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ABSTRACT. A Laplace type boundary value problem is considered with a gen-
erally discontinuous diffusion coefficient. A domain decomposition technique is
used to construct a piecewise tensor product wavelet basis that, when normalised
w.r.t. the energy-norm, has Riesz constants that are bounded uniformly in the
jumps. An adaptive wavelet Galerkin method is applied to solve the boundary
value problem with the best nonlinear approximation rate from the basis, in linear
computational complexity. Although the solutions are far from smooth, numer-
ical experiments in two dimensions show rates as for a one-dimensional smooth
solution, the latter being possible because of the tensor product construction.

1. INTRODUCTION

In this paper, we study second order linear elliptic problems, generally with a
discontinuous diffusion coefficient, that are known as Laplace-interface problems or
transmission problems. For some domain Ω ⊂ Rn, Γ ⊂ ∂Ω with |Γ| > 0, and given
f ∈ H1

0,Γ(Ω)′, we consider the problem of finding u ∈ H1
0,Γ(Ω) such that

(1.1) aκ(u, v) :=
∫

Ω
κ∇u · ∇v = f (v) ∀v ∈ H1

0,Γ(Ω).

For some fixed N, and 0 ≤ i ≤ N, let Ωi ⊂ Ω be mutually disjoint hypercubes
such that Ω̄ = ∪N

i=0Ω̄i. We assume that

(1.2) κ|Ωi = κi, i = 0, · · · , N,

where each κi is a positive constant, and that Γ is the closure of the union of facets
of one or more Ωi. The coefficient in problem (1.1) may have large jumps across
interfaces between the hypercubes. Consequently, the solution can be expected to
be non-smooth at these interfaces, in particular in directions normal to them.

Because of the non-smoothness of the solution, we solve the problem numeri-
cally with an adaptive method, where we take the Adaptive Wavelet-Galerkin Method
(AWGM) ([CDD01, GHS07, Ste09]). To do so, we equip H1

0(Ω) with a Riesz ba-
sis Ψ = {ψλ : λ ∈ ∇} that has Riesz constants that are bounded uniformly
in κ = (κi)i > 0 w.r.t. the energy-norm. This means that for some constants
0 < C1 ≤ C2 < ∞, independent of κ, it holds that

C1 ≤
aκ(c>Ψ, c>Ψ)

∑λ∈∇ c2
λak(ψλ, ψλ)

≤ C2, (c ∈ `2(∇), κ = (κi)i > 0).
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The best possible constants C1, C2, i.e., the largest C1 and the smallest C2, are called
Riesz constants. We will be able to construct such a ‘uniform’ Riesz basis under
additional assumptions on the signs of the jumps of the κi that will be specified
later, but not on their moduli.

Writing u = u>Ψ := ∑λ∈∇ uλψλ, problem (1.1) can be equivalently formulated
as the bi-infinite matrix-vector problem

(1.3) Au = f,

where f := [ f (ψλ)]λ∈∇ and A := [aκ(ψµ, ψλ)]λ,µ∈∇ is the stiffness matrix of
aκ(·, ·) w.r.t. Ψ. We note that A is bounded, symmetric, and positive definite with,
after preconditioning by its diagonal, a spectral condition number that is bounded
by C2

C1
. The AWGM applied to (1.3) will produce a sequence of approximations

that converge with the best possible rate from the basis.
For making the aforementioned ‘uniform’ Riesz basis, as a first step, we equip

H1
0,Γ(Ω) with norm |||·||| :=

√∫
Ω κ|∇ · |2 + µ| · |2, with µ|Ωi being positive con-

stants depending on κ such that this norm is equivalent to the energy-norm, uni-
formly in the κi’s that are allowed. Thanks to µ|Ωi > 0, a norm on H1(Ωi) is

defined by |||·|||i :=
√∫

Ωi
κ|∇ · |2 + µ| · |2.

Next, we construct a ‘uniform’ isomorphism between the Cartesian product of
H1-Sobolev spaces on the subdomains –subject to homogeneous boundary condi-
tions on selected faces, and equipped with the norms |||·|||i–, and the space H1

0,Γ(Ω)

equipped with the energy-norm. This isomorphism will be built from H1-bounded
extensions of functions on a subdomain to functions on a neighbouring subdo-
main, extending the approach from [DS99a, KS06, CDFS13] to interface problems.
No boundary conditions are prescribed on the outward face, and homogeneous
boundary conditions on the inward face. Moreover, the extensions should be di-
rected to go from larger to smaller diffusion coefficients. Because the subdomains
are part of a Cartesian grid of hypercubes in Rn, the extension operators can be
chosen as univariate extensions in the direction normal to the interfaces. Simple
reflections will be applied in our experiments.

What is left to construct are ‘uniform’ Riesz bases for the H1-Sobolev spaces on
the subdomains equipped with the norms |||·|||i. These bases will be constructed
as n-fold tensor products of univariate wavelet bases. A crucial advantage of such
bases is that dimension-independent convergence rates can be expected. The ap-
proach of applying tensor product approximation, known under the names hy-
perbolic cross approximation or sparse grids, is here thus extended in the sense that is
combined with domain decomposition and adaptivity. The combination of tensor-
product bases with univariate extensions allows for a convenient implementation.
It will turn out that only wavelets that do not vanish at the interface have to be
extended.

The univariate wavelet bases will be constructed to give rise to give truly sparse
mass and stiffness matrices. We constructed such bases in [CS11] for homoge-
neous boundary conditions. Here they will be adapted to other boundary con-
ditions. As a consequence, the stiffness matrix A corresponding to (1.1) and the
piecewise tensor product wavelet Riesz basis will be close to being sparse. Only
columns corresponding to wavelets that were extended over an interface contain
more than a uniformly bounded number of non-zeros, and therefore have to be
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approximated in the evaluation of a matrix-vector product. Numerical results that
will be obtained with the AWGM show the best possible ‘univariate’ converge
rate uniformly in κ in linear computational complexity, largely improving upon
non-adaptive methods.

This paper is organised as follows: In Sect. 2, we prepare for the construction
of a Riesz basis from Riesz bases on the subdomains by extension by focussing on
the two subdomain case.

In Sect. 3, dealing with the multi-subdomain case, we collect conditions on the
ordering of the extensions to end up with a Riesz basis that has Riesz constants
bounded uniformly in the sizes of the jumps. We show how to construct suit-
able extensions from univariate extensions, collect conditions on the univariate
wavelets, and show that the extensions only have to be applied to wavelets that
do not vanish at the interface.

Wavelets that satisfy all conditions, and that give rise to an almost sparse stiff-
ness matrix are constructed in Sect. 4.

Finally, in Sect. 5, numerical results are presented that are obtained with the
AWGM applied to various Laplace-interface problems.

2. CONSTRUCTION OF ISOMORPHISMS FOR A DISCONTINUOUS DIFFUSION
COEFFICIENT

Let Ω ⊂ Rn be a domain. For some fixed N, and all 0 ≤ i ≤ N, let Ωi ⊂ Ω
be a subdomain such that Ωi ∩Ωj = ∅ (i 6= j) and Ω̄ = ∪N

i=0Ω̄i. For a constant
κi = κ|Ωi > 0, we equip H1(Ωi) with squared semi-norm

|u|2E,i := κi|u|2H1(Ωi)
,

and H1(Ω) with squared semi-norm

|u|2E :=
N

∑
i=0
|u|Ωi |

2
E,i (= aκ(u, u)).

Note that by Friedrich’s inequality, | · |E is actually a norm on H1
0,Γ(Ω), which is

the energy-norm corresponding to our boundary-value problem.
Although | · |E is a norm on H1

0,Γ(Ω), for 0 6= u ∈ H1
0,Γ(Ω) and Ωi such that

∂Ωi ∩ ∂Ω = ∅, it holds that possibly |u|Ωi |E,i = 0 even if u|Ωi 6= 0. This causes
problems in our analysis, and for that reason for some constant µi > 0, we equip
H1(Ωi) with squared norm

(2.1) |||u|||2i := µi‖u‖2
L2(Ωi)

+ |u|2E,i

and H1(Ω) with squared norm

|||u|||2 :=
N

∑
i=0
|||u|Ωi |||

2
i .

Norms on operators between spaces equipped with norms |||·||| or |||·|||i, or Carte-

sian products of such spaces equipped with
√

∑N
i=0|||·|||

2
i , will simply be denoted

as |||·|||.
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A sufficient condition for |||·||| being on norm on H1
0,Γ(Ω) that is uniformly equiv-

alent to the energy-norm is derived next:

Proposition 2.1. Let ~κ = (κ0, · · · , κN), ~µ = (µ0, · · · , µN) be such that for any 0 ≤
i ≤ N, there exist {j0, · · · , jM} ⊂ {0, · · · , N} with j0 = i, |∂Ωj` ∩ ∂Ωj`+1

| > 0
(` ∈ {0, · · · , M− 1}), |∂ΩjM ∩ Γ| > 0 and µi . min0≤`≤M κj` . Then

|||·||| h | · |E on H1
0,Γ(Ω).

Proof. Friedrich’s inequality

‖ · ‖L2((∪M
`=0Ωj`

)int) . | · |H1((∪M
`=0Ωj`

)int),

on H1
0,∂ΩjM

∩Γ((∪
M
`=0Ωj`)

int) shows that for u ∈ H1
0,Γ(Ω), µi‖u‖2

L2(Ωi)
. ∑M

`=0 |u|Ωj`
|2E,j`

.

�

Remark 2.2. Following [PS13, Theorem 2.7], likely the conditions of this proposi-
tion can be relaxed.

Remark 2.3. Note that the conditions of Proposition 2.1 require that µi . κi.

Remark 2.4. The obvious choice µi = κi is not always appropriate. Indeed, as an
example consider u ∈ H1

0(−1, 2) defined by

(2.2) u(x) =


1 + x x ∈ Ω0 := (−1, 0),

1 x ∈ Ω1 := (0, 1),

2− x x ∈ Ω2 := (1, 2),

and κ0 = 1, κ1 ≥ 1, κ2 = 1. Then

lim
κ1→∞

√
∑2

i=0 |u|Ωi |2E,i + κi‖u|Ωi‖2
L2(Ωi)

|u|E
= ∞,

whereas for µ0 = µ1 = µ2 := 1, it holds that |||·||| h | · |E on H1
0(−1, 2), uniformly

in κ1 ≥ 1, κ0 = κ2 = 1.

Our aim will now be to construct a Riesz-basis for
(

H1
0,Γ(Ω), |||·|||

)
with Riesz

constants that are bounded uniformly in ~κ, ~µ from “large” subsets of (0, ∞)N+1.
In the examples that will presented in the final Sect. 5, we will verify whether the
conditions of Proposition 2.1 are satisfied so that |||·||| h | · |E.

For our goal, we will construct an isomorphism, uniform in these ~κ, ~µ, be-
tween the Cartesian product ∏N

i=0
(

H1
0,Γi

(Ωi), |||·|||i
)
, for suitable Γi ⊂ ∂Ωi, and(

H1
0,Γ(Ω), |||·|||

)
. By applying such an isomorphism to the union of uniform Riesz

bases for
(

H1
0,Γi

(Ωi), |||·|||i
)
, for i = 0, · · · , N, the result is a Riesz-basis for

(
H1

0,Γ(Ω), |||·|||
)

with Riesz constants that are bounded uniformly in~κ, ~µ.
To construct this isomorphism, first we focus on the case of having two subdo-

mains Ω1 and Ω2. Since joining of two subdomains will be applied recursively,
while handling the two subdomains case we will drop the assumptions that, for
i = 1, 2, µi, κi are constants. So µi, κi ∈ L∞(Ωi) with µi, κi > 0 a.e., where in ap-
plications µi, κi will be piecewise constant. The norms |||u|||i should now be read as
|||u|||i =

√∫
Ωi

µi(x)|u(x)|2 + κi(x)|∇u(x)|2dx.
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For i ∈ {1, 2}, let Ri be the restriction of functions on Ω to Ωi, and let η2 be the
extension by zero of functions on Ω2 to functions on Ω. Suppose that E1 is some
extension of functions on Ω1 to functions on Ω, mapping H1

0,Γ1
(Ω1) into H1

0,Γ(Ω),
where for some given, measurable Γ ⊂ ∂Ω,

Γ1 := ∂Ω1 ∩ Γ,

Γ2 := ∂Ω2 ∪ Γ ∩ (∂Ω1 ∩ ∂Ω2).

See Figure 1, for an illustration. So the trivial zero extension η2 will be applied to

Ω2
Ω Ω1

FIGURE 1. Left: ∂Ω \ Γ (dashed) and Γ (solid). Middle: ∂Ω1 \ Γ1
(dashed) and Γ1 (solid). Right: ∂Ω2 \ Γ2 (dashed) and Γ2 (solid).

functions on Ω2 that vanish at the interface, whereas E1 will be applied to func-
tions on Ω1 that generally do not vanish at this interface.

Proposition 2.5. Setting

E := [E1 η2] : (H1
0,Γ1

(Ω1), |||·|||1)× (H1
0,Γ2

(Ω2), |||·|||2)→ (H1
0,Γ(Ω), |||·|||),

its inverse is given by

E−1 :=
[

R1
R2(Id− E1R1)

]
: (H1

0,Γ(Ω), |||·|||)→ (H1
0,Γ1

(Ω1), |||·|||1)× (H1
0,Γ2

(Ω2), |||·|||2).

It holds that

|||E||| ≤
√

1 + |||E1|||2,

|||E−1||| ≤
√

max(1 + 2|||E1|||2, 2).

Proof. Let us first confirm the formula for E−1. Using R1E1 = Id, R1η2 = 0, R2η2 =
Id, we obtain [

R1
R2(Id− E1R1)

]
[E1 η2] =

[
Id 0
0 Id

]
,

and using that ran(Id− E1R1) ⊂ ran η2 and R2η2 = Id, we have

[E1 η2]

[
R1

R2(Id− E1R1)

]
= E1R1 + η2R2(Id− E1R1) = Id.

Now we verify the boundedness of E and E−1. For ui ∈ H0,Γi (Ωi) (i = 1, 2), it
holds that

|||E(u1, u2)||| = |||E1u1 + η2u2||| ≤ |||E1||||||u1|||1 + |||u2|||2

≤
√
|||E1|||2 + 1 ·

√
|||u1|||21 + |||u2|||22,
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and for u ∈ H1
0,Γ(Ω), we have

|||E−1u|||2 = |||R1u|||21 + |||R2(Id− E1R1)u|||22 ≤ |||R1u|||21 + 2|||R2u|||22 + 2|||R2E1R1u|||22
≤ |||R1u|||21 + 2|||R2u|||22 + 2|||E1|||2|||R1u|||22
= (1 + 2|||E1|||2)|||R1u|||21 + 2|||R2u|||22
≤ max(1 + 2|||E1|||2, 2)|||u|||2. �

Besides the construction of a suitable E1, the other question is how to construct
a (uniform) Riesz basis for (H1

0,Γi
(Ωi), |||·|||i). We will answer the latter question in

the two possible cases meas(Γi) > 0 and meas(Γi) = 0. For meas(Γi) > 0 and
0 < µi . κi, Friedrich’s inequality shows that |||·|||i h

√
κi‖ · ‖H1(Ωi)

on H1
0,Γi

(Ωi).
So a simple normalization of a Riesz basis for H1

0,Γi
(Ωi) will do. In the following

proposition we will discuss this issue for Γi = ∅, so that H1
0,Γi

(Ωi) = H1(Ωi).

Proposition 2.6. Let Σ ∪ {1} be a Riesz basis for H1(Ωi) (with standard norm) such
that Σ ⊂ H1(Ωi)/R. Then, normalized, Σ ∪ {1} is a Riesz basis for (H1(Ωi), |||·|||i)
with Riesz constants that are bounded uniformly in 0 < µi . κi.

Proof. Writing Σ = {σλ}, from 〈∇σλ,∇1〉L2(Ωi)
= 0 = 〈σλ, 1〉L2(Ωi)

, for c ∈ `2 and
d ∈ R, we have

|||κ−
1
2

i c>Σ + µ
− 1

2
i d1|||2i = |||κ−

1
2

i c>Σ|||2i + |||µ
− 1

2
i d1|||2i

= |c>Σ|2H1(Ωi)
+

µi
κi
‖c>Σ‖2

L2(Ωi)
+ ‖d1‖2

L2(Ωi)

h ‖c>Σ‖2
H1(Ωi)

+ ‖d1‖2
H1(Ωi)

h ‖c‖2
`2
+ |d|2,

with the one but lasth being valid because of Poincaré’s inequality, Σ ⊂ H1(Ωi)/R,

and µi . κi. In other words, κ
− 1

2
i Σ ∪ {µ−

1
2

i 1} is a Riesz basis for (H1(Ωi), |||·|||i)
with Riesz constants that are bounded uniformly in 0 < µi . κi. �

Finally in this section, we briefly discuss dual bases. In the situation of Propo-
sition 2.5, let Ψi be a basis for (H1

0,Γi
(Ωi), |||·|||i) so that E1Ψ1 ∪ η2Ψ2 is a Riesz basis

for (H1
0,Γ(Ω), |||·|||). Let Ψ̃1 ⊂ L2(Ω1), Ψ̃2 ⊂ L2(Ω2) be collections that are dual to

Ψ1 and Ψ2, respectively. From Ri = η∗i and Riηj = δij (i, j ∈ {1, 2}), we have

E∗ =
[

E∗1
R2

]
, E−∗ = [η1 (Id− η1E∗1 )η2].

We conclude that the collection in L2(Ω) that is dual to E1Ψ1 ∪ η2Ψ2 is given by

(2.3) (Id− η1E∗1 )η2Ψ̃2 ∪ η1Ψ̃1.

Since (Id− η1E∗1 )η2 plays the role of the extension E1 at the dual side, we will call
it the adjoint extension.
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3. CONSTRUCTION OF A PIECEWISE TENSOR PRODUCT WAVELET RIESZ BASIS

3.1. Construction of Riesz bases by extension. In this subsection, we are going to
apply the approach outlined in Propositions 2.5 iteratively, where the subdomains
will be (unions of) hypercubes. Let I := (0, 1), � := In. We assume that for a
fixed, finite set of hypercubes {�0, . . . ,�N} from {τ +� : τ ∈ Zn}, it holds that
∪N

i=0�i ⊂ Ω ⊂ (∪N
i=0�i)

int, and that ∂Ω is the union of (closed) facets of the �i’s.
The case Ω ( (∪N

i=0�i)
int corresponds to the situation that Ω has one or more

cracks.
Recall the definition (2.1) of the norm |||·|||i on H1(Ωi), i.e., on H1(�i). In view

of Proposition 2.1, see also Remark 2.3, we will always assume that the µi’s are
chosen such that

(3.1) 0 < µi . κi.

By applying extension operators, from Riesz bases for the corresponding Sobolev
spaces on the subdomains �i, we will construct a Riesz basis for

(
H1

0,Γ(Ω), |||·|||
)
,

that, after normalization, has Riesz constants which, under some conditions, are
bounded uniformly in {0 < µi . κi : 0 ≤ i ≤ N}.

We set Ω(0)
i := �i, for i = 0, · · · , N. Starting from the initial subdivision of

Ω into hypercubes, we will create a sequence ({Ω(q)
i : q ≤ i ≤ N})0≤q≤N of

sets of polytopes, where each next entry in this sequence is created by joining two
polytopes from the previous entry whose joint interface is part of a hyperplane. So
we assume that for any 1 ≤ q ≤ N, there exists q− 1 ≤ i1 6= i2 ≤ N and q ≤ ī ≤ N
that satisfy

(D1) Ω(q)
ī :=

(
Ω(q−1)

i1
∪Ω(q−1)

i2
\ ∂Ω

)int
is connected, and the interface J :=

Ω(q)
ī \ (Ω

(q−1)
i1

∪Ω(q−1)
i2

) is part of a hyperplane,

(D2) {Ω(q)
i : q ≤ i ≤ N, i 6= ī} =

{
Ω(q−1)

i : q− 1 ≤ i ≤ N, i 6= {i1, i2}
}

,

(D3) Ω(N)
N = Ω.

To each of the closed facets of the hypercubes �j, for j = 0, 1, · · · , N, we asso-
ciate a number 0 or 1 indicating the order of the homogeneous Dirichlet boundary
condition on the facet (where order 0 means no boundary condition). Considering
problem (1.1), we choose a first order homogeneous Dirichlet boundary condition
(i.e. order 1) on all the closed facets that are on Γ, and order 0 on ∂Ω \ Γ. The
selection of the order 0 or 1 on the other, interior facets will follow from conditions
(D5)–(D7) given below.

By construction, the boundary of each Ω(q)
i is a union of facets of hypercubes

�j. We define
◦
H1(Ω(q)

i ) as the closure in H1(Ω(q)
i ) of the smooth functions on Ω(q)

i
that vanish on the union of the facets of the �j on which homogeneous Dirichlet

conditions are imposed, and that are part of ∂Ω(q)
i . Note that

◦
H1(Ω(N)

N ) = H1
0,Γ(Ω).

We equip
◦
H1(Ω(q)

i ) with squared norm

|||u|||2q,i := ∑
�j⊂Ω(q)

i

|||u|||2j ,

which for i = N = q is the norm |||·|||.
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The boundary conditions on the hypercubes and the order in which polytopes
are connected should be chosen such that

(D5) on the Ω(q−1)
i1

and Ω(q−1)
i2

sides of J, the boundary conditions are of order
0 and 1, respectively,

(D6) for any two hypercubes�j1 ⊂ Ω(q−1)
i1

and�j2 ⊂ Ω(q−1)
i2

from {�0, . . . ,�N}
that intersect each other at J, it holds that κj2 . µj1 ,

and, w.l.o.g. assuming that J = {0} × J̆ and (0, 1)× J̆ ⊂ Ω(q−1)
i1

,

(D7) for any function in
◦
H1(Ω(q−1)

i1
) that vanishes at {0, 1} × J̆ its reflection in

{0} ×Rn−1 extended with zero, is in
◦
H1(Ω(q−1)

i2
).

The condition (D7) can be formulated by saying that the order of the boundary
condition at any subfacet of Ω(q−1)

i1
adjacent to J should not be less than this order

at its reflection in J, where in case this reflection is not part of ∂Ω(q−1)
i2

the latter
order should be read as 1; and vice versa, that the order of the boundary condition
at any subfacet of Ω(q−1)

i2
adjacent to J should not be larger than this order at its

reflection in J, where in case this reflection is not part of ∂Ω(q−1)
i1

the latter order
should be read as 0.

Condition (D7) is meant to be able to construct, in the forthcoming Proposi-
tion 3.2, uniformly bounded extension operators E(q)

1 , generalizing the operator
E1 from Proposition 2.5 for the two subdomain case.

Example 3.1. Let Ω be subdivided into 5 squares Ω(0)
0 ,. . . ,Ω(0)

4 , and let the Dirichlet
boundary Γ ⊂ ∂Ω be as indicated as in Figure 2. Let κ1 . κ2 . κ3 . κ4, and
κ1 . κ0. By taking µi = κi (∀i), a valid ordering of the merging of the subdomains,
with valid directions in which the extensions E(q)

1 are applied, is illustrated in that
figure.

E(4)
1

Ω(0)
1

Ω(0)
0

Ω(0)
2 Ω(0)

3

Ω(0)
4

Ω(1)
1

Ω(1)
2 Ω(1)

3

Ω(1)
4

Ω(2)
2

Ω(2)
3

Ω(2)
4

Ω(3)
3

Ω(3)
4

Ω(4)
4

E(1)
1

E(2)
1

E(3)
1

FIGURE 2. Solid facets indicate homogeneous Dirichlet boundary
conditions, and no boundary conditions are indicated by dashed
subfacets.
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Given 1 ≤ q ≤ N, for j ∈ {1, 2}, let R(q)
j be the restriction of functions on Ω(q)

ī to

Ω(q−1)
ij

. Let η
(q)
2 be the trivial extension of functions on Ω(q−1)

i2
to Ω(q)

ī by zero, and
let

E(q)
1 :

◦
H1(Ω(q−1)

i1
)→

◦
H1(Ω(q)

ī ),

be a suitable extension of functions on Ω(q−1)
i1

to Ω(q)
ī . Following Proposition 2.5,

we define

(3.2) E(q) := [E(q)
1 η

(q)
2

] :
◦
H1(Ω(q−1)

i1
)×

◦
H1(Ω(q−1)

i2
)→

◦
H1(Ω(q)

ī ).

Under the conditions (D1)-(D7), the extensions E(q)
1 can be constructed as ten-

sor products of univariate extensions with identity operators in the other Cartesian
directions:

Proposition 3.2. In the setting of (D1), w.l.o.g. let J = {0}× J̆ and (0, 1)× J̆ ⊂ Ω(q−1)
i1

.
Let G1 be an extension operator of functions on (0, 1) to functions on (−1, 1) such that

G1 ∈ B(L2(0, 1), L2(−1, 1)), G1 ∈ B(H1(0, 1), H1
0,{−1}(−1, 1)).

Then with E(q)
1 defined as the composition of the restriction of functions on Ω(q−1)

i1
to

(0, 1)× J̆, followed by an application of

G1 ⊗ Id⊗ · · · ⊗ Id,

followed by an extension by 0 to Ω(q−1)
i2

\ (−1, 0)× J̆, it holds that

E(q)
1 ∈ B((

◦
H1

(Ω(q−1)
i1

), |||·|||q−1,i1), (
◦
H1

(Ω(q)
ī ), |||·|||q,ī)),

with a norm that is bounded uniformly in {0 < µi . κi : 0 ≤ i ≤ N} that satisfy (D6).

Proof. Since the restriction and extension are bounded with norms equal to 1, it is
sufficient to prove that G1⊗ Id⊗ · · ·⊗ Id is uniformly bounded from H1((0, 1)× J̆)
equipped with

√
∑�j⊂(0,1)× J̆ |||·|||

2
j to H1((−1, 1)× J̆) equipped with

√
∑�j⊂(−1,1)× J̆ |||·|||

2
j .

It is sufficient to prove this uniform boundedness for both coefficients µj and κj

that define |||·|||j being replaced by µ̄j, where µ̄j =

{
µj when �j ⊂ (0, 1)× J̆,
µj′ when �j ⊂ (−1, 0)× J̆,

with j′ being such that �j and �j′ share a facet at J̆. Indeed, by (D6) and (3.1),
these replacements can make |||·|||j for �j at the right (left)-side of the interface
only smaller (larger) (up to some constant factor).

With for an interval I, AI : H1(I)→ H1(I)′ defined by (AIu)(v) = 〈u′, v′〉L2(I)+

〈u, v〉L2(I), the assumption on G1 means that G1, A
1
2
(−1,1)G1 A−

1
2

(0,1) ∈ B(L2(0, 1), L2(−1, 1)).
For notational simplicity only, let us consider the situation that n = 2, and let µ̄

be such that µ̄(y) = µ̄j when (0, 1)× {y} ⊂ �j. Denoting u 7→ (y 7→
√

µ̄(y)u(y))

as ν, obviously νA
1
2
J̆

A−
1
2

J̆
ν−1, νν−1 ∈ B(L2( J̆), L2( J̆)).

We conclude that

(Id⊗ ν)(A
1
2
(−1,1) ⊗ Id)(G1 ⊗ Id)(A−

1
2

(0,1) ⊗ Id)(Id⊗ ν−1),

(Id⊗ ν)(Id⊗ A
1
2
J̆
)(G1 ⊗ Id)(Id⊗ A−

1
2

J̆
)(Id⊗ ν−1) ∈ B(L2((0, 1)× J̆), L2((−1, 1)× J̆)),
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independently of µ̄ with µ̄, 1/µ̄ ∈ L∞((−1, 1)× J̆). Boundedness of these opera-
tions mean that∫ 1

−1

∫
J̆
[((G1 ⊗ Id)u)(x, y)2+(∂x(G1 ⊗ Id)u)(x, y)2]µ̄(y)dydx

.
∫ 1

0

∫
J̆
[u(x, y)2 + (∂xu)(x, y)2]µ̄(y)dydx,

or ∫ 1

−1

∫
J̆
[((G1 ⊗ Id)u)(x, y)2+(∂y(G1 ⊗ Id)u)(x, y)2]µ̄(y)dydx

.
∫ 1

0

∫
J̆
[u(x, y)2 + (∂yu)(x, y)2]µ̄(y)dydx,

and so∫ 1

−1

∫
J̆
[((G1 ⊗ Id)u)(x, y)2+(∂x(G1 ⊗ Id)u)(x, y)2 + (∂y(G1 ⊗ Id)u)(x, y)2]µ̄(y)dydx

.
∫ 1

0

∫
J̆
[u(x, y)2 + (∂xu)(x, y)2 + (∂yu)(x, y)2]µ̄(y)dydx,

for all u ∈ H1((0, 1)× J̆), independently of µ̄, which was to be proven. �

By an application of Proposition 2.5, we have the following result.

Corollary 3.3. Let E(q)
1 be as constructed in Proposition 3.2. Then, for E being the com-

position for q = 1, . . . , N of the mappings E(q) from (3.2), trivially extended with identity
operators in coordinates i ∈ {q− 1, . . . , N} \ {i(q)1 , i(q)2 }, it holds that

(3.3) E ∈ B
( n

∏
i=0

(
◦
H1

(�i), |||·|||i), (
◦
H1

(Ω), |||·|||)
)

,

is boundedly invertible uniformly in {0 < µi . κi : 0 ≤ i ≤ N} that satisfy (D6).

Corollary 3.4. For 0 ≤ i ≤ N, let Ψi be a Riesz basis for L2(�i), that renormalized
in (H1(�i), |||·|||i), is a Riesz basis for

◦
H1

(�i) with Riesz constants that are bounded
uniformly in 0 < µi . κi (cf. Proposition 2.6 and the lines preceding it). Then with
the isomorphism E from Corollary 3.3, the collection E(∏N

i=0 Ψi), normalized in |||·|||,
is a Riesz basis for (

◦
H1

(Ω), |||·|||) with Riesz constants that are bounded uniformly in
{0 < µi . κi : 0 ≤ i ≤ N} that satisfy (D6).

3.2. Tensor products of univariate wavelet functions. As in [DS10], we are going
to construct the bases Ψi as meant in Corollary 3.4 as tensor products of univariate
wavelet bases. It is sufficient to consider the case that �i = In.

For~σ = (σ`, σr) ∈ {0, 1}2, where we will denote (0, 0) as~0, let

H1
~σ(I) := {v ∈ H1(I) : v(0) = 0 when σ` = 1, and v(1) = 0 when σr = 1}.

We assume that biorthogonal univariate primal and dual wavelet collections

Ψ~σ :=
{

ψ~σλ : λ ∈ ∇~σ

}
⊂ H1

~σ(I),

Ψ̃~σ :=
{

ψ̃~σλ : λ ∈ ∇~σ

}
⊂ L2(I),

are available that satisfy the following properties:
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(W1) Ψ~σ, and so Ψ̃~σ, is a Riesz basis for L2(I),
(W2) {2−|λ|ψ~σλ : λ ∈ ∇~σ} is a Riesz basis for H1

~σ(I), where |λ| ∈N0 denotes the
level of λ,

(W3) |〈ψ̃~σλ, u〉L2(I)| . 2−|λ|d‖u‖Hd(supp ψ̃~σ) (u ∈ Hd(I) ∩ H1
~σ(I)), for some N 3

d > 1,

(W4) 1 > ρ := sup
λ∈∇~σ

2|λ|max(diam supp ψ̃~σλ, diam supp ψ~σλ)

h inf
λ∈∇~σ

2|λ|max(diam supp ψ̃~σλ, diam supp ψ~σλ),

(W5) sup
j,k∈N0

#{|λ| = j : [k2−j, (k + 1)2−j] ∩ (supp ψ̃~σλ ∪ supp ψ~σλ) 6= ∅} < ∞.

(W6) 1 ∈ span{ψ~0λ : λ ∈ ∇~0, |λ| = 0},

(W7) 〈ψ~0λ, 1〉L2(I) = 0 for |λ| > 0,

where the last two conditions thus only apply to the case~σ =~0.
Biorthogonal wavelets that satisfy the above conditions have been constructed

in [DKU99, Dij09, Pri10]. The conditions (W4) and (W5) mean that both primal and
dual wavelets are local and locally finite, respectively. The condition ρ < 1, which
implies that a wavelet that is non-zero at one boundary vanishes at the other, can
always be satisfied by increasing the coarsest scale.

For σ = (~σi = ((σi)`, (σi)r))1≤i≤n ∈ ({0, 1}2)n, we define

H1
σ(�) := H1

~σ1
(I)⊗ L2(I)⊗ · · · ⊗ L2(I) ∩ · · · ∩ L2(I)⊗ · · · ⊗ L2(I)⊗ H1

~σn
(I).

So H1
σ(�) is the space of H1-functions on � that satisfy first order homogeneous

Dirichlet boundary conditions on selected faces. The tensor product wavelet collec-
tion

(3.4) Ψσ := ⊗n
i=1Ψ~σi

=
{

ψσ
λ := ⊗n

i=1ψ
~σi
λi

: λ ∈ ∇σ :=
n

∏
i=1
∇~σi

}
,

and its renormalized version
{(

∑n
i=1 4|λi |

)−1/2
ψσ

λ : λ ∈ ∇σ
}

are Riesz bases for
L2(�) and H1

σ(�), respectively.
The collection that is dual to Ψσ reads as

Ψ̃σ := ⊗n
i=1Ψ̃~σi

=
{

ψ̃σ
λ := ⊗n

i=1ψ̃
~σi
λi

: λ ∈ ∇σ
}

,

and is a Riesz basis for L2(�).
Possibly after a basis transformation that involves only basis functions on the

coarsest scale, the conditions (W6) and (W7) guarantee that Ψ(~0,··· ,~0) satisfies the
conditions of Proposition 2.6. We return to this issue at the end of Sect. 4.2.4.

3.3. Construction of scale-dependent univariate extension operators. We have
observed that the extension operator E(q)

1 , for 1 ≤ q ≤ N, can be built by applying
an appropriate univariate extension operator G1. Since, additionally, we apply
tensor product wavelets on the hypercubes�i, the issue of constructing a suitable
extension reduces to the issue in the univariate case. We are going to construct
an extension operator that will act only on wavelets that are supported near the
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interface, so that the extension increases the diameter of the support of any wavelet
by not more than a constant factor.

We consider the situation of the univariate domain (−1, 1) with two subdo-
mains (0, 1) and (−1, 0), and we extend functions on (0, 1) to (−1, 1). We make the
following additional assumptions on the univariate wavelets. For ~σ = (σ`, σr) ∈
{0, 1}2,

(W8) V~σ
j := span{ψ~σλ : λ ∈ ∇~σ, |λ| ≤ j} = V~0

j ∩ H1
~σ((0, 1)),

(W9) ∇~σ is the disjoint union of ∇(`)
σ` , ∇(I), ∇(r)

σr such that
(i) sup

λ∈∇(`)
~σ

, x∈supp ψ~σλ
2|λ||x| . ρ, sup

λ∈∇(r)
~σ

, x∈supp ψ~σλ
2|λ||1− x| . ρ,

(ii) for λ ∈ ∇(I), ψ~σλ = ψ
~0
λ, ψ̃~σλ = ψ̃

~0
λ, and the extensions of ψ

~0
λ and ψ̃

~0
λ by

zero are in H1(R) and L2(R), respectively.

(W10)

{
span{ψ~0λ : λ ∈ ∇(I), |λ| = j} = span{ψ~0λ(1− ·) : λ ∈ ∇(I), |λ| = j},
span{ψ(σr ,σ`)

λ : λ ∈ ∇(r)
σr , |λ| = j} = span{ψ(σ`,σr)

λ (1− ·) : λ ∈ ∇(`)
σ` , |λ| = j}

(W11)

{
ψ~σλ(2

l ·) ∈ span{ψ~σν : ν ∈ ∇(`)
σ` } (l ∈N0, λ ∈ ∇(`)

σ` ),
ψ
~0
λ(2

l ·) ∈ span{ψ~0ν : ν ∈ ∇(I)} (l ∈N0, λ ∈ ∇(I)).

The biorthogonal wavelets constructed in [DKU99, Dij09, Pri10] satisfy these ad-
ditional assumptions as well. Mainly in view of obtaining a bi-infinite stiffness
matrix in which nearly all row and columns contain only finitely many non-zeros,
in Sect. 4 we are going to present an alternative wavelet construction that also
satisfies all conditions (W1)-(W11).

To design a suitable extension, let us first consider the simple reflection

(3.5)
(Ğ1v)(x) := v(x) x ∈ (0, 1)

(Ğ1v)(−x) := v(x) x ∈ (0, 1)

for any v ∈ L2(0, 1). It is clear that

(3.6)
Ğ1 ∈ B(L2(0, 1), L2(−1, 1)),

Ğ1 ∈ B(H1(0, 1), H1(−1, 1)).

Its dual reads as

(3.7) (Ğ∗1 v)(x) := v(x) + v(−x) (v ∈ L2(−1, 1), x ∈ (0, 1)).

Let η1 and η2 denote the extensions by zero of functions on (0, 1) and on (−1, 0)
to functions on (−1, 1), respectively, with R1 and R2 denoting their adjoints. The
‘adjoint extension’ of Ğ1, denoted by Ğ2, is defined by

Ğ2 := (Id− η1Ğ∗1 )η2.

It satisfies

Ğ2v(x) =

{
v(x) x ∈ (−1, 0),

−v(−x) x ∈ (0, 1).

where v ∈ L2(−1, 1).
The obvious choice of G1 = Ğ1, does not yield the desirable property of diam(supp G1u) .

diam(supp u). To solve this and the corresponding problem for the adjoint exten-
sion, in any case for u being any primal or dual wavelet, respectively, following
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[CDFS13] we will apply our construction using the modified, scale-dependent uni-
variate extension operator

(3.8) G1 : u 7→ ∑
λ∈∇(`)

0

〈u, ψ̃
~0
λ〉L2(0,1)Ğ1ψ

~0
λ + ∑

λ∈∇(I)∪∇(r)
0

〈u, ψ̃
~0
λ〉L2(0,1)η1ψ

~0
λ.

So this operator reflects only wavelets that are supported near the interface.

Proposition 3.5. For~σ ∈ {0, 1}2, the scale-dependent extension G1 from (3.8) satisfies

(3.9) G1ψ~σι =

{
η1ψ~σι when ι ∈ ∇(I) ∪∇(r)

σr ,
Ğ1ψ~σι when ι ∈ ∇(`)

0 .

The resulting adjoint extension G2 := (Id− η1G∗1 )η2 satisfies

(3.10) G2(ψ̃
~σ
ι (1 + ·)) =

{
η2(ψ̃

~σ
ι (1 + ·)) when ι ∈ ∇(I) ∪∇(`)

σ` ,
Ğ2(ψ̃

~σ
ι (1 + ·)) when ι ∈ ∇(r)

σr .

For ι ∈ ∇~σ, it holds that

diam(supp G1ψ~σι ) . diam(supp ψ~σι ),

diam(supp G2ψ̃~σι ) . diam(supp ψ̃~σι ).(3.11)

Finally, the following results hold

G1 ∈ B(L2(0, 1), L2(−1, 1)),

G1 ∈ B(H1(0, 1), H1
0,{−1}(−1, 1)).

Proof. By (W9)(ii), for ι ∈ ∇(I) ∪∇(r)
σr , λ ∈ ∇(`)

0 , one has 〈ψ~σι , ψ̃
~0
λ〉L2(0,1) = 0, and so

G1ψ~σι = ∑λ∈∇~0
〈ψ~σι , ψ̃

~0
λ〉L2(0,1)η1ψ

~0
λ = η1ψ~σι , the last equality from Ψ~0 being a Riesz

basis for L2(0, 1), and η1 being L2-bounded.
Similarly, for ι ∈ ∇(`)

σ` , λ ∈ ∇(I) ∪∇(r)
0 , it holds that 〈ψ~σι , ψ̃

~0
λ〉L2(0,1) = 0, and so

G1ψ~σι = ∑λ∈∇~0
〈ψ~σι , ψ̃

~0
λ〉L2(0,1)Ğ1ψ

~0
λ = Ğ1ψ~σι .

For v ∈ L2(0, 1),

G∗1 η2(v(1 + ·)) = ∑
λ∈∇~0

〈G∗1 η2(v(1 + ·)), ψ
~0
λ〉L2(0,1)ψ̃

~0
λ

= ∑
λ∈∇~0

〈v(1− ·), (R2G1ψ
~0
λ)(−·)〉L2(0,1)ψ̃

~0
λ

= ∑
λ∈∇(`)

0

〈v(1− ·), (R2Ğ1ψ
~0
λ)(−·)〉L2(0,1)ψ̃

~0
λ

= ∑
λ∈∇(`)

0

〈
v(1− ·), ψ

~0
λ

〉
L2(0,1)

ψ̃
~0
λ.(3.12)

For v = ψ̃~σι and ι ∈ ∇(I) ∪ ∇(`)
σ` , (3.12) is zero by (W10), (W11), and (W9)(ii). For

v = ψ̃~σι and ι ∈ ∇(r)
σr , one has

〈
v(1− ·), ψ

~0
λ

〉
L2(0,1)

= 0 for λ ∈ ∇(I) ∪∇(r)
0 by (W10),

(W11), and (W9)(ii). So for those ι, one has G∗1 η2(ψ̃
~σ
ι (1 + ·)) = Ğ∗1 η2(ψ̃

~σ
ι (1 + ·)),

which completes the proof of (3.10).
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Since span{ψ~0ι : ι ∈ ∇(I) ∪∇(r)
0 }+ span{ψ~0ι : ι ∈ ∇(`)

0 } defines a stable splitting
of both L2(0, 1) and H1(0, 1) into two subspaces, the statements about the bound-
edness of G1 follow from (3.9) with~σ =~0, (3.6), and (W9)(ii). �

3.4. A more efficient scale-dependent univariate extension operator. Recall the
definition of the scale-dependent extension operator in (3.8). In view of the defini-
tion of the splitting of the wavelet index set ∇~σ into ∇(`)

σ` , ∇(I), and ∇(r)
σr , we infer

that each ψ
~0
λ has to be extended over the interface by the application of Ğ1, for all

λ for which either ψ
~0
λ or ψ̃

~0
λ is a boundary adapted wavelet.

The reason why, for λ with the dual wavelet ψ̃
~0
λ being a boundary adapted

wavelet, ψ
~0
λ had to be extended is to ensure that the resulting dual wavelets are

locally supported. In this subsection, under some additional condition, we will
show that the application of Ğ1 can be confined to only those primal wavelets ψ

~0
λ

that do not vanish at the boundary, and nevertheless end up with locally supported dual
wavelets. Since dual wavelets have usually larger supports, this means that fewer
wavelets have to be extended, making the construction more efficient.

Remark 3.6. Since dual wavelets do not enter the implementation of the adaptive
wavelets scheme, one may wonder why it is important that they have local sup-
ports. The reason is that using these local supports, in [CDFS13, Thm. 5.6] we
could prove optimal ‘univariate’ approximation rates in H1(Ω) from the piecewise
tensor product wavelet basis assuming only mild piecewise weighted anisotropic
Sobolev smoothness, which result was appended with corresponding regularity
results for the Poisson problem in [CDFS13, Sect. 6] using results from [CDN12].
Although in the current paper we do not make an attempt to generalize those re-
sults to the interface problem, in view of them it can be expected to be beneficial
to have locally supported duals.

We add the following condition, that will be satisfied by our wavelet construc-
tion presented in Sect. 4:

(W12) for some constant m ∈ N, for any~σ ∈ {0, 1}2, for k ≥ m, span{ψ~σλ : |λ| =
j + k} is L2(0, 1)-orthogonal to span{ψ̃~0λ : |λ| = j} (j ∈N0).

Now, with

∇̄(`)
0 := {λ ∈ ∇(`)

0 : ψ
~0
λ(0) 6= 0}, ∇̂(`)

0 := ∇(`)
0 \∇̄

(`)
0 ,

we redefine

(3.13) G1 : u 7→ ∑
λ∈∇̄(`)

0

〈u, ψ̃
~0
λ〉L2(I)Ğ1ψ

~0
λ + ∑

λ∈∇̂(`)
0 ∪∇(I)∪∇(r)

0

〈u, ψ̃
~0
λ〉L2(I)η1ψ

~0
λ.

Note that, in view of (D5), it is sufficient to consider the action of G1 on pri-
mal wavelets ψ~σι for σ` = 0, and that of the resulting dual extension G2 on dual
wavelets ψ̃~σι for σr = 0.

Proposition 3.7. For σ` = 0, the scale-dependent extension G1 from (3.13) satisfies

(3.14) G1ψ~σι =

{
η1ψ~σι when ι ∈ ∇̂(`)

0 ∪∇(I) ∪∇(r)
σr ,

Ğ1ψ~σι when ι ∈ ∇̄(`)
0 ,
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and so in particular, for ι ∈ ∇~σ,

diam(supp G1ψ~σι ) . diam(supp ψ~σι ).

For the resulting adjoint extension G2 := (Id− η1G∗1 )η2, and for σr = 0, it holds that

(3.15) diam(supp G2ψ̃~σι (1 + ·)) . diam(supp ψ̃~σι (1 + ·)).

Finally,
G1 ∈ B(L2(0, 1), L2(−1, 1)),

G1 ∈ B(H1(0, 1), H1
0,{−1}(−1, 1)).

Proof. By (W9)(ii), for ι ∈ ∇̂(`)
0 ∪∇(I) ∪∇(r)

σr , λ ∈ ∇̄(`)
0 , it holds that 〈ψ~σι , ψ̃

~0
λ〉L2(I) =

0, and so G1ψ~σι = ∑λ∈∇~0
〈ψ~σι , ψ̃

~0
λ〉L2(I)η1ψ

~0
λ = η1ψ~σι . Also for ι ∈ ∇̄(`)

0 , λ ∈ ∇̂(`)
0 ∪

∇(I) ∪∇(r)
σr , one has 〈ψ~σι , ψ̃

~0
λ〉L2(I) = 0, and so G1ψ~σι = Ğ1ψ~σι .

For v ∈ L2(I), we have

G∗1 η2(v(1 + ·)) = ∑
λ∈∇~0

〈G∗1 η2(v(1 + ·)), ψ
~0
λ〉L2(I)ψ̃

~0
λ(3.16)

= ∑
λ∈∇~0

〈v(1− ·), (R2G1ψ
~0
λ)(−·)〉L2(I)ψ̃

~0
λ

= ∑
λ∈∇̄(`)

0

〈v(1− ·), (R2Ğ1ψ
~0
λ)(−·)〉L2(I)ψ̃

~0
λ

= ∑
λ∈∇̄(`)

0

〈
v(1− ·), ψ

~0
λ

〉
L2(I)

ψ̃
~0
λ.(3.17)

Now we consider v = ψ̃~σι with σr = 1. For ι ∈ ∇(I) ∪ ∇(`)
σ` , (3.17) is zero by

(W10), (W11), and (W9)(ii), and so G2ψ̃~σι (1 + ·) = η2ψ̃~σι (1 + ·).

For ι ∈ ∇(r)
1 , one has

〈
ψ̃~σι (1− ·), ψ

~0
λ

〉
L2(I)

= 0 for λ ∈ ∇(I) ∪ ∇(r)
0 by (W10),

(W11), and (W9)(ii). So for those ι, one has

G∗1 η2(ψ̃
~σ
ι (1 + ·)) = ∑

λ∈∇̄(`)
0 ∪∇(I)∪∇(r)

0

〈
ψ̃~σι (1− ·), ψ

~0
λ

〉
L2(I)

ψ̃
~0
λ

= ∑
λ∈∇~0

〈
ψ̃~σι (1− ·), ψ

~0
λ

〉
L2(I)

ψ̃
~0
λ − ∑

λ∈∇̂(`)
0

〈
ψ̃~σι (1− ·), ψ

~0
λ

〉
L2(I)

ψ̃
~0
λ

= Ğ∗1 η2(ψ̃
~σ
ι (1 + ·))− ∑

λ∈∇̂(`)
0

〈
ψ̃~σι (1− ·), ψ

~0
λ

〉
L2(I)

ψ̃
~0
λ

From (W12), we have
〈

ψ̃~σι (1− ·), ψ
~0
λ

〉
L2(I)

= 0, for |ι| + m ≤ |λ|. For λ ∈ ∇̂(`)
0 ,

ψ
~0
λ vanishes at 0, and thus is contained in the space V~σ

|λ|. For |λ| < |ι|, ψ̃~σι (1 −
·) is orthogonal to this space, and so again the mentioned inner product is zero.
Therefore, the last sum contains finitely many non-zero terms where |λ| h |ι|, and
thus supp G2ψ̃~σι (1 + ·) is local.
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The proof of the final statement is as for the corresponding statement in Propo-
sition 3.5. �

4. BIORTHOGONAL WAVELET CONSTRUCTION ON THE INTERVAL

In this section, for each~σ ∈ {0, 1}2 we construct univariate biorthogonal wavelet
bases that satisfy all the conditions (W1)–(W12). In addition they will give rise to
mass- and stiffness matrices for which nearly all their rows and columns contain
finitely many non-zeros.

In order to construct a Riesz basis for a range of Sobolev spaces, in particular
for L2(I) and H1

~σ(I), cf. (W1)-(W2), we apply the following crucial result:

Theorem 4.1 (Biorthogonal space decompositions [DS99b, Ste03]). Let

V~σ
0 ⊂ V~σ

1 ⊂ · · · ⊂ H1
~σ(I), Ṽ~σ

0 ⊂ Ṽ~σ
1 ⊂ · · · ⊂ L2(I),

be sequences of primal and dual spaces such that dim V~σ
j = dim Ṽ~σ

j < ∞. Let Φ~σ
j and

Φ̃~σ
j be biorthogonal uniform L2(I)-Riesz bases of V~σ

j and Ṽ~σ
j , respectively. In addition,

for some 0 < γ < d, 0 < γ̃ < d̃, let

inf
vj∈V~σ

j

‖v− vj‖L2(I) . 2−jd‖v‖Hd(I) (v ∈ Hd(I) ∩ H1
~σ(I)),

inf
ṽj∈Ṽ~σ

j

‖v− ṽj‖L2(I) . 2−jd̃‖v‖Hd̃(I) (v ∈ Hd̃(I)),(4.1)

(Jackson estimate), and

‖vj‖[L2(I),Hd(I)∩H1
~σ
(I)]s/d

. 2js‖vj‖L2(I) (vj ∈ V~σ
j , s ∈ [0, γ)),

‖ṽj‖[L2(I),Hd̃(I)]s/d̃
. 2js‖ṽj‖L2(I) (ṽj ∈ Ṽ~σ

j , s ∈ [0, γ̃)),(4.2)

(Bernstein estimate). Then with Φ~σ
0 and Ψ~σ

j = {ψ~σj,k : k ∈ Jj} (j ∈ N), being uniform

L2(I)-Riesz bases for V~σ
j ∩ (Ṽ~σ

j−1)
⊥L2(I) (wavelets), for s ∈ (−γ̃, γ) the collection

Ψ~σ := Φ~σ
0 ∪ ∪j∈N2−sjΨ~σ

j ,

is a Riesz basis for

{
[L2(I), Hd(I) ∩ H1

~σ(I)]s/d when s ≥ 0,
([L2(I), Hd̃(I)]−s/d̃)

′ when s ≤ 0.

We will select V(1,1)
j ⊂ C1(I) ∩ H1

(1,1)(I) and Ṽ(1,1)
j such that

(4.3) V(1,1)
j + V̇(1,1)

j + V̈(1,1)
j ⊂ Ṽ(1,1)

j+1 .

Here we use V̇(1,1)
j and V̈(1,1)

j as notations for the linear spaces of the first or second

derivatives of functions in V(1,1)
j . Thanks to (4.3), for ~σ = (1, 1), the bi-infinite

matrices
〈Ψ~σ, Ψ~σ〉L2(I), 〈Ψ̇~σ, Ψ̇~σ〉L2(I), 〈Ψ̇~σ, Ψ~σ〉L2(I),

are truly sparse. With the exception of 〈Ψ~σ, Ψ~σ〉L2(I), as we will see for ~σ =

{0, 1}2\(1, 1) this sparsity will generally be lost for column or row indices cor-
responding to “boundary adapted” wavelets.
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4.1. A realization. In this subsection, we construct biorthogonal collections Φ~σ
j

and Φ̃~σ
j as meant in Theorem 4.1, and so V~σ

j and Ṽ~σ
j , for ~σ = (1, 1), (0, 1). The

other cases, namely, ~σ = (0, 0), (1, 0), follow easily. The construction for the case
~σ = (1, 1) was already given in [CS11]. For convenience we recall it here, before
we describe the modifications needed for~σ = (0, 1). We take

(4.4) V(1,1)
j =

2j+1−1

∏
k=0

P4(k2−(j+1), (k + 1)2−(j+1)) ∩ C1(I) ∩ H1
(1,1)(I),

of dimension 3 · 2j+1. Then

(4.5) V(1,1)
j + V̇(1,1)

j + V̈(1,1)
j ⊂ Zj :=

2j+1−1

∏
k=0

P4(k2−(j+1), (k + 1)2−(j+1)),

of dimension 5 · 2j+1. Following the idea of intertwining multiresolution analyses
[DGH96], we select Ṽ(1,1)

j+1 as the direct sum of Zj and a subspace of Zj+1 of dimen-

sion 2j+1, so that dimV(1,1)
j = dimṼ(1,1)

j . Since (Zj)j is nested, so is (Ṽ(1,1)
j )j, and

Bernstein and Jackson estimates are satisfied at primal and dual side with param-
eters d = d̃ = 5, γ = 5

2 , γ̃ = 1
2 .

By setting Î = (−1, 1) as a reference macro element, we consider the interpola-
tory basis functions hi, `j ∈ P4(−1, 0)× P4(0, 1) ∩ C1(Î) and ˜̀ j ∈ P4(Î) with the
following properties

ḣi(ı̂) = δiı̂,

hi( ̂) = 0,

˙̀ j(ı̂) = 0,

`j( ̂) = δj ̂,
˜̀ j( ̂) = δj ̂, (ı̂ ∈ H, ̂ ∈ L),

where H = {−1, 0, 1} and L = {−1,− 1
2 , 0, 1

2 , 1}. The pictures of the interpolatory
basis functions are given in Figure 3.
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FIGURE 3. Interpolatory basis of P4(−1, 0)× P4(0, 1)∩C1(Î) (left
picture) and that of P4(Î) (right picture), with discontinuous func-
tion ˜̀e1 ∈ P4(−1, 0)× P4(0, 1) defined in step 2.

We apply a number of transformations to these bases, and enrich the collection
at the dual side with one additional function. Then afterwards, the primal and
dual collections will be duplicated on each individual “element” in the “finite ele-
ment” mesh. At the primal side, functions will be “glued” over interfaces between
elements in order to obtain C1 functions.
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The enrichment step will be performed by applying number of transformations
and projections in the following steps.

Step 1. Select ĥ−1 from span{h−1, `− 1
2
, h0, `0, ` 1

2
} and ˆ̀−1 from span{`−1, `− 1

2
,h0,

`0,` 1
2
} such that

〈ĥ−1, ˜̀
̂〉L2(Î) = 〈

ˆ̀−1, ˜̀
̂〉L2(Î) =

1
2 δ−1, ̂ ( ̂ ∈ L).

Set ĥ1(x) = −ĥ−1(−x) and ˆ̀1(x) = ˆ̀−1(−x).
Step 2. Up to an irrelevant scaling, determine ˜̀e1 ∈ P4(−1, 0)× P4(0, 1) uniquely

such that it is L2(Î)-orthogonal to {ĥ−1, ˆ̀−1, ĥ1, ˆ̀1}, and such that ˜̀e1 vanishes at
x = ± 1

2 ,±1, and furthermore ˜̀e1(0
+) = − ˜̀e1(0

−).

Step 3. Define { ˜̀̂
− 1

2
, ˜̀̂

e1 , ˜̀̂
0, ˜̀̂

1
2
} from { ˜̀

− 1
2
, ˜̀e1 , ˜̀0, ˜̀ 1

2
} by biorthogonalizing it

with {`− 1
2
, h0, `0, ` 1

2
}.

Step 4. For j ∈ {−1, 1}, define

˜̀̂
j := ˜̀ j − 〈 ˜̀ j, `− 1

2
〉L2(Î)

˜̀̂
− 1

2
− 〈 ˜̀ j, h0〉L2(Î)

˜̀̂
e1 − 〈 ˜̀ j, `0〉L2(Î)

˜̀̂
0 − 〈 ˜̀ j, ` 1

2
〉L2(Î)

˜̀̂
1
2
.

Setting Φ̂ :=
[

ĥ−1 ˆ̀−1 `− 1
2

h0 `0 ` 1
2

ĥ1 ˆ̀1

]>
and ˜̂Φ :=

[
˜̀̂
−1

˜̀̂
− 1

2

˜̀̂
e

˜̀̂
0

˜̀̂
1
2

˜̀̂
1

]>
,

we have

(4.6) 〈Φ̂, ˜̂Φ〉L2(Î) =



1
2 0 0 0 0 0
1
2 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 − 1

2
0 0 0 0 0 1

2


.

The primal and dual scaling functions on the reference macro element Î , resulting
from steps 1-4, have been illustrated in Figure 4 and their values in terms of the
bases from Figure 3 can be found in [CS11, Tables 1 & 2].
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FIGURE 4. Biorthogonal collections Φ̂ and ˜̂Φ on the reference element.

Having defined primal and dual collections Φ̂ and ˜̂Φ on the reference macro-
element and using (4.6), the collections Φ(1,1)

j and Φ̃(1,1)
j are assembled in the way
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known from finite elements. First, the collections Φ̂ and ˜̂Φ are lifted to any macro-
element [k2−(j+1), (k+ 2)2−(j+1)], and multiplied by 2(j+1)/2 to compensate for the
change in length.

At the primal side, the function ĥ1 from the left is connected to ĥ−1 from the
right, and ˆ̀1 from the left is connected to ˆ̀−1 from the right. In view of the bound-
ary conditions, at the leftmost boundary the function ˆ̀−1 is dropped, and at the
rightmost boundary so is the function ˆ̀1.

In view of the discontinuity between elements, at the dual side no degrees of
freedom are identified. Instead a simple basis transformation is applied. At each
internal interface, the pair of functions consisting of ˆ̀1 from the left and ˆ̀−1 from
the right are replaced by the symmetric and anti-symmetric functions ˆ̀1 + ˆ̀−1
and − ˆ̀1 + ˆ̀−1, with double support lengths. Finally, at the left boundary ˆ̀−1 is
multiplied by 2, and at the right boundary ˆ̀1 is multiplied by −2. In view of (4.6),
one verifies that the resulting primal and dual collections, denoted as Φ(1,1)

j and

Φ̃(1,1)
j , are biorthogonal.

By construction, span Φ(1,1)
j = V(1,1)

j and Zj ⊂ Ṽ(1,1)
j := span Φ̃(1,1)

j ⊂ Zj+1. The

collections Φ(1,1)
j and Φ̃(1,1)

j are uniformly local and uniformly L2(I)-bounded.

When we try to adapt above construction for ~σ = (1, 1) to the case that ~σ =

(0, 1), we realize that in this case we should not drop ˆ̀−1 near the leftmost bound-
ary, meaning that we should add a basis function at the dual side as well.

In view of this we revisit the construction of the primal and dual functions on
the reference macro element giving modified collections to be used at the leftmost
macro element in the actual mesh.

We start our modification after step 4.
Step 5. Define ˇ̀−1 := ˆ̀−1 − ĥ−1 and ˜̀̌

−1 := 2˜̀̂
−1. It is clear that ˇ̀−1 is orthogo-

nal to { ˜̀̌
−1, ˜̀̂

− 1
2
, ˜̀̂

e1 , ˜̀̂
0, ˜̀̂

1
2
, ˜̀̂

1}.
At the dual side, we have to add a second additional function ˜̀e2 ∈ P4(−1, 0)×

P4(0, 1). Aiming at well-conditioned wavelet bases, the angle between primal and
dual scaling function spaces should be as small as possible. In view of this aim, in
the following steps the additional function ˜̀e2 will be selected such that the spaces
span{ĥ−1, ˇ̀−1, `− 1

2
, h0, `0, ` 1

2
, ĥ1, ˆ̀1}, span{ ˜̀̌

−1, ˜̀e2 , ˜̀̂
− 1

2
, ˜̀̂

e1 , ˜̀̂
0, ˜̀̂

1
2
, ˜̀̂

1} are close.

Step 6. Set S := span{ĥ−1, ˇ̀−1, `− 1
2
, h0, `0, ` 1

2
}, S̃ := span{ ˜̀̌

−1, ˜̀̂
− 1

2
, ˜̀̂

e1 , ˜̀̂
0, ˜̀̂

1
2
}.

The space S can be decomposed as S = T ⊕ T⊥ with T being the orthogonal pro-
jection of span S̃ onto span S. Note that the subspace T⊥ is an one dimensional
space.

Step 7. Now consider the three dimensional subspace U of P4(−1, 0)× P4(0, 1)
that is orthogonal to span{ĥ−1, `− 1

2
, h0, `0, ` 1

2
, ĥ1, ˆ̀1}. Define ˜̀e2 ∈ U such that

span{ ˜̀e2} is the image of T⊥ under the orthogonal projection onto U, and fur-
thermore such that 〈 ˜̀e2 , ˇ̀−1〉L2(Î) = 1.

The second additional dual function ˜̀e2 is illustrated in Figure 5. It happens to
be continuous. Its values at 1

4 Z ∩ [−1, 1] are presented in Table 1. From steps 5-7,
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we conclude that

(4.7)

〈


ĥ−1
ˇ̀−1
`− 1

2
h0
`0
` 1

2

ĥ1
ˆ̀1


,



˜̀̌
−1
˜̀e2

˜̀̂
− 1

2
˜̀̂

e1
˜̀̂

0
˜̀̂

1
2

˜̀̂
1



〉
=



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 − 1

2
0 0 0 0 0 0 1

2


,

where 〈·, ·〉 = 〈·, ·〉L2(Î).
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FIGURE 5. The second additional function ˜̀e2 ∈ P4(−1, 0)× P4(0, 1).

−1 − 3
4 − 1

2 − 1
4 0 1

4
1
2

3
4 1

˜̀e2
276
55 − 1059

1408
9

40
1281
7040 − 3

11
1137
7040 − 9

88
321

7040 − 12
55

TABLE 1. Values of ˜̀e2 at 1
4 Z∩ [−1, 1].

In view of (4.7), we define the biorthogonal collections

Φ(0,1)
j := Φ(1,1)

j ∪ {φ(0,1)
j,1 },

Φ̃(0,1)
j := Φ̃(1,1)

j ∪ {φ̃(0,1)
j,1 },

where φ
(0,1)
j,1 and φ̃

(0,1)
j,1 are defined as ˇ̀−1 and ˜̀e2 lifted to the leftmost macro ele-

ment and multiplied by 2
j+1

2 , respectively.
We define V(0,1)

j := span Φ(0,1)
j and set Ṽ(0,1)

j := span Φ̃(0,1)
j so that Ṽ(0,1)

j is the
direct sum of Zj and a subspace of Zj+1.

The collections Φ~σ
j and Φ~σ

j (~σ = (1, 1), (1, 0)) are uniformly local and uniformly

L2(0, 1)-bounded. Together with the biorthogonality, it implies that Φ~σ
j and Φ~σ

j

(~σ = (1, 1), (1, 0)) are uniform L2(0, 1)-Riesz bases for V~σ
j and Ṽ~σ

j , respectively.

We note that the basis transformations between the interpolatory basis for V~σ
j

and the basis Φ~σ
j (~σ = (1, 1), (0, 1)) are uniformly local.
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4.2. Wavelets. Since the spaces V~σ
j and Ṽ~σ

j have already been equipped with uni-

formly local, biorthogonal uniform L2(I)-Riesz bases Φ~σ
j and Φ̃~σ

j , for the construc-
tion of suitable biorthogonal wavelets the following result can be applied. For a
proof we refer to [Ste03].

Proposition 4.2. Let Ξ~σ
j+1 ⊂ V~σ

j+1 be such that Φ~σ
j ∪ Ξ~σ

j+1 is a uniform L2(I)-Riesz

basis for V~σ
j+1, and such that the basis transformations from Φ~σ

j ∪ Ξ~σ
j+1 to Φ~σ

j+1 and from

Φ~σ
j+1 to Φ~σ

j ∪ Ξ~σ
j+1 are uniformly sparse. Then

(4.8) Ψ~σ
j+1 := Ξ~σ

j+1 − 〈Ξ
~σ
j+1, Φ̃~σ

j 〉L2(I)Φ
~σ
j ,

and its unique dual collection Ψ̃~σ
j+1 in Ṽ~σ

j+1 ∩V~σ
⊥L2(I)

j are biorthogonal, uniformly local,

uniform L2(I)-Riesz bases for V~σ
j+1 ∩ Ṽ~σ

⊥L2(I)
j and Ṽ~σ

j+1 ∩V~σ
⊥L2(I)

j , respectively.

In view of Proposition 4.2, in order to define the wavelets, it is sufficient to con-
struct Ξ~σ

j+1 such that Φ~σ
j ∪ Ξ~σ

j+1 is a uniform L2(I)-Riesz basis for V~σ
j+1. Moreover,

in order to obtain uniformly local wavelets with uniformly local duals, we will
select Ξ~σ

j+1 such that the basis transformations between Φ~σ
j+1 and Φ~σ

j ∪ Ξ~σ
j+1 are

uniformly local. Since the basis transformations between the interpolatory basis
of V~σ

j and the basis Φ~σ
j are uniformly local, the latter condition is equivalent to the

locality of the basis transformations between the interpolatory basis for V~σ
j+1 and

the union of the interpolatory basis for V~σ
j and Ξ~σ

j+1.

A natural choice for Ξ~σ
j+1 is the subset of interpolatory basis functions for V~σ

j+1
that correspond to the new degrees of freedom. With this choice, the basis trans-
formations mentioned in Proposition 4.2 are uniformly local. Indeed, with I` being
the canonical interpolation operator onto V~σ

` , the argument is that for uj+1 ∈ V~σ
j+1

the computation of the splitting uj+1 = Ijuj+1 + Ij+1(uj+1 − Ijuj+1) requires local
quantities only.

In order to reduce the support size of most of the resulting wavelets, we do not
simply take Ξ~σ

j+1 to be the above collection, but we construct it from that collection
by applying a uniformly local transformation with uniformly local inverse. Our
aim is to ensure that most functions in Ξ~σ

j+1 are orthogonal to those duals scaling
functions that correspond to primal scaling functions that have supports that ex-
tend to more than one macro-element. The resulting wavelets will then have no
components in the directions of those scaling functions.

4.2.1. The case~σ = (1, 1). We recall the construction of Ξ~σ
j+1 for the case~σ = (1, 1)

already discussed in [CS11]. Similar to the previous subsection, it is sufficient to
specify Ξ̂ such that Φ̂ ∪ Ξ̂ is a basis for ∑1

p=−2 P4(p/2, (p + 1)/2) ∩ C(Î). Then by

lifting Ξ̂ to any macro-element [k2−(j+1), (k + 2)2−(j+1)] multiplying it by 2(j+1)/2,
and taking the union over all macro-elements, the collection Ξ(1,1)

j+1 is obtained.

Since the function values and first order derivatives of any function in Ξ̂ will van-
ish at ∂Î , no degrees of freedom will have to be identified over the interfaces.



22 NABI CHEGINI AND ROB STEVENSON

Let H̄ = {−1,− 1
2 , 0, 1

2 , 1} and L̄ = {−1,− 3
4 ,− 1

2 ,− 1
4 , 0, 1

4 , 1
2 , 3

4 , 1}. We define the
collection Σ̂ := {h̄i : H̄ \ H} ∪ { ¯̀ j : j ∈ L̄ \ L} ⊂ ∑1

p=−2 P4(p/2, (p + 1)/2) ∩ C(Î)
as follows

˙̄hi(ı̂) = δiı̂,

h̄i( ̂) = 0,

˙̀̄
j(ı̂) = 0,

¯̀ j( ̂) = δj ̂,
(ı̂ ∈ H̄, ̂ ∈ L̄),

So Σ̂ consists of the interpolatory basis functions corresponding to the new degrees
of freedom.

We will define Ξ̂ by applying some basis transformations to Σ̂. In view of our
aforementioned aim, we look for Ξ̂ such that only one of its elements is not or-
thogonal to ˜̀̂

1 and only one other elements is not orthogonal to ˜̀̂
−1.

Step 1. Determine ξ̂± 1
2

as the best approximation to ˜̀̂
±1 from span Σ̂, i.e.,

ξ̂± 1
2
= 〈Σ̂, ˜̀̂

±1〉L2(Î)〈Σ̂, Σ̂〉−1
L2(Î)

Σ̂,

and then redefine the obtained {ξ̂± 1
2
} by biorthogonalizing it with { ˜̀̂

±1}.

Step 2. Select {ξ̂± 3
4
, ξ̂± 1

4
} from span Σ̂ ∩ span { ˜̀̂

±1}
⊥L2(Î) by means of

ξ̂p := ¯̀ p − 〈 ¯̀ p, ˜̀̂
−1〉L2(Ī) ξ̂− 1

2
− 〈 ¯̀ p, ˜̀̂

1〉L2(Ī) ξ̂ 1
2

(p ∈ {± 3
4 ,± 1

4}).

Now it holds that span Ξ̂ = span Σ̂. The coefficients of Ξ̂ in terms of Σ̂ can be
found in [CS11, Table 3].

The application of Proposition 4.2 to Φ(1,1)
j , Φ̃(1,1)

j , and Ξ(1,1)
j+1 gives the wavelet

collection Ψ(1,1)
j+1 . The wavelets from Ψ(1,1)

j+1 can be subdivided into 4 categories:

W1 Groups of four “interior wavelets”, which vanish outside ((k− 1)2−j, k2−j)
for k = 1, · · · , 2j, and that are equal to each other modulo shifts,

W2 groups of two “interface wavelets”, which vanish outside ((k− 1)2−j, (k +
1)2−j) for k = 1, · · · , 2j − 1, and that are equal to each other modulo shifts,

–all these wavelets will be found by the construction for each~σ ∈ {0, 1}2\(1, 1)–,
and

W3 “right boundary wavelet” that vanishes outside (1− 2−j, 1),
–this wavelet is also found by the construction for~σ = (0, 1)–, and

W4 “left boundary wavelet” that vanishes outside [0, 2−j),
–this wavelet is also found by the construction for~σ = (1, 0)–.

To improve the conditioning of the collection Ψ(1,1)
j+1 , we use the following local

transformations:
• Make W1 mutually orthogonal.
• Make W2 orthogonal to W1, and after that, make W2 mutually orthogonal.
• Make W3 and W4 orthogonal to W1.

We note that since these local transformations and their inverses are local, the
resulting collections Ψ(1,1)

j and Ψ̃(1,1)
j are uniformly local. The wavelets W1–W4

are illustrated in [CS11, Figure 4].
Finally, in order to improve the conditioning of the basis in norms other than

the L2(I)-norm, in our definition of the wavelet collection Ψ(1,1), we replace the
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single-scale basis Φ(1,1)
0 for V(1,1)

0 by a biorthogonal three-scale basis. We set V(1,1)
−1 :=

P4(I) ∩ H1
0(I), V(1,1)

−2 := span{x(1− x)}, Ṽ(1,1)
−1 := P2(I), and Ṽ(1,1)

−2 := P0(I),
and construct a basis for V(1,1)

0 as the union of the L2(I)-orthogonal bases for

V(1,1)
−2 , V(1,1)

−1 ∩ Ṽ(1,1)
⊥L2(I)

−2 , and V(1,1)
0 ∩ Ṽ(1,1)

⊥L2(I)

−1 . The resulting basis is illustrated
in [CS11, Figure 5].

4.2.2. The case~σ = (0, 1). For this case, we revisit the construction in steps 1 and
2 for ~σ = (1, 1) with the role of ˜̀̂

−1 now being played by ˜̀e2 . As a consequence,
only one wavelet will be non-zero at the left boundary, and so has to be reflected
in case an extension is applied. The resulting set is denoted as Ξ̌.

The collection Ξ(0,1)
j+1 is now obtained by lifting Ξ̌ to the leftmost macro-element,

lifting Ξ̂ to the remaining macro-elements, and by applying the some scaling as
with Ξ(1,1)

j+1 .

Using Φ(0,1)
j , Φ̃(0,1)

j , and Ξ(0,1)
j+1 , the wavelets collections Ψ(0,1)

j+1 are determined by

Proposition 4.2. The wavelets from Ψ(0,1)
j+1 can be subdivided into 6 categories that

are W1–W3, together with

W5 four “leftmost interior wavelets” that vanish outside (0, 2−j),
W6 two “leftmost interface wavelets” that vanish outside (0, 2 · 2−j),
W7 “left boundary wavelet” that vanishes outside [0, 2−j).

In order to improve the conditioning of the resulting wavelets collection Ψ(0,1)
j+1 , we

apply the following local transformations to W5–W7:
• Make W5 mutually orthogonal. The wavelets resulting of this step, de-

noted as ψL
i , i = 2, . . . , 5, are illustrated in Figure 6.

• Make W6 orthogonal to W1 and W5, and after that, make W6 mutually
orthogonal. The modified leftmost interface wavelets W6, denoted by ψL

6 ,
ψL

7 , are illustrated in Figure 6.
• Make W7 orthogonal to W5. The left boundary wavelet, denoted by ψL

1 , is
illustrated in Figure 6.

Note that the resulting collections Ψ(0,1)
j and Ψ̃(0,1)

j are uniformly local.
Finally, in order to improve the conditioning of Ψ(0,1), we replace the single-

scale basis Φ(0,1)
0 for V(0,1)

0 by a biorthogonal three-scale basis. We define V(0,1)
−2 :=

P2(−1, 1)∩ H1
0,{1}(Î) and V(0,1)

−1 := P4(−1, 1)∩ H1
0,{1}(Î). On the dual side, we set

Ṽ(0,1)
−2 := P1(−1, 1) and Ṽ(0,1)

−1 := P3(−1, 1). A basis for V(0,1)
0 can be constructed

by the union of L2(Î)-orthogonal bases {φ1, φ2} for V(0,1)
−2 , {φ3, φ4} for V(0,1)

−1 ∩

Ṽ(0,1)
⊥L2(Î)

−2 , and {φ5, φ6, φ7} for V(0,1)
0 ∩ Ṽ(0,1)

⊥L2(Î)

−1 . The resulting basis {φ(0,1)
i :

1 ≤ i ≤ 7} is illustrated in Figure 7, and the values of the basis functions at
1
8 N∩ [0, 1] are given in Table 2.

4.2.3. The case ~σ = (1, 0). We define Ψ(1,0)(·) := Ψ(0,1)(1− ·) as being the Riesz
basis for the space H1

(1,0)(I).
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FIGURE 6. The ‘leftmost mother’ wavelets {ψL
i : i = 1, . . . , 7} on

[−1, 3] for the wavelet basis Ψ(0,1).
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FIGURE 7. The three-scale basis {φi = φ(0,1) : 1 ≤ i ≤ 7} for V(0,1)
0 .

0 1
8

1
4

3
8

1
2

5
8

3
4

7
8

φ1 −2 − 7
4 − 3

2 − 5
4 −1 − 3

4 − 1
2 − 1

4
φ2 1 7

16 0 − 5
16 − 1

2 − 9
16 − 1

2 − 5
16

φ3 − 2
3 − 119

2048
25

128
1355
6144

1
8 − 7

2048 − 37
384 − 215

2048
φ4

7
115 − 16177

471040 − 801
29440

1139
94208

71
1840

15327
471040 − 17

29440 − 14161
471040

φ5 − 862
1715

354667
1756160

1341
15680 − 40339

250880 − 839
6860

28863
351232

2159
21952 − 1447

50176
φ6

81912
6347833 − 8307779

1625045248
572319

101565328
2466453

1625045248 − 38981
6347833

1166781
1625045248

244307
101565328 − 446411

1625045248
φ7 − 11

1050
4871

2150400 − 331
134400

13103
2150400 − 31

8400 − 789
102400

151
19200

377
307200

TABLE 2. Values of {φ(0,1)
i : 1 ≤ i ≤ 7} at 1

8 N∩ [0, 1].

4.2.4. The case ~σ = (0, 0). The collection Ψ(0,0)
j+1 is obtained by taking the 7 “left-

most” wavelets from Ψ(0,1)
j+1 , the 7 “rightmost” wavelets from Ψ(1,0)

j+1 , and by adding

those that are in Ψ(1,0)
j+1 ∩Ψ(0,1)

j+1 .
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Again, in order to improve the conditioning of Ψ(0,0), we replace the single-

scale basis Φ(0,0)
0 for V(0,0)

0 by a biorthogonal three-scale basis. We define Ṽ(0,0)
−2 =

V(0,0)
−2 := P1(−1, 1) and Ṽ(0,0)

−1 = V(0,0)
−1 := P4(−1, 1). A basis for V(0,0)

0 can be con-

structed by the union of L2(Î)-orthogonal bases {ϕ1, ϕ2} for V(0,0)
−2 , {ϕ3, ϕ4, ϕ5}

for V(0,0)
−1 ∩ Ṽ(0,0)

⊥L2(Î)

−2 , and {ϕ6, ϕ7, ϕ8} for V(0,0)
0 ∩ Ṽ(0,0)

⊥L2(Î)

−1 . The resulting basis
{ϕi : 1 ≤ i ≤ 8} is illustrated in Figure 8, and the values of the basis functions at
1
8 N∩ [0, 1] are given in Table 3.
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FIGURE 8. The three-scale basis {ϕi = ϕ
(0,0)
i : 1 ≤ i ≤ 8} for V(0,0)
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8

1
4

3
8

1
2

5
8

3
4

7
8 1

φ1 1 7
8

3
4

5
8

1
2

3
8

1
4

1
8 0

φ2 0 1
8

1
4

3
8

1
2

5
8

3
4

7
8 1

φ3 2 − 707
4096 − 171

256 − 1555
4096

1
16

1197
4096

53
256 − 131

4096 0
φ4 0 − 131

4096
53

256
1197
4096

1
16 − 1555

4096 − 171
256 − 707

4096 2
φ5 0 203

4096
3

256 − 165
4096 − 1

16 − 165
4096

3
256

203
4096 0

φ6 2 − 1613
2048

79
128

595
2048 − 5

8
99

2048
23

128 − 29
2048 0

φ7 0 − 29
2048

23
128

99
2048 − 5

8
595

2048
79

128 − 1613
2048 2

φ8 0 3
256

1
32 − 15

256 0 15
256 − 1

32 − 3
256 0

TABLE 3. Values of {ϕ
(0,0)
i : 1 ≤ i ≤ 8} at 1

8 N∩ [0, 1].

Finally, from Corollary 3.4 recall that our construction of a ‘uniform’ (wavelet)
Riesz basis for H1

0,Γ(Ω) using extension operators from (wavelet) Riesz bases Ψj on
the subdomains �j requires that, properly scaled, Ψj is a Riesz basis for Hσ(�j),
equipped with squared norm µi‖ · ‖2

L2(�j)
+ κi| · ‖2

H1(�j)
, with Riesz constants that

are bounded uniformly in 0 < µi . κi. Here σ = σ(j) ∈ ({0, 1}n)2 encodes the
boundary conditions on subdomain j.

As we discussed, for σ = (~σi)1≤i≤n 6= ~0n Friedrich’s inequality implies that it
is sufficient when, properly scaled, Ψj is a Riesz basis for Hσ(�j) equipped with
the standard H1(�j)-norm. On the previous pages we constructed such a basis of
the form ⊗n

i=1Ψ~σi
(cf. (3.4)) with Ψ~σi

being, properly scaled, a Riesz basis for L2(I)
and H1

~σi
(I).
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For ~σ = ~0n, i.e. no boundary conditions on subdomain �j, it was shown in
Proposition 2.6 that it is sufficient (actually it is also needed) that, properly scaled,
Ψj is a Riesz basis for H1(�j) equipped with the standard H1(�j)-norm, which
is of type Ψj = {1} ∪ Ψj \ {1} with Ψj \ {1} ⊂ H1(�j)/R. In view of our con-
struction of Ψj of the form ⊗n

i=1Ψ(0,0), it is therefore needed that the collection of
univariate wavelets Ψ(0,0) is of type Ψ(0,0) = {1} ∪Ψ(0,0) \ {1} with Ψ(0,0) \ {1} ⊂
H1(I)/R. The basis that we just have constructed is not of this type, but after
replacing {φ(0,0)

1 , φ
(0,0)
2 } by {φ(0,0)

1,new, φ
(0,0)
2,new} := {φ(0,0)

1 + φ
(0,0)
2 , φ

(0,0)
1 − φ

(0,0)
2 } it is.

Both these two new basis functions, however, are non-zero at both boundaries,
and so the resulting collection Ψ(0,0) does not satisfy (W4) for some ρ < 1. This
condition was imposed in order that the biorthogonal pair (Ψ(0,0), Ψ̃(0,0)) could be
used to define the scale dependent univariate extension operator G1 in (3.13).

To solve this problem, we will use the original biorthogonal pair (Ψ(0,0), Ψ̃(0,0))
for defining G1, and the new collection Ψ(0,0) for the definition of the tensor prod-
uct wavelet basis for H1(�j). In effect it means that the univariate basis functions

φ
(0,0)
1,new(= 1), φ

(0,0)
2,new are not extended by reflection over the left or right boundary,

but after expressing them as multiples of the original φ
(0,0)
1 and φ

(0,0)
2 , the resulting

multiple of φ
(0,0)
1 or φ

(0,0)
2 is reflected over the left- or right-boundary, respectively,

see Figure 9.

FIGURE 9. Extensions of the basis function φ
(0,0)
1,new (left), φ

(0,0)
2,new

(right) over left and right boundaries.

4.3. Dual wavelets. Finally in this section, we will illustrate some dual wavelet
functions that belong to the collections Ψ̃~σ,~σ = (1, 1), (0, 0). From Proposition 4.2,
we conclude that there exist uniformly boundedly invertible matrices M~σ

j and M̃~σ
j

(j ∈N0) such that

[(Φ~σ
j )
> (Ψ~σ

j+1)
>] = (Φ~σ

j+1)
>M~σ

j ,

[(Φ̃~σ
j )
> (Ψ̃~σ

j+1)
>] = (Φ̃~σ

j+1)
>M̃~σ

j .

By setting
[

M̃~σ
j,0 M̃~σ

j,1

]
:= M̃~σ

j , it holds that

Φ̃~σ
j = (M̃~σ

j,0)
>Φ̃~σ

j+1, Ψ̃~σ
j+1 = (M̃~σ

j,1)
>Φ̃~σ

j+1.

On account of biorthogonality between primal collections Φ~σ
j and Ψ~σ

j and their

duals Φ̃~σ
j and Ψ̃~σ

j , the following relations hold

M~σ
j = 〈Φ̃~σ

j+1, [(Φ~σ
j )
> (Ψ~σ

j+1)
>]>〉L2(I), M̃~σ

j = (M~σ
j )
−>.
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Since Φ~σ
j , Ψ~σ

j and their corresponding dual collections are uniformly local, M~σ
j

and M̃~σ
j are uniformly sparse. For~σ = (0, 1) and j = 4, M~σ

j and M̃~σ
j are illustrated

in Figure 11. Dual wavelets ψ̃
(1,1)
λ for λ ∈ ∇(`)

0 ∪∇(I), and ψ̃
(0,1)
λ for λ ∈ ∇(`)

0 are
illustrated in Figure 10.

FIGURE 10. Two rows at top: ψ̃
(0,1)
λ , λ ∈ ∇(`)

0 . Two rows at mid-

dle: ψ̃
(1,1)
λ , λ ∈ ∇(`)

0 . Two rows at bottom: ψ̃
(1,1)
λ , λ ∈ ∇(I).

FIGURE 11. Non-zero block structures of M(0,1)
4 at left and M̃(0,1)

4
at right.
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5. NUMERICAL RESULTS

As an example in the one-dimensional case, we split the domain Ω = (−1, 2)
into Ω0 = (−1, 0), Ω1 = (0, 1), and Ω2 = (1, 2), with the diffusion coefficients κ0,
κ1, and κ2, respectively, such that κ0, κ2 . κ1. We take µ1 = min(κ1, max(κ0, κ2))
and µi = κi, for i = 0, 2. An application of Proposition 2.1 shows that the norm

|||·||| is equivalent to the energy-norm | · |E : u 7→
√

∑2
i=0 κi|u|Ωi |H1(Ωi)

|2 on H1
0(Ω)

uniformly in all κ := (κ0, κ1, κ2) ∈ (0, ∞)3.
The construction of a Riesz basis for H1

0(Ω), that has Riesz constants w.r.t |||·|||
(and thus w.r.t. | · |E) that are bounded uniformly in κ0, κ2 . κ1, is determined
once we have fixed the order in which the 3 subdomains are unified, and in which
direction the non-trivial extensions are applied. Similar to Figure 2, we specify
this by means of an illustration given in Figure 12. With this choice, (D1)–(D7) are

ΩΩ0 Ω1 Ω2

FIGURE 12. Solid edges indicate homogeneous Dirichlet bound-
ary conditions, and no boundary conditions are indicated by
dashed edges.

satisfied. Concerning (D6), it means that necessarily κ0, κ2 . µ1, which follows
from the definition of µ1, and κ0, κ2 . κ1.

So, initially, we equip (−1, 0) with Ψ(1,1)(·+ 1), being a Riesz basis for H1
0(−1, 0),

(0, 1) with Ψ(0,0), being a Riesz basis for H1(0, 1), and (1, 2) with Ψ(1,1)(· − 1), be-
ing a Riesz basis for H1

0(1, 2). The resulting basis on (−1, 2), denoted as Ψ = {ψλ :
λ ∈ ∇}, is now obtained by reflecting over either 0 or 1, all wavelets from Ψ(0,0)
that do not vanish at 0 or 1, respectively (and by applying the different exten-
sions to the function φ

(0,0)
1 and φ

(0,0)
2 from Figure 9), and by taking the union with

Ψ(1,1)(·+ 1) and Ψ(1,1)(· − 1).
The numerically computed condition number of

AJ =

[
aκ(ψλ, ψµ)

aκ(ψλ, ψλ)
1
2 aκ(ψµ, ψµ)

1
2

]
|λ|,|µ|≤J

,

for κ = (1, κ1, 1), is given in Table 4.

TABLE 4. Condition number K(AJ), for κ0 = κ2 = 1 and κ1 = 1, 10, 100, 1000.

κ1 \ J 0 1 2 3 4 5 6 7 8 9 10 11 12
1 22 32.0 36.5 40.0 42.8 44.9 47.0 48.6 50.8 51.9 52.3 53.0 53.7

10 9.79 14.9 17.3 19.0 20.4 21.6 22.6 23.4 24.2 25.0 25.4 25.9 26.2
100 8.53 13.1 15.2 16.8 18.1 19.1 20.0 20.8 21.4 22.0 22.5 23.0 23.3
1000 8.41 13.0 15.0 16.6 17.8 18.9 19.8 20.5 21.6 21.7 22.2 22.7 22.9

As a first example of a two-dimensional domain, we consider Ω = (0, 2)2 that
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is splitted into 4 squares Ω0 = (0, 1)2, Ω1 = {(1, 0)} + (0, 1)2, Ω2 = {(0, 1)} +
(0, 1)2, and Ω3 = (1, 2)2. We consider diffusion coefficients κi, for i = 0, 1, 2, 3,
which satisfy

(5.1) κ1, κ2 . κ3, κ0 . κ1, κ2.

We take µi = κi, for i = 0, 1, 2, 3. Then Proposition 2.1 shows that |||·||| h | · |E on
H1

0(Ω), uniformly in (κi)0≤i≤4 ∈ (0, ∞)4.
In Figure 13, we specify the imposed boundary conditions on the facets of the

4 subdomains, and the direction of the non-trivial extension operators. With this
choice, (D1)–(D7) are satisfied, where, in particular, (D6) follows from µi = κi
(i = 0, 1, 2, 3) and (5.1).

Ω0 Ω1

Ω2 Ω3

�

�

?
Ω

FIGURE 13. The solid subfacets indicate homogeneous Dirichlet
boundary conditions, and no boundary conditions are indicated
by dashed subfacets.

We equip Ω0 with Ψ(1,1)⊗Ψ(1,1), Ω1 with Ψ(0,1)(· − 1)⊗Ψ(1,1), Ω2 with Ψ(1,1)⊗
Ψ(0,1)(· − 1), and Ω3 with Ψ(0,1)(· − 1)⊗Ψ(0,1)(· − 1). The piecewise tensor prod-
uct basis for the space H1

0(Ω) is obtained by taking the union of Ψ(1,1) ⊗ Ψ(1,1),
Ψ(1,1)⊗G1(Ψ(0,1)(· − 1)), G1(Ψ(0,1)(· − 1))⊗Ψ(1,1), and that of G1(Ψ(0,1)(· − 1))⊗
G1(Ψ(0,1)(· − 1)), where G1 reflects in 1 all wavelets from Ψ(0,1)(· − 1) that do not
vanish at 1. The resulting basis has Riesz constants w.r.t | · |E that are bounded
uniformly in κi that satisfy (5.1).

Now as a second two-dimensional domain example, we consider Ω = (0, 3)2

splitted into 9 subdomains Ωi, for i = 0, 1, · · · , 8, (see Figure 14) with the diffusion
coefficients κi (i = 0, 1, · · · , 8) such that

(5.2)

 κi−1, κi+1 . κi, i = 1, 4, 7,

κi−3, κi+3 . κi, i = 3, 4, 5.

We take µi = κi, for i = 0, · · · , 8, and µ4 = min(κ4, max(κ1, κ3, κ5, κ7)). In
view of Proposition 2.1, |||·||| h | · | on H1

0(Ω) uniformly in (κi)0≤i≤8 ∈ (0, ∞)8.
In Figure 14, we specify the imposed boundary conditions on the facets of the 9
subdomains, and the direction of the non-trivial extension operators. With this
choice, (D1)–(D7) are satisfied, where, in particular, (D6) follows from (5.2) and
our selection of the µi’s.

The construction of the basis of H1
0(Ω) from tensor product bases on the 9 sub-

domains follow similar steps as in the previous example. The bases on the sub-
domains have to satisfy the appropriate boundary conditions, and, in the order as
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FIGURE 14. The solid subfacets indicate homogeneous Dirichlet
boundary conditions, and no boundary conditions are indicated
by dashed subfacets.

indicated in Figure 14, wavelets that do not vanish at an interface have to be re-
flected over this interface. No boundary conditions are prescribed on subdomain
Ω4. Consequently, as has been discussed in the last three paragraphs of Subsubsec-
tion 4.2.4, the construction of the tensor product basis on this subdomain requires
a slight adaptation of the univariate scaling functions on the coarsest level, and
the reflection operator requires a small adaption too. The resulting basis has Riesz
constants w.r.t | · | that are bounded uniformly in the κi that satisfy (5.2).

We solved the Laplace-interface problem (1.1), with right-hand side f = 1, on
both 2-dimensional domain examples by applying the Adaptive Wavelet-Galerkin
Method (AWGM). This method, that is described and analyzed in detail in [CDD01,
GHS07, Ste09], is an adaptive method applied to the representation (1.3) of (1.1)
as the bi-infinite matrix-vector problem Au = f, where with Ψ = {ψλ : λ ∈ ∇}
being the constructed ‘uniform’ Riesz basis, it holds that f = [ f (ψλ)]λ∈∇, A =
[aκ(ψµ, ψλ)]λ,µ∈∇ and u = u>Ψ = ∑λ∈∇ uλψλ. Pretending for simplicity that A is
truly sparse, the AWGM reads as follows:

% let θ ∈ (0, 1] be some constant
Λ0 := ∅, u0 := 0, i := 0
while ‖f−Aui‖ > TOL do

select a smallest Λi+1 ⊃ Λi such that
‖(f−Aui)|Λi+1‖ ≥ θ‖f−Aui‖

i := i + 1
solve A|Λi×Λi ui = f|Λi

enddo

For θ being sufficiently small, the sequence of approximate solutions (ui)i≥0
converges to the exact solution with best possible nonlinear approximation rate
from the basis. For a non truly sparse A the same holds true when the infi-
nite residuals f−Aui are computed within a sufficiently small relative tolerance.
Moreover, the exact Galerkin solutions ui can be replaced by approximate solu-
tions within a sufficiently small relative tolerance. In our current setting of having
a matrix A that is very close to being sparse, the resulting algorithm can easily be
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implemented such that it runs in linear complexity, i.e., the cost of producing each
approximation scales linearly with its support length.

In view of the tensor product wavelet construction, for sufficiently smooth func-
tions, the aforementioned best nonlinear approximation rate is as large as d− 1 =

4, compared to d−1
n for a common isotropic wavelet basis of order d. In view of the

results obtained in [CDFS13], there for κ = 1, we expect moreover that this rate is
achieved under very mild piecewise weighted Sobolev regularity conditions, with
weights that vanish at the interfaces between the subdomains.

In the first example, we consider the following diffusion coefficients on Ω =
(0, 2)2 splitted into 4 squares,

(5.3) κ0 = 1, κ1 = 10m, κ2 = 10m+2, κ3 = 10m+4,

for various m ∈ N0. In Figure 15, for m = 0, 2, 4, 8, one finds the support length
vs. the (relative) `2-norm of the residual of the approximations produced by the
AWGM. Note that because of the Riesz basis property, the `2-norm of the resid-
ual is uniformly equivalent to the energy-norm of the error. For comparison, we
included corresponding results obtained with the non-adaptive full and sparse-
grids methods for m = 2. We observe that the AWGM realizes the optimal rate
4, whereas the sparse and full-grid methods do not converge at their best possible
rates d − 1 = 4 (up to some log-factors) and d−1

n = 2, respectively, because of a
lacking smoothness of the solution.
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FIGURE 15. Support length vs. relative residual of the approxi-
mate solutions obtained by the AWGM for the Laplace-interface
problem (1.1) with f = 1, and diffusion coefficients (5.3) for
m = 8, 4, 2, 0 (from left to right). The slope of the triangle is the
best possible rate −4. The curves with ∗ and • show the conver-
gence rates for m = 2 of the sparse and full-grid approximations,
respectively.

At the end of these computations, the maximum levels of any univariate wavelet
factor of the piecewise tensor product wavelets, that were selected by the AWGM,
are 36, 26, 19, 19 for m = 0, 2, 4, 8, respectively. For the sparse and full-grids ap-
proximations and the case m = 2, these maximum levels were 10 and 7, respec-
tively.
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Centers of the supports of the piecewise tensor product wavelets, selected by
the AWGM, are illustrated in Figure 16.
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FIGURE 16. Centers of the supports of the piecewise tensor prod-
uct wavelets, selected by the AWGM for the Laplace-interface
problem (1.1) with f = 1, and diffusion coefficients (5.3), for
m = 0 with 7100 wavelets at bottom-left, for m = 2 with 7170
wavelets at bottom-right, for m = 4 with 7223 wavelets at top-
left, and for m = 8 with 7052 wavelets at top-right.

In Figure 17, we present the approximate solutions obtained by the AWGM, for
the diffusion coefficients from (5.3) and m = 0, 2, 4, as well as for κ0 = 1, κ1 = 4,
κ2 = 8, κ4 = 12.

In the second example, we consider the following diffusion coefficients on Ω =
(0, 3)2 splitted into 9 squares,

(5.4) κ4 = 10m, κi = 1 (0 ≤ i ≤ 8, i 6= 4),

for various m ∈ N0. In Figure 18, for m = 1, 3, 6, one finds the support length
vs. the (relative) `2-norm of the residual of the approximations produced by the
AWGM, as well as, for comparison, those that were obtained by the sparse and
full grid methods for m = 3.

At the end of these computations, the maximum levels of any univariate wavelet
factor of the piecewise tensor product wavelets, that were selected by the AWGM,
are 28, 40, 38, for m = 0, 3, 6, respectively. For the sparse and full-grids approxima-
tions, these maximum levels were 9 and 6, respectively.

Centers of the supports of the piecewise tensor product wavelets, selected by
the AWGM, are illustrated in Figure 19.

The approximate solutions obtained by the AWGM are shown in Figure 20.
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FIGURE 17. Approximate solutions computed by the AWGM of
the Laplace-interface problem (1.1) with f = 1 for the diffusion
coefficients (5.3) for m = 0 at bottom-left, m = 2 at bottom-right,
and m = 4 at top-right, as well as for κ0 = 1, κ1 = 4, κ2 = 8,
κ4 = 12 at top left.
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and full-grid approximations, respectively.
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FIGURE 20. Approximate solutions for Laplace-interface problem
with f = 1, and the diffusion coefficients (5.4), obtained by the
AWGM, for m = 1 at left, and m = 3 at right.
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