1−k
T |u|

H1(ω
(2)
T (T ))

(3.15)

by an application of the Bramble-Hilbert lemma (cf. [SZ90, (4.2)]).
Noting that the ‘new’ ψT ,T differs only from the ‘old’, original one when T ∩γ 6=

∅, and that for those T and u ∈ H1
0,γ(Ω) it holds that gT ,T (u) = 0, we conclude

that ran ΠT |H1
0,γ(Ω) is included in the original space WT , which we consider again

from here on. Using that PT is a projector onto this WT , for u ∈ H1
0,γ(Ω) writing

PT u = ΠT u+ PT (Id−ΠT )u, using (3.11) and (3.15) for k ∈ {0, 1}we arrive at

‖PT u‖H1(T ) . ‖ΠT u‖H1(T ) + h−1
T ‖(Id−ΠT )u‖

L2(ω
(1)
T (T ))

. ‖u‖
H1(ω

(2)
T (T ))

+ h−1
T ‖(Id−ΠT )u‖

L2(ω
(1)
T (T ))

. ‖u‖
H1(ω

(3)
T (T ))

,

and consequently,
sup
T ∈T
‖PT ‖L(H1

0,γ(Ω),H1
0,γ(Ω))) <∞.

In combination with (3.12), the proof is completed by an application of the Riesz-
Thorin interpolation theorem. �

Defining DT by (DT v)(w) := (Dv)(w), from Proposition 2.3 we conclude that
DT ∈ Lis(VT ,W ′

T ) with ‖DT ‖L(VT ,W ′T ) ≤ 1 and supT ∈T ‖D−1
T ‖L(W ′T ,VT ) < ∞,

which result is thus valid without any additional assumptions on the mesh grading. The
latter is a consequence of the fact that we were able to equip VT and WT with local
biorthogonal bases. (Compare [Ste03, eq. (2.30)] for conditions on the mesh grad-
ing without having local biorthogonal bases). Additionally, the biorthogonality
has the important advantage of the matrix

DT = 〈ΞT ,ΨT 〉L2(Ω) = diag{|T | : T ∈ T }

being diagonal.

Remark 3.4. Other than the spaces VT = S −1,0
T , the spaces WT cannot be expected

to be nested under refinements of T . This hampers the use of these spaces for the
construction of a biorthogonal (wavelet) decomposition of V , or more generally,
that of a ‘stable’ bi-orthogonal multilevel decomposition ([Dah96]) substituting for
the common orthogonal multilevel decomposition that, for s ≥ 1

2 , is known not to
be stable in V ([Osw98]).

To see this non-nestedness, let us consider the d = 1 shift-invariant case. In
case of nestedness, there would be a ψ ∈ H1

0 (−1, 2) with
∑
j∈Z ψ(· − j) = 1 and´ 0

−1
ψ dx =

´ 2

1
ψ dx = 0, such that for some constants ci, ψ =

∑2
i=−1 ciψ(2 · −i).

Integrating this refinement equation over (−1, 0) and (1, 2) yields c−1 = c2 = 0,
which, by a repeated application of the refinement equation shows that suppψ ⊆
[0, 1]. This contradicts with ψ ∈ H1(R) and

∑
j∈Z ψ(· − j) = 1.
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4. Construction of WT and DT in the manifold case

Let Γ be a compact d-dimensional Lipschitz, piecewise smooth manifold in Rd
′

with or without boundary ∂Γ. For some closed measurable γ ⊂ ∂Γ and s ∈ [0, 1],
let

W := [L2(Γ), H1
0,γ(Γ)]s,2, V := W ′.

We assume that Γ is given as the essentially disjoint union of ∪p1=1κi(Ωi), with, for
1 ≤ i ≤ p, κi : Rd → Rd

′ being some smooth regular parametrization, and Ωi ⊂ Rd

an open polytope. W.l.o.g. assuming that for i 6= j, Ωi ∩ Ωj = ∅, we define

κ : Ω := ∪pi=1Ωi → ∪pi=1κi(Ωi) by κ|Ωi = κi.

Let T be a family of conforming partitions T of Γ such that, for 1 ≤ i ≤ p,
κ−1(T )∩Ωi is a uniformly shape regular conforming partition of Ωi into d-simplices
(that for d = 1 satisfies a uniform K-mesh property). We assume that γ is a (pos-
sibly empty) union of ‘faces’ of T ∈ T (i.e., sets of type κi(e), where e is a (d− 1)-
dimensional face of κ−1

i (T )).
As in Sect. 3, for T ∈ T, we define NT as the set of vertices of T that are not

on γ, set dT ,ν := #{T ∈ T : ν ∈ T}, and for T ∈ T , define hT := |T |1/d and
NT ,T := NT ∩NT , with NT being the set of the vertices of T .

We set

VT = S −1,0
T := {u ∈ L2(Γ) : u ◦ κ|κ−1(T ) ∈ P0 (T ∈ T )} ⊂ V ,

S 0,1
T := {u ∈ H1

0,γ(Γ) : u ◦ κ|κ−1(T ) ∈ P1 (T ∈ T )},

equipped with ΞT = {ξT : T ∈ T } and ΦT = {φT ,ν : ν ∈ NT }, respectively, de-
fined by ξT := 1 on T , ξT := 0 elsewhere, and φT ,ν(ν′) = δν,ν′ (ν, ν′ ∈ NT ).
Furthermore, we define ΣT = {σT ,T : T ∈ T } ⊂ S 0,1

T and ΘT = {θT : T ∈ T } ⊂
H1

0,γ(Γ) by σT ,T :=
∑
ν∈NT ,T d

−1
T ,νφT ,ν , θT := θκ−1(T ) ◦ κ−1 on T and θT := 0

elsewhere. Thanks to our assumption of θκ−1(T ) ≥ 0, it holds that 〈θT , ξT 〉L2(Γ) h
〈θκ−1(T ), ξκ−1(T )〉L2(κ−1(T )) h ‖θT ‖L2(Γ)‖ξT ‖L2(Γ) (cf. (3.3)).

Now defining ΨT := {ψT ,T : T ∈ T }, and WT := span ΨT ⊂ W , by

ψT ,T := σT ,T +
〈1− σT ,T , ξT 〉L2(Γ)

〈θT , ξT 〉L2(Γ)
θT −

∑
T ′∈T \{T}

〈σT ,T , ξT ′〉L2(Γ)

〈θT ′ , ξT ′〉L2(Γ)
θT ′ ,

(Dv)(w) := 〈v, w〉L2(Γ), and (DT v)(w) := (Dv)(w), the analysis from Sect. 3 applies
verbatim by only changing 〈 , 〉L2(Ω) into 〈 , 〉L2(Γ). It yields that ‖DT ‖L(VT ,W ′T ) ≤ 1,
supT ∈T ‖D−1

T ‖L(W ′T ,VT ) <∞, and DT = diag{〈1, ξT 〉L2(Γ) : T ∈ T }.
A hidden problem, however, is that the computation of DT , and that of the

scalar products 〈δTT ′1−σT ,T , ξT ′〉L2(Γ) involve integrals over Γ that generally have
to be approximated using numerical quadrature. Recalling that, for s > 0, the
preconditioner GT = D−1

T BTD
−>
T is not a uniformly well-conditioned matrix, it

is a priorily not clear which quadrature errors are allowable, in particular when T
is far from being quasi-uniform. For this reason, in the next subsection we propose
a slightly modified construction of WT andDT that does not require the evaluation
of integrals over Γ. (Also the scalar products 〈θT , ξT 〉L2(Γ) involve integrals over Γ,
but their accurate evaluation is not critical, cf. Remark 3.2.)

As a preparation, in the next lemma we present a non-standard inverse inequal-
ity on the family (VT )T ∈T. Proofs of this inequality for d ≤ 3 can be found in
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[DFG+04, GHS05]. It turns out that our construction of ‘local’ collections ΨT that
are biorthogonal to ΞT and whose spans have approximation properties allows for
a very simple proof.
Lemma 4.1 (inverse inequality). With hT |T := hT , it holds that

‖hT vT ‖L2(Γ) . ‖vT ‖H1
0,γ(Γ)′ (vT ∈ VT ).

Proof. For PT : L2(Ω)→ H1
0,γ(Γ) defined by

PT u =
∑
T∈T

〈u, ξT 〉L2(Γ)

〈1, ξT 〉L2(Γ)
ψT ,T .

we have ranPT = WT and ran(Id− PT ) = V
⊥L2(Γ)

T , and as follows from (3.11),
‖PT u‖H1(Γ) . ‖h−1

T u‖L2(Γ) (u ∈ L2(Γ)).

The proof is completed by

‖vT ‖H1
0,γ(Γ)′= sup

06=w∈H1
0,γ(Γ)

〈vT , w〉L2(Γ)

‖w‖H1(Γ)
≥
〈vT , PT h2

T vT 〉L2(Γ)

‖PT h2
T vT ‖H1(Γ)

&
〈hT vT , hT vT 〉L2(Γ)

‖hT vT ‖L2(Γ)
.�

4.1. Modified construction. To avoid the need for the evaluation of integrals over
Γ, given T ∈ T, onL2(Γ) we define an additional, ‘mesh-dependent’ scalar product

〈u, v〉T :=
∑
T∈T

|T |
|κ−1(T )|

ˆ
κ−1(T )

u(κ(x))v(κ(x))dx.

It is constructed from

〈u, v〉L2(Γ) =

ˆ
Ω

u(κ(x))v(κ(x))|∂κ(x)|dx

by replacing on each κ−1(T ), the Jacobian |∂κ| by its average |T |
|κ−1(T )| over κ−1(T ).5

We now redefine ΨT := {ψT ,T : T ∈ T } and WT := span ΨT ⊂ W by

ψT ,T := σT ,T +
〈1− σT ,T , ξT 〉T
〈θT , ξT 〉T

θT −
∑

T ′∈T \{T}

〈σT ,T , ξT ′〉T
〈θT ′ , ξT ′〉T

θT ′ ,

and (DT vT )(wT ) := 〈vT , wT 〉T ((vT , wT ) ∈ VT × WT ). Then, as in the domain
case,

DT = 〈ΞT ,ΨT 〉T = diag{〈1, ξT 〉T : T ∈ T } = diag{|T | : T ∈ T },
and
(4.1)
ψT ,T =

∑
ν∈NT ,T

d−1
T ,νφT ,ν +

(
1− 1

d+1

∑
ν∈NT ,T

d−1
T ,ν
)
θT −

∑
T ′∈T \{T}

(
1
d+1

∑
ν∈NT ,T∩NT ,T ′

d−1
T ,ν
)
θT ′ .

thus with coefficients that are independent of κ.
What remains is to prove the uniform boundedness of ‖DT ‖L(VT ,W ′T ), and that

of ‖D−1
T ‖L(W ′T ,VT ). Because of the definition ofDT in terms of the mesh-dependent

scalar product, for doing so we cannot simply rely on Proposition 2.3.

5It will be clear from the following that |T |
|κ−1(T )| can be read as any constant approximation to

|∂κ| on L∞(κ−1(T ))-distance . hκ−1(T ), for example |∂κ(z)| in some z ∈ κ−1(T ). Then in the
following, the volumes |T | in the expression for DT should be read as |κ−1(T )||∂κ(z)|, with which
also the computation of |T | is avoided.
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Lemma 4.2. It holds that supT ∈T ‖DT ‖L(VT ,W ′T ) <∞.

Proof. In case s = 0, i.e., when W = L2(Γ) ' L2(Γ)′ = V , the uniform bounded-
ness of ‖DT ‖L(VT ,W ′T ) follows directly from 〈·, ·〉T h ‖ · ‖2L2(Γ).

By an interpolation argument in the following it suffices to consider the case
s = 1, i.e., W = H1

0,γ(Γ) and V = H1
0,γ(Γ)′. By definition of 〈 , 〉T , it holds that

(4.2) |〈v, u〉T − 〈v, u〉L2(Γ)| . ‖hT v‖L2(Γ)‖u‖L2(Γ) (v, u ∈ L2(Γ)).

By writing (DT vT )(wT ) = 〈vT , wT 〉L2(Γ) + 〈vT , wT 〉T −〈vT , wT 〉L2(Γ), the uniform
boundedness of ‖DT ‖L(VT ,W ′T ) (for s = 1) now follows by combining (4.2) and
Lemma 4.1. �

The 〈 , 〉T -biorthogonal projector P̌T : L2(Ω)→ H1
0,γ(Ω) with ran P̌T = WT and

ran(Id − P̌T ) = V
⊥〈 , 〉T
T exists and is given by P̌T u =

∑
T∈T |T |−1〈u, ξT 〉T ψT ,T .

Since 〈 , 〉T gives rise to a norm that is uniformly equivalent to ‖ ‖L2(Γ), the proof
of Theorem 3.3 again applies, and shows that

sup
T ∈T
‖P̌T ‖L(L2(Γ),L2(Γ)) <∞, sup

T ∈T
‖P̌T ‖L(H1

0,γ(Γ),H1
0,γ(Γ)) <∞,

as well as

(4.3) ‖P̌T u‖H1(Γ) . ‖h−1
T u‖L2(Γ) (u ∈ L2(Γ)).

Uniform boundedness of ‖D−1
T ‖L(VT ,W ′T ), in case s = 0, follows from

(DT vT )(P̌T vT ) = 〈vT , vT 〉T h ‖vT ‖2L2(Γ) & ‖vT ‖L2(Γ)‖P̌T vT ‖L2(Γ).

To conclude, by an interpolation argument, uniform boundedness of ‖D−1
T ‖L(VT ,W ′T )

for any s ∈ [0, 1], it is sufficient to verify the case s = 1, which can be done with the
following modified inverse inequality.

Lemma 4.3. It holds that

‖hT vT ‖L2(Γ) . sup
0 6=w∈H1

0,γ(Γ)

〈vT , w〉T
‖w‖H1(Γ)

(vT ∈ VT ).

Proof. Similar to proof of Lemma 4.1, using (4.3) for vT ∈ VT we estimate

sup
06=w∈H1

0,γ(Γ)

〈vT , w〉T
‖w‖H1(Γ)

≥ 〈vT , P̌T h
2
T vT 〉T

‖P̌T h2
T vT ‖H1(Γ)

&
〈hT vT , hT vT 〉T
‖hT vT ‖L2(Γ)

h ‖hT vT ‖L2(Γ).�

Corollary 4.4. It holds that

‖vT ‖H1
0,γ(Γ)′ h sup

06=wT ∈WT

〈vT , wT 〉T
‖wT ‖H1(Γ)

(vT ∈ VT ),

( with ‘.’ being the statement supT ∈T ‖D−1
T ‖L(W ′T ,VT ) <∞ for s = 1).

Proof. The inequality ‘&’ is the statement of Lemma 4.2 for s = 1.
To prove the other direction, for v ∈ L2(Γ), (4.2) shows that

‖v‖H1
0,γ(Γ)′ − sup

06=w∈H1
0,γ(Γ)

〈v, w〉T
‖w‖H1(Γ)

. ‖hT v‖L2(Γ),
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Taking v = vT ∈ VT , from Lemma 4.3 we conclude that

‖vT ‖H1
0,γ(Γ)′ . sup

06=w∈H1
0,γ(Γ)

〈vT , w〉T
‖w‖H1(Γ)

= sup
06=w∈H1

0,γ(Γ)

〈vT , P̌T w〉T
‖w‖H1(Γ)

≤ ‖P̌T ‖L(H1
0,γ(Γ),H1

0,γ(Γ)) sup
06=wT ∈WT

〈vT , wT 〉T
‖wT ‖H1(Γ)

. sup
0 6=wT ∈WT

〈vT , wT 〉T
‖wT ‖H1(Γ)

by supT ∈T ‖P̌T ‖L(H1
0,γ(Γ),H1

0,γ(Γ)) <∞. �

5. Construction of BT ∈ Lisc(WT ,W ′
T ).

Having established supT∈T ‖DT ‖L(VT ,W ′T ) < ∞, supT∈T ‖D−1
T ‖L(W ′T ,VT ) < ∞,

for the construction of uniform preconditioners it remains to findBT ∈ Lisc(WT ,W ′
T )

with supT∈T ‖BT ‖L(WT ,W ′T ) <∞, supT∈T ‖<(BT )−1‖L(W ′T ,WT ) <∞.
We will make use of the following two properties of the collection of ‘bubbles’ ΘT

and its span BT := span ΘT . It holds that

‖
∑
T∈T

cT θT ‖2Hk(Ω) h
∑
T∈T

hd−2k
T |cT |2, (k ∈ {0, 1}),(5.1)

(here the selected scaling of the functions θT entered, cf. footnote 4), and

‖u+ v‖2Hk(Ω) & ‖u‖
2
Hk(Ω) + ‖v‖2Hk(Ω) (u ∈ S 0,1

T , v ∈ BT ).(5.2)

Both properties are easily verified by a standard homogeneity argument, for (5.2)
using that θT̂ 6∈ P1(T̂ ). (Here and in the following, Ω should be read as Γ in the
manifold case).

Below we give a construction of suitable BT that is independent of the particular
bubble θT̂ being chosen. Like WT , we equip S 0,1

T , BT , and S 0,1
T ⊕BT with ‖ ‖W .

Proposition 5.1. Given BS 0,1

T ∈ Lisc(S
0,1
T , (S 0,1

T )′) and BB
T ∈ Lisc(BT ,B′T ), let

BS 0,1⊕B
T : S 0,1

T ⊕BT → (S 0,1
T ⊕BT )′ be defined by

(BS 0,1⊕B
T (u+ v))(ũ+ ṽ) = (BS 0,1

T u)(ũ) + (BB
T v)(ṽ).

Then BS 0,1⊕B
T ∈ Lisc(S

0,1
T ⊕BT , (S

0,1
T ⊕BT )′), and

‖<(BS 0,1⊕B
T )−1‖L((S 0,1

T ⊕BT )′,S 0,1
T ⊕BT )

≤ 2 max(‖<(BS 0,1

T )−1‖L((S 0,1
T )′,S 0,1

T ), ‖<(BB
T )−1‖L(B′T ,BT )),

‖BS 0,1⊕B
T ‖L(S 0,1

T ⊕BT ,(S
0,1
T ⊕BT )′) . max(‖BS 0,1

T ‖L(S 0,1
T ,(S 0,1

T )′), ‖B
B
T ‖L(BT ,B′T )).

Proof. One has

|(BS 0,1⊕B
T (u+ v))(u+ v)| ≥min(‖<(BS 0,1

T )−1‖−1

L((S 0,1
T )′,S 0,1

T )
, ‖<(BB

T )−1‖−1
L(B′T ,BT ))

× (‖u‖2W + ‖v‖2W ),

and ‖u‖2W + ‖v‖2W ≥ 1
2‖u+ w‖2W . Secondly,

|(BS 0,1⊕B
T (u+ v))(ũ+ ṽ)| ≤max(‖BS 0,1

T ‖L(S 0,1
T ,(S 0,1

T )′), ‖B
B
T ‖L(BT ,B′T ))

×
√
‖u‖2W + ‖v‖2W

√
‖ũ‖2W + ‖ṽ‖2W ,
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which by (5.2), combined with an interpolation argument, completes the proof.
�

Since the splitting of au ∈ WT ⊂ S 0,1
T ⊕BT , given in terms of its basis {ψT ,T : T ∈

T }, into its components in S 0,1
T and BT w.r.t. the nodal- or bubble-basis can be eas-

ily determined in linear complexity, a suitable definition ofBT : WT → W ′
T is given

by (BT w)(w̃) = (BS 0,1⊕B
T w)(w̃). Obviously,

‖BT ‖L(WT ,W ′T ) ≤ ‖BS 0,1⊕B
T ‖L(S 0,1

T ⊕BT ,(S
0,1
T ⊕BT )′),

‖<(BT )−1‖L(W ′T ,WT ) ≤ ‖<(BS 0,1⊕B
T )−1‖L((S 0,1

T ⊕BT )′,S 0,1
T ⊕BT ).

A choice for BB
T ∈ Lisc(BT , (BT )′) such that

sup
T ∈T
‖BB
T ‖L(BT ,B′T ) <∞, sup

T ∈T
‖<(BB

T )−1‖L(B′T ,BT ) <∞,

is, in view (5.1), given by

(5.3)
(
BB
T

∑
T∈T

cT θT
)( ∑

T∈T
dT θT

)
:= β0

∑
T∈T

hd−2s
T cT dT .

for some constant β0 > 0.
Possible choices for BS 0,1

T ∈ Lisc(S
0,1
T , (S 0,1

T )′) with

sup
T ∈T
‖BS 0,1

T ‖L(S 0,1
T ,(S 0,1

T )′) <∞, sup
T ∈T
‖<(BS 0,1

T )−1‖L((S 0,1
T )′,S 0,1

T ) <∞

include (BS 0,1

T u)(v) := (Bu)(v) (u, v ∈ S 0,1
T ) for some B ∈ Lisc(W ,W ′). For

d ∈ {2, 3} and W = H
1
2
00(Γ) := [L2(Γ), H1

0 (Γ)] 1
2 ,2

, one may take the hypersingular
integral operator for B, whereas for ∂Γ 6= ∅, and W = H

1
2 (Γ) = [L2(Γ), H1(Γ)] 1

2 ,2

the recently introduced modified hypersingular integral operator can be applied
(see [HJHUT18]). (Note that H1

0 (Γ) = H1(Γ) when ∂Γ = ∅.)
For a family of quasi-uniform partitions generated by a repeated application of

uniform refinements starting from some given initial partition, a computationally at-
tractive alternative is provided by multi-level preconditioner from [BPV00], whose
application can be performed in linear complexity.

5.1. Implementation. For both the domain case and the construction in the mani-
fold case in Subsection 4.1, the matrix representation GT = F−1

ΞT
GT (F ′ΞT )−1 of our

preconditioner GT reads as GT = D−1
T BTD

−>
T with

DT = diag{|T | : T ∈ T },

and

BT := F ′ΨT BT FΨT

= F ′ΨT
(
I ′T B

S 0,1

T IT + (Id− IT )′BB
T (Id− IT )

)
FΨT

= p>TB
S 0,1

T pT + q>TB
B
T qT ,
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where IT is the projector from S 0,1
T ⊕BT onto S 0,1

T with ran(Id− IT ) = BT

BS 0,1

T := F ′ΦT B
S 0,1

T FΦT , pT := F−1
ΦT
IT FΨT ,

BB
T := F ′ΘT B

B
T FΘT , qT := F−1

ΘT
(Id− IT )FΨT .

By substituting the definition of BB
T from (5.3), the definition of the basis ΨT =

{ψT ,T }T∈T for WT from (3.7) and (4.1), and that of the bases ΦT = {φT ,ν}ν∈NT
and ΘT = {θT }T∈T for S 0,1

T and BT , respectively, we find that

BB
T = β0D

1− 2s
d

T , (pT )νT =

{
d−1
T ,ν if ν ∈ NT ,T ,
0 if ν 6∈ NT ,T ,

(qT )T ′T = δT ′T − 1
d+1

∑
ν∈NT ,T∩NT ,T ′

d−1
T ,ν ,

whereas BS 0,1

T depends on BS 0,1

T ∈ Lisc(S
0,1
T , (S 0,1

T )′) being chosen.

Remark 5.2. So far we determined a suitable constant β0 by comparing different
choices numerically. A possible choice forβ0 is to pick it such that ρ(q>TB

B
T qTAT ) =

ρ(p>TB
S 0,1

T pTAT ). Another option would be to replace β0|T |1−
2s
d by (an approx-

imation for) ‖θT ‖2W . In that case, however, the non-trivial question arises which
choice of the bubbles θT would give the best results.

6. Higher order case

In this section we denote the space S −1,0
T as V 0

T , we write its basis ΞT and
biorthogonal collection ΨT as Ξ0

T and Ψ0
T , respectively, and the preconditionerGT

that we have developed as G0
T .

Let (VT )T ∈T be a family of finite dimensional spaces with V 0
T ⊆ VT ⊂ V , that

satisfies the following inverse inequality
(6.1) ‖hT · ‖L2(Ω) . ‖ · ‖H1

0,γ(Ω)′ on VT ,

i.e., the inequality proven for V 0
T in Lemma 4.1. For T ∈ T, let AT ∈ Lis(VT ,V ′T )

with supT ∈T κVT ,V ′T
(AT ) <∞.

Remark 6.1. For the most relevant example where for some (fixed) ` ∈ {1, 2, . . .}

(6.2) VT ⊆ S −1,`
T := {u ∈ L2(Ω): u|T ∈ P`(T )},

a proof of (6.1) for d ∈ {2, 3} (d = 1 causes no difficulties) can be found in [GHS05,
Thm. 3.6 (and Rem. 3.8 when γ 6= ∅)], which applies under our minimal assump-
tions imposed on the family T. Alternatively, it is not difficult to see that Ψ0

T can
be enlarged to a ‘local’ collection that is biorthogonal to a enlargement of Ξ0

T to a
basis for {u ∈ L2(Ω): u|T ∈ P`(T )}. Then the same proof as for Lemma 4.1 shows
(6.1).

In order to construct a preconditionerGT ∈ Lis(V ′T ,VT ) we will follow the clas-
sical approach of subspace correction methods. We are going to decompose, in a uni-
formly ‘stable’ way, VT into V 0

T and a complement space V 1
T . On V 0

T we will apply
our preconditioner G0

T ∈ Lisc((V 0
T )′,V 0

T ), whereas on the complement space a di-
agonal preconditioner will suffice.

To do so, an obvious option would be to decompose VT using the biorthogonal
projector P ′T onto V 0

T that we know is uniformly bounded on V (since its adjoint
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PT is unif. bounded on W , see Thm. 3.3). A computationally more efficient im-
plementation, however, will be yielded by using the L2(Ω)-orthogonal projector
Q0
T onto V 0

T instead. Although for s ≥ 1
2 it is known not to be uniformly bounded

on V , restricted to VT the projector Q0
T is uniformly bounded in V :

Lemma 6.2. It holds that
sup
T ∈T
‖Q0
T |VT ‖L(V ,V ) <∞.

Furthermore, there exist constants M,m > 0 s.t. with V 1
T := ran

(
(Id−Q0

T )|VT
)
,

m‖ · ‖2V ≤
∑
T∈T

h2s
T ‖ · ‖2L2(T ) ≤M‖ · ‖

2
V on V 1

T .

Proof. For u ∈ VT , thanks to (6.1) we have

‖(Id−Q0
T )u‖H1

0,γ(Ω)′ = sup
v∈H1

0,γ(Ω)

〈u, (Id−Q0
T )v〉L2(Ω)

‖v‖H1(Ω)
.

√∑
T∈T
‖hTu‖2L2(T )

. ‖u‖H1
0,γ(Ω)′ ,

so that the first statement follows by interpolation.
Again by interpolation, the inequalities need only to be proven for s = 1, and

thus with W ′ reading as H1
0,γ(Ω)′. In that case the right inequality follows from

(6.1), whereas the left inequality follows from the arguments applied at the begin-
ning of this proof. �

The following abstract result concerns so-called additive subspace correction meth-
ods. The result is well-known in the Hilbert space setting and with self-adjoint coer-
cive preconditioners on the subspaces (e.g. [Xu92, Wid92, NS18, GO95],[Osw94,
HX07]). Present result is better than [HX07] for multiple subspaces, cf. [HX07,
(2.14)]. In [Osw94] the Ei are trivial embeddings. Nowhere is the Banach space
case handled.

Proposition 6.3. Let U and, for some set of i, Ui be reflexive Banach spaces. Let Ei ∈
L(Ui,U ) be such that

∑
i ranEi = U , and letGi ∈ Lisc(U ′i ,Ui). ThenG :=

∑
iEiGiE

′
i ∈

Lisc(U ′,U ) with

‖G‖L(U ′,U ) ≤ max
i
‖Gi‖L(U ′i ,Ui)

(
sup

06=u∈U

‖u‖U
|||u|||U

)2
,(6.3)

‖<(G)−1‖L(U ,U ′) ≤ max
i
‖<(Gi)

−1‖L(Ui,U ′i )

(
sup

06=u∈U

|||u|||U
‖u‖U

)2
,(6.4)

where
|||u|||U := inf

{(ui)i∈
∏
i Ui :

∑
i Eiui=u}

√∑
i

‖ui‖2Ui
.

The proof of this proposition is given in the appendix.

Corollary 6.4. For k ∈ {0, 1}, let IkT denote the trivial embedding of V k
T into VT . Let

G0
T ∈ Lisc((V 0

T )′,V 0
T ), and let G1

T := R−1
T with RT ∈ Lisc(V 1

T , (V
1
T )′) be defined by

(RT u)(v) := β−1
1

∑
T∈T h

2s
T 〈u, v〉L2(T ) for some constant β1 > 0. Then

GT :=

1∑
k=0

IkTG
k
T (IkT )′ ∈ Lisc(V

′
T ,VT ),
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and

‖GT ‖L(V ′T ,VT ) ≤ 2 max(‖G0
T ‖L((V −1,0

T )′,V −1,0
T ), β1m

−1),

‖<(GT )−1‖L(VT ,V ′T ) ≤ 2‖Q0
T |VT ‖L(W ′,W ′) max(‖<(G0

T )−1‖L(V −1,0
T ,(V −1,0

T )′), β
−1
1 M).

Proof. Using that RT = R′T , from Lemma 6.2 one infers that ‖G1
T ‖L((V 1

T )′,V 1
T ) ≤

β1m
−1 and ‖<(G1

T )−1‖L(V 1
T ,(V

1
T )′) ≤ β−1

1 M .

Now from 1
2

√
2‖u‖VT ≤

√
‖Q0
T u‖2VT + ‖(Id−Q0

T )u‖2VT ≤
√

2 ‖Q0
T |VT ‖L(V ,V )‖u‖VT

(u ∈ VT ), where we used that ‖(Id −Q0
T )|VT ‖L(V ,V ) = ‖Q0

T |VT ‖L(V ,V ), the proof
is completed by an application of Proposition 6.3. �

Remark 6.5. Although at first sight Proposition 5.1 might look like another applica-
tion of Proposition 6.3, note the reversed roles of the ‘primal’ space and its adjoint.

6.1. Implementation. With Ξ0
T , Ξ1

T , and ΞT being bases for V 0
T , V 1

T , and VT , re-
spectively, the matrix representation GT = F−1

ΞT
GT (F ′ΞT )−1 of the preconditioner

from Corollary 6.4 reads as

GT =

1∑
k=0

pkTG
k
T (pkT )>,

where
pkT := F−1

ΞT
IkT FΞkT

, Gk
T = F−1

ΞkT
GkT (F ′ΞkT )−1.

We take Ξ0
T from (3.1)-(3.2). Then G0

T corresponding our preconditioner
G0
T ∈ Lisc((V 0

T )′,V 0
T ) has been given in Sect. 5.1.

Now let ΞT = {ξT,i}T∈T ,i=0,...,N be an L2(Ω)-orthogonal basis for VT such that

ξT,0 = ξT , supp ξT,i ⊂ T, ‖ξT,i‖L2(T ) = |T | 12 ,

so that Ξ1
T = {ξT,i}T∈T ,i=1,...,N is an L2(Ω)-orthogonal basis for V 1

T . One infers
that

G1
T = β1diag[|T |−(1+ 2s

d )Id(N−1)×(N−1)]T∈T ,

and

p0
T = diag[e>1 ]T∈T , p1

T = diag[e>2 , . . . , e
>
N ]T∈T .

Remark 6.6. We determine a suitable constant β1 by comparing different choices
numerically (cf. Rem 5.2). A possible candidate for β1 is found by picking it such
that ρ

(
p0
TG

0
T (p0

T )>AT
)

= ρ
(
p1
TG

1
T (p1

T )>AT
)
.

Remark 6.7. In the manifold case, one may prefer to avoid computing an L2(Γ)-
orthogonal basis for VT . In that case, similar to Sect. 4.1, the results in this section
remain valid when on all places 〈u, v〉L2(T ) reads as |T |

|κ−1(T )|
´
κ−1(T )

u(κ(x))v(κ(x)) dx,
and so 〈 , 〉L2(Γ) as 〈 , 〉T , and the L2(Γ)-orthogonal projector onto V 0

T reads as the
〈 , 〉T -orthogonal projector onto V 0

T .
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7. Preconditioning an operator of negative order discretized by continuous
piecewise polynomials.

7.1. Construction of WT and DT . Let a bounded polytopal domain Ω ⊂ Rd, γ ⊂
∂Ω, s ∈ [0, 1], W := [L2(Ω), H1

0,γ(Ω)]s,2, V := W ′, D ∈ Lis(V ,W ′), (T )T ∈T, NT ,
dT ,ν , NT , NT ,T and hT be all as in Sect. 3. In addition, for T ∈ T let N̆T be the set
of all vertices of T , and for ν ∈ N̆T , let ωT (ν) := ∪{T∈T : ν∈NT }T .

We take
VT = S̆ 0,1

T := {u ∈ H1(Ω): u|T ∈ P1 (T ∈ T )} ⊂ V ,

and, as in Sect. 3,
S 0,1
T := {u ∈ H1

0,γ(Ω): u|T ∈ P1 (T ∈ T )},

equipped with nodal bases ΞT = {ξT ,ν : ν ∈ N̆T } and ΦT = {φT ,ν : ν ∈ NT },
respectively, defined by

ξT ,ν(ν′) = δν,ν′ (ν, ν′ ∈ N̆T ),

and φT ,ν = ξT ,ν for ν ∈ NT . Analogously to the case of discontinuous piecewise
polynomial trial spaces in V studied in Sect. 3-6, using the framework of operator
preconditioning outlined in Sect. 2 we are going to construct a family of precondi-
tionersGT ∈ Lisc(V ′T ,VT ) of typeD−1

T BT (D′T )−1 with uniformly bounded norms
‖GT ‖L(V ′T ,VT ) and ‖<(GT )−1‖L(VT ,V ′T ).

To construct a collection ΨT = {ψT ,ν : ν ∈ N̆T } ⊂ H1
0,γ(Ω) that both is biorthog-

onal to ΞT and for which
WT := span ΨT ⊂ W

has ‘approximation properties’, as in Sect. 3 we need two collections ΣT ⊂ S 0,1
T

and ΘT ⊂ H1
0,γ(Ω), where ΘT is biorthogonal to ΞT , and ΣT has ‘approximation

properties’ and #ΣT = #ΞT .
We define ΣT = {σT ,ν : ν ∈ N̆T } by σT ,ν := φT ,ν when ν ∈ NT , and σT ,ν := 0

when ν ∈ N̆T \NT . Then, obviously,
∑
ν∈N̆T σT ,ν equals 1 on Ω\∪{T∈T : T∩γ 6=∅}T .

For constructing ΘT , on a reference d-simplex T̂ , for ε > 0 we consider a smooth
ηε ∈ [0, 1], symmetric in the barycentric coordinates, with ηε(x) = 0 when d(x, ∂T̂ ) <

ε, and ηε(x) = 1 when d(x, ∂T̂ ) > 2ε. Then for some fixed ε > 0 small enough, it
holds that

(7.1) inf
0 6=p∈P1(T̂ )

sup
06=q∈P1(T̂ )

〈p, ηεq〉L2(T̂ )

‖p‖L2(T̂ )‖ηεq‖L2(T̂ )

> 0,

meaning that the biorthogonal projectorPε ∈ L(L2(T̂ ), L2(T̂ )) with ranPε = ηεP1(T̂ )

and ran(Id − Pε) = P1(T̂ )⊥L2(T̂ ) exists. Consequently, with ΦT̂ = {φT̂ ,ν : ν ∈ NT̂ }
being the nodal basis for P1(T̂ ), we have that

{φ̃T̂ ,ε,ν : ν ∈ NT̂ } := 〈ΦT̂ ,ΦT̂ 〉
−1

L2(T̂ )
PεΦT̂ ⊂ H

1
0 (T̂ )

is L2(T̂ )-biorthonormal to {φT̂ ,ν : ν ∈ NT̂ }.
Now for T ∈ T , let FT̂ ,T : T → T̂ be an affine bijection. Then {φ̃T,ε,ν : ν ∈ NT }

defined by

(7.2) φ̃T,ε,ν := |T̂ |
|T | φ̃T̂ ,ε,FT̂ ,T (ν)
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is L2(T )-biorthonormal to the nodal basis for P1(T ).
By selecting for ν ∈ N̆T , a T (ν) ∈ T with ν ∈ NT , and defining ΘT = {θT ,ν : ν ∈

N̆T } ⊂ H1
0,γ(Ω) by

θT ,ν := |ωT (ν)|φ̃T (ν),ε,ν ,

where the specific scaling is chosen for convenience, we have for ν, ν′ ∈ N̆T ,

δνν′ |ωT (ν)| = 〈θT ,ν , ξT ,ν′〉L2(Ω) h δνν′‖θT ,ν‖L2(Ω)‖ξT ,ν′‖L2(Ω),

supp θT ,ν ⊂ T (ν), |θT ,ν |H1(Ω) . h
−1
T (ν)‖θT ,ν‖L2(Ω),

(7.3)

i.e., properties analogous to (3.3) and (3.10).
Since furthermore ΞT and ΣT satisfy properties analogous to (3.8) and (3.9),

defining similarly to (3.4),

ψT ,ν := σT ,ν +
〈1− σT ,ν , ξT ,ν〉L2(Ω)

〈θT ,ν , ξT ,ν〉L2(Ω)
θT ,ν −

∑
ν′∈N̆T \{ν}

〈σT ,ν , ξT ,ν′〉L2(Ω)

〈θT ,ν′ , ξT ,ν′〉L2(Ω)
θT ,ν′

(7.4)

=

{
θT ,ν
d+1 ν ∈ N̆T \NT ,
φT ,ν +

θT ,ν
2(d+1) −

∑
ν′∈N̆T \{ν}

|ωT (ν)∩ωT (ν′)|
2d(d+1)|ωT (ν′)|θT ,ν′ ν ∈ NT ,

(7.5)

we conclude that with (DT v)(w) := (Dv)(w), we have that ‖DT ‖L(VT ,W ′T ) ≤ 1, and
supT ∈T ‖D−1

T ‖L(W ′T ,VT ) <∞, and

DT = F ′ΨTDT FΞT = diag{〈1, ξT ,ν〉L2(Ω) : ν ∈ N̆T } = diag
{

1
d+1 |ωT (ν)| : ν ∈ N̆T

}
.

7.2. Construction of BT ∈ Lisc(WT ,W ′
T ). Since, for k ∈ {0, 1}, ΘT additionally

satisfies∥∥ ∑
ν∈N̆T

cνθT ,ν
∥∥2

Hk(Ω)
h
∑
ν∈N̆T

|ωT (ν)|1− 2k
d |cν |2,

and

‖u+ v‖2Hk(Ω) & ‖u‖
2
Hk(Ω) + ‖v‖2Hk(Ω) (u ∈ S 0,1

T , v ∈ BT := span ΘT ).

(cf. (5.1)-(5.2)), we construct BT analogously as in Section 5. Assuming that we
have aBS 0,1

T ∈ Lisc(S
0,1
T , (S 0,1

T )′) available with supT ∈T ‖BS 0,1

T ‖L(S 0,1
T ,(S 0,1

T )′) <∞,
supT ∈T ‖<(BS 0,1

T )−1‖L((S 0,1
T )′,S 0,1

T ) <∞, for some constant β0 > 0 we take(
BB
T

∑
ν∈N̆T

cνθT ,ν
)( ∑

ν∈N̆T

dνθT ,ν
)

:= β0

∑
ν∈N̆T

|ωT (ν)|1− 2s
d cνdν ,

and
BT := I ′T B

S 0,1

T IT + (Id− IT )′BB
T (Id− IT ),

where IT is the projector from S 0,1
T ⊕BT onto S 0,1

T with ran(Id−IT ) = BT . Then
supT ∈T ‖BT ‖L(WT ,W ′T ) <∞ and supT ∈T ‖<(BT )−1‖L(W ′T ,WT ) <∞.

Substituting the definition of ψT ,ν , one infers that GT = D−1
T BTD

−>
T , where

BT = p>TB
S 0,1

T pT + q>TB
B
T qT ,
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and

(qT )ν′ν :=


δν′ν
d+1 ν ∈ N̆T \NT ,

1
2(d+1) ν ∈ NT , ν′ = ν,

− |ωT (ν)∩ωT (ν′)|
2d(d+1)|ωT (ν′)| ν ∈ NT , ν′ 6= ν,

BS 0,1

T := F ′ΦT B
S 0,1

T FΦT ,

(pT )ν′ν := δν′ν (ν′ ∈ NT , ν ∈ N̆T ), BB
T := diag{β0|ωT (ν)|1− 2s

d : ν ∈ N̆T }.

7.3. Manifold case. From Sect. 4 recall the definitions of Γ, γ, W , V , κ : Ω →
∪pi=1κi(Ωi), and that of the family of conforming partitions T of Γ.

As in the domain case discussed in Sect. 7.1, for T ∈ T let N̆T be the set of vertices
of T , and NT its subset of vertices not on γ, for T ∈ T let NT be the vertices of T ,
NT ,T := NT ∩NT , and for ν ∈ N̆T let ωT (ν) := ∪{T∈T : ν∈NT }T .

We take

VT = S̆ 0,1
T := {u ∈ H1(Γ) : u ◦ κ|κ−1(T ) ∈ P1 (T ∈ T )} ⊂ V ,

S 0,1
T := {u ∈ H1

0,γ(Γ) : u ◦ κ|κ−1(T ) ∈ P1 (T ∈ T )},

equipped with nodal bases ΞT = {ξT ,ν : ν ∈ N̆T } and ΦT = {φT ,ν : ν ∈ NT },
respectively, defined by

ξT ,ν(ν′) = δν,ν′ (ν, ν′ ∈ N̆T ),

and φT ,ν = ξT ,ν for ν ∈ NT .
Actually exclusively for the deriving an inverse inequality analogous to Lemma 4.1,

first we construct a collection ΨT = {ψT ,ν : ν ∈ N̆T } ⊂ H1
0,γ(Γ) that has ‘approxi-

mation properties’ and that is biorthogonal to ΞT w.r.t. the true L2(Γ)-scalar prod-
uct. We define ΣT = {σT ,ν : ν ∈ N̆T } by σT ,ν := φT ,ν when ν ∈ NT , and σT ,ν := 0

when ν ∈ N̆T \NT . Then, obviously,
∑
ν∈N̆T σT ,ν equals 1 on Γ\∪{T∈T : T∩γ 6=∅}T .

Given a d-simplex T ⊂ Rd, by means of an affine bijection we transport the
function ηε, defined in Sect. 4 on a reference d-simplex T̂ , to a function on T and
denote it by ηT,ε. Then for any T ∈ T ∈ T, for some ε > 0 small enough it holds
that

inf
06=p∈P1(κ−1(T ))

sup
06=q∈P1(κ−1(T ))

〈p ◦ κ−1, (ηT,εq) ◦ κ−1〉L2(T )

‖p ◦ κ−1‖L2(T )‖(ηT,εq) ◦ κ−1‖L2(T )
> 0

Moreover, since the ‘panels’ T get increasingly flat when diamT → 0, there exists
an ε > 0 such that above inf-sup condition is satisfied uniformly over all T ∈ T ∈ T.

By selecting for each ν ∈ N̆T a T (ν) ∈ T with ν ∈ NT , as in Sect. 7.1 we obtain
a collection ΘT = {θT ,ν : ν ∈ N̆T } with θT ,ν ⊂ H1

0 (T (ν)) that is biorthogonal to
ΞT , in particular that satisfies (7.3), after which we define the ψT ,ν by means of
formula (7.4). Having constructed the biorthogonal collections ΞT and ΨT , we set
the biorthogonal projector PT : L2(Γ) → H1

0,γ(Γ) : u 7→
∑
ν∈N̆T

〈u,ξT ,ν〉L2(Γ)

〈1,ξT ,ν〉L2(Γ)
ψT ,ν

which satisfies ‖PT u‖H1(Γ) . ‖h−1
T u‖L2(Γ). With the aid of this projector, as in

Lemma 4.1 one infers that

(7.6) ‖hT vT ‖L2(Γ) . ‖vT ‖(H1
0,γ)′ (vT ∈ VT ).

Having established this inverse inequality, to arrive at a construction of ΨT that
does not require the evaluation of integrals over Γ, as in Sect. 4.1 we replace 〈 , 〉L2(Γ)
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by 〈 , 〉T . We redefine ΘT = {θT ,ν : ν ∈ N̆T } by

θT ,ν := |ωT (ν)| |κ
−1(T )|
|T | φ̃κ−1(T ),ε,κ−1(ν) ◦ κ−1

with the φ̃’s defined in (7.2), and following (7.5), set ΨT = {ψT ,ν : ν ∈ N̆T } and
WT := span ΨT by

ψT ,ν =

{
θT ,ν
d+1 ν ∈ N̆T \NT ,
φT ,ν +

θT ,ν
2(d+1) −

∑
ν′∈N̆T \{ν}

|ωT (ν)∩ωT (ν′)|
2d(d+1)|ωT (ν′)|θT ,ν′ ν ∈ NT .

As in Sect. 4.1, we set (DT vT )(wT ) := 〈vT , wT 〉T (vT ∈ VT , wT ∈ WT ), and as in
Sect. 4.1, using (7.6) one shows that supT ∈T ‖DT ‖L(VT ,W ′T ) < ∞. Similarly as in
Lemma 4.3, one proves that

‖hT vT ‖L2(Γ) . sup
06=w∈H1

0,γ(Γ)

〈vT , wT 〉T
‖w‖H1(Γ)

,

and with that supT ∈T ‖D−1
T ‖L(W ′T ,VT ) <∞.

Constructing BT ∈ Lisc(WT ,W ′
T ) as in Sect. 7.2, one arrives at the same expres-

sions for DT , GT , BT , qT , BS 0,1

T , pT , and BB
T as in Sect. 7.1-7.2 in the domain

case.

7.4. Higher order case. For ease of presentation only, let us confine the discussion
to the domain case and

VT := {u ∈ H1(Ω): u|T ∈ P2 (T ∈ T )} ⊂ V ,

To construct a preconditioner, i.e., a GT ∈ Lis(V ′T ,VT ) one can re-use the precon-
ditioner constructed for the continuous piecewise linears by following the method
of subspace correction methods discussed in Sect. 6. It requires a stable splitting
of the current VT into the space of continuous piecewise linears and a complement
space.

An alternative is to apply the ‘operator preconditioning’ approach directly. Let
ΞT = {ξT ,ν : ν ∈ N̆T ∪MT } be the usual nodal basis of VT , where MT is the set of
midpoints of edges of elements in T , and, as in Sect. 7.1, let ΦT = {φT ,ν : ν ∈ NT }
be the nodal basis for the space S 0,1

T of continuous piecewise linears that vanish at
γ. We set ΣT = {σT ,ν : ν ∈ N̆T ∪MT } by σT ,ν := φT ,ν when ν ∈ NT , and σT ,ν := 0

when ν ∈ (N̆T \ NT ) ∪MT . Then
∑
ν∈N̆T σT ,ν equals 1 on Ω \ ∪{T∈T : T∩γ 6=∅}T .

It remains to construct ΘT = {θT ,ν : N̆T ∪MT } that is biorthogonal to ΞT . Using
that, similar to (7.1),

inf
0 6=p∈P2(T̂ )

sup
06=q∈P2(T̂ )

〈p, ηεq〉L2(T̂ )

‖p‖L2(T̂ )‖ηεq‖L2(T̂ )

> 0,

such a ΘT can be constructed as in Sect. 7.1. Having ΞT , ΣT , and ΘT , a collection
ΨT biorthogonal to ΞT and with ‘approximation properties’ is given by the mean-
while familiar explicit formula. The resulting DT is diagonal, and the optimal pre-
conditioner follows assuming that we have aBS 0,1

T ∈ Lisc(S
0,1
T , (S 0,1

T )′) available
with supT ∈T ‖BS 0,1

T ‖L(S 0,1
T ,(S 0,1

T )′) <∞, supT ∈T ‖<(BS 0,1

T )−1‖L((S 0,1
T )′,S 0,1

T ) <∞.
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8. Using a different partition for the construction of the preconditioner

For ease of presentation, let us restrict ourselves to the case considered in Sect. 3:
Ω is a domain in Rd, and W ′ = V ⊃ VT := S −1,0

T , being the space of piece-
wise constants w.r.t. T . We have seen how to build an optimal preconditioner for
an AT ∈ Lis(S −1,0

T , (S −1,0
T )′) assuming we have available an operator BS 0,1

T ∈
Lisc(S

0,1
T , (S 0,1

T )′), where S 0,1
T ⊂ W is the space of continuous linears w.r.t. T that

vanish on γ. Apart from the application ofBS 0,1

T , the other ingredients needed for
building this preconditioner require O(#T ) operations.

In the current section we will show that the construction can be generalized
to the situation that partitions T and T̃ underlying AT and BS 0,1

T̃ are unequal, al-
though related. This can be useful in the situation that T is ‘unstructured’, whereas
in order to construct BS 0,1

T̃ of multi-level type see e.g [BPV00], one would like to
have T̃ to be the result of recursive refinements starting from a coarse initial parti-
tion.

As before, let T be some family of conforming, uniformly shape regular partitions
of Ω into (open) d-simplices. Let T̃ be a family of uniformly shape regular partitions
of Ω into (open) d-simplices, thus not necessarily conforming, such that for T̃ ∈ T̃,
γ is the (possibly empty) union of (d − 1)-faces of T̃ ∈ T̃ . Moreover, we assume
that for any T ∈ T, there exists a T̃ = T̃ (T ) such that for any (T, T̃ ) ∈ T × T̃ with
T ∩ T̃ 6= ∅, it holds that |hT | h |hT̃ |.

With ΞT being the basis of piecewise constants for S −1,0
T , we need to construct

a biorthogonal collection ΨT consisting of functions each of them being the sum of
a function from ΣT = ΣT ,T̃ ⊂ S 0,1

T̃ , which collection should have ‘approximation
properties’, and a linear combinations of ‘bubble functions’ from ΘT . Compared
to Sect. 3 we slightly adapt the construction of ΘT = {θT : T ∈ T } in the sense that
we choose the bubble θT = θT,T̃ ∈ H1

0 (T ∩ T̃ ) for some T̃ ∈ T̃ . Thanks to our
assumptions on shape regularity and on the connection between T and T̃ this can
be done whilst retaining property (3.3).

To define ΣT ,T̃ , let NT̃ be the set of ‘non-hanging’ vertices of T̃ that are not on
γ, let ΦT̃ = {φT̃ ,ν̃ : ν̃ ∈ NT̃ } be the nodal basis for S 0,1

T̃ , and for ν̃ ∈ NT̃ , let
dT ,ν̃ := #{T ∈ T : ν̃ ∈ T}. Now defining ΣT ,T̃ = {σT ,T̃ ,T : T ∈ T } by

σT ,T̃ ,T :=
∑

{ν̃∈NT̃ : ν∈T}

d−1
T ,ν̃φT̃ ,ν̃ ,

the whole preceding construction that was developed for T̃ = T goes through.
That is, defining ΨT by (3.4), Lemma 3.1 is valid (but the convenient expression
(3.7) for ψT ,T is not) so in particular DT = diag{|T | : T ∈ T }, properties (3.8),
(3.9), (3.10) hold true, and so does Theorem 3.3. Equation (5.1) holds true and,
thanks to the modified construction of ΘT , so does (5.2) concerning the stable split-
ting of S 0,1

T̃ ⊕ span ΘT into S 0,1

T̃ and span ΘT .

Given a collection T as above, T̃ can be chosen as the collection of partitions
that can be generated by newest vertex bisection starting from some coarse initial
conforming partition of Ω that satisfies a matching condition ([BDD04, Ste08]).
Given T ∈ T, the partition T̃ ∈ T̃ can then be constructed by recursive refinements
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of those T̃ ∈ T̃ for whichhT̃ is larger than some fixed constant multiple ofhT for any
T ∈ T withT∩T̃ 6= ∅. The resulting T̃ ∈ T̃ will generally be nonconforming, but for
a convenient construction ofBS 0,1

T̃ it can be refined to a conforming partition T̃c ∈ T̃
at the cost of inflating the total number of d-simplices by not more than a constant
factor ([BDD04, Ste08]). The latter partition T̃c might be locally more refined than
T in the sense that hT̃c & hT for all (T, T̃c) ∈ T × T̃c with T ∩ T̃c 6= ∅ cannot be
guaranteed. Since this condition is needed to guarantee an inverse inequality for
the ‘σ-functions’ assumed in (3.9), the intermediate nonconforming partition T̃
remains needed for the construction of ΣT ,T̃ .

9. Numerical Experiments

Let Γ = ∂[0, 1]3 ⊂ R3 be the two-dimensional manifold without boundary
given as the boundary of the unit cube, W := H1/2(Γ), V := H−1/2(Γ), and
VT = S −1,`

T ⊂ V the trial space of discontinuous piecewise polynomials of de-
gree ` w.r.t. a partition T . In this section we will evaluate preconditioning of the
discretized single layer operator AT ∈ Lisc(VT ,V ′T ).

The role of the opposite order operator BS 0,1

T ∈ Lisc(S
0,1
T , (S 0,1

T )′) from Sec-
tion 5 will be fulfilled by (BS 0,1

T u)(v) := (Bu)(v) for an adapted hypersingular
operator B ∈ Lisc(W ,W ′). The hypersingular operator B̃ ∈ L(W ,W ′) itself is
only semi-coercive, but there are various options to change it into a coercive op-
erator ([SW98]). We consider B ∈ Lisc(W ,W ′) given by (Bu)(v) = (B̃u)(v) +
α〈u,1〉L2(Γ)〈v,1〉L2(Γ) for some α > 0. By comparing different values numerically,
we find α = 0.05 to give good results in our examples.

Equipping VT with the usual L2(Γ)-orthogonal basis (where any basis function
supported on T has norm |T | 12 ), and S 0,1

T with the nodal basis, the matrix repre-
sentation of the preconditioned system reads, when ` = 0, as

GTAT = D−1
T
(
p>TB

S 0,1

T pT + β0q
>
TD

1/2
T qT

)
D−1
T AT ,

with DT = diag{|T | : T ∈ T } and uniformly sparse pT and qT as given in Sect. 5.1;
and when ` > 0, writing G0

T = GT for the above preconditioner on piecewise
constants, as

GTAT =
(
p0
TG

0
T (p0

T )> + p1
TG

1
T (p1

T )>
)
AT ,

with G1
T = β1 diag{|T |−3/2Id(N−1)×(N−1) : T ∈ T } where N =

(
d+`
`

)
, and uni-

formly sparse p0
T and p1

T as given in Sect. 6. The (full) matrix representations
of the discretized singular integral operators AT and BS 0,1

T are calculated using
the BETL2 software package [HK12] (alternatively, one may apply low rank ap-
proximations in a hierarchical format). Condition numbers are determined using
Lanczos iteration with respect to |||·||| := ‖A

1
2

T ·‖. The constants βi are selected using
the strategy from Remark 5.2 and 6.6.

We will compare our preconditioner to the diagonal preconditioner diag(AT )−1,
and in the piecewise constant case, also to the related preconditioner ĜT from
[HUT16], where ĜT = D̂−1

T E>T B
S 0,1

T̂ ET D̂
−>
T is defined as follows. With T̂ be-

ing the barycentric refinement of T , a collection Ψ̂T ⊂ S 0,1

T̂
is constructed in

[BC07] such that the Fortin projector P̂T with ran P̂T = ŴT := span Ψ̂T and
ran(Id−P̂T ) = V

⊥L2(Γ)

T exists, and, under an additional sufficiently mildly-grading
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Table 1. Spectral condition numbers of the preconditioned single
layer system, using uniform refinements, discretized by piecewise
constants S −1,0

T . Both matrices GT and ĜT are constructed using
the adapted hypersingular operator with α = 0.05; and β0 = 1.25
in GT .

dofs κS(diag(AT )−1AT ) κS(GTAT ) κS(ĜTAT )

12 14.56 2.51 1.29
48 29.30 2.52 1.58

192 58.25 2.66 1.77
768 116.3 2.71 1.89

3072 230.0 2.74 1.94
12288 444.8 2.79

condition on the partition, has a uniformly bounded norm ‖P̂T ‖L(W ,W ) (cf. Theo-
rem 3.3); D̂T := 〈ΞT , Ψ̂T 〉L2(Γ); ET is the representation of the embedding ŴT ↪→
S 0,1

T̂
equipped with Ψ̂T and the nodal basis of S 0,1

T̂
, respectively; and BS 0,1

T̂ ∈
Lisc(S

0,1

T̂
, (S 0,1

T̂
)′) is an opposite order operator that we take as (BS 0,1

T̂ u)(v) :=

(Bu)(v), with B the adapted hypersingular operator.
Compared to our GT = G0

T , the preconditioner ĜT has the disadvantages that,
besides the aforementioned mildly grading condition, the matrix D̂T , although
uniformly sparse, is not diagonal, so that the (sufficiently accurate) application of
its inverse cannot be performed in linear complexity; furthermore that it requires
evaluating the adapted hypersingular operator on the larger space S 0,1

T̂
⊃ S 0,1

T

(#T̂ = 6#T ); and finally that the non-standard barycentric refinement T̂ has to
be generated.

9.1. Uniform refinements. Consider a conforming triangulation T1 of Γ consisting
of 2 triangles per side, so 12 triangles in total. We let T be the sequence {Tk}k≥1 of
uniform red-refinements, where Tk � Tk−1 is found by subdividing each triangle
from Tk−1 into 4 congruent subtriangles.

For VT = S −1,`
T , Tables 1 and 2 show the condition numbers of the precon-

ditioned system for ` = 0 and ` = 2, respectively. Aside from being uniformly
bounded, the condition numbers of our preconditioner GT are of modest size. In
the constant case, ` = 0, Table 1 reveals that the preconditioner ĜT from [BC07,
HUT16] gives better condition numbers. As described above, this quantitative gain
comes at a price. In the result of dim S −1,0

T = 3072, using full matrices for the dis-
cretized adapted hypersingular operator, we found a setup and application time of
1816s and 0.0971s for ĜT , compared to 385s and 0.00284s forGT . These differences
are due to numerical inversion of D̂T by LU factorization with partial pivoting, and
the enlargement S 0,1

T̂
⊃ S 0,1

T , also causing our test machine to go out of memory
in calculation ĜT for the last refinement. Although we expect them to be in any
case significant, these differences can be made smaller when the exact inversion of
D̂T is avoided, and BS 0,1

T̂ and BS 0,1

T are replaced by suitable low rank approxi-
mations.
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Table 2. Spectral condition numbers of the preconditioned single
layer system, using uniform refinements, discretized by discontin-
uous piecewise quadratics S −1,2

T . The matrix GT is constructed
using the adapted hypersingular operator, with α = 0.05, and
β0 = β1 = 1.25.

dofs κS(diag(AT )−1AT ) κS(GTAT )

72 167.16 9.58
288 309.12 10.4

1152 616.03 11.1
4608 1211.3 11.3

18432 2337.2 11.4

Table 3. Spectral condition numbers of the preconditioned single
layer system discretized by piecewise constants S −1,0

T using local
refinements at each of the eight cube corners. Both matrices GT
and ĜT are constructed using the adapted hypersingular operator
with α = 0.05; and β0 = 1.2 in GT . The second column is defined
by hT ,min := minT∈T hT .

dofs hT ,min κS(diag(AT )−1AT ) κS(GTAT ) κS(ĜTAT )

12 7.0 · 10−1 14.56 2.61 1.29
432 2.2 · 10−2 68.66 2.64 2.91
912 6.9 · 10−4 73.15 2.64 3.14

1872 6.7 · 10−7 73.70 2.64 3.25
2352 2.1 · 10−8 73.80 2.64 3.26
2976 2.3 · 10−10 73.66 2.64

9.2. Local refinements. Here we take T to be the sequence {Tk}k≥1 of locally re-
fined triangulations, where Tk � Tk−1 is constructed using conforming newest
vertex bisection to refine all triangles in Tk−1 that touch a corner of the cube.

As noted before, the preconditioner ĜT provides uniformly bounded condition
numbers if the family T satisfies some sufficiently mildly-grading condition on the
partition [Ste03, HUT16]. It is not directly clear whether T satisfies this condition,
but we included the results nonetheless.

Table 3 gives the results for the preconditioned single layer operator discretized
by piecewise constants S −1,0

T . The condition numbersκS(GTAT ) are nicely bounded
under local refinements. In this case our preconditioner gives condition numbers
slightly smaller than the ones found with ĜT . The calculation of the LU decom-
position with partial pivoting of D̂T turns out to break down in the last result
(dim S −1,0

T = 2976).

10. Conclusion

In this paper, we have seen how a boundedly invertible operatorBS 0,1

T from the
space of continuous piecewise linears S 0,1

T w.r.t. any conforming shape regular



OPTIMAL PRECONDITIONING FOR PROBLEMS OF NEGATIVE ORDER 27

partition T , equipped with the norm ofHs(Ω) (orHs(Γ)) for some s ∈ [0, 1], to its
dual (S 0,1

T )′ can be used to optimally precondition a boundedly invertible operator
of opposite order discretized by discontinuous or continuous polynomials of some
fixed degree w.r.t. T (or even w.r.t. some partition close to T ). The cost of the
resulting preconditioner is the sum of a cost that scales linearly in #T and the cost
of the application of BS 0,1

T . In any case for T being member of a nested sequence
of quasi-uniform partitions,BS 0,1

T can be constructed so that it requires linear cost.

Appendix A. Proof of Proposition 6.3

Lemma A.1. For reflexive Banach spaces Y and Z , let E ∈ L(Y ,Z ) with ranE = Z .
Then |||z|||Z := inf{y∈Y : Ey=z} ‖y‖Y defines an alternative norm on the linear space Z ,
and

sup
06=g∈Z ′

‖E′g‖Y ′
‖g‖Z ′

= sup
06=z∈Z

‖z‖Z
|||z|||Z

, inf
06=g∈Z ′

‖E′g‖Y ′
‖g‖Z ′

≥ inf
06=z∈Z

‖z‖Z
|||z|||Z

.

Proof. The verification that ||| |||Z defines a norm is easy. Obviously the supremum
at the left hand side of the next statement equals

‖E′‖L(Z ′,Y ′) = ‖E‖L(Y ,Z ) = sup
06=y∈Y

‖Ey‖Z
‖y‖Y

= sup
06=z∈Z

sup
{y∈Y : Ey=z}

‖z‖Z
‖y‖Y

= sup
06=z∈Z

‖z‖Z
|||z|||Z

.

The last statement follows from

‖E′g‖Y ′ = sup
06=y∈Y

(E′g)(y)

‖y‖Y
= sup

06=y∈Y

g(Ey)

‖y‖Y
= sup

06=z∈Z

g(z)

‖z‖Z
sup

{y∈Y : Ey=z}

‖z‖Z
‖y‖Y

= sup
06=z∈Z

g(z)

‖z‖Z
‖z‖Z
|||z|||Z

≥ inf
06=z∈Z

‖z‖Z
|||z|||Z

sup
06=z∈Z

g(z)

‖z‖Z
= ‖g‖Z ′ inf

06=z∈Z

‖z‖Z
|||z|||Z

. �

Proof of Proposition 6.3. We equip
∏
i Ui with

√∑
i ‖ · ‖2Ui

, and (
∏
i Ui)

′ with the

corresponding dual norm, and equip
∏
i U
′
i with

√∑
i ‖ · ‖2U ′i .

We start by showing that (
∏
i Ui)

′ '
∏
i U
′
i . We set

S :
∏
i

U ′i → (
∏
i

Ui)
′ : (fi)i 7→ ((ui)i 7→

∑
i

fi(ui)).

Given f ∈ (
∏
i Ui)

′, taking fi = f(·ei) we see that S(fi)i = f , whereas S is clearly
also injective. From ‖S(fi)i‖(∏i Ui)′ = sup06=(ui)i∈

∏
i Ui

|
∑
i fi(ui)|√∑
i ‖ui‖2Ui

, we infer that

‖S(fi)i‖(∏i Ui)′ ≤
√∑

i ‖fi‖2U ′i , whereas taking ui such that fi(ui) = ‖fi‖U ′i ‖ui‖Ui

and ‖ui‖Ui = ‖fi‖U ′i gives |
∑
i fi(ui)| =

∑
i ‖ui‖2Ui

, showing that S is an isometry.
We will further use that

(A.1) (fi)i(S
′(ui)i) = (S(fi))(ui)i =

∑
i

fi(ui) ((ui) ∈
∏
i

Ui, (fi) ∈
∏

U ′i ).
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We set E := (ui)i 7→
∑
iEiui ∈ L(

∏
i Ui,U ). For f ∈ U and (ui)i ∈

∏
i Ui,

(A.1) shows that

(S(E′if)i)(ui)i = (E′if)i(S
′(ui)i) =

∑
i

(E′if)(ui)

=
∑
i

f(Eiui) = f(E(ui)i) = (E′f)(ui)i,

that is, S−1E′f = (E′if)i.
The definition of G shows that for f1, f2 ∈ U ′,

f2(Gf1) =
∑
i

E′if2(GiE
′
if1) ≤ max

i
‖Gi‖L(U ′i ,Ui)

2∏
k=1

√∑
i

‖E′ifk‖2U ′i .

The proof of the first bound (6.3) is completed by√∑
i

‖E′ifk‖2U ′i = ‖S−1E′fk‖∏
i U ′i

= ‖E′fk‖(∏i Ui)′ ≤ ‖E
′‖L(U ′,(

∏
i Ui)′)‖fk‖U ′ ,

and ‖E′‖L(U ′,(
∏
i Ui)′) = sup06=u∈U

‖u‖U

|||u|||U
by an application of Lemma A.1.

The second bound (6.4) follows by, for f ∈ U ′,

f(Gf) =
∑
i

E′if(GiE
′
if) ≥ min

i
‖<(Gi)

−1‖−1
L(Ui,U ′i )

∑
i

‖E′if‖2U ′i ,

and ∑
i

‖E′if‖2U ′i = ‖E′f‖2(∏i Ui)′
≥ ‖f‖2U ′

(
inf

06=u∈U

‖u‖U
|||u|||U

)2

by an application of Lemma A.1. �
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