
Chapter 4
Piecewise Tensor Product Wavelet Bases
by Extensions and Approximation Rates

Nabi G. Chegini, Stephan Dahlke, Ulrich Friedrich, and Rob Stevenson

Abstract In this chapter, we present some of the major results that have been
achieved in the context of the DFG-SPP project “Adaptive Wavelet Frame Methods
for Operator Equations: Sparse Grids, Vector-Valued Spaces and Applications
to Nonlinear Inverse Problems”. This project has been concerned with (non-
linear) elliptic and parabolic operator equations on nontrivial domains as well
as with related inverse parameter identification problems. One crucial step has
been the design of an efficient forward solver. We employed a spatially adaptive
wavelet Rothe scheme. The resulting elliptic subproblems have been solved by
adaptive wavelet Galerkin schemes based on generalized tensor wavelets that
realize dimension-independent approximation rates. In this chapter, we present the
construction of these new tensor bases and discuss some numerical experiments.

4.1 Introduction

The aim of the project “Adaptive Wavelet Frame Methods for Operator Equations”
has been the development of optimal convergent adaptive wavelet schemes for
elliptic and parabolic operator equations on nontrivial domains. Moreover, we
have been concerned with the efficient treatment of related parameter identification
problems. For the design of the efficient forward solver, we used variants of the
recently developed adaptive wavelet schemes for elliptic operator equations, see.,
e.g., [4,12]. (This list is clearly not complete). As usually, the construction of a suit-
able wavelet basis on the underlying domain is a nontrivial bottleneck. We attacked
this problem by generalizing the construction of tensor wavelets on the hypercube
to general domains. The resulting fully adaptive solver for the elliptic forward
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70 N.G. Chegini et al.

problem realizes dimension-independent convergence rates. For the treatment of the
related inverse parameter identification problems we used regularization techniques.
In particular, we analyzed and developed Tikhonov-regularization schemes with
sparsity constraints for such nonlinear inverse problems. As a model problem,
we studied the parameter identification problem for a parabolic reaction-diffusion
system which describes the gene concentration in embryos at an early state of
development (embryogenesis). In this chapter, we will only be concerned with
the analysis of the forward problem, and we will concentrate on the construction
of the new tensor wavelets and their approximation properties. For the analysis
of the inverse problem, in particular concerning the regularity of the associated
control-to-state map, we refer to Chap. 3 of this book. Numerical examples of the
overall, fully adaptive wavelet scheme can be found in [5].

The approach we will present has partially been inspired by the work of
Z. Ciesielski and T. Figiel [3] and of W. Dahmen and R. Schneider [6] who
constructed a basis for a range of Sobolev spaces on a domain˝ from corresponding
bases on subdomains. The principle idea can be described as follows. Let ˝ D
[NkD0˝k ! Rn be a non-overlapping domain decomposition. By the use of
extension operators, we will construct isomorphisms from the Cartesian product of
Sobolev spaces on the subdomains, which incorporate suitable boundary conditions,
to Sobolev spaces on ˝ . By applying such an isomorphism to the union of Riesz
bases for the Sobolev spaces on the subdomains, the result is a Riesz basis for the
Sobolev space on ˝ .

Since the approach can be applied recursively, to understand the construction of
such an isomorphism, it is sufficient to consider the case of having two subdomains.
For i 2 f1; 2g, let Ri be the restriction of functions on ˝ to ˝i , let !2 be the
extension by zero of functions on ˝2 to functions on ˝ , and let E1 be some
extension of functions on ˝1 to functions on ˝ which, for some m 2 N0, is

bounded from Hm.˝1/ to the target space Hm.˝/. Then
!

R1
R2.Id " E1R1/

"
W

Hm.˝/! Hm.˝1/#Hm
0;@˝1\@˝2.˝2/ is boundedly invertible with inverse ŒE1 !2".

(Hm
0;@˝1\@˝2.˝2/ is the space of Hm.˝2/ functions that vanish up to order m " 1

at @˝1 \ @˝2). Consequently, if #1 is a Riesz basis for Hm.˝1/ and #2 is a Riesz
basis forHm

0;@˝1\@˝2.˝2/, then E1#1 [ !2#2 is a Riesz basis forHm.˝/.
Our main interest in the construction of a basis from bases on subdomains lies

in the use of piecewise tensor product approximation. On the hypercube ! WD
.0; 1/n one can construct a basis for the Sobolev space Hm.!/ (or for a subspace
incorporating Dirichlet boundary conditions) by taking an n-fold tensor product of
a collection of univariate functions that forms a Riesz basis for L2.0; 1/ as well
as, properly scaled, for Hm.0; 1/. Thinking of a univariate wavelet basis of order
d > m, the advantage of this approach is that the rate of nonlinear best M -term
approximation of a sufficiently smooth function u is d " m, compared to d!m

n
for standard best M -term isotropic (wavelet) approximation of order d on !. The
multiplication of the one-dimensional rate d " m by the factor 1

n
is commonly
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4 Piecewise Tensor Product Wavelet Bases by Extensions and Approximation Rates 71

referred to as the curse of dimensionality. However, when it comes to practical
applications one should keep in mind that also the constants depend on n – even
exponentially in the worst case. This is an intrinsic problem that also holds for
other discretizations, e.g., by sparse grids. Nonetheless, tensor wavelets are a tool
by which, for moderate space dimensions, the curse of dimensionality is at least
diminished.

In view of these results on !, we consider a domain ˝ whose closure is the
union of subdomains ˛k C ! for some ˛k 2 Zn, or a domain˝ that is a parametric
image of such a domain under a piecewise sufficiently smooth, globally Cm!1

diffeomorphism $, being a homeomorphism when m D 1. We equip Hm.˝/ (or
a subspace incorporating Dirichlet boundary conditions) with a Riesz basis that
is constructed using extension operators as discussed before from tensor product
wavelet bases of order d on the subdomains, or from push-forwards of such
bases. Many topological settings are covered by our approach, i.e., we consider
homogeneous Dirichlet boundary conditions on arbitrary Lipschitz domains in two
dimensions, see also Example 4.1 below. Our restriction to decompositions of ˝
into subdomains from a topological Cartesian partition will allow us to rely on
univariate extensions. Indeed, in order to end up with locally supported wavelets,
we will apply local, scale-dependent extension operators – i.e., only wavelets that
are adapted to the boundary conditions on the interfaces will be extended. We will
show the best possible approximation rate d "m for any u that restricted to any of
these subdomains has a pull-back that belongs to a weighted Sobolev space.

4.2 Approximation by Tensor Product Wavelets
on the Hypercube

We will study non-overlapping domain decompositions, where the subdomains are
either unit n-cubes or smooth images of those. Sobolev spaces on these cubes, that
appear with the construction of a Riesz basis for a Sobolev space on the domain as a
whole, will be equipped with tensor product wavelet bases. From [7], we recall the
construction of those bases.

For t 2 Œ0;1/n.N0C 1
2
/ and ! D .%`; %r / 2 f0; : : : ; btC 1

2
cg2, withI WD .0; 1/,

let

Ht
! .I / WD fv 2 Ht.I / W v.0/ D $ $ $ D v.%`!1/.0/ D 0 D v.1/ D $ $ $ D v.%r!1/.1/g:

With t and ! as above, and for Qt 2 Œ0;1/ n .N0 C 1
2
/ and Q! D . Q%`; Q%r / 2

f0; : : : ; bQt C 1
2
cg2, we assume that

#! ; Q! WD
˚
 
.! ; Q! /
& W & 2 r! ; Q!

#
! Ht

! .I /; Q#! ; Q! WD f Q .! ; Q! /& W & 2 r! ; Q! g ! H Qt
Q! .I /
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72 N.G. Chegini et al.

are biorthogonal Riesz bases forL2.I /, and, by rescaling, forHt
! .I / andH

Qt
Q! .I /,

respectively. Furthermore, denoting by j&j 2 N0 the level of &, we assume that for
some

N 3 d > t;

W1. jh Q .! ; Q! /& ; uiL2.I /j . 2!j&jd kukHd .supp Q .! ;Q! // (u 2 Hd.I / \Ht
! .I /),

W2. ' WD sup&2r! ;Q! 2
j&j max.diam supp Q .! ; Q! /& ; diam supp .! ; Q! /& /

Å inf&2r! ;Q! 2
j&j max.diam supp Q .! ; Q! /& ; diam supp .! ; Q! /& /;

W3. sup
j;k2N0

#fj&j D j W Œk2!j ; .kC1/2!j "\.supp Q .! ; Q! /& [supp .! ; Q! /& / ¤ ;g <1.

These conditions (as well as (W4) – (W7) in Sect. 4.4) are satisfied by following the
biorthogonal wavelet constructions on the interval outlined in [8, 11].

It holds that L2.!/ D ˝n
iD1L2.I /. Further with

! D .! i D ..%i /`; .%i /r //1"i"n 2 .f0; : : : ; bt C 1
2
cg2/n;

we define

Ht
! .!/ WD Ht

! 1
.I /˝L2.I /˝$ $ $˝L2.I /\ $ $ $\L2.I /˝$ $ $˝L2.I /˝Ht

! n
.I /;

which is the space of Ht.!/-functions whose normal derivatives of up to orders
.%i /` and .%i /r vanish at the facets I i!1 # f0g # I n!i and I i!1 # f1g # I n!i ,
respectively .1 % i % n/ (the proof of this fact given in [7] for t 2 N0 can be
generalized to t 2 Œ0;1/ n .N0 C 1

2
/).

The tensor product wavelet collection

"! ; Q! WD ˝n
iD1#! i ; Q! i D

˚
 
.! ; Q! /
# WD ˝n

iD1 
.! i ; Q! i /
&i

W # 2 r ! ; Q! WD
nY

iD1
r! i ; Q! i

#
;

and its renormalized version
˚$Pn

iD1 4
t j&i j%!1=2 .! ; Q! /

# W # 2 r! ; Q!
#
are Riesz bases

for L2.!/ andHt
! .!/, respectively. The collection that is dual to "! ; Q! reads as

Q"! ; Q! WD ˝n
iD1 Q#! i ; Q! i D

˚ Q .! ; Q! /
# WD ˝n

iD1 Q 
.! i ; Q! i /
&i

W # 2 r ! ; Q!
#
;

and its renormalized version
˚$Pn

iD1 4
j&i j%!Qt=2 Q .! ; Q! /

# W # 2 r ! ; Q!
#
is a Riesz basis

forH Qt
Q! .!/.

For # 2 r ! ; Q! , we set j#j WD .j&1j; : : : ; j&nj/.
For ( & 0, the weighted Sobolev space H d

( .I / is defined as the space of all
measurable functions u onI for which the norm
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4 Piecewise Tensor Product Wavelet Bases by Extensions and Approximation Rates 73

kukH d
( .I / WD

2

4
dX

jD0

Z

I
jx( .1 " x/(u.j /.x/j2 dx

3

5

1
2

is finite. For m 2 f0; : : : ; btcg, we will consider the weighted Sobolev space

H d
m;( .!/ WD \npD1 ˝n

iD1 H
d
(!ıip min.m;(/.I /;

equipped with a squared norm that is the sum over p D 1; : : : ; n of the squared
norms on˝n

iD1H
d
(!ıip min.m;(/.I /.

4.3 Construction of Riesz Bases by Extension

Let f!0; : : : ;!N g be a set of hypercubes from f) C ! W ) 2 Zng, and let Ő
be a (reference) domain (i.e., open and connected) in Rn with [NkD0!k ! Ő !
.[NkD0!k/

int, and such that @ Ő is the union of (closed) facets of the !k’s. The case
Ő ¨ .[NkD0!k/

int corresponds to the situation that Ő has one or more cracks. We
will describe a construction of Riesz bases for Sobolev spaces on Ő from Riesz
bases for corresponding Sobolev spaces on the subdomains !k using extension
operators. We start with giving sufficient conditions (D1)–(D5) such that suitable
extension operators exist.

We assume that there exists a sequence .f Ő .q/
k W q % k % N g/0"q"N of sets of

polytopes, such that Ő .0/
k D !k and where each next term in the sequence is created

from its predecessor by joining two of its polytopes. More precisely, we assume that
for any 1 % q % N , there exists a q % Nk D Nk.q/ % N and q " 1 % k1 D k

.q/
1 ¤

k2 D k
.q/
2 % N such that

D1. Ő .q/Nk D
&
Ő .q!1/
k1

[ Ő .q!1/
k2

n@ Ő
'int

is connected, and the interface J WD Ő .q/Nk n
. Ő .q!1/

k1
[ Ő .q!1/

k2
/ is part of a hyperplane,

D2. f Ő .q/
k W q % k % N; k ¤ Nkg D

˚ Ő .q!1/
k W q " 1 % k % N; k ¤ fk1; k2g

#
,

D3. Ő .N /
N D Ő .

For some

t 2 Œ0;1/ n .N0 C 1
2
/;

to each of the closed facets of all the hypercubes !k , we associate a number in
f0; : : : ; btC 1

2
cg indicating the order of the Dirichlet boundary condition on that facet

(where a Dirichlet boundary condition of order 0means no boundary condition). On
facets on the boundary of Ő , this number can be chosen at one’s convenience (it is
dictated by the boundary conditions of the boundary value problem that one wants
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74 N.G. Chegini et al.

to solve on Ő ), and, as will follow from the conditions imposed below, on the other
facets it should be either 0 or bt C 1

2
c.

By construction, each facet of any Ő .q/
k is a union of some facets of the!k0’s, that

will be referred to as subfacets. Letting each of these subfacets inherit the Dirichlet
boundary conditions imposed on the !k0 ’s, we define

ı
Ht. Ő .q/k /;

and so for k D q D N in particular
ı
Ht. Ő / D

ı
Ht. Ő .N /N /, to be the closure in

Ht. Ő .q/k / of the smooth functions on Ő .q/
k that satisfy these boundary conditions.

Note that for 0 % k % N , for some ! .k/ 2 .f0; : : : ; bt C 1
2
cg2/n,

ı
Ht. Ő .0/k / D

ı
Ht.!k/ D Ht

! .k/.!k/:

The boundary conditions on the hypercubes that determine the spaces
ı
Ht. Ő .q/k /,

and the order in which polytopes are joined should be chosen such that

D4. on the Ő .q!1/
k1

and Ő .q!1/
k2

sides of J , the boundary conditions are of order 0
and bt C 1

2
c, respectively,

and, w.l.o.g. assuming that J D f0g # MJ and .0; 1/ # MJ ! ˝
.q!1/
k1

,

D5. for any function in
ı
Ht
. Ő .q!1/

k1
/ that vanishes near f0; 1g # MJ , its reflection in

f0g#Rn!1 (extendedwith zero, and then restricted to Ő .q!1/
k2

) is in
ı
Ht. Ő .q!1/

k2
/.

The condition (D5) is a compatibility condition on the subfacets adjacent to the
interface, see Fig. 4.1 for an illustration.

Given 1 % q % N , for i 2 f1; 2g, let R.q/i be the restriction of functions on
Ő .q/Nk to Ő .q!1/

ki
, and let !.q/2 be the extension of functions on Ő .q!1/

k2
to Ő .q/Nk by

zero. Under the conditions (D1)–(D5), the extensions E.q/
1 of functions on Ő .q!1/

k1

to Ő .q/Nk can be constructed (essentially) as tensor products of univariate extensions
with identity operators in the other Cartesian directions. In the remaining part of this

Fig. 4.1 Two illustrations with (D1)–(D5). The fat arrow indicates the action of the extension E.q/
1
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4 Piecewise Tensor Product Wavelet Bases by Extensions and Approximation Rates 75

chapter Œ$; $"s;2 denotes the real interpolation space between two Hilbert spaces. For
further information we refer to [1].

Proposition 4.1 ([2, Prop. 4.4.]). Let G1 be an extension operator of functions on
.0; 1/ to functions on ."1; 1/ such that

G1 2 B.L2.0; 1/; L2."1; 1//; G1 2 B.Ht .0; 1/;H t
.btC 1

2 c;0/
."1; 1//:

LetE.q/
1 be defined byR.q/2 E

.q/
1 being the composition of the restriction to .0; 1/# MJ ,

followed by an application of

G1 ˝ Id˝ $ $ $ ˝ Id;

followed by an extension by 0 to Ő .q!1/
k2

n ."1; 0/ # MJ . Then for s 2 Œ0; 1"

E.q/ WD ŒE
.q/
1 !

.q/
2
" 2 B

$ 2Y

iD1
ŒL2. Ő .q!1/

ki
/;

ı
Ht. Ő .q!1/

ki
/"s;2; ŒL2. Ő .q/Nk /;

ı
Ht. Ő .q/Nk /"s;2

%

(4.1)

is boundedly invertible.

A Riesz basis on Ő can now be constructed as follows.

Corollary 4.1 ([2, Cor. 4.6]). For 0 % k % N , let " k be a Riesz basis for L2.!k/,
that renormalized in Ht.!k/, is a Riesz basis for

ı
Ht.!k/ D Ht

! .k/.!/. Let E be
the composition for q D 1; : : : ; N of the mappings E.q/ defined in (4.1), trivially
extended with identity operators in coordinates k 2 fq " 1; : : : ; N g n fk.q/1 ; k

.q/
2 g.

Then it holds that

E 2 B
& nY

kD0
ŒL2.!k/;

ı
Ht.!k/"s;2; ŒL2. Ő /;

ı
Ht. Ő /"s;2

'
(4.2)

is boundedly invertible. Further, for s 2 Œ0; 1", the collection E.
QN
kD0 " k/,

normalized in the corresponding norm, is a Riesz basis for ŒL2. Ő /;
ı
Ht. Ő /"s;2.

For the dual basis E!#.
QN
kD0 Q" k/ a similar result holds. In particular, for s 2

Œ0; 1", it is, properly scaled, a Riesz basis for ŒL2. Ő /;
ı
H

Qt . Ő /"s;2. We refer to [2] for
a detailed presentation.

The construction of Riesz bases on the reference domain Ő extends to more
general domains in a standard fashion. Let ˝ be the image of Ő under a
homeomorphism $. We define the pull-back $# by $#w D w ı $, and so its inverse
$!#, known as the push-forward, satisfies $!#v D v ı $!1.

Proposition 4.2 ([2, Prop. 4.11.]). Let $# be boundedly invertible as a mapping
both from L2.˝/ to L2. Ő / and from Ht.˝/ to Ht. Ő /. Setting

ı
Ht.˝/ WD

=$!#j ı
H

t
. Ő /, we have that $!# 2 B.ŒL2. Ő /;

ı
Ht. Ő /"s;2; ŒL2.˝/;

ı
Ht.˝/"s;2/ is
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76 N.G. Chegini et al.

Fig. 4.2 Example extension
directions and compatible
boundary conditions

boundedly invertible .s 2 Œ0; 1"/. So if " is a Riesz basis for L2. Ő / and, properly
scaled, for

ı
Ht. Ő /, then for s 2 Œ0; 1", $!#" is, properly scaled, a Riesz basis for

ŒL2.˝/;
ı
Ht.˝/"s;2. If Q" is the collection dual to " , then jdetD$!1.$/j$!# Q" is the

collection dual to $!#" .

We conclude this section by discussing some of the topological aspects of the
construction.

Example 4.1. Consider a T-shaped domain decomposed into four subcubes as
depicted in Fig. 4.2. In such a setting it is not possible to arrange the subdomains in a
linear fashion. Further, when constructing a basis on such a domain, the ordering and
directions of the extension operators are not unique. However, both aspects influence
the boundary conditions that may be imposed. When proceeding as depicted, in the
first step wavelets on Ő

1 are extended to Ő
2. Then the resulting basis is extended

to Ő
3. Finally wavelets on Ő

4 are extended along the bottom interface. This set of
extensions and its ordering is compatible with all boundary conditions that satisfy
the restrictions depicted in Fig. 4.2, e.g., with homogeneous Dirichlet boundary
conditions. In the second step of the construction only tensor wavelets on Ő

2 are
extended. Consequently interchanging the ordering of the first two extensions does
not change the resulting basis.

4.4 Approximation by – Piecewise – Tensor Product Wavelets

In the setting of Corollary 4.1 we select the bases on the subdomains!k D !C˛k ,
˛k 2 Zn, to be "! .k/; Q! .k/.$ " ˛k/, Q"! .k/; Q! .k/.$ " ˛k/, as constructed in Sect. 4.2.
In this setting, for m 2 f0; : : : ; btcg we study the approximation of functions u 2ı
Hm.˝/ WD ŒL2.˝/;

ı
Ht.˝/"m=t;2, that also satisfy

u 2 $!#.
NY

kD0
H d
m;( .!k// WD fv W ˝ ! R W v ı $ 2

NY

kD0
H d
m;( .!k/g; (4.3)

by $!#E
$QN

kD0 "! .k/; Q! .k/.$ " ˛k/
%
in the Hm.˝/-norm. Since, as is assumed in

Proposition 4.2, $# 2 B.
ı
Hm.˝/;

ı
Hm. Ő // is boundedly invertible, it is sufficient

to study this issue for the case that $ D Id and so ˝ D Ő .
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4 Piecewise Tensor Product Wavelet Bases by Extensions and Approximation Rates 77

We will apply extension operators E.q/
1 that are built from univariate extension

operators. The latter will be chosen such that the resulting primal and dual wavelets
on Ő , restricted to each !k ! Ő , are tensor products of collections of univariate
functions.We make the following additional assumptions on the univariate wavelets.
For ! D .%`; %r / 2 f0; : : : ; bt C 1

2
cg2, Q! D . Q%`; Q%r / 2 f0; : : : ; bQt C 1

2
cg2, and with

0 WD .0; 0/,

W4. V
.! /
j WD spanf .! ; Q! /& W & 2 r! ; Q! ; j&j % j g is independent of Q! , and V .! /

j D
V
.0/
j \Ht

! .I /,

W5. r! ; Q! is the disjoint union of r.`/
%`;Q%` , r

.I /, r.r/
%r ;Q%r such that

i. sup
&2r.`/

%`;Q%` ; x2supp 
.! ;Q! /
&

2j&jjxj . ', sup
&2r.r/

%r ;Q%r ; x2supp 
.! ;Q! /
&

2j&jj1 " xj . ',

ii. For & 2 r.I /,  .! ; Q! /& D  
.0;0/
& , Q .! ; Q! /& D Q .0;0/& , and the extensions of  .0;0/&

and Q .0;0/& by zero are inHt.R/ andH Qt .R/, respectively,

W6.

8
<̂

:̂

spanf .0;0/& .1 " $/ W & 2 r.I /; j&j D j g D spanf .0;0/& W & 2 r.I /; j&j D j g;
spanf .%`;%r /;.Q%`;Q%r /& .1 " $/ W & 2 r.`/

%`;Q%` ; j&j D j g D
spanf .%r ;%`/;.Q%r ;Q%`/& W & 2 r.r/

%r ;Q%r ; j&j D j g;

W7.

(
 
.! ; Q! /
& .2l $/ 2 spanf .! ; Q! /* W * 2 r.`/

%`;Q%`g .l 2 N0; & 2 r.`/
%`; Q%` /;

 
.0;0/
& .2l $/ 2 spanf .0;0/* W * 2 r.I /g .l 2 N0; & 2 r.I //:

In the setting of Proposition 4.1 we choose the univariate extension operator to
be a Hestenes extension [6, 9, 10], that is,

MG1v."x/ D
LX

lD0
+l .,v/.ˇlx/ .v 2 L2.I /; x 2 I /; (4.4)

(and, being an extension, MG1v.x/ D v.x/ for x 2 I ), where +l 2 R, ˇl > 0, and
, W Œ0;1/! Œ0;1/ is some smooth cut-off function with , ' 1 in a neighborhood
of 0, and supp , ! Œ0;minl .ˇl ; ˇ!1

l /".
With such an extension operator at hand the obvious approach is to define E.q/

1

according to Proposition 4.1 with G1 D MG1. A problem with the choice G1 D MG1 is
that generally the desirable property diam.suppG1u/ . diam.supp u/ is not implied.
Indeed, think of the application of a Hestenes extension to a u with a small support
that is not located near the interface.

To solve this and the corresponding problem for the adjoint extension, following
[6] we will apply our construction using the modified, scale-dependent univariate
extension operator

G1 W u 7!
X

&2r.`/
0;0

hu; Q .0;0/& iL2.I /
MG1 .0;0/& C

X

&2r.I /[r.r/
0;0

hu; Q .0;0/& iL2.I /!1 
.0;0/
& :

(4.5)
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We focus on univariate extension operators with ˇl D 2l . This, together
with (W7) ensures that the extended wavelets are locally (weighted sums of)
univariate wavelets. Consequently most properties, like the locality on the primal
and dual side in the sense of (W2), and (W3), as well as piecewise Sobolev
smoothness are inherited by the extended wavelets. Further, by the symmetry
assumption (W6), the extended part of a wavelet belongs to the span of boundary
adapted wavelets. Therefore, together with (W4), we derive the technically useful
property that extended wavelets G1 

.! ; Q! /
* belong piecewise to spaces V .0/

j with
additionally j % j*j C 2L. This property, together with the locality of the primal
and dual wavelets, is key for our central approximation result in Theorem 4.1.

Proposition 4.3 ([2, Prop. 5.2]). Assuming ' to be sufficiently small, the scale-
dependent extension G1 from (4.5) satisfies, for ! 2 f0; : : : ; bt C 1

2
cg2, Q! 2

f0; : : : ; bQt C 1
2
cg2

G1 
.! ; Q! /
* D

(
!1 

.! ; Q! /
* when * 2 r.I / [ r.r/

%r ;Q%r ;
MG1 .! ; Q! /* when * 2 r.`/

%`;Q%` :
(4.6)

Assuming, additionally, MG1 to be a Hestenes extension with ˇl D 2l , the resulting
adjoint extension G2 WD .Id " !1G#

1 /!2 satisfies

G2. Q .! ; Q! /* .1C $// D
(
!2. Q .! ; Q! /* .1C $// when * 2 r.I / [ r.`/

%`;Q%` ;
MG2. Q .! ; Q! /* .1C $// when * 2 r.r/

%r ;Q%r :
(4.7)

We have G1 2 B.L2.0; 1/; L2."1; 1//, G1 2 B.Ht .0; 1/;H t."1; 1//, and further
G#
1 2 B.H Qt ."1; 1/;H Qt

.bQtC 1
2 c;0/

.0; 1//. Finally, G1 and G2 are local in the following
sense

(
diam.suppR2G1u/ . diam.supp u/ .u 2 L2.0; 1//;
diam.suppR1G2u/ . diam.supp u/ .u 2 L2."1; 0//:

(4.8)

A typical example of a Hestenes extension with ˇl D 2l is the reflection, i.e., L D
0; +0 D 1.

Remark 4.1. Although implicitly claimed otherwise in [6, (4.3.12)], we note
that (4.7), and so the second property in (4.8), cannot be expected for MG1 being
a general Hestenes extension as given by (4.4), without assuming that ˇl D 2l .

We may now formulate the central approximation result. Recall that by utilizing the
scale-dependent extension operator in the construction presented in Sect. 4.3, we
end up with a pair of biorthogonal wavelet Riesz bases

$
E.

NY

kD0

" k/; E!".
NY

kD0

Q" k/
%
D
$
f #;p W .#; p/ 2 r. Ő /g; f Q #;p W .#; p/ 2 r . Ő /g

%
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for L2. Ő /, that is for s 2 Œ0; 1" and properly scaled a pair of Riesz bases for
ŒL2. Ő /;

ı
Ht. Ő /"s;2 and ŒL2. Ő /;

ı
H

Qt . Ő /"s;2, respectively. In particular the index set
is given by r. Ő / DSN

kD0 r! .k/; Q! .k/ # fkg.

Theorem 4.1 ([2, Thm. 5.6]). Let the E.q/
1 be defined using the scale-dependent

extension operators as in Proposition 4.3. Then for any ( 2 Œ0; d /, there exists a
(nested) sequence .rM/M2N ! r . Ő / with #rM ÅM , such that

inf
v2spanf #;p W.#;p/2r M g

ku " vkHm. Ő / .M!.d!m/

vuut
NX

kD0
kuk2

H d
m;( .!k/

; (4.9)

for any u 2
ı
Hm. Ő / for which the right-hand side is finite, i.e., that satisfies (4.3)

(with $ D Id). For m D 0, the factor M!.d!m/ in (4.9) has to be read as
.logM/.n!1/. 12Cd/M!d .

The issue whether we may expect (4.3) for u to hold is nontrivial. Fortunately, in
[2], we were able to prove that this property holds for the solutions of a large class
of boundary value problems over polygonal or polyhedral domains.

4.5 Numerical Results

As domains, we consider the slit domain˝ D .0; 2/2nf1g#Œ1; 2/, the 3-dimensional
L-shaped domain ˝ D .0; 2/2 # .0; 1/ n Œ1; 2/2 # .0; 1/, and the Fichera corner
domain ˝ D .0; 2/3 n Œ1; 2/3. The corresponding domain decompositions and the
directions in which the extension operator is applied are illustrated in Fig. 4.3.

z

1

2

1

22

2

1

12
2

3

1

x
y

Fig. 4.3 The direction and ordering of the extensions
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Fig. 4.4 Support length vs.
relative residual on the slit
domain (line), L-shaped
domain (dotted) and Fichera
corner domain (dashed)

As extension operator, we apply the reflection suited for 1
2
< t < 3

2
, 0 < Qt < 1

2
,

which is sufficient for our aim of constructing a Riesz basis forH1
0 .˝/.

Using piecewise tensor product bases, we solved the problem of finding u 2
H1
0 .˝/ such that

Z

˝

ru $ rv dx D f .v/ .v 2 H1
0 .˝// (4.10)

by applying the adaptive wavelet-Galerkin method [4, 12]. We choose the forcing
vector f D 1.

As the univariate bases for the tensor wavelet construction we choose C1,
piecewise quartic (dD 5) (multi-) wavelets. The chosen solver is known to produce
a sequence of approximations that converges in theH1.˝/-norm with the same rate
as bestM -term wavelet approximation. We therefore expect the approximation rate
d "m D 5 " 1 D 4.

The numerical results are presented in Fig. 4.4.
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