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First Order System Least Squares with inhomogeneous boundary
conditions
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We derive well-posed first order system least squares formulations of second order elliptic boundary value
problems, in which homogeneous essential boundary conditions are appended by means of additional
equations, rather than by their incorporation in the trial space. This approach has the advantage that it
applies equally well to inhomogeneous boundary conditions.
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1. Introduction

Let us start with briefly recalling the principle of a least squares formulation of an operator equation,
e.g., a boundary value problem on a domain Ω . Although the approach can be extended to nonlinear
equations, here we consider linear equations only. For some Hilbert spaces X and Y , let G ∈ B(X ,Y ′)
be a homeomorphism onto its range, i.e.,

‖u‖X h ‖Gu‖Y ′ (u ∈ X). (1.1)

Here and on other places, with a h b we mean a . b and a & b, with the first relation meaning that a
can be bounded by some absolute multiple of b, and the second one being defined as b . a.

For given f ∈ Y ′, let us consider the least-squares problem to find u = argminv∈X
1
2‖Gv− f‖2

Y ′ .
Necessarily this u is a solution of the corresponding Euler-Lagrange equations

〈Gu,Gv〉Y ′ = 〈 f ,Gv〉Y ′ (v ∈ X). (1.2)

Thanks to (1.1), the bilinear form on X ×X at the left hand side is bounded, symmetric, and elliptic, and
the right-hand side defines a bounded functional on X . From the Lax-Milgram lemma, we conclude that
(1.2), and so the least-squares problem, has a unique solution u∈X that depends continuously on f ∈Y ′.
Whenever the equation Gu = f has a solution, i.e., f ∈ℑG (consistency), it is the unique solution of the
least-squares problem.

For a closed subspace Xh ⊂ X , the Galerkin solution uh ∈ Xh of (1.2), i.e., argminvh∈Xh
1
2‖Gvh− f‖2

Y ′ ,
satisfies ‖u−uh‖X . infvh∈Xh ‖u−vh‖X , only dependent on the hidden constants absorbed by the h sym-
bol in (1.1). Because of the symmetry of the bilinear form, the Galerkin solution is conveniently com-
puted, assuming 〈·, ·〉Y ′ can be evaluated. In view of the latter, in the setting of a boundary value problem,
usually one prefers Y ′ to be (a multiple copy of) L2(Ω).
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Otherwise, one may construct a computationally implementable method following the approach in
Bramble et al. (1997, 1998), that basically requires a good preconditioner for Ah : Yh → Y ′

h defined by
(Ahyh)(zh) = 〈yh,zh〉Y for finite dimensional subspaces Yh ⊂ Y .

Alternatively, when (wavelet) Riesz bases ΨX and ΨY for X and Y are available, one has ‖g‖Y ′ h
‖[g(ψY )]ψY∈ΨY ‖`2(ΨY ) (g ∈ Y ′). With Y ′ equipped with the latter norm, (1.2) is equivalent to the infinite
system of normal equations G>(Gu− f) = 0, where f = [ f (ψY )]ψY∈ΨY , G = [(G(ψX )(ψY )]ψY∈ΨY ,ψX∈ΨX ,
and u = ∑ψX∈ΨX uψX ψX , cf. Dahmen et al. (2002). This system can be solved with an optimally con-
verging adaptive wavelet scheme, cf. Stevenson (2011).

Finally for an inconvenient 〈·, ·〉Y ′ , an approximate Galerkin solver can be constructed by realizing
that the exact Galerkin solution is the first component of (uh,y) ∈Uh×Y that solves

〈y,v〉Y +(Guh)(v) = f (v) (v ∈ Y ),
(Gwh)(y) = 0 (wh ∈ Xh),

cf. (Cohen et al., 2012, §2.2). Now the remaining task is to replace Y by a sufficiently large finite
dimensional subspace, such that the error in the resulting solution is of the same order as that in the
exact Galerkin solution.

Forming a least squares functional essentially means doubling the order of the equation, which can
be expected to have a quantitative harmful effect. In view of this, the least squares approach is commonly
applied to boundary value problems that are (re)formulated as systems of first order. We refer to Bochev
& Gunzburger (2009) for an comprehensive overview of the least squares approach.

In this paper, in Sect. 2 a general mechanism will be presented with which an essential homoge-
neous boundary condition, that is incorporated in the space X of a well-posed least-squares problem,
is alternatively imposed by appending a squared norm of the corresponding residual to the quadratic
functional, and by simultaneously removing the boundary condition from X . Our initial motivation for
doing so was to allow for an easy construction of wavelet Riesz bases for the arising spaces, but perhaps
more importantly, it extends the applicability of the least squares approach to inhomogeneous boundary
conditions.

The arising additional norms are typically norms of fractional Sobolev spaces, of the form H± 1
2 (Γ )

for some Γ ⊂ ∂Ω . In a wavelet setting, the occurrence of such spaces does not give rise to problems. In
publications about the finite element solution of least squares problems, often the use of these spaces is
avoided, thus restricting them to homogeneous boundary conditions, or the fractional Sobolev norms are
replaced by weighted L2-norms which gives rise to suboptimal results. There is, however, no real need to
do so (cf. the discussion in (Bochev & Gunzburger, 2009, §12.1)). In Starke (1999), it was demonstrated
how to replace the arising fractional norms by equivalent, efficiently computable quantities in terms of
multi-level preconditioners. In this respect, the results of this paper are equally well applicable in a finite
element setting.

As a first application of our approach, in Sect. 3 we consider the usual div-grad first order refor-
mulation of an elliptic second order boundary value problem with Neumann and Dirichlet boundary
conditions on parts of the boundary. We consider three possible choices for the norms in which the
residuals of both PDEs in the system are measured.

With the first, common choice, both residuals are measured in L2-norms (we call it the mild-
formulation). With this choice, both Neumann and Dirichlet boundary conditions are essential boundary
conditions, and we show how to impose possibly inhomogeneous boundary conditions by appending ap-
propriate squared norms of the corresponding residuals to the quadratic functional.
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With the second choice (mild-weak formulation), first proposed in Bramble et al. (1997), one resid-
ual is measured in a dual norm, which turns the Neumann boundary condition into a natural one. A
possibly inhomogeneous Dirichlet boundary will be imposed by appending a squared norm of the cor-
responding residual to the quadratic functional.

With the third choice (ultra-weak formulation), both residuals will be measured in dual norms,
turning both Neumann and Dirichlet boundary conditions into natural ones.

In view of the application of an adaptive wavelet scheme for solving the least squares problem, we
prefer to avoid (components of) the spaces X and Y to be vector spaces like H(div;Ω) or H(curl;Ω),
since wavelet bases for such spaces are not easily constructed for non-rectangular domains. The afore-
mentioned mild-weak formulation satisfies this requirement. Although a wavelet method can deal with
the dual norm in which, with this formulation, a part of the residual is measured, it is more convenient
to work with L2-norms. This holds in particular true for the extension to semi-linear equations (see
(Stevenson, 2011, §4)). For this reason returning to the mild formulation, it is known (see Cai et al.
(1997)) that the H(div;Ω) space, that arises there, can be replaced by H1(Ω)n by adding to the system
redundant equations that involve the curl operator (“extended div-grad” system). The latter is valid for
domains Ω for which the intersection of H(div;Ω) and H(curl;Ω) is H1(Ω)n, with all three space
incorporating appropriate boundary conditions. A sufficient, and as we will see, necessary condition on
Ω is that the Laplacian is H2(Ω)-regular.

The boundary conditions incorporated in the resulting H1(Ω)n space read as vanishing normal traces
on the Neumann part, and vanishing tangential traces on the Dirichlet part. As a second application of
the approach introduced in Sect. 2, in Sect. 4 we will identify spaces of functions on the boundary
with respect to which the corresponding trace operator is bounded and surjective. Consequently, by
appending squared norms of the boundary residuals to the quadratic functional, we arrive at a well-
posed least-squares problem on the full space H1(Ω)n. With this, we have generalized the extended
div-grad first order least squares method to inhomogeneous boundary conditions. All the arising spaces
in this formulation can be equipped with wavelet bases.

2. Appending a constraint as a residual to a least squares problem

The following theorem will be the key to extend a well-posed least squares problem, with homogeneous
essential boundary conditions incorporated in the trial space, to a well-posed least squares problem for
possibly inhomogeneous boundary conditions.

THEOREM 2.1 Let X , Y1, and Y2 be Hilbert spaces. Let G ∈B(X ,Y ′
1) and T ∈B(X ,Y ′

2), with ℑT being
closed. With

X0 := {u ∈ X : Tu = 0},

let G∈B(X0,Y ′
1) be a homeomorphism onto its range, then (G,T )∈B(X ,Y ′

1×Y ′
2) is a homeomorphism

onto its range.

Proof. Since ℑT is closed, the open mapping theorem shows that T has a right-inverse E ∈B(ℑT,X).
For u ∈ X , from (Id−ET )u ∈ X0, and GE ∈B(ℑT,Y ′

1), we have

‖u‖2
X . ‖ETu‖2

X +‖(Id−ET )u‖2
X . ‖Tu‖2

Y ′
2
+‖G(Id−ET )u‖2

Y ′
1

. ‖Tu‖2
Y ′

2
+‖Gu‖2

Y ′
1
+‖GETu‖2

Y ′
1
. ‖Tu‖2

Y ′
2
+‖Gu‖2

Y ′
1
. ‖u‖2

X .

�
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So in the situation of Thm. 2.1, for f ∈ Y ′
1 and g ∈ Y ′

2, both problems argminv∈X0
1
2‖Gv− f‖2

Y ′
1

and

argminv∈X
1
2 (‖Gv− f‖2

Y ′
1
+‖T v−g‖2

Y ′
2
) are well-posed. For g = 0, both are least squares formulations of

the homogeneous problem
{

Gu = f ,
Tu = 0,

whereas for g 6= 0, the second one is a least squares formulation

of the inhomogeneous problem
{

Gu = f ,
Tu = g.

3. Second order elliptic boundary value problem as div-grad system

On a domain Ω ⊂ Rn, we consider the boundary value problem −divA∇p+Bp = f on Ω ,
p =g on ΓD,

n ·A∇p =h on ΓN ,
(3.1)

where ΓD ∪ΓN = ∂Ω , ΓD ∩ΓN = /0, n is the outward pointing unit vector normal to the boundary, B is a
bounded linear partial differential operator of at most first order, i.e.,

‖Bq‖L2(Ω) . ‖q‖H1(Ω) (q ∈ H1(Ω)), (C.1)

and A(·) ∈ L∞(Ω)n×n is real, symmetric with

ξ
>A(·)ξ h ‖ξ‖2 (ξ ∈ Rn). (C.2)

We assume that the standard variational formulation of (3.1) in case of homogeneous Dirichlet boundary
conditions is well-posed, i.e., that with

V := H1(Ω),

or in case ΓD = /0, possibly

V := H1(Ω)/R,

and V0,ΓD := {v ∈V : v = 0 on ΓD}, the mapping

V0,ΓD → (V0,ΓD)′ : p 7→ (q 7→
∫

Ω

A∇p ·∇q+qBp) is boundedly invertible. (C.3)

Introducing u = ∇Ap, we consider the reformulation of (3.1) as the first order div-grad system
u−A∇p =0 on Ω ,

Bp−divu = f on Ω ,
p =g on ΓD,

n ·u =h on ΓN .

(3.2)
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3.1 The mild formulation

Let
H0,ΓN (div;Ω) := {v ∈ H(div;Ω) : n ·v = 0 on ΓN}.

Under the assumption of having homogeneous boundary conditions, i.e., g = 0 = h, by measuring the
residuals of the first two equations from (3.2) in the mild, L2(Ω)-sense, one arrives at a well-posed least
squares problem on H0,ΓN (div;Ω)×V0,ΓD in the sense of (1.1):

THEOREM 3.1 Under conditions (C.1)–(C.3), for (u, p) ∈ H0,ΓN (div;Ω)×V0,ΓD ,

‖u‖2
H(div;Ω) +‖p‖2

H1(Ω) h ‖u−A∇p‖2
L2(Ω)n +‖Bp−divu‖2

L2(Ω).

Proof. For convenience we include a short proof of the even stronger statement that G : H0,ΓN (div;Ω)×
V0,ΓD → L2(Ω)n × L2(Ω) : (uuu, p) 7→ (u−A∇p,Bp− divu) is boundedly invertible. Earlier proofs of
G being a homeomorphism onto its range can be found in (Cai et al., 1994, Thm. 3.1) (for 2 and 3-
dimensional Lipschitz domains) and (Bochev & Gunzburger, 2009, Thms. 5.14-5.15) (for Lipschitz
domains).

Boundedness of G follows directly from (C.1) and (C.2). Using the open mapping theorem, it now
suffices to show that G is surjective and injective, the latter being equivalent to G′ being surjective.
Given (f,g) ∈ L2(Ω)n×L2(Ω), consider the problem of finding (u, p) ∈H0,ΓN (div;Ω)×V0,ΓD such that

u−A∇p = f, Bp−divu = g.

Using (C.3), we define p as the solution in V0,ΓD of∫
Ω

A∇p ·∇p̃+ p̃Bp =
∫

Ω

gp̃−∇p̃ · f, (p̃ ∈V0,ΓD),

and take u = A∇p+ f∈ L2(Ω). From
∫

Ω
u ·∇p̃ =

∫
Ω

(g−Bp)p̃ (p̃∈V0,ΓD ), we find that divu = Bp−g∈
L2(Ω) and u ·n = 0 on ΓN .

To show that G′ is surjective, given (f,g) ∈ H0,ΓN (div;Ω)′×V ′
0,ΓD

, consider the problem of finding
(v,q) ∈ L2(Ω)n×L2(Ω) such that∫

Ω

u ·v−qdivu = f(u) (u ∈ H0,ΓN (div;Ω)),∫
Ω

−A∇p ·v+qBp = g(p) (p ∈V0,ΓD(Ω)).

Using Riesz’ representation theorem, there exists an r ∈ H0,ΓN (div;Ω) such that f(u) =
∫

Ω
r · u +

divrdivu. Introducing v = v− r and q = q+divr, the above system reads as∫
Ω

u ·v−qdivu = 0 (u ∈ H0,ΓN (div;Ω)),∫
Ω

−A∇p ·v+qBp = g(p)+
∫

Ω

A∇p · r+divrBp (p ∈V0,ΓD(Ω)).

Since bounded invertibility of the mapping guaranteed by (C.3) implies bounded invertibility of the
adjoint mapping, we may define q as the solution in V0,ΓD of∫

Ω

A∇p ·∇q+qBp = g(p)+
∫

Ω

A∇p · r+divrBp, (p ∈V0,ΓD),
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and take v = −∇q. Then both equations are satisfied, v = v + r ∈ L2(Ω)n, and q = q−divr ∈ L2(Ω),
with which the proof is completed. �

Next, we consider the case of having possibly inhomogeneous boundary conditions. It is well-
known, e.g. see (Girault & Raviart, 1979, Corollary 2.4), that

T : (u, p) 7→ (n ·u|ΓN , p|ΓD) ∈B(H(div;Ω)×V,H− 1
2 (ΓN)×H

1
2 (ΓD)) is surjective,

so that in particular its image is closed. Since the inequality “&” from Theorem 3.1 obviously also holds
for (u, p) ∈ H(div;Ω)×V , using the result from Theorem 3.1 an application of Theorem 2.1 gives the
following:

COROLLARY 3.1 Under conditions (C.1)–(C.3), for (u, p) ∈ H(div;Ω)×V ,

‖u‖2
H(div;Ω) +‖p‖2

H1(Ω) h

‖u−A∇p‖2
L2(Ω)n +‖Bp−divu‖2

L2(Ω) +‖p|ΓD‖
2

H
1
2 (ΓD)

+‖n ·u|ΓN‖
2

H− 1
2 (ΓN)

.

A direct proof of the latter result can be found in Starke (1999) (for B = 0 and A = Id).

3.2 The mild-weak formulation

In Bramble et al. (1997, 1998), an alternative least squares functional for the div-grad system was
proposed, in which the second equation Bp− divu = f from (3.2) is imposed only weakly. As shown
by the next theorem, under the assumption of the Dirichlet boundary condition being homogeneous, it
leads to a well-posed least squares problem on L2(Ω)n×V0,ΓD .

THEOREM 3.2 Under conditions (C.1)–(C.3), for (u, p) ∈ L2(Ω)n×V0,ΓD we have

‖u‖2
L2(Ω)n +‖p‖2

H1(Ω) h ‖u−A∇p‖2
L2(Ω)n +

∥∥∥q 7→
∫

Ω

qBp+u ·∇q
∥∥∥2

V ′
0,ΓD

.

Proof. For convenience we give the proof using arguments from Bramble et al. (1998). Condition (C.3)
shows that for (u, p) ∈ L2(Ω)n×V0,ΓD ,

‖p‖H1(Ω) . sup
0 6=q∈V0,ΓD

∫
Ω

A∇p ·∇q+qBp
‖q‖H1(Ω)

= sup
06=q∈V0,ΓD

∫
Ω

(A∇p−u) ·∇q+qBp+u ·∇q
‖q‖H1(Ω)

6 ‖u−A∇p‖L2(Ω)n +
∥∥∥q 7→

∫
Ω

qBp+u ·∇q
∥∥∥

V ′
0,ΓD

.

From ‖u‖L2(Ω)n . ‖u−A∇p‖L2(Ω)n +‖p‖H1(Ω) by Condition (C.2), we infer that ‖u‖2
L2(Ω)n +‖p‖2

H1(Ω) .

‖u−A∇p‖2
L2(Ω)n +

∥∥∥q 7→
∫

Ω
qBp+u ·∇q

∥∥∥2

V ′
0,ΓD

. The reversed inequality follows easily from (C.1)-(C.2).

�
With a least squares formulation of (3.2) corresponding to Thm 3.2, the Neumann boundary condi-

tion on ΓN is a natural boundary condition. Indeed, with G : L2(Ω)n ×V0,ΓD → L2(Ω)n ×V ′
0,ΓD

defined
by

G(u, p)(v,q) =
∫

Ω

(u−A∇p) ·v+qBp+u ·∇q,
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a consistent variational formulation of (3.2) with g = 0 reads as

G(u, p)(v,q) =
∫

Ω

f q+
∫

ΓN

hq ((v,q) ∈ L2(Ω)n×V0,ΓD).

Note that q 7→
∫

Ω
f q+

∫
ΓN

hq ∈V ′
0,ΓD

when f ∈V ′
0,ΓD

and h ∈ H− 1
2 (ΓN) := H

1
2

00(ΓN)′.

To append an inhomogeneous Dirichlet boundary condition, we use that L2(Ω)n ×V → H
1
2 (ΓD) :

(u, p) 7→ p|ΓD is surjective, so that in particular its image is closed. Since the inequality “&” from Theo-
rem 3.2 obviously also holds for (u, p) ∈ L2(Ω)n×V , using the result from Theorem 3.2 an application
of Theorem 2.1 gives the following:

COROLLARY 3.2 Under conditions (C.1)–(C.3), for (u, p) ∈ L2(Ω)n×V ,

‖u‖2
L2(Ω)n +‖p‖2

H1(Ω) h ‖u−A∇p‖2
L2(Ω)n +

∥∥∥q 7→
∫

Ω

qBp+u ·∇q
∥∥∥2

V ′
0,ΓD

+‖p|ΓD‖
2

H
1
2 (ΓD)

.

3.3 The ultra-weak formulation

In order to derive this formulation, we specify Condition (C.1) to

Bq = b ·∇q+ cq for some b ∈ L∞(Ω)n, c ∈ L∞(Ω). (C.4)

By testing the first and second equation in (3.2) for v ∈ H0,ΓN (div;Ω) and q ∈ H1
0,ΓD

(Ω), applying
integration by parts, and substituting the desired boundary conditions, we arrive at the system∫

Ω

A−1u ·v+ pdivv =
∫

ΓD

gv ·n (v ∈ H0,ΓN (div;Ω)),∫
Ω

(b ·A−1u+ cp)q+u ·∇q =
∫

Ω

f q+
∫

ΓN

hq (q ∈V0,ΓD(Ω)).

Here we have substituted ∇p = A−1u in the second equation in order to avoid additional smoothness
conditions on b. Note that in this system both Neumann and Dirichlet boundary conditions enter as nat-
ural boundary conditions. For g ∈ H

1
2 (ΓD) and h ∈ H− 1

2 (ΓN), we have v 7→
∫

ΓD
gv ·n ∈ H0,ΓN (div;Ω)′,

and q 7→
∫

ΓN
hq ∈V0,ΓD(Ω)′.

As shown in the next theorem, the above system leads to a well-posed least-squares problem.

THEOREM 3.3 Under Conditions (C.2)-(C.4), for (u, p) ∈ L2(Ω)n×L2(Ω),

‖u‖2
L2(Ω)n +‖p‖2

L2(Ω) h∥∥∥v 7→
∫

Ω

A−1u ·v+ pdivv
∥∥∥2

H0,ΓN (div;Ω)′
+

∥∥∥q 7→
∫

Ω

(b ·A−1u+ cp)q+u ·∇q
∥∥∥2

V0,ΓD (Ω)′

Proof. This proof is similar to that of Thm. 3.2. With G : L2(Ω)n×L2(Ω)→H0,ΓN (div;Ω)′×V0,ΓD(Ω)′

defined by

(G(u, p))(v,q) =
∫

Ω

A−1u ·v+ pdivv+(b ·A−1u+ cp)q+u ·∇q,

we even show that G is boundedly invertible. The boundedness of G follows from (C.2) and (C.4).
Using the open mapping theorem, it now suffices to show that G and G′ are surjective.



8 of 15 R.P. STEVENSON

Given (f,g) ∈ H0,ΓN (div;Ω)′×V0,ΓD(Ω)′, consider the problem of finding (u, p) ∈ L2(Ω)n×L2(Ω)
such that ∫

Ω

A−1u ·v+ pdivv = f(v) (v ∈ H0,ΓN (div;Ω)),∫
Ω

(b ·A−1u+ cp)q+u ·∇q = g(q) (q ∈V0,ΓD(Ω)).

Since, thanks to (C.2),
√
‖A− 1

2 · ‖2
L2(Ω n) +‖div · ‖2

L2(Ω) defines a Hilbertian, equivalent norm on H(div;Ω),
an application of Riesz’ representation theorem shows that there exists an r ∈ H(div;Ω) such that
f(v) =

∫
Ω

A−1r ·v+divrdivv. Introducing u = u− r, and p = p−divr, the above system reads as∫
Ω

A−1u ·v+ pdivv = 0 (v ∈ H0,ΓN (div;Ω)),∫
Ω

(b ·A−1u+ cp)q+u ·∇q = g(q)−
∫

Ω

(b ·A−1r+ cdivr)q+ r ·∇q (q ∈V0,ΓD(Ω)).

Thanks to (C.3), we may p define as the solution in V0,ΓD of∫
Ω

(b ·∇p+ cp)q+A∇p ·∇q = g(q)−
∫

Ω

(b ·A−1r+ cdivr)q+ r ·∇q (q ∈V0,ΓD(Ω)),

and take u = A∇p. Then both equations are satisfied, u = u+ r ∈ L2(Ω)n, and p = p+divr ∈ L2(Ω).
To show surjectivity of G′, given (f,g) ∈ L2(Ω n)×L2(Ω), consider the problem of finding (v,q) ∈

H0,ΓN (div;Ω)×V0,ΓD(Ω) such that

A−1v+A−1qb+∇q = f, divv+ cq = g.

Since bounded invertibility of the mapping guaranteed by (C.3) implies bounded invertibility of the
adjoint mapping, we may define q as the solution in V0,ΓD of∫

Ω

(A∇q+qb) ·∇q̃+ cqq̃ =
∫

Ω

gq̃+Af ·∇q̃ (q̃ ∈V0,ΓD).

and take v = Af− qb− A∇q ∈ L2(Ω)n. From −
∫

Ω
v ·∇p̃ =

∫
Ω

(g− cq)q̃ (q̃ ∈ V0,ΓD ), we find that
divv = g− cq ∈ L2(Ω) and v ·n = 0 on ΓN , with which the proof is completed.

�

4. The extended div-grad system

With the aim, as exposed in the introduction, to avoid the vector space H(div;Ω) from the mild vari-
ational formulation from Corollary 3.1, and simultaneously to measure the residual of the equation
Bp− divu = f in L2(Ω), we consider the augmentation of the div-grad system (3.2) with redundant
equations. Restricting to bounded domains

Ω ⊂ Rn for n ∈ {2,3},

we set curlv := ∇× v, and following Buffa & Ciarlet (2001), define the tangential components trace
and tangential gradient operators

πτττ v := v|∂Ω − (n ·v|∂Ω )n, ∇∂Ω q := πτττ ∇q.
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In two space dimensions, these operators should be interpreted by means of a×b = a1b2 − a2b1 and
πτττ v := n× v|∂Ω . Noting that the curl of a gradient vanishes, from (3.2) we arrive at the extended
div-grad system 

u−A∇p =0 on Ω ,
Bp−divu = f on Ω ,
curlA−1u =0 on Ω ,

p =g on ΓD,
πτττ(A−1u) =∇∂Ω g on ΓD,

n ·u =h on ΓN .

(4.1)

REMARK 4.1 In three space dimensions, one has that πτττ v = n× (v|∂Ω ×n). Consequently, an alter-
native form of the second boundary condition on ΓD is given by n×A−1u|ΓD = n×∇g. The difference
between the mappings u 7→ πτττ(A−1u) and u 7→ n×A−1u|∂Ω only concerns a harmless rotation over π/2
in the tangential plane.

As in Subsection 3.1, first we study well-posedness of this system in least squares sense for homo-
geneous boundary conditions. With

H(curlA;Ω) := {v ∈ L2(Ω)n : curlA−1v ∈ L2(Ω)2n−3},

equipped with ‖v‖2
H(curlA;Ω) := ‖v‖2

L2(Ω)n +‖curlA−1v‖2
L2(Ω)2n−3 , and

H0,ΓD(curlA;Ω) := {v ∈ H(curlA;Ω) : πτττ(A−1v) = 0 on ΓD},

as an immediate consequence of Theorem 3.1, we have

COROLLARY 4.1 Under conditions (C.1)–(C.3), for (u, p) ∈ H0,ΓN (div;Ω)∩H0,ΓD(curlA;Ω)×V0,ΓD

we have

‖u‖2
H(div;Ω) +‖u‖2

H(curlA;Ω) +‖p‖2
H1(Ω)

h ‖u−A∇p‖2
L2(Ω)n +‖Bp−divu‖2

L2(Ω) +‖curlA−1u‖2
L2(Ω)2n−3 .

The next step will be to replace the squared norm ‖ · ‖2
H(div;Ω) + ‖ · ‖2

H(curlA;Ω) on H0,ΓN (div;Ω)∩
H0,ΓD(curlA;Ω) by ‖ · ‖2

H1(Ω)n . For this goal, we impose the following additional conditions:

A ∈C1,1(Ω̄); (C.5)
Γ := ∂Ω consists of a finite number of disjoint, simple and closed curves (n = 2) or
surfaces (n = 3) Γ0, . . . ,ΓL, where Γ0 is the outer boundary of Ω , and, for i > 1, Γi is
the boundary of a hole in Ω . Each Γi is assumed to be the boundary of a C1,1-curved
polytope, with edges or faces Γ

(1)
i , . . . ,Γ

(Ki)
i , meaning that for any x ∈ Γi, there is a

C1,1 diffeomorphism from a neighborhood of x onto a neighborhood of a point on the
boundary of a polytope, that maps Γi onto the boundary of this polytope;

(C.6)

For n = 3, each Γi is either part of ΓD or of ΓN . For n = 2, each Γ
(k)

i is either part of
ΓD or of ΓN , and if x ∈ Γ separates ΓD and ΓN , then n>−An+ 6= 0, where n− and n+ are
outward normal vectors on the adjacent edges at x;

(C.7)

The (variational formulation) of the boundary value problem (3.1) with homogeneous
boundary data is H2(Ω)-regular.

(C.8)
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Sufficient conditions for (C.8) are (cf. Cai et al. (1997) and references cited there):

For i > 1, Γi ∈ C1,1, i.e., Ki = 1. For n = 3, Γ0 ∈ C1,1, i.e, K0 = 1, or Γ0 is a convex
polyhedron. For n = 2, Γ0 has no re-entrant corners, and n>−An+ < 0 at x ∈Γ that separates
ΓD and ΓN .

The main result from Cai et al. (1997) reads as follows:

LEMMA 4.1 ((Cai et al., 1997, Thm. 2.2)) Under conditions (C.2), and (C.5)–(C.8), for u∈H0,ΓN (div;Ω)∩
H0,ΓD(curlA;Ω) it holds that

‖u‖2
H(div;Ω) +‖u‖2

H(curlA;Ω) h ‖u‖2
H1(Ω)n .

Together with Corollary 4.1, this lemma leads to

THEOREM 4.1 For u∈ {v∈H1(Ω)n : n ·v = 0 on ΓN ,πτττ(A−1v) = 0 on ΓD}, p∈V0,ΓD , under conditions
(C.1)–(C.3), and (C.5)–(C.8), it holds that

‖u‖2
H1(Ω)n +‖p‖2

H1(Ω)

h ‖u−A∇p‖2
L2(Ω)n +‖Bp−divu‖2

L2(Ω) +‖curlA−1u‖2
L2(Ω)2n−3 .

Before continuing, we note that the restrictive condition (C.8) is necessary for Lemma 4.1 to hold.
Indeed, for f ∈ L2(Ω)∩ (V0,ΓD)′, let p ∈V0,ΓD solve∫

Ω

A∇p ·∇q+Bpqdx =
∫

Ω

f qdx (q ∈V0,ΓD).

Setting u = A∇p ∈ L2(Ω), we have∫
Ω

u ·∇qdx =
∫

Ω

f q−Bpqdx (q ∈V0,ΓD),

or divu = Bp− f ∈ L2(Ω), u · n = 0 on ΓN , and so u ∈ H0,ΓN (div;Ω). Since u = A∇p, we have
curlA−1u = 0, whereas p = 0 on ΓD shows that πτττ(A−1u) = 0 on ΓD, or u ∈ H0,ΓD(curl;Ω). By (C.2)
and (C.5), the validity of Lemma 4.1, (C.1), and (C.3), we have

‖p‖H2(Ω) . ‖u‖H1(Ω)n . ‖u‖H(div;Ω) . ‖p‖H1(Ω) +‖ f‖L2(Ω) . ‖ f‖L2(Ω),

i.e., (C.8) is valid.

Next, we consider the case of having possibly inhomogeneous boundary conditions. Similar to
the vector space setting discussed in the previous subsection, in order to do so we will need function
spaces on ΓD and ΓN which are the images of V or H1(Ω)n under the trace mappings p 7→ p|ΓD , v 7→
(n ·v|ΓN ,πτττ(v)|ΓD).

For n = 3, 0 6 i 6 L with Γi ⊂ΓD, and 1 6 k 6 Ki, let O
(k)
i the collection of 1 6 ` 6= k 6 Ki for which

Γ
(`)

i shares an edge, denoted as e(k,`)
i , with Γ

(k)
i . The tangential trace mapping will require special

attention. The point is that for v ∈ H1(Ω)3, the component of πτττ(v)|
Γ

(`)
i ∪Γ

(k)
i

in the direction parallel to

e(k,`)
i will be in H

1
2 (Γ (k)

i ∪Γ
(`)

i ), whereas the remaining non-zero component of πτττ(v) on Γ
(k)

i and Γ
(`)

i

will generally have not any smoothness over e(k,`)
i .
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With n(k)
i and n(`)

i denoting the outward unit normal vectors at Γ
(k)

i and Γ
(`)

i , let τττ
(k,`)
i be a Lipschitz

continuous unit tangent vector on Γ
(k)

i ∪Γ
(`)

i with

τττ
(k,`)
i =

n(k)
i ×n(`)

i

‖n(k)
i ×n(`)

j ‖
on e(k,`)

i .

Because of Γ
(k)

i ∈C1,1, one has that n(k)
i is Lipschitz, and so indeed τττ i j is Lipschitz on e(k,`)

i . It can
be extended to a Lipschitz unit tangent vector on Γ

(k)
i , and similar on Γ

(`)
i , by means of, e.g., τττ

(k,`)
i (x) :=

n(k)
i (x)×(τττ(k,`)

i (x′)×n(k)
i (x′))

‖n(k)
i (x)×(τττ(k,`)

i (x′)×n(k)
i (x′))‖

, where x′ is the point on e(k,`)
i whose pull-back is nearest to the pull-back of x

in the parameter plane. Note that with this definition, τττ
(k,`)
i (x) = τττ

(k,`)
i (x′) when n(k)

i (x) = n(k)
i (x′), and

so in particular that τττ
(k,`)
i is constant on Γ

(k)
i when Γ

(k)
i is planar.

Following Buffa & Ciarlet (2001), we set the Hilbert space

H
1
2
‖ (Γi) =

{
w ∈ L2(Γi)3 : n ·w = 0∧∀1 6 k 6 Ki, ` ∈O

(k)
i , w|

Γ
(k)

i
∈ H

1
2 (Γ (k)

i )3,

∫
Γ

(k)
i

∫
Γ

(`)
i

|(w · τττ(k,`)
i )(x)− (w · τττ(k,`)

i )(y)|2

‖x−y‖3 dσ(x)dσ(y) < ∞

}
,

equipped with the squared norm

Ki

∑
k=1

{
‖w‖2

H
1
2 (Γ (k)

i )3
+ ∑

`∈O
(k)
i

∫
Γ

(k)
i

∫
Γ

(`)
i

|(w · τττ(k,`)
i )(x)− (w · τττ(k,`)

i )(y)|2

‖x−y‖3 dσ(x)dσ(y)
}

.

REMARK 4.2 Arguments that will be applied in the second paragraph of the proof of Theorem 4.2 show
that different extensions of τττ

(k,`)
i |

e(k,`)
i

to a Lipschitz continuous unit tangent vector on Γ
(k)

i ∪Γ
(`)

i lead

to the same space H
1
2
‖ (Γi), with equivalent norms. It is even allowed that outside e(k,`)

i , τττ
(k,`)
i is not a

tangent or a unit vector.

REMARK 4.3 As we have seen, if Γi is the boundary of a polyhedron, then the obvious choice for τττ
(k,`)
i

on Γ
(k)

i ∪Γ
(`)

i is the constant extension of τττ
(k,`)
i |

e(k,`)
i

. In that case, the tangent space of Γ
(k)

i is spanned

by {τττ
(k,`)
i : ` ∈O

(k)
i }, so that an equivalent squared norm on H

1
2
‖ (Γi) is given by

Ki

∑
k=1

∑
`∈O

(k,`)
i

‖w · τττ(k,`)
i ‖2

H
1
2 (Γ (k)

i ∪Γ
(`)

i )
.
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THEOREM 4.2 Under conditions (C.1)–(C.3), and (C.5)–(C.8), for (u, p) ∈ H1(Ω)n×V , it holds that

‖u‖2
H1(Ω)n +‖p‖2

H1(Ω) h

‖u−A∇p‖2
L2(Ω)n +‖Bp−divu‖2

L2(Ω) +‖curlA−1u‖2
L2(Ω)2n−3 +‖p|ΓD‖

2

H
1
2 (ΓD)

+

L

∑
i=0

{
∑

{k:Γ (k)
i ⊂ΓN}

‖n ·u|
Γ

(k)
i
‖2

H
1
2 (Γ (k)

i )
+ ∑
{k:Γ (k)

i ⊂ΓD}

‖πτττ(A−1u)|
Γ

(k)
i
‖2

H
1
2 (Γ (k)

i )

}
(n = 2)

∑
{06i6L:Γi⊂ΓN}

Ki

∑
k=1

‖n ·u|
Γ

(k)
i
‖2

H
1
2 (Γ (k)

i )
+ ∑
{06i6L:Γi⊂ΓD}

‖πτττ(A−1u)|Γi‖
2

H
1
2
‖ (Γi)

(n = 3).

REMARK 4.4 In (Bochev & Gunzburger, 2009, Thm 5.10) a similar setting is considered except that
B = 0, ∂Ω ∈C1, and either ΓN = ∂Ω or ΓD = ∂Ω . For the second, most challenging case, it seems that
a proper squared norm of πτττ(A−1u) or n×A−1u|∂Ω is missing in the quadratic functional. In particular
in the practically relevant case of ∂Ω being the boundary of a (curved) polytope, so generally not C1,
the construction of such a squared norm turned out to be delicate.

Proof. Because of (C.1), (C.2), and (C.5), the inequality “&” from Theorem 4.1 is also valid for
(u, p) ∈ H1(Ω)n ×V . Knowing the result of Theorem 4.1, and the boundedness and surjectivity of
V → H

1
2 (ΓD) : p 7→ p|ΓD , in view of Theorem 3.1 what remains to verify is the boundedness and the

closedness of the image of T defined by

T : H1(Ω)2 →
L

∏
i=0

Ki

∏
k=1

H
1
2 (Γi) : u 7→

 n ·u|
Γ

(k)
i

on Γ
(k)

i ⊂ ΓN ,

πτττ(A−1u)|
Γ

(k)
i

on Γ
(k)

i ⊂ ΓD,
(4.5)

when n = 2, and, when n = 3, defined by

T : H1(Ω)3 → ∏
{i:Γi⊂ΓN}

Ki

∏
k=1

H
1
2 (Γi)× ∏

{i:Γi⊂ΓD}
H

1
2
‖ (Γi) :

u 7→
{

n ·u|Γi on Γi ⊂ ΓN ,
πτττ(A−1u)|Γi on Γi ⊂ ΓD.

(4.6)

For n = 3, u 7→ πτττ(A−1u)|Γi : H1(Ω)3 → H
1
2
‖ (Γi) is bounded. Because u 7→ A−1u is bounded on

H1(Ω)3 by (C.2) and (C.5), to show this statement it is sufficient to consider A = Id. For 1 6 k 6 Ki

and ` ∈O
(k)
i , one has πτττ(u) · τττ(k,`)

i = u · τττ(k,`)
i on Γ

(k)
i ∪Γ

(`)
i . Since τττ

(k,`)
i is Lipschitz on Γ

(k)
i ∪Γ

(`)
i , for

x ∈ Γ
(`)

i , y ∈ Γ
(k)

i ,

|(u · τττ(k,`)
i )(x)−(u · τττ(k,`)

i )(y)|

6 |(u(x)−u(y)) · τττ(k,`)
i (x)|+ |u(y) · (τττ(k,`)

i (x)− τττ
(k,`)
i (y))|

. ‖u(x)−u(y)‖+‖u(y)‖‖x−y‖,

where actually the second term can be dropped when Γi is the boundary of a polyhedron, since in that
case τττ

(k,`)
i can be taken to constant on Γ

(k)
i ∪Γ

(`)
i . Since∫

Γ
(k)

i

∫
Γ

(`)
i

‖u(x)−u(y)‖2

‖x−y‖3 dσ(x)dσ(y) 6 |u|2
H

1
2 (Γ (k)

i ∪Γ
(`)

i )3
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and, as follows from (the proof of) (Buffa & Ciarlet, 2001, Prop. 2.2), for any x ∈ Γ
(`)

i∫
Γ

(k)
i

‖u(y)‖2

‖x−y‖
dσ(y) . ‖u‖2

H
1
2 (Γ (k)

i )3
, uniformly in x,

a standard application of the trace theorem confirms our statement about the boundedness of the tangen-
tial components trace mapping.

Knowing this result, the boundedness of T for both n = 2 and n = 3 follows by standard applications
of the trace theorem. The surjectivity of T , and so the closedness of its image, will be verified in
Propositions 4.3 and 4.4, respectively. �

PROPOSITION 4.3 The mapping T from (4.5) is surjective.

Proof. Since the Γi are disjoint, it is sufficient to prove the surjectivity of T followed by the restriction
to some Γi. By means of a partition of unity, to show this it is sufficient to consider a v ∈∏

Ki
k=1 H

1
2 (Γ (k)

i )
with a support in a sufficiently small neighborhood of a corner x of Γi. Let e± denote the parts of
the boundary that meet at x, with outward unit normals n±. Let v± denote the restrictions of v to e±,
and let v̄± denote their extensions to H1-functions with supports in a sufficiently small neighborhood
of the corner. It suffices to show the existence of an solution u ∈ (H1)2 of the equations n± ·u = v̄±,
n±×A−1u = v̄±, or n+ ·u = v̄+ and n−×A−1u = v̄− in case of a switch from Neumann-to-Neumann,
Dirichlet-to-Dirichlet, or from Neumann-to-Dirichlet boundary conditions, respectively. This existence
follows in the first two cases from n±(x) being independent, and in the latter case from the assump-
tion (C.7) saying that n−(x)>A(x)n+(x) 6= 0, together with the Lipschitz continuity of A and that of
(extensions of) n±. �

PROPOSITION 4.4 The mapping T from (4.6) is surjective.

Proof. Since the Γi are disjoint, it is sufficient to prove the surjectivity of T followed by the restriction
to any Γi. First we consider the case that Γi ⊂ ΓN .

Let v ∈ ∏
Ki
k=1 H

1
2 (Γ (k)

i ). By means of a partition of unity, it is sufficient to consider the cases that v
has its support in a sufficiently small neighborhood of either a vertex, or an edge where the neighborhood
does not contain a vertex, or a point on a face where the neighborhood does not contain a vertex or an
edge. The last two cases are easy, and so we focus on the first case.

We consider a vertex x where M > 3 faces meet, that w.l.o.g. we call Γ
(1)

i , . . . ,Γ
(M)

i , ordered as
illustrated in Figure 1(left). For 1 6 k 6 M, consider a subdivision of Γ

(k)
i in 3 non-empty sectors Γ

(k,q)
i ,

Γ
(4)

i
Γ

(3)
i

Γ
(2)

i

Γ
(1)

ix Γ
(M)

i Γ
(k+1)

i

ηk = 1

ηk = 0
Γ

(k,2)
i

Γ
(k,1)

i

Γ
(k,3)

i

Γ
(k−1)

i

FIG. 1. Faces near a vertex (left), and the spitting of Γ
(k)

i (right).

q = 1,2,3 as illustrated in Figure 1(right). As follows from (Buffa & Ciarlet, 2001, Prop. 2.8), for
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1 6 k 6 M there exists an ηk on Γ
(k)

i that is smooth outside any neighborhood of x, with ηk = 0 on
Γ

(k,2)
i and ηk = 1 on Γ

(k,1)
i , such that multiplication with ηk is a mapping on H

1
2 (Γ (k)

i ).
Setting Γ

(M+1)
i := Γ

(1)
i and ηM+1 := η1, let

ξk :=


ηk on Γ

(k)
i ,

1−ηk+1 on Γ
(k+1)

i ,

0 on Γi\(Γ (k)
i ∪Γ

(k+1)
i ).

Then

(1). suppξk ⊂ Γ
(k)

i ∪Γ
(k+1)

i ,

(2). ∑
M
k=1 ξk = 1 on ∪M

k=1Γ
(k)

i ,

(3). multiplication with ξk is a mapping on H
1
2 (Γi).

To show the last property we use the fact, as proved in (Buffa & Ciarlet, 2001, Thm. 2.5), that on
a (curved) polyhedron a function is in H

1
2 if and only if for any pair of faces that share an edge, its

restriction to these two faces is in H
1
2 . Now consider the decomposition of ∪M

k=1Γ
(k)

i into 3M faces by
splitting each Γ

(k)
i into Γ

(k,q)
i for q = 1,2,3. Given w ∈ H

1
2 (Γi), we consider ξkw on each pair of these

3M faces that share an edge. For each of such pairs, either ξk = 1 or ξk = 0 both faces, or both faces are
part of the same Γ

(k)
i . By combining the last mentioned result from Buffa & Ciarlet (2001) with the fact

that multiplication with ηk is a mapping on H
1
2 (Γ (k)

i ), we conclude ((3)).
Now let us return to our function v ∈ ∏

M
k=1 H

1
2 (Γ (k)

i ) with support in a sufficiently small neighbor-
hood of x. Given 1 6 k 6 M, for ` = k,k +1, let v̄` ∈ H1(R3) be an extension of v|Γ̀ with support some
small neighborhood of x. Since the unit normals nk, nk+1 on Γ

(k)
i , Γ

(k+1)
i are independent at x, there

exists a w(k) ∈ H1(R3)3 with n` ·w(k) = v̄` (` = k,k + 1). Now let u(k) ∈ H1(R3)3 be an extension of
ξkw(k)|Γi ∈ H

1
2 (Γi)3. Then n ·u(k)|Γi = ξkv, and so for u := ∑

M
k=1 u(k) ∈ H1(R3)3, we have n ·u|Γi = v.

Since u 7→ Au is a bounded map on H1(Ω)n, for the case that Γi ⊂ ΓD it is sufficient to consider
A = Id. For this case, the surjectivity of T followed by the restriction to Γi was proven in (Buffa &
Ciarlet, 2001, Prop. 2.7). �

Concluding we can say that under some conditions, most prominently the condition of H2-regularity,
the elliptic second order boundary value problem (3.1), so with possibly inhomogeneous boundary
conditions, being reformulated as the extended div-grad first order system (4.1) gives rise to a least
squares problem that is well-posed in the sense of (1.1). All arising spaces can be equipped with Riesz
bases of wavelet type, or, in a finite element setting, all arising norms can be replaced by efficiently
computable equivalent quantities in terms of multi-level preconditions.

We confined the discussion about how to append inhomogeneous boundary conditions to scalar
elliptic boundary value problems. Our findings from this section, however, equally well apply to first
order system least squares formulations of curl-curl or div-curl systems (cf. (Bochev & Gunzburger,
2009, Ch. 6)), where, assuming H2-regularity, the space {v ∈ H1(Ω)n : v · n = 0 on ΓN , n×A−1v =
0 on ΓD} arises naturally.
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