
FAST EVALUATION OF SYSTEM MATRICES W.R.T.

MULTI-TREE COLLECTIONS OF TENSOR PRODUCT

REFINABLE BASIS FUNCTIONS

SEBASTIAN KESTLER AND ROB STEVENSON

Abstract. An algorithm is presented that for a local bilinear form evaluates
in linear complexity the application of the stiffness matrix w.r.t. a collection
of tensor product multiscale basis functions, assuming that this collection has
a multi-tree structure. It generalizes an algorithm for sparse-grid index sets
[SIAM J. Sci. Comput., 17 (1996), pp. 631-646] by R. Balder and Ch. Zenger,
and it finds its application in adaptive tensor product approximation methods.

1. Introduction

For 1 ≤ i ≤ n, let Ψ̌i = {ψ̌i,λ : λ ∈ ∇̌i} and Ψ̂i = {ψ̂i,λ : λ ∈ ∇̂i} be collections
of multi-scale functions, e.g., wavelet bases, multi-level frames, or collections of
hierarchical “hat” functions. We assume that the functions from these collections,
which we simply will refer to as being wavelets, satisfy standard locality assumptions
meaning that the diameter of the support of wavelets on level ℓ is of order 2−ℓ.
Let ai(·, ·) be a bilinear form that is local meaning that ai(u, v) = 0 whenever
|suppu ∩ supp v| = 0.

We set Ψ̌ = {ψ̌λ = ⊗ni=1ψ̌λi
: λ ∈ ∇̌ :=

∏n
i=1 ∇̌i} and similarly Ψ̂, and consider

the bilinear form a(·, ·) defined by a(⊗ni=1ui,⊗
n
i=1vi) =

∏n
i=1 ai(ui, vi). A typical

example being a = ak defined by ai(ui, vi) =

{

∫ 1

0 ui(x)vi(x)dx, i 6= k,
∫ 1

0
u′i(x)v

′
i(x)dx, i = k,

in which

case
∑n
k=1 ak is the bilinear form that results from the variational formulation of

Poisson’s problem on (0, 1)n.

The topic of this paper is to apply, for finite Λ̌ ⊂ ∇̌, Λ̂ ⊂ ∇̂, the “system
matrix”

(1.1) a(Ψ̌|
Λ̌
, Ψ̂|

Λ̂
) := [a(ψ̌λ, ψ̂µ)]λ∈Λ̌,µ∈Λ̂

in O(#Λ̌ + #Λ̂) operations.

For doing so, it is no real restriction to assume that the collections Ψ̌i and Ψ̂i, and
the bilinear forms ai(·, ·) are independent of i. Furthermore, inside this introduction

we focus on the simplified case where (Ψ =)Ψ̌ = Ψ̂ and (Λ =)Λ̌ = Λ̂.
Already for n = 1, the application of the system matrix in linear complexity

cannot be expected for arbitrary Λ ⊂ ∇, because a(Ψ|Λ,Ψ|Λ) is generally not

Date: November 8, 2012.
1991 Mathematics Subject Classification. 41A30, 65N30, 65Y20.
Key words and phrases. Tensor product approximation, adaptivity, sparse grids, optimal com-

putational complexity.
The first author has been supported by the Deutsche Forschungsgemeinschaft within the Re-

search Training Group (Graduiertenkolleg) GrK1100 Modellierung, Analyse und Simulation in
der Wirtschaftsmathematik at the University of Ulm.

1

2 SEBASTIAN KESTLER AND ROB STEVENSON

sparse due to interactions between wavelets on different levels. Yet, when Λ is the
collection of indices of all wavelets up to some level ℓ, a solution is provided by the
application of a transformation T to a single-scale basis Φℓ on level ℓ. Writing Ψ|⊤Λ =
Φ⊤
ℓ T , viewing collections of functions as column vectors, we have a(Ψ|Λ,Ψ|Λ) =

T⊤a(Φℓ,Φℓ)T . By the sparsity of a(Φℓ,Φℓ), and under the assumption that each
of its entries can be computed in O(1) operations, each of these three matrices on
the right-hand side can be applied in O(#Λ) operations, and so can a(Ψ|Λ,Ψ|Λ).

This approach extends to the situation where Λ is a general tree, which we
define as a set such that for any λ ∈ Λ with |λ| > 0, the support of ψλ is covered
by the supports of ψµ for some µ ∈ Λ with |µ| = |λ| − 1. The argument is that
for a tree Λ, there exists a locally finite collection of scaling functions whose span
contains spanΨ|Λ, where, thanks to the tree constraint, the representation of the
embedding, being a generalization the aforementioned basis transformation T , can
be performed in O(#Λ) operations.

For n > 1, we have

a(Ψ|Λ,Ψ|Λ) = RΛ(A⊗· · ·⊗A)IΛ,

where A := a(Ψ,Ψ), IΛ is the extension operator with zeros of a vector indexed
by Λ to one indexed by ∇, and RΛ denotes its adjoint being the restriction of a
vector to its indices in Λ.

If Λ is equal to Λ̄ := {λ ∈ ∇ : ‖|λ|‖∞ ≤ ℓ}, being the set of all multi-indices λ
with, for some level ℓ ∈ N0, ‖|λ|‖∞ := maxi |λi| ≤ ℓ, i.e., Λ̄ corresponds to a full

grid, then, with Λ denoting the set of λ ∈ ∇ with |λ| ≤ ℓ, one has

R
Λ̄

(A⊗· · ·⊗A)I
Λ̄

= a(Ψ|Λ,Ψ|Λ)⊗· · ·⊗a(Ψ|Λ,Ψ|Λ).

We conclude that the application of a(Ψ|Λ,Ψ|Λ) can be evaluated in O(n#Λ) =
O(#Λ) operations.

Next, we consider Λ to correspond to a sparse grid, i.e., for some ℓ ∈ N0, it is the
set of all multi-indices λ with ‖|λ|‖1 :=

∑

i |λi| ≤ ℓ. For simplicity thinking here
of n = 2, we write RΛ(A⊗A)IΛ = RΛ(A⊗Id)(Id⊗A)IΛ. In view of the subsequent
application of RΛ(A⊗Id), we realize that we need the result of the application of
(Id⊗A)IΛ only on some finite subset of ∇. The generally smallest subset that can
be selected is the corresponding full grid index set Λ̄ defined above, i.e., we have
RΛ(A⊗A)IΛ = RΛ(A⊗Id)I

Λ̄
R

Λ̄
(Id⊗A)IΛ. Unfortunately, the applications of both

RΛ(A⊗Id)I
Λ̄

and R
Λ̄

(Id⊗A)IΛ require O(#Λ̄) operations, where, in the standard
setting that #{λ ∈ ∇ : |λ| = ℓ} h 2ℓ, one has that #Λ h ℓ2ℓ and #Λ̄ h 4ℓ.

(Here and in other places, with C h D we mean that both C . D and C & D,
with the first relation meaning that C can be bounded by some absolute multiple
of D, and the second one being defined as D . C.)

To solve the above problem, we apply a key idea by Balder and Zenger in [4] for
the hierarchical hat functions, that for more general functions was applied later in,
e.g., [3, 21, 20]. We split A into the upper block matrix U = [a(ψλ, ψµ)]|λ|≤|µ| and
the strictly lower block matrix L = [a(ψλ, ψµ)]|λ|>|µ|. By definition of U , L, and
Λ, we have

(U⊗Id)IΛ = IΛRΛ(U⊗Id)IΛ, RΛ(L⊗Id) = RΛ(L⊗Id)IΛRΛ,

FAST EVALUATION OF SYSTEM MATRICES 3

from which we infer that

RΛ(A⊗A)IΛ = RΛ((U + L)⊗A)IΛ

= RΛ(L⊗Id)(Id⊗A)IΛ + RΛ(U⊗Id)(Id⊗A)IΛ

= RΛ(L⊗Id)(Id⊗A)IΛ + RΛ(Id⊗A)(U⊗Id)IΛ

= RΛ(L⊗Id)IΛRΛ(Id⊗A)IΛ +RΛ(Id⊗A)IΛRΛ(U⊗Id)IΛ.

Since Λ, “frozen” in either of its coordinates, is a collection of indices of all wavelets
up to some level, RΛ(Id⊗A)IΛ, and similarly, RΛ(L⊗Id)IΛ and RΛ(U⊗Id)IΛ, can
be applied in O(#Λ) operations, and so can a(Ψ|Λ,Ψ|Λ).

Remark 1.1. Since, for general n > 1, in the above scheme two recursive calls for
Id⊗A⊗ · · · ⊗A have to be made, one verifies that its complexity is O(2n#Λ). So
in high dimensions, one should avoid multiplications with RΛ(A1 ⊗ · · ·⊗An)IΛ for
more than one or a few Ai not being truly sparse. For, say, the Poisson problem,
this can be realized by applying orthogonal wavelets (cf. [7, 8]) or prewavelets (cf.
[16, 11]). This issue, however, is outside the scope of the current paper, and we will
ignore the dependency of constants on the space dimension n.

The goal of this paper is to generalize the algorithm for the multiplication with
a(Ψ̌|

Λ̌
, Ψ̂|

Λ̂
) from [4] to the case of Λ̌ and Λ̂ being multi-trees, and to prove that

it requires only O(#Λ̌ + #Λ̂) operations. We define a multi-index set Λ to be a
multi-tree when “frozen” in any n − 1 coordinates, it is a tree in the remaining
coordinate.

The application of this result lies in adaptive tensor product approximation
methods, as adaptive sparse grid methods ([2] + references cited there), or adaptive
tensor product wavelet Galerkin methods (e.g. [18]). It seems that multi-trees are
the most general sets for which (1.1) is realizable (unless, by a special choice of the

wavelets, the bi-infinite matrix a(Ψ̌, Ψ̂) as a whole is sparse, cf. [6]).

For Ψ̌ = Ψ̂ being a hierarchical basis and Λ̌ = Λ̂, similar results, although
described more informally, can be found in [1, 11, 17]. For a hierarchical basis, our

condition of Λ̌ = Λ̂ being a multi-tree is equal to the condition on this index set
imposed in these references. The discussion in [11, §3.1.3] about a prewavelet basis
learns that the generalization from the hierarchical basis to a general multi-level
collection is not trivial.

Our generalization of possibly having different collections Ψ̌ and Ψ̂ and/or dif-

ferent multi-trees Λ̌ and Λ̂ has obvious applications in Petrov-Galerkin methods.
Another application of this generalized setting will be a new residual evaluation
scheme, inside an adaptive tensor product wavelet Galerkin method, that is pre-
sented in [15].

This paper is organized as follows: In Sect. 2, we present the evaluation schemes
for A, U and L restricted to blocks formed by collections of row- and column indices
that both are trees. In Sect. 3, these evaluation schemes will be the building blocks
for the multiplication with a(Ψ̌|

Λ̌
, Ψ̂|

Λ̂
) in linear complexity for multi-trees Λ̌ ⊂ ∇̌

and Λ̂ ⊂ ∇̂. In Sect. 4, we report on numerical experiments with the adaptive
wavelet Galerkin method that confirm this linear complexity.

4 SEBASTIAN KESTLER AND ROB STEVENSON

2. The one factor case

2.1. Wavelet assumptions. We consider two collections

Ψ̌ = {ψ̌λ : λ ∈ ∇̌}, Ψ̂ = {ψ̂λ : λ ∈ ∇̂}

of functions on some domain Ω ⊂ Rd. For
˘
∈ {

ˇ
,
ˆ
}, and with |λ| ∈ N0 denoting

the level of λ ∈ ∇̆, we assume that the collection Ψ̆ consists of local functions in
the sense that

sup
λ∈∇̆

2|λ| diam supp ψ̆λ <∞,(2.1)

sup
ℓ∈N0

sup
x∈Ω

#{λ ∈ ∇̆ : |λ| = ℓ ∧ supp ψ̆λ ∩B(x; 2−ℓ) 6= ∅} <∞.(2.2)

We will refer to the functions ψ̆λ as being wavelets, although not necessarily they
have vanishing moments or other specific wavelet properties.

For ℓ ∈ N0, and any Λ ⊂ ∇̆, we set Λℓ := {λ ∈ Λ : |λ| = ℓ} and Λℓ↑ := {λ ∈

Λ : |λ| ≥ ℓ}. We write Ψ̆ℓ := Ψ̆|∇̆ℓ
, and add the harmless assumption that for any

ℓ ∈ N0,

(2.3) Ω = ∪ψ̆λ∈Ψ̆ℓ
supp ψ̆λ.

For ℓ ∈ N0, we assume a collection Φ̆ℓ = {φ̆λ : λ ∈ ∆̆ℓ}, whose members will be
referred to as being scaling functions, with

span Φ̆ℓ+1⊇ span Φ̆ℓ ∪ Ψ̆ℓ+1, Φ̆0 = Ψ̆0,(2.4)

sup
ℓ∈N0

sup
λ∈∆̆ℓ

2ℓ diam supp φ̆λ <∞,(2.5)

sup
ℓ∈N0

sup
x∈Ω

#{λ ∈ ∆̆ℓ : supp φ̆λ ∩B(x; 2−ℓ) 6= ∅} <∞,(2.6)

{φ̆λ|Σ : λ ∈ ∆̆ℓ, φ̆λ|Σ 6≡ 0} is independent (for all open Σ ⊂ Ω, ℓ ∈ N0).(2.7)

W.l.o.g. we assume that the index sets ∆̆ℓ for different ℓ are mutually disjoint, and
set Φ̆ := ∪ℓ∈N0Φ̆ℓ with index set ∆̆ := ∪ℓ∈N0∆̆ℓ. For λ ∈ ∆̆, we set |λ| := ℓ when

λ ∈ ∆̆ℓ.
Viewing Ψ̆ℓ, Φ̆ℓ as column vectors, the assumptions we made so far guarantee

the existence of matrices M̆ℓ,0, M̆ℓ,1 such that
[

Φ̆⊤
ℓ−1 Ψ̆⊤

ℓ

]

= Φ̆⊤
ℓ

[

M̆ℓ,0 M̆ℓ,1

]

,

where the number of non-zeros per row and column of M̆ℓ,0 and M̆ℓ,1 is finite,
uniformly in the rows and columns and in ℓ ∈ N.

A subset Λ ⊂ ∇̆ℓ↑ is called an ℓ-tree, or simply a tree when the value of ℓ is clear

from the context, when for any λ ∈ Λ with |λ| > ℓ, the support of ψ̆λ is covered by

the supports of ψ̆µ for some µ ∈ Λ with |µ| = |λ| − 1.

For µ ∈ ∇̆, we define

S̆µ = {x ∈ Ω : dist(x, supp ψ̆µ) ≤ C2−|µ|}

for some constant C ≥ 0 such that for all

(2.8) µ, λ ∈ ∇̆ with |µ| = |λ| − 1 and | supp ψ̆λ ∩ supp ψ̆µ| > 0 =⇒ S̆µ ⊃ S̆λ.

For Haar wavelets or hierarchical “hat” functions, C can be taken equal to 0. The
next lemma shows that, thanks to (2.1), a suitable constant C always exists.

FAST EVALUATION OF SYSTEM MATRICES 5

Lemma 2.1. With C := supλ∈∇̆ 2|λ| diam supp ψ̆λ, (2.8) is satisfied.

Proof. For µ and λ as in (2.8), and x ∈ S̆λ, dist(x, S̆µ) ≤ C2−|λ| + diam supp ψ̆λ ≤
C2−|µ|. �

On span Φ̌ × span Φ̂, we will consider a bilinear form a(·, ·) that is local in the

sense that for φ̌λ ∈ Φ̌, φ̂µ ∈ Φ̂,

a(φ̌λ, φ̂µ) = 0 whenever |supp φ̌λ ∩ supp φ̂µ| = 0.

For collections Σ̌ ⊂ Ψ̌ ∪ Φ̌, Σ̂ ⊂ Ψ̂ ∪ Φ̂, with a(Σ̌, Σ̂) we will mean the matrix
[a(σ̌, σ̂)]σ̌∈Σ̌,σ̂∈Σ̂. We set the matrix

(2.9) A := a(Ψ̌, Ψ̂),

and the “upper block” and “strictly lower block” matrices

U =
[

a(ψ̌λ, ψ̂µ)
]

|λ|≤|µ|
, L =

[

a(ψ̌λ, ψ̂µ)
]

|λ|>|µ|
,

so that A = U + L.

Remark 2.2. The conditions (2.1), (2.2), (2.5), (2.6), and (2.7) are used to conclude

the uniform sparsity of M̆ℓ,0 and M̆ℓ,1, i.e., the number of non-zero entries in each
of their rows or columns is bounded uniformly in ℓ. They also imply that, for local
a(·, ·), a(Φ̌ℓ, Φ̂ℓ) is uniformly sparse.

In the following exposition, the conditions involving the supports of the “wavelets”
and “scaling functions”, i.e., (2.1), (2.2), (2.3), (2.5), and (2.6) cannot, however, be

simply replaced by the conditions of uniform sparsity of M̆ℓ,0, M̆ℓ,1 and a(Φ̌ℓ, Φ̂ℓ).
Indeed, for example, the concept of a tree, defined in terms of supports, allows us

to conclude from |supp ψ̌λ ∩ supp ψ̂µ| = 0 for all µ ∈ Λℓ, where Λ ⊂ ∇̂ is a tree,

that |supp ψ̌λ ∩ supp ψ̂µ| = 0, and thus a(ψ̌λ, ψ̂µ) = 0, for all µ ∈ Λℓ↑. They also

imply that the number of λ ∈ ∆̌ℓ−1 with |supp φ̌λ ∩ supp ψ̂µ| > 0 for any µ ∈ Λℓ is
O(#Λℓ). These and similar properties will be used extensively.

Remark 2.3. Condition (2.4) allows for Ψ̆ to be dependent. In particular, besides
multi-level bases, the framework includes multi-level frames (cf. [14]). A bilinear

form a on span Φ̌ × span Φ̂ gives rise to a matrix A as defined in (2.9), i.e., a

bilinear form on ℓ0(∇̌) × ℓ0(∇̂), where ℓ0(∇̌), and similarly ℓ0(∇̂), denotes the set

of vectors indexed by ∇̌ that have finite support. When for either
˘
∈ {

ˇ
,
ˆ
}, Ψ̆ is

not independent, or span Ψ̆ 6= span Φ̆, then this relation between a bilinear form
and a matrix is not one-to-one. Consequently, in general the matrices U and L
cannot be associated to bilinear forms on span Φ̌ × span Φ̂.

Remark 2.4. The setting we discussed so far also applies to the case that Ψ̌ and Φ̌ are

collections of functionals, and a(φ̌λ, φ̂µ) reads as the duality pairing φ̌λ(φ̂µ). Then,

on all places supp ψ̌λ and supp φ̌λ should be read as the distributional support.

In that case, the condition Ω = ∪ψ̆λ∈Ψ̆ℓ
supp ψ̆λ from (2.3) may impose a real

restriction, which, however, can be circumvented, for Ψ̌ ∪ Φ̌ being a collection of
either functions or functionals, by realizing that on all places supp ψ̌λ and supp φ̌λ
can be read as a set that contains the support of ψ̌λ or φ̌λ.

6 SEBASTIAN KESTLER AND ROB STEVENSON

2.2. The application of A|Λ̌×Λ̂, U |Λ̌×Λ̂, and L|Λ̌×Λ̂ for trees Λ̌ ⊂ ∇̌ and

Λ̂ ⊂ ∇̂. The matrix-vector multiplication routines that we are going to present will

only require the evaluation of a(φ̌λ, φ̂µ) for |λ| = |µ|. Our operation counts will be
valid under the assumption that such an evaluation requires O(1) operations.

Our first algorithm concerns the application of A|Λ̌×Λ̂ = a(Ψ̌|Λ̌, Ψ̂|Λ̂) for trees

Λ̌ ⊂ ∇̌ and Λ̂ ⊂ ∇̂. Since the algorithm will be recursive in the coarsest level, it
has to accept more general subsets of Φ̌ ∪ Ψ̌ and Φ̂ ∪ Ψ̂ than only Ψ̌|Λ̌ and Ψ̂|Λ̂ for

trees Λ̌ ⊂ ∇̌ and Λ̂ ⊂ ∇̂.

evalA(ℓ, Π̌, Λ̌, Π̂, Λ̂, ~d,~c)

% Input: ℓ ∈ N, Π̌ ⊂ ∆̌ℓ−1, Π̂ ⊂ ∆̂ℓ−1, ℓ-trees Λ̌ ⊂ ∇̌ℓ↑ and Λ̂ ⊂ ∇̂ℓ↑, all finite,

% ~d := (dλ)λ∈Π̂,~c := (cλ)λ∈Λ̂ ⊂ R.

% Output: With v := ~d
⊤

Φ̂|Π̂ + ~c⊤Ψ̂|Λ̂, the concatenation of the vectors inside

% the dashed boxes gives

% a(Φ̌|Π̌, v), a(Ψ̌|Λ̌, v).
% Set

% Π̌(1) := {λ ∈ Π̌ : |supp φ̌λ ∩ supp ψ̂µ| = 0 ∀µ ∈ Λ̂ℓ}, Π̌(2) := Π̌ \ Π̌(1),

% Π̂(1) := {λ ∈ Π̂ : |supp φ̂λ ∩ supp ψ̌µ| = 0 ∀µ ∈ Λ̌ℓ}, Π̂(2) := Π̂ \ Π̂(1),

% ~d(1) := ~d|Π̂(1) , and ~d(2) := ~d|Π̂(2) .

% Let Π̌ ⊂ ∆̌ℓ, Π̂ ⊂ ∆̂ℓ be the smallest collections with

% spanΦ̌|Π̌ ⊃ spanΦ̌|Π̌(2) ∪ Ψ̌Λ̌ℓ
, or spanΦ̂|Π̂ ⊃ spanΦ̂|Π̂(2) ∪ Ψ̂Λ̂ℓ

.

if Π̌ ∪ Λ̌ 6= ∅ and Π̂ ∪ Λ̂ 6= ∅ then

compute a(Φ̌|Π̌(1) , Φ̂|Π̂)~d
~d :=

(

M̂ℓ,0
~d(2) + M̂ℓ,1~c|Λ̂ℓ

)

|Π̂
evalA(ℓ+ 1, Π̌, Λ̌ℓ+1↑, Π̂, Λ̂ℓ+1↑, ~d,~c|Λ̂ℓ+1↑

)

% With v := ~d
⊤

Φ̂|
Π̂

+ ~c|⊤
Λ̂ℓ+1↑

Ψ̂|
Λ̂ℓ+1↑

, it returns a(Φ̌|
Π̌

, v), a(Ψ̌|
Λ̌ℓ+1↑

, v) .

compute
(

M̌⊤
ℓ,0a(Φ̌|Π̌, v)

)

|Π̌(2) + a(Φ̌|Π̌(2) , Φ̂|Π̂(1))~d(1)

compute
(

M̌⊤
ℓ,1a(Φ̌|Π̌, v)

)

|Λ̌ℓ

endif

Theorem 2.5. A call of evalA yields the output as specified in its definition, at

the cost of O(#Π̌ + #Λ̌ + #Π̂ + #Λ̂) operations.

Remark 2.6. Recalling that Φ̌0 = Ψ̌0 and Φ̂0 = Ψ̂0, for finite trees Λ̌ ⊂ ∇̌ and
Λ̂ ⊂ ∇̂, evalA shows in particular how to apply A|Λ̌×Λ̂ in O(#Λ̌+#Λ̂) operations.

Proof. By definition of Π̌, we have

#Π̌ . #Λ̌ℓ + #Π̌(2) . #Λ̌ℓ + #Λ̂ℓ,

and analogously #Π̂ . #Λ̂ℓ + #Λ̌ℓ. We infer that after sufficiently many recursive

calls of evalA either of the current sets Π̌ ∪ Λ̌ or Π̂ ∪ Λ̂ will be empty, in which
case that call returns the empty set as required.

Next, we observe that the desired output of evalA can be decomposed as follows

a(Φ̌|Π̌, v) = a(Φ̌|Π̌(1) , v) + a(Φ̌|Π̌(2) , v) , a(Ψ̌|Λ̌, v) = a(Ψ̌|Λ̌ℓ+1↑
, v) + a(Ψ̌|Λ̌ℓ

, v) .

FAST EVALUATION OF SYSTEM MATRICES 7

By definition of Π̌(1), and from Λ̂ being a tree, one has

a(Φ̌|Π̌(1) , v) = a(Φ̌|Π̌(1) , ~d
⊤

Φ̂|Π̂) = a(Φ̌|Π̌(1) , Φ̂|Π̂)~d .

The definition of ~d and Π̂ shows that

v = ~d
⊤

Φ̂|Π̂ + ~c|⊤
Λ̂ℓ+1↑

Ψ̂|Λ̂ℓ+1↑
= (~d(2))⊤Φ̂|Π̂(2) + ~c⊤Ψ̂|Λ̂ = v − (~d(1))⊤Φ̂|Π̂(1) .

By induction, the recursive call yields

a(Φ̌|Π̌, v), a(Ψ̌|Λ̌ℓ+1↑
, v) = a(Ψ̌|Λ̌ℓ+1↑

, v) ,

where the latter equality follows by definition of Π̂(1), and from Λ̌ being a tree. The
definition of Π̌ shows that

Φ̌|Π̌(2) = (M̌⊤
ℓ,0Φ̌|Π̌)|Π̌(2) , Ψ̌|Λ̌ℓ

= (M̌⊤
ℓ,1Φ̌|Π̌)|Λ̌ℓ

.

We conclude that

a(Φ̌|Π̌(2) , v) = a(Φ̌|Π̌(2) , v) + a(Φ̌|Π̌(2) , (~d(1))⊤Φ̂|Π̂(1))

=
(

M̌⊤
ℓ,0a(Φ̌|Π̌, v)

)

|Π̌(2) + a(Φ̌|Π̌(2) , Φ̂|Π̂(1))~d(1) .

From a(Ψ̌|Λ̌ℓ
, Φ̂|Π̂(1)) = 0 by definition of Π̂(1), we have

a(Ψ̌|Λ̌ℓ
, v) = a(Ψ̌|Λ̌ℓ

, v) =
(

M̌⊤
ℓ,1a(Φ̌|Π̌, v)

)

|Λ̌ℓ
.

Since Π̌ = Π̌(1) ∪ Π̌(2) and Λ̌ = Λ̌ℓ ∪ Λ̌ℓ+1↑, we conclude the first statement of the
theorem.

From the assumptions on the collections Φ̌, Ψ̌, Φ̂, and Ψ̂, and their consequences
on the sparsity of the matrices M̌ℓ,0, M̌ℓ,1, M̂ℓ,0, and M̂ℓ,1, one easily infers that the

total cost of the evaluations of the statements in evalA is O(#Π̌+#Λ̌ℓ+#Π̂+#Λ̂ℓ)

plus the cost of the recursive call. Using #Π̌ + #Π̂ . #Λ̌ℓ + #Λ̂ℓ and induction,
we conclude the second statement of the theorem. �

The following two algorithms concern the application of U |Λ̌×Λ̂ and L|Λ̌×Λ̂ for

trees Λ̌ ⊂ ∇̌ and Λ̂ ⊂ ∇̂. Again, because the algorithms will be recursive in the
coarsest level, they shall be able to perform somewhat more general tasks.

evalU(ℓ, Π̌, Λ̌, Π̂, Λ̂, ~d,~c)

% Input: ℓ ∈ N, Π̌ ⊂ ∆̌ℓ−1, Π̂ ⊂ ∆̂ℓ−1, ℓ-trees Λ̌ ⊂ ∇̌ℓ↑ and Λ̂ ⊂ ∇̂ℓ↑, all finite,

% ~d := (dλ)λ∈Π̂, ~c := (cλ)λ∈Λ̂ ⊂ R.

% Output: With v := ~d
⊤

Φ̂|Π̂ + ~c⊤Ψ̂|Λ̂, the concatenation of the vectors inside

% the dashed boxes gives

% a(Φ̌|Π̌, v), U |Λ̌×Λ̂~c.

% Let Π̌(1) := {λ ∈ Π̌ : |supp φ̌λ ∩ supp ψ̂µ| = 0 ∀µ ∈ Λ̂ℓ}, Π̌(2) := Π̌ \ Π̌(1),

% and let Π̌ ⊂ ∆̌ℓ, Π̂ ⊂ ∆̂ℓ be the smallest collections with

% spanΦ̌|Π̌ ⊃ spanΦ̌|Π̌(2) ∪ Ψ̌Λ̌ℓ
, or spanΦ̂|Π̂ ⊃ spanΨ̂Λ̂ℓ

.

if Π̌ ∪ Λ̌ 6= ∅ and Π̂ ∪ Λ̂ 6= ∅ then

compute a(Φ̌|Π̌(1) , Φ̂|Π̂)~d

8 SEBASTIAN KESTLER AND ROB STEVENSON

~d :=
(

M̂ℓ,1~c|Λ̂ℓ

)

|Π̂
evalU(ℓ+ 1, Π̌, Λ̌ℓ+1↑, Π̂, Λ̂ℓ+1↑, ~d,~c|Λ̂ℓ+1↑

)

% With v := ~d
⊤

Φ̂|
Π̂

+ ~c|⊤
Λ̂ℓ+1↑

Ψ̂|
Λ̂ℓ+1↑

, it returns a(Φ̌|
Π̌

, v), U |
Λ̌ℓ+1↑×Λ̂ℓ+1↑

~c|
Λ̂ℓ+1↑

.

compute
(

M̌⊤
ℓ,0a(Φ̌|Π̌, v)

)

|Π̌(2) + a(Φ̌|Π̌(2) , Φ̂|Π̂)~d

compute
(

M̌⊤
ℓ,1a(Φ̌|Π̌, v)

)

|Λ̌ℓ

endif

Theorem 2.7. A call of evalU yields the output as specified in its definition, at

the cost of O(#Π̂ + #Λ̂) operations.

Remark 2.8. For finite trees Λ̌ ⊂ ∇̌ and Λ̂ ⊂ ∇̂, evalU shows in particular how to
apply U |Λ̌×Λ̂ in O(#Λ̌ + #Λ̂) operations.

Proof. From #Π̂ . #Λ̂ℓ, we infer that after sufficiently many recursive calls of

evalU either of the current sets Π̌ ∪ Λ̌ or Π̂ ∪ Λ̂ will be empty, in which case that
call returns the empty set as required.

The desired output of evalU can be decomposed as follows:

a(Φ̌|Π̌, v) = a(Φ̌|Π̌(1) , v) + a(Φ̌|Π̌(2) , v) , U |Λ̌×Λ̂~c = U |Λ̌ℓ×Λ̂~c + U |Λ̌ℓ+1↑×Λ̂~c .

By definition of Π̌(1), and from Λ̂ being a tree, one has

a(Φ̌|Π̌(1) , v) = a(Φ̌|Π̌(1) , ~d
⊤

Φ̂|Π̂) = a(Φ̌|Π̌(1) , Φ̂|Π̂)~d .

The definition of ~d and Π̂ shows that

v = ~d
⊤

Φ̂|Π̂ + ~c|⊤
Λ̂ℓ+1↑

Ψ̂|Λ̂ℓ+1↑
= ~c⊤Ψ̂|Λ̂ = v − ~d

⊤
Φ̂|Π̂.

By induction, the recursive call yields

a(Φ̌|Π̌, v), U |Λ̌ℓ+1↑×Λ̂ℓ+1↑
~c|Λ̂ℓ+1↑

= U |Λ̌ℓ+1↑×Λ̂~c ,

the latter equality by definition of U . The definition of Π̌ shows that

Φ̌|Π̌(2) = (M̌⊤
ℓ,0Φ̌|Π̌)|Π̌(2) , Ψ̌|Λ̌ℓ

= (M̌⊤
ℓ,1Φ̌|Π̌)|Λ̌ℓ

.

We conclude that

a(Φ̌|Π̌(2) , v) = a(Φ̌|Π̌(2) , v) + a(Φ̌|Π̌(2) , ~d
⊤

Φ̂|Π̂)

=
(

M̌⊤
ℓ,0a(Φ̌|Π̌, v)

)

|Π̌(2) + a(Φ̌|Π̌(2) , Φ̂|Π̂)~d .

By definition of U , we have

U |Λ̌ℓ×Λ̂~c = a(Ψ̌|Λ̌ℓ
, v) =

(

M̌⊤
ℓ,1a(Φ̌|Π̌, v)

)

|Λ̌ℓ
.

Since Π̌ = Π̌(1) ∪ Π̌(2) and Λ̌ = Λ̌ℓ ∪ Λ̌ℓ+1↑, we conclude the first statement of the
theorem.

The computations of a(Φ̌|Π̌(1) , v), ~d, and a(Φ̌|Π̌(2) , v) take the order of #Π̂, #Λ̂ℓ,

and #Π̌(2) . #Λ̂ℓ operations. The induction hypothesis is that the recursive call

takes the order of #Π̂ + #Λ̂ℓ+1↑ operations.

FAST EVALUATION OF SYSTEM MATRICES 9

Above bounds show in particular that #a(Φ̌|Π̌, v) . #Π̂ + #Λ̂ℓ, and so simi-

larly, #a(Φ̌|Π̌, v) . #Π̂ + #Λ̂ℓ+1. From this we conclude that the computation

of U |Λ̌ℓ+1↑×Λ̂ℓ+1↑
~c|Λ̂ℓ+1↑

takes the order of #Π̂ + #Λ̂ℓ+1 operations. Using that

#Π̂ . #Λ̂ℓ, we now infer the second statement of the theorem. �

evalL(ℓ, Λ̌, Π̂, Λ̂, ~d,~c)

% Input: ℓ ∈ N, Π̂ ⊂ ∆̂ℓ−1, trees Λ̌ ⊂ ∇̌ℓ↑ and Λ̂ ⊂ ∇̂ℓ↑, all finite,

% ~d := (dλ)λ∈Π̂,~c := (cλ)λ∈Λ̂ ⊂ R.

% Output: The concatenation of the vectors inside the dashed boxes gives

% a(Ψ̌|Λ̌, Φ̂|Π̂)~d+ L|Λ̌×Λ̂~c.

% Let Π̂(1) := {λ ∈ Π̂ : |supp φ̂λ ∩ supp ψ̌µ| = 0 ∀µ ∈ Λ̌ℓ}, Π̂(2) := Π̂ \ Π̂(1),

% and ~d(2) := ~d|Π̂(2) .

% Let Π̌ ⊂ ∆̌ℓ, Π̂, Π̂ ⊂ ∆̂ℓ be the smallest collections with

% spanΦ̌|Π̌ ⊃ spanΨ̌|Λ̌ℓ
, spanΦ̂|Π̂ ⊃ spanΦ̂|Π̂(2) , or spanΦ̂|Π̂ ⊃ spanΦ̂|Π̂(2) ∪ Ψ̂Λ̂ℓ

.

if Λ̌ 6= ∅ and Π̂ ∪ Λ̂ 6= ∅ then

~d := M̂ℓ,0
~d(2)

compute
(

M̌⊤
ℓ,1a(Φ̌|Π̌, Φ̂|Π̂)~d

)

|Λ̌ℓ

~d := ~d+ M̂ℓ,1~c|Λ̂ℓ

evalL(ℓ+ 1, Λ̌ℓ+1↑, Π̂, Λ̂ℓ+1↑, ~d,~c|Λ̂ℓ+1↑
)

% It returns a(Ψ̌|
Λ̌ℓ+1↑

, Φ̂|
Π̂
)~d + L|

Λ̌ℓ+1↑×Λ̂ℓ+1↑
~c|

Λ̂ℓ+1↑
.

endif

Theorem 2.9. A call of evalL yields the output as specified in its definition, at

the cost of O(#Λ̌ + #Π̂ + #Λ̂) operations.

Remark 2.10. For finite trees Λ̌ ⊂ ∇̌ and Λ̂ ⊂ ∇̂, evalL shows in particular how
to apply L|Λ̌×Λ̂ in O(#Λ̌ + #Λ̂) operations.

Proof. After sufficiently many recursive calls of evalL either of the current sets Λ̌
or Π̂ ∪ Λ̂ will be empty, in which case that call returns the empty set as required.

The desired output of evalL can be decomposed as follows:

a(Ψ̌|Λ̌, Φ̂|Π̂)~d+ L|Λ̌×Λ̂~c = a(Ψ̌|Λ̌ℓ
, Φ̂|Π̂)~d+ L|Λ̌ℓ×Λ̂~c

+ a(Ψ̌|Λ̌ℓ+1↑
, Φ̂|Π̂)~d+ L|Λ̌ℓ+1↑×Λ̂~c .

From L|Λ̌ℓ×Λ̂~c = 0, we have that

a(Ψ̌|Λ̌ℓ
, Φ̂|Π̂)~d+ L|Λ̌ℓ×Λ̂~c = a(Ψ̌|Λ̌ℓ

, Φ̂|Π̂(2))~d
(2) = a((M̌⊤

ℓ,1Φ̌|Π̌)|Λ̌ℓ
, M̂⊤

ℓ,0Φ̂|Π̂)~d(2)

=
(

M̌⊤
ℓ,1a(Φ̌|Π̌, Φ̂|Π̂)~d

)

|Λ̌ℓ
.

10 SEBASTIAN KESTLER AND ROB STEVENSON

By induction, the recursive call yields a(Ψ̌|Λ̌ℓ+1↑
, Φ̂|Π̂)~d+ L|Λ̌ℓ+1↑×Λ̂ℓ+1↑

~c|Λ̂ℓ+1↑
, the

first term being equal to

a(Ψ̌|Λ̌ℓ+1↑
, Φ̂|Π̂(2))~d

(2) + a(Ψ̌|Λ̌ℓ+1↑
, Ψ̂|Λ̂ℓ

)~c|Λ̂ℓ
= a(Ψ̌|Λ̌ℓ+1↑

, Φ̂|Π̂)~d+ L|Λ̌ℓ+1↑×Λ̂ℓ
~c|Λ̂ℓ

,

and so in total being equal to a(Ψ̌|Λ̌ℓ+1↑
, Φ̂|Π̂)~d+ L|Λ̌ℓ+1↑×Λ̂~c . From Λ̌ = Λ̌ℓ ∪

Λ̌ℓ+1↑, we conclude the first statement of the theorem.
The statement about the cost is proven similarly to that from Theorem 2.5. �

Remark 2.11. Since A = U + L, actually there is no strict need for a separate
routine evalA. The cost of one evalA application is, however, lower than the sum
of the costs of the corresponding applications of evalU and evalL.

3. Tensor products

With, for n≥2,
˘
∈ {

ˇ
,
ˆ
}, Ψ̆ := ⊗ni=1Ψ̆ = {ψ̆λ := ⊗ni=1ψ̆λi

: λ ∈ ∇̆ :=
∏n
i=1 ∇̆},

on span Ψ̌ × span Ψ̂, we set

a(u1⊗· · ·⊗un, v1⊗· · ·⊗vn) =
n

∏

i=1

a(ui, vi),

so that a(Ψ̌, Ψ̂) = A⊗· · ·⊗A.

Although for notational simplicity, we consider collections Ψ̌ and Ψ̂, a bilinear
form a(·, ·), and so a matrix A that are independent of i, our results immediately
generalize to the case where they depend on i.

To define a suitable tree structure on a multi-index set, for t ∈ {0, 1}n, and withK some set that contains Λ̌∪Λ̂, let Pt : Kn → K|t|1 denote the restriction of a vector
in Kn to the coordinates that correspond to the non-zero entries of t. As usual, ¬t
will denote the vector in Rn with, for 1 ≤ i ≤ n, its ith coordinate equal to 1 − ti.

For ∇ =
∏n
i=1 ∇̆i, where each ∇̆i is either ∇̌ or ∇̂, generally different for different

i, we call Λ ⊂ ∇ a multi-tree when for all 1 ≤ i ≤ n and all µ ∈ P¬ei
Λ, the

fiber Pei

(

P¬ei
|Λ

)−1
{µ} is a tree. That is, Λ is a multi-tree when “frozen” in any

n − 1 coordinates, at any value of these coordinates, it is a tree in the remaining
coordinate in either ∇̌ or ∇̂.

Consequently, for Λ being a multi-tree, and any 0 6= t ∈ {0, 1}n, and µ ∈ P¬tΛ,

Λt,µ := Pt

(

P¬t|Λ
)−1

{µ}

is a multi-tree. That is, Λ, frozen in any k coordinates, where 1 ≤ k ≤ n, at any
value of these coordinates, is a multi-tree in the remaining coordinates.

Finally, from Λ = ∪µ∈P¬tΛ

(

P¬t|Λ
)−1

{µ}, we have PtΛ = ∪µ∈P¬tΛΛt,µ, which,
being a union of multi-trees, is a multi-tree itself.

For index sets ⊳ ⊂ ♦, let I♦
⊳ denote the extension operator with zeros of a vector

supported on ⊳ to one on ♦, and let R♦
⊳ denotes its (formal) adjoint, being the

restriction operator of a vector supported on ♦ to one on ⊳. Since the set ♦ will
always be clear from the context, we will denote these operators by I⊳ and R⊳.

FAST EVALUATION OF SYSTEM MATRICES 11

Theorem 3.1. Let Λ̌ ⊂ ∇̌, Λ̂ ⊂ ∇̂ be finite multi-trees. Define

Σ =
⋃

λ∈Pe1Λ̂

{λ} ×
{

Λ̌¬e1,µ : µ ∈ Pe1Λ̌, |µ| = |λ| + 1, |supp ψ̌µ ∩ Ŝλ| > 0
}

,

Θ =
⋃

λ∈P¬e1Λ̂

{µ ∈ Pe1
Λ̌ : ∃γ ∈ Λ̂e1,λ s.t. |γ| = |µ|, |Šµ ∩ supp ψ̂γ | > 0} × {λ}.

Then Σ, Θ are multi-trees with #Σ . #Λ̌ and #Θ . #Λ̂, and

a(Ψ̌|
Λ̌
, Ψ̂|

Λ̂
) =(3.1)

[

R
Λ̌e1,µ

LIΣe1,µ

]

µ∈P¬e1Σ
⊗Id⊗· · ·⊗Id

◦Id⊗
[

RΣ¬e1,λ
(A⊗· · ·⊗A)I

Λ̂¬e1,λ

]

λ∈Pe1 Λ̂
+

(3.2)

Id⊗
[

R
Λ̌¬e1,λ

(A⊗· · ·⊗A)IΘ¬e1,λ

]

λ∈Pe1Θ

◦
[

RΘe1,λ
UI

Λ̂e1,λ

]

λ∈P¬e1 Λ̂
⊗Id⊗· · ·⊗Id.

(3.3)

The recursive procedure suggested by (3.1)–(3.3) to evaluate the application of

a(Ψ̌|
Λ̌
, Ψ̂|

Λ̂
) by means of calls of evalU , evalL, and evalA requires O(#Λ̌+#Λ̂)

operations.

Proof. We write

a(Ψ̌|
Λ̌
, Ψ̂|

Λ̂
) =R

Λ̌
((U + L)⊗A⊗· · ·⊗A)I

Λ̂
=

R
Λ̌

(L⊗Id⊗· · ·⊗Id)(Id⊗A⊗· · ·⊗A)I
Λ̂

+(3.4)

R
Λ̌

(Id⊗A⊗· · ·⊗A)(U⊗Id⊗· · ·⊗Id)I
Λ̂
.(3.5)

and will show that (3.4) is equal to (3.2), and (3.5) is equal to (3.3).
With the definition of Σ reading as

(3.6)
⋃

λ∈Pe1 Λ̂

{λ} ×
{

Λ̌¬e1,µ : µ ∈ Pe1Λ̌, |µ| ≥ |λ| + 1, |supp ψ̌µ ∩ supp ψ̂λ| > 0
}

,

the definition of L shows that

R
Λ̌

(L⊗Id⊗· · ·⊗Id)(Id⊗A⊗· · ·⊗A)I
Λ̂

=

R
Λ̌

(L⊗Id⊗· · ·⊗Id)IΣ
(

Id⊗[RΣ¬e1,λ
(A⊗· · ·⊗A)I

Λ̂¬e1,λ
]λ∈Pe1Λ̂

)

.
(3.7)

Of course this is still true when the condition |supp ψ̌µ ∩ supp ψ̂λ| > 0 in (3.6) is

replaced by | supp ψ̌µ ∩ Ŝλ| > 0 since it only makes the set larger. Secondly, it
holds that Σ does not change when in its definition the condition |µ| = |λ| + 1 is
replaced by |µ| ≥ |λ| + 1. To see this, note that, by definition of a multi-tree, for

any (µ, γ2, . . . , γn) ∈ Λ̌ with |µ| > |λ| + 1 and | supp ψ̌µ ∩ Ŝλ| > 0, there exists a

µ̃ ∈ ∇̌ with |µ̃| = |λ|+ 1, | supp ψ̌µ̃ ∩ Ŝλ| > 0, and (µ̃, γ2, . . . , γn) ∈ Λ̌. We conclude
that (3.7) holds for the actual definition of Σ.

Knowing (3.7), from

R
Λ̌

(L⊗Id⊗· · ·⊗Id)IΣ =
[

R
Λ̌e1,µ

LIΣe1,µ

]

µ∈P¬e1Σ
⊗Id⊗· · ·⊗Id

we conclude that (3.4) is equal to (3.2).

Since for λ ∈ Pe1Λ̂, Σ¬e1,λ is a union of multi-trees Λ̌¬e1,µ, it is a multi-tree.
In order to conclude that Σ is a multi-tree, it remains to verify that for µ ∈
P¬e1Σ, Σe1,µ is a tree in ∇̂. Let λ ∈ Σe1,µ with |λ| > 0. Since Pe1Λ̂ is a tree,

12 SEBASTIAN KESTLER AND ROB STEVENSON

supp ψ̂λ is covered by the supports of ψ̂γ for some γ ∈ Pe1Λ̂ with |γ| = |λ| − 1

and | supp ψ̂λ ∩ supp ψ̂γ | > 0. For each of those γ, we have Ŝγ ⊃ Ŝλ by (2.8), and
so, recalling that the condition |µ| = |λ| + 1 in the definition of Σ can be read as
|µ| ≥ |λ| + 1, we conclude that (γ,µ) ∈ Σ, or γ ∈ Σe1,µ.

For each µ ∈ ∇̌, the condition |µ| = |λ| + 1 and |Ŝλ ∩ supp ψ̌µ| > 0 is satisfied

for a uniformly bounded number of λ ∈ ∇̂. Consequently,

#Σ .
∑

µ∈Pe1 Λ̌

#Λ̌¬e1,µ = #Λ̌.

Noting that in the definition of Θ, the condition |γ| = |µ| can be read as |γ| ≥ |µ|
without changing Θ, by definition of U we have

R
Λ̌

(Id⊗A⊗· · ·⊗A)(U⊗Id⊗· · ·⊗Id)I
Λ̂

=

R
Λ̌

(Id⊗A⊗· · ·⊗A)IΘ
(

[RΘe1,λ
UI

Λ̂e1,λ
]λ∈P¬e1 Λ̂

⊗Id⊗· · ·⊗Id
)

.

From

R
Λ̌

(Id⊗A⊗· · ·⊗A)IΘ = Id⊗
[

R
Λ̌¬e1,λ

(A⊗· · ·⊗A)IΘ¬e1,λ

]

λ∈Pe1Θ

we see that (3.5) is equal to (3.3).

For λ ∈ P¬e1Λ̂, we have #Θe1,λ . #Λ̂e1,λ, and so #Θ . #Λ̂.
To show that Θ is a multi-tree, let (µ, λ2, . . . , λn) ∈ Θ, 2 ≤ i ≤ n and |λi| > 0.

By definition of Θ, there exists a (γ, λ2, . . . , λn) ∈ Λ̂ with |γ| = |µ| and |Šµ ∩

supp ψ̂γ | > 0. Since Λ̂ is a multi-tree, supp ψ̂λi
is covered by the supports of

supp ψ̂λ̃i
for some λ̃i with |λ̃i| = |λi| − 1 and (γ, λ2, . . . , λ̃i, . . . , λn) ∈ Λ̂, and so

(µ, λ2, . . . , λ̃i, . . . , λn) ∈ Θ.
Now let (µ,λ) ∈ Θ with |µ| > 0. Since Pe1Λ̌ is a tree, supp ψ̌µ is covered by the

supports of ψ̌µ̃ for some µ̃ ∈ Pe1Λ̌ with |µ̃| = |µ| − 1 and | supp ψ̌µ ∩ supp ψ̌µ̃| > 0.

For each of those µ̃, we have Šµ̃ ⊃ Šµ by (2.8), and so, recalling that the condition
|γ| = |µ| in the definition of Θ can be read as |γ| ≥ |µ|, we conclude that (µ̃,λ) ∈ Θ,
or Θ is a multi-tree.

In view of Theorem 2.7 and 2.9 concerning the cost of the application of U and L,
the cost of the application of a(Ψ̌|

Λ̌
, Ψ̂|

Λ̂
) by means of (3.2) and (3.3) is bounded

by some absolute multiple of
∑

µ∈P¬e1Σ

#Λ̌e1,µ + #Σe1,µ +
∑

λ∈Pe1Λ̂

#Σ¬e1,λ + #Λ̂¬e1,λ+

∑

λ∈Pe1Θ

#Λ̌¬e1,λ + #Θ¬e1,λ +
∑

λ∈P¬e1 Λ̂

#Θe1,λ + #Λ̂e1,λ,
(3.8)

where for the second and third sum we used induction, which is justified by the
correctness of the statement for n = 2 by an application of Theorem 2.5. The
expression (3.8) is bounded by

#Λ̌ + #Σ + #Σ + #Λ̂ + #Λ̌ + #Θ + #Θ + #Λ̂ . #Λ̌ + #Λ̂. �

Remark 3.2. Since it is actually not needed that for λ ∈ P¬e1Θ, Θe1,λ is a tree,

Šµ in the definition of Θ can be replaced by supp ψ̌µ.

FAST EVALUATION OF SYSTEM MATRICES 13

Remark 3.3. With proper data structures, the sets Σ, Θ from Theorem 3.1 can
be constructed in O(#Λ̌ + #Λ̂) operations. For λ ∈ P¬e1Λ̂, the set Θe1,λ is most
efficiently generated along with the “downward sweep” of the evalU routine.

4. Numerics

Our aim in this last section is twofold. Using the example of a two-dimensional
elliptic PDE problem, we investigate the performance of the evaluation scheme from
Theorem 3.1 and, moreover, highlight the usefulness of the concept of multi-trees
within adaptive tensor product wavelet Galerkin schemes. Within this adaptive
scheme to be explained below, the evaluation scheme will be used for both the
solution of a finite Galerkin system (Λ̌ = Λ̂) as well as for the residual computation

(Λ̌ ⊃ Λ̂). The set up of the problem will be such that multi-trees, which allow for
local refinement, are actually required to realize the best possible approximation
rate.

4.1. A two-dimensional model problem. We consider a second order elliptic
PDE problem with non-constant, but separable coefficients on � := (0, 1)2 which
reads as follows: For f ∈ H−1(�), find u ∈ H1

0 (�) such that

(4.1) ā(u, v) :=
∑

i=1,2

ai(u, v) :=
∑

i=1,2

∫

�

pi ∂iu ∂iv = f(v), ∀v ∈ H1
0 (�).

For our convenience, we choose pi(x1, x2) ≡ p(x1, x2) := p(x1) p(x2) for p(xi) :=

(xi−
1
2)2+1 (i ∈ {1, 2}), and f ≡ 20. For Ψ := Ψ̌ = Ψ̂, we use biorthogonal B-spline

wavelets as constructed in [9, Ch.2] with primal and dual orders d = d̃ = 3, and
homogeneous Dirichlet boundary conditions of order 1 at primal- and dual side.

In order to apply an adaptive wavelet scheme, we first have to reformulate (4.1)
as an equivalent ℓ2(∇)-problem (cf. [5]). To this end, observe that the | · |H1(�)-
normalized tensor basis DΨ, where D is a bi-infinite diagonal matrix with entries
Dλ := Dλλ := |ψλ|

−1
H1(�), is a Riesz basis for H1

0 (�), i.e., ‖v‖ℓ2(∇) h ‖v‖H1(�)

for all v = v⊤DΨ ∈ H1
0 (�). By expanding the solution u of (4.1) in DΨ, i.e.,

u = u⊤DΨ, (4.1) can equivalently be stated as the discrete ℓ2(∇) problem of
finding u ∈ ℓ2(∇) such that

(4.2) Au = f .

Here, A : ℓ2(∇) → ℓ2(∇) given by A := [Dλ ā(ψλ,ψµ)Dµ]λ,µ∈∇ is a symmetric,
boundedly invertible operator and f := [Dλf(ψλ)]λ∈∇. Moreover, with

(4.3) X :=

[
∫ 1

0

pψ′
λ ψ

′
µ

]

λ,µ∈∇

, M :=

[
∫ 1

0

pψλ ψµ

]

λ,µ∈∇

,

being univariate stiffness and mass matrices, we infer that

(4.4) A = D(a1(Ψ,Ψ) + a2(Ψ,Ψ))D = D(X ⊗M +M ⊗X)D.

Remark 4.1. We remark that constant coefficients, i.e., pi ≡ ci > 0, allow for
simplifications of the evaluation scheme from Theorem 3.1 that we want to ex-
clude for demonstration purposes (see also Remark 1.1). For example, the usage
of prewavelets (cf. [16, 11]) leads to M being a sparse diagonal block matrix with
its strict lower block thus being zero. The same holds true for L2-orthonormal
multiwavelets (cf. [7, 8]) where M is even a diagonal matrix. The multiwavelet
construction analyzed in [6] would even yield sparse M and X . In the latter case,

14 SEBASTIAN KESTLER AND ROB STEVENSON

the exact multiplication of A with any finitely supported vector can be performed
in linear complexity.

Remark 4.2. The scaling functions φλ ∈ Φ associated to Ψ are B-splines. So,

with the univariate coefficients p being polynomials,
∫ 1

0 pφµφλ and
∫ 1

0 pφ
′
µφ

′
λ can

be evaluated exactly in O(1) operations.

4.2. Adaptive tensor product wavelet Galerkin method (AWGM). The idea
of the AWGM for solving (4.2), as presented in e.g. [5, 12], can be outlined in short as
follows: For each Λ from a sequence of finite, nested index sets Λ0 ⊂ Λ1 ⊂ · · · ⊂ ∇,
the finite dimensional Galerkin system

(4.5) AΛ uΛ = fΛ,

where AΛ := RΛAIΛ, fΛ := RΛf , is solved within a fixed, sufficiently small relative
tolerance, yielding an approximate solution wΛ. In order to ensure convergence of
the scheme, for some constant µ > 0, the index sets Λk have to satisfy

(4.6) ‖RΛk+1
rk‖ℓ2(Λk+1) ≥ µ‖rk‖ℓ2(∇),

where rk is a (finitely supported) approximation to the residual f−AIΛk
wΛk

within
a fixed, sufficiently small relative tolerance.

If, additionally, µ is small enough (only depending on κ(A)), and the index set
Λk+1 is selected to have, up to some constant multiple, minimal cardinality among
all index sets that satisfy (4.6), then the AWGM is proven to converge with the optimal
rate: If, for whatever s > 0, u belongs to the non-linear approximation class,

{v ∈ ℓ2(∇) : |v|As := sup
N∈N0

Ns‖v − vN‖ℓ2(∇) <∞},

where vN is a best N -term approximation to v (i.e., it minimizes the distance
to v among all its approximations with support length N), then the computed
approximate Galerkin solutions satisfy

(4.7) ‖u− IΛk
wΛk

‖ℓ2(∇) . (#Λk+1)
−s.

The above statements concerning convergence, in particular with the optimal
rate, remain valid when inside the AWGM only Λ from a subset of P(∇) are allowed,
assuming this subset is closed under taking unions, as e.g. the collection of all
multi-trees. Of course, in this case also the definition of the approximation class
should be adapted by considering only best N -term approximations supported on
sets from the same subset of P(∇).

We will speak about unconstrained or multi-tree approximation when Λ is allowed
to be any subset of ∇, or when it has to be a multi-tree, respectively.

Remark 4.3. For the problem (4.1) at hand, with f being some general, sufficiently
smooth function, it follows from [10, Thm 4.3(b), Thm. 5.2, discussion in §5.4]
that the best multi-tree approximation rate for u is s = d − 1 = 2. Clearly, this
rate is the best that can be expected for approximation in H1(�) by piecewise
polynomials of order d, showing that there is no penalty because of the restriction
to multi-tree approximation. In the same paper it was shown, in any case for the
Poisson problem, that for general, sufficiently smooth f , the best possible rate using
the non-adaptive, (optimized) sparse-grid approximation, i.e., approximation from
the span of tensor product wavelets with indices in the multi-tree

Λℓ,γ := {λ ∈ ∇ : ‖|λ|‖1 − γ‖|λ|‖∞ ≤ (1 − γ)ℓ}, ℓ ∈ N,

FAST EVALUATION OF SYSTEM MATRICES 15

with γ > 0 sufficiently small, is 1
2 + 1

n = 1. Only for f that additionally vanishes
at all four corners of the domain, the latter rate would be 2. Not surprisingly,
our numerical results will indicate that for also our problem (4.1) and f ≡ 20, the
optimized sparse-grid rate is 1.

Optimized sparse grids, i.e., Λℓ,γ for γ > 0, were introduced in [13]. The rate
of best approximation in Ht(�) for 0 < t < d from the span of tensor product
wavelets with indices in Λℓ,γ for γ sufficiently small, and for a sufficiently smooth
u is d− t, so without loss of any log-factors.

The computationally most expensive step in the AWGM is the computation of the
finitely supported approximation rk to f − AIΛk

wΛk
within a fixed, sufficiently

small relative tolerance η < 1. It can be achieved by performing the following
“inner” loop: Starting with ε h ‖f −AIΛk−1

wΛk−1
‖ℓ2(∇), approximate both f and

AIΛk
wΛk

within some absolute tolerance ε/2; check whether ε is less than or equal
to η

1+η times the norm of the resulting computed approximate residual rk, and if

not repeat with ε replaced by ε/2.
If the cost of approximating f − AIΛk

wΛk
within an absolute tolerance ε, and

so in particular the support length of rk, is

(4.8) O(ε−1/s + #Λk),

then the AWGM is of optimal computational complexity in the sense that

sup
k

(#opsk+1)
s‖u− IΛk

wΛk
‖ℓ2(∇) <∞,

where #opsk is the number of arithmetic operations used to compute wΛk
. Indeed,

by the choice of the initial value of ε and (4.7), the cost of any iteration in the above
loop is O(ε−1/s) for the current value of ε. For the final ε, it holds that ε h ‖u −

IΛk
wΛk

‖ℓ2(∇), and so #opsk+1 .
∑k

ν=1 ‖u− IΛν
wΛν

‖
−1/s
ℓ2(∇) . ‖u− IΛk

wΛk
‖
−1/s
ℓ2(∇).

In the unconstrained approximation setting, in [5] an approximate matrix-vector
multiplication routine APPLY was developed for approximating AIΛk

wΛk
. It con-

sists of an approximation scheme for the columns of A with accuracies that are
increasing as function of the modulus of the corresponding entry in the input vec-
tor. Assuming a sufficient near-sparsity of A and that of wΛk

, the latter in the
sense that supk |IΛk

wΛk
|As <∞, the cost of the APPLY-routine with tolerance ε/2

satisfies (4.8). The sufficient near-sparsity of A follows from the smoothness of the
coefficients pi of the differential operator, together with the smoothness and the
vanishing moments of the wavelets, whereas supk |IΛk

wΛk
|As <∞ is a consequence

of u ∈ As and the convergence of (IΛk
wΛk

)k towards u with rate s.
Usually, approximating f does not pose any problem. From the aforementioned

near-sparsity of A, it follows that if u ∈ As, then f = Au ∈ As.

The application of APPLY turns out to be quantitatively expensive, and there-
fore we searched for alternatives. In the accompanying paper [15], we develop
an alternative scheme that applies with multi-tree approximation, and with piece-
wise polynomial univariate wavelets that are contained in H2(0, 1). Instead of
approximating f and AIΛk

wΛk
separately, with A(v)(w) := ā(v, w), the idea is

to find a finite representation of both f and A((IΛk
wΛk

)⊤DΨ) in some common

auxiliary tensor product basis, facilitating the approximation of f − AIΛk
wΛk

=
[(

f −A((IΛk
wΛk

)⊤DΨ)
)

(ψλ)
]

λ∈∇
.

16 SEBASTIAN KESTLER AND ROB STEVENSON

For general f ∈ H−1(�), the existence of such a finite representation can actually
not be expected. But, as will be shown in [15], it can be approximated in H−1(�)
within tolerance ε from the span of O(ε−1/s) of these auxiliary basis functions. From

this, it will follow that there exists a multi-tree Λ̃k⊃ Λk with #Λ̃k . #Λk+ε−1/s,
and

‖(I − I
Λ̃k
R

Λ̃k
)(f − AIΛk

wΛk
)‖ℓ2(∇) ≤ η/2‖I

Λ̃k
R

Λ̃k
(f − AIΛk

wΛk
)‖ℓ2(∇) + O(ε).

Theorem 3.1 shows that R
Λ̃k

AIΛk
wΛk

can be computed in O(#Λ̃k + #Λk)

operations. So under the assumption that R
Λ̃k

f can be evaluated in O(#Λ̃k)
operations, we have that the cost of the evaluation of the approximate residual
rk := I

Λ̃k
R

Λ̃k
(f −AIΛk

wΛk
) satisfies (4.8). Upon replacing ε by ε/C for a suitable

constant C > 0, its error is bounded by ε/2 + η/2‖rk‖ℓ2(∇).
From the fact that the previous approximate residual r̃k, so with ε reading as

2ε, apparently satisfied ε + η/2‖r̃k‖ℓ2(∇) >
η

1+η ‖r̃k‖ℓ2(∇), an elementary analysis

shows that ε/2 + η/2‖rk‖ℓ2(∇) h ε. We conclude that this approximate residual
evaluation satisfies the condition for optimal computational complexity.

Other than with the APPLY routine, the approximate matrix-vector product
R

Λ̃k
AIΛk

wΛk
depends linearly on wΛk

∈ ℓ2(Λk), and we expect it to be quan-
titatively much more efficient.

In the simple case that f has a representation with finite, “small” support in the
auxiliary tensor product basis, as with our forcing function f ≡ 20, the definition
of the multi-tree Λ̃k reads as

Λ̃k :=
{

λ ∈ ∇ : ∃µ ∈ Λk(4.9)

s.t. ∀i, |λi| ≤ |µi| + ℓ ∧ dist(suppψµi
, suppψλi

) ≤ C2−|λi|
}

,

with the constant C from Lemma 2.1.

4.3. Numerical results. We use the AWGM to solve (4.1) numerically, where we
focus on the computational cost of the application of RΛAIΛ, for the Galerkin
solves, and that of R

Λ̃
AIΛ, and on the structure of the adaptively computed multi-

trees Λ. For the implementation we used the C++ library LAWA ([19]).
Within our numerical experiments, it has turned out that ℓ = 1 in the definition

of Λ̃ = Λ̃k from (4.9) for the approximation of the residual is sufficient. We set the
bulk chasing parameter µ from (4.6) to µ = 0.4 and solve arising Galerkin system
(4.5) in each iteration approximately within the relative tolerance ‖IΛk

(AΛk
wΛk

−
fΛk

)‖ℓ2(∇) ≤ ω‖rk−1‖ℓ2(∇) with ω = 0.2.
In Figure 1 (a), we show the computed numerical solution for (4.1) obtained by

the adaptive scheme. For comparison, we also solved (4.1) with an optimized sparse
grid with γ = 0.2. The convergence of both the optimized sparse grid method and
the AWGM can be found in Figure 1 where we show the ℓ2(∇)-norm of the residual

‖rk‖ℓ2(∇) h ‖f − AIΛk
wΛk

‖ℓ2(∇) h ‖u− (IΛk
wΛk

)⊤DΨ‖H1(�).

Observe that the AWGM realizes the optimal rate d−1 = 2, whereas the non-adaptive
optimized sparse grid method converges at the reduced rate 1

2 + 1
n = 1.

In Figure 2, we show the computation times for the adaptively created multi-
trees that occurred during the adaptive solution of (4.1). We consider exemplarily
X ⊗M . Observe that the computation times for the application of RΛ(X ⊗M)IΛ
as well as for the application of R

Λ̃
(X⊗M)IΛ scale linearly with the corresponding

FAST EVALUATION OF SYSTEM MATRICES 17

 0 0.2 0.4 0.6 0.8 1
x1 0

 0.2
 0.4

 0.6
 0.8

 1

x2

 0

 0.5

 1

 1.5

 0

 0.5

 1

 1.5

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101 102 103 104 105

N

2

1

Adaptive scheme
Optimized sparse grid

Figure 1. Numerical solution for (4.1) (left), and convergence
of ‖rk‖ℓ2(∇) for the adaptive scheme as well as for the optimized
sparse grid method (right).

number of degrees of freedom. We also show the ratio “time [in milliseconds] per
degree of freedom” (in a log-scale) which is asymptotically constant.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

0.0⋅100 2.0⋅105 4.0⋅105 6.0⋅105
10-2

10-1

100

101

C
P

U
 ti

m
e

[s
ec

]

C
P

U
 ti

m
e

[m
se

c]
 /

N

N

(a) RΛ(X ⊗ M)IΛ, N := 2 · #Λ

 0

 5

 10

 15

 20

 25

 30

 35

 40

0.0⋅100 5.0⋅105 1.0⋅106 1.5⋅106 2.0⋅106
10-2

10-1

100

101

C
P

U
 ti

m
e

[s
ec

]

C
P

U
 ti

m
e

[m
se

c]
 /

N
N

(b) R
Λ̃

(X ⊗ M)IΛ, N := #Λ̃ + #Λ

Figure 2. Computation times in seconds (solid line) and compu-
tation time in milliseconds per degree of freedom (dashed line) for
the indicated matrices.

Finally, we show some of the computed multi-trees computed by the AWGM, and
compare them to the ones from the optimized sparse grid scheme in Figure 3. We
observe that the adaptive scheme automatically resolves the singularities at the
corners, where the optimized sparse grid scheme due to its construction spends too
few degrees of freedom. In Figure 4, we show instances of the one-dimensional trees
for both methods. We fix the (one-dimensional) index µ that corresponds to a
scaling function index at the left boundary and consider the (one-dimensional) tree
Λ¬e1,µ. Here, each rectangle represents one wavelet index λ ∈ Λ¬e1,µ and indicates
the level of λ as well as the position of the support of ψλ relative to the supports
of the other wavelets on the same level. We observe the adaptive refinement in the
corners where the solution u is singular. In contrast, only few wavelets are required
in the interior of the domain where the solution is smooth.

18 SEBASTIAN KESTLER AND ROB STEVENSON

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 2

x1

(a) N = 964

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 2

x1

(b) N = 1024

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 2

x1

(c) N = 4192

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 2

x1

(d) N = 5120

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 2

x1

(e) N = 22195

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 2

x1

(f) N = 24576

Figure 3. Visualization of the multi-trees arising from the adap-
tive scheme (left) and from the optimized sparse grid scheme with
γ = 0.2 (right) for the indicated numbers of degrees of freedom. A
cross (+) refers to the barycenter of the support of ψλ1 ⊗ ψλ2 .

References

[1] S. Achatz. Adaptive finite Dünngitter-Elementen höherer Ordnung für elliptis-
che partiele Differentialgleigungen mit variablen Koefficienten. PhD thesis (in
German), Technische Universität München, 2003.

[2] H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numer., 13:147–269, 2004.
[3] H.-J. Bungartz. A multigrid algorithm for higher order finite elements on sparse

grids. Electron. Trans. Numer. Anal., 6(Dec.):63–77 (electronic), 1997. Special
issue on multilevel methods (Copper Mountain, CO, 1997).

FAST EVALUATION OF SYSTEM MATRICES 19

0

1

2

3

4

5

6

7

8

9

 0 0.2 0.4 0.6 0.8 1

Le
ve

l

0

1

2

3

4

5

 0 0.2 0.4 0.6 0.8 1

Le
ve

l

Figure 4. One-dimensional trees Λ¬e1,µ from the adaptive
scheme with #Λ = 4192 (left) and from the optimized sparse grid
for ℓ = 5 and γ = 0.2, #Λℓ,γ = 5120, (right) for µ corresponding
to a scaling function index at the left boundary.

[4] R. Balder and Ch. Zenger. The solution of multidimensional real Helmholtz equa-
tions on sparse grids. SIAM J. Sci. Comput., 17(3):631–646, 1996.

[5] A. Cohen, W. Dahmen, and R. DeVore. Adaptive wavelet methods for elliptic
operator equations – Convergence rates. Math. Comp, 70:27–75, 2001.

[6] N.G. Chegini and R.P. Stevenson. The adaptive tensor product wavelet scheme:
Sparse matrices and the application to singularly perturbed problems. IMA J.
Numer. Anal., 32(1):75–104, 2011.

[7] G.C. Donovan, J.S. Geronimo, and D.P. Hardin. Intertwining multiresolution
analyses and the construction of piecewise-polynomial wavelets. SIAM J. Math.
Anal., 27(6):1791–1815, 1996.

[8] T.J. Dijkema, Ch. Schwab, and R.P. Stevenson. An adaptive wavelet method for
solving high-dimensional elliptic PDEs. Constr. Approx., 30(3):423–455, 2009.

[9] T.J. Dijkema. Adaptive tensor product wavelet methods for solving PDEs. PhD
thesis, Utrecht University, 2009.

[10] M. Dauge and R.P. Stevenson. Sparse tensor product wavelet approximation of
singular functions. SIAM J. Math. Anal., 42(5):2203–2228, 2010.

[11] C. Feuersänger. Dünngitterverfahren für hochdimensionale elliptischer partielle
Differentialgleigungen. Master’s thesis (in German), Institut für Numerische Sim-
ulation, Universität Bonn, 2005.

[12] T. Gantumur, H. Harbrecht, and R.P. Stevenson. An optimal adaptive wavelet
method without coarsening of the iterands. Math. Comp., 76:615–629, 2007.

[13] M. Griebel and S. Knapek. Optimized tensor-product approximation spaces. Con-
str. Approx., 16(4):525–540, 2000.

[14] H Harbrecht, R. Schneider, and Ch. Schwab. Multilevel frames for sparse tensor
product spaces. Numer. Math., 110(2):199–220, 2008.

[15] S. Kestler and R.P. Stevenson. An efficient approximate residual evaluation in the
adaptive tensor product wavelet method. Technical report, August 2012. Submit-
ted.

[16] A. Niedermeier and S. Zimmer. Implementational aspects of prewavelet sparse
grid methods. In Eleventh International Conference on Domain Decomposition
Methods (London, 1998), pages 314–321. 1999.

[17] D. Pflüger. Spatially Adaptive Sparse Grids for High-Dimensional Problems. PhD
thesis, TUM, München, 2010.

[18] Ch. Schwab and R.P. Stevenson. Adaptive wavelet algorithms for elliptic PDEs
on product domains. Math. Comp., 77:71–92, 2008.

[19] A. Stippler. LAWA - Library for Adaptive Wavelet Applications.
http://lawa.sourceforge.net, 2009. (last accessed November 8, 2012).

20 SEBASTIAN KESTLER AND ROB STEVENSON

[20] J. Shen and H. Yu. Efficient spectral sparse grid methods and applications to high-
dimensional elliptic problems. SIAM J. Sci. Comput., 32(6):3228–3250, 2010.

[21] A. Zeiser. Fast matrix-vector multiplication in the sparse-grid Galerkin method.
J. Sci. Comput., 47(3):328–346, 2011.

Sebastian Kestler, Institute for Numerical Mathematics, University of Ulm, Helm-

holtzstrasse 20, D-89069 Ulm, Germany

E-mail address: sebastian.kestler@uni-ulm.de

Rob Stevenson, Korteweg-de Vries Institute for Mathematics, University of Ams-

terdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands

E-mail address: r.p.stevenson@uva.nl

