
Noname manuscript No.
(will be inserted by the editor)

Fast evaluation of nonlinear functionals of tensor product

wavelet expansions

Christoph Schwab and Rob Stevenson

Received: date / Accepted: date

Abstract For a nonlinear functional f , and a function u from the span of a set of
tensor product interpolets, it is shown how to compute the interpolant of f(u) from the
span of this set of tensor product interpolets in linear complexity, assuming that the
index set has a certain multiple tree structure. Applications are found in the field of
(adaptive) tensor product solution methods for semilinear operator equations by collo-
cation methods, or after transformations between the interpolet and (bi-) orthogonal
wavelet bases, by Galerkin methods.

Keywords Interpolets · wavelets · tensor product approximation · tree approxima-
tion · linear complexity · semilinear equations

Mathematics Subject Classification (2000) MSC 05C05 · 15A69 · 41A05 ·
41A63 · 42C40 · 65Y20 · 68Q25

1 Introduction

1.1 Background

Functions from Sobolev spaces on n-fold product domains can be approximated very
efficiently by best N -term approximation from a tensor product wavelet basis ([13,16]).

Ch. Schwab
Seminar for Applied Mathematics, ETHZ HG G58.1, ETH Zürich, CH 8092 Zürich, Switzerland
Tel.: +41-1-632-3595
Fax: +41-1-632-1085
E-mail: christoph.schwab@sam.math.ethz.ch

R.P. Stevenson
Korteweg-de Vries (KdV) Institute for Mathematics, University of Amsterdam, P.O. Box 94248, 1090
GE Amsterdam, The Netherlands.
Tel.: +31-20-525 5805
Fax: +31-20-525 7820
E-mail: R.P.Stevenson@uva.nl

2 Christoph Schwab and Rob Stevenson

With this type of non-linear approximation the advantages of the linear hyperbolic
cross or sparse-grid approximation are extended to a much larger class of functions.
For large classes of functions, the approximation rates can be shown to be (nearly)
independent of n.

Adaptive wavelet schemes for solving operator equations were shown to converge
with the best possible convergence rate, in linear complexity ([3,4,10,5]). For tensor
product wavelet bases, in [14,8,15] such schemes were applied to linear operator equa-
tions, with which the optimal, (nearly) n-independent approximation rates could be
realized.

When these schemes are applied to semilinear equations, the problem arises how
to evaluate the nonlinear term without loosing the linear complexity. To describe this
problem, we need to introduce some notation. Let Ψ := {ψλ : λ ∈ ∇}, Ψ̃ := {ψ̃λ :
λ ∈ ∇} denote biorthogonal wavelet bases. The resulting biorthogonal n-fold tensor
product wavelet bases are then given by Ψ := {ψλ := ⊗n

i=ψλi
: λ ∈ ∇ := ∇n} and

Ψ̃ := {ψ̃λ := ⊗n
i=ψ̃λi

: λ ∈ ∇}.
Given a nonlinear function f , a subset Λ̄ ⊂ ∇, and a current approximation u ∈

span {ψλ : λ ∈ Λ̄}, main tasks inside an adaptive wavelet scheme are

– to predict a Λ̄ ⊂ Λ ⊂ ∇ such that the distance between f(u) and the biorthogonal
projection

∑

λ∈Λψλ(f(u))ψ̃λ is less than some prescribed tolerance ε in the dual
norm, and subsequently

– to compute this biorthogonal projection in O(#Λ) operations, possibly up to a
quadrature error of order ε.

In this paper, we assume that Λ is determined, i.e., we postpone the design of a
prediction step to future work, and focus on the second task being the evaluation of the
biorthogonal projection in linear complexity. By possibly enlarging Λ̄, i.e., by adding
zero coefficients to the expansion for u, without loss of generality we can take Λ̄ = Λ.

The obvious approach to evaluate
∑

λ∈Λψλ(f(u))ψ̃λ is to approximate each term
ψλ(f(u)) using quadrature. For each λ, this requires the evaluation of f(u) in some
quadrature points. Due to the multilevel structure of a wavelet basis, the number of
wavelets in the expansion u =

∑

λ∈Λ ψ̃λ(u)ψλ that do not vanish in each of these
points is not of order 1 uniformly in Λ ⊂ ∇, and, as a result, the overall complexity
of this naive implementation is not of order #Λ.

In [6,1], for the non-tensor product case, the following alternative approach was
developed: Restricting to Λ ⊂ ∇ that have a tree structure, and using the local supports
of the primal wavelets, in a bottom-to-top sweep the function u =

∑

λ∈Λ ψ̃λ(u)ψλ is re-

expressed in O(#Λ) operations as u =
∑

λ∈Λ̂
cλφλ, where {φλ : λ ∈ Λ̂} is a collection

of scaling functions with span{φλ : λ ∈ Λ̂} ⊃ span{ψλ : λ ∈ Λ} and #Λ̂ = O(#Λ).
Using the local supports of the dual wavelets, in a top-to-bottom sweep the required
coefficients {ψλ(f(u)) : λ ∈ Λ} can be computed in O(#Λ) operations from a set
of scaling function coefficients {φλ(f(u)) : λ ∈ Λ̆} for some Λ̆ with span{φ̃λ : λ ∈
Λ̆} ⊃ span{ψ̃λ : λ ∈ Λ} and #Λ̆ = O(#Λ). Since the representation u =

∑

λ∈Λ̂ cλφλ is
locally finite, these scaling coefficients can be computed at high accuracy with standard
quadrature from the locally finite representation u =

∑

λ∈Λ̂ cλφλ such that the overall
complexity is O(#Λ).

Fast evaluation of nonlinear functionals 3

The restriction to index sets that are trees which is needed for the above scheme
to work is rather harmless. Indeed, in [2] it has been shown that the corresponding
approximation classes are only slightly smaller than with fully unconstrained best N -
term approximation.

1.2 The approximation of the nonlinear term in the tensor product case using
interpolets

The above approach does not apply to tensor product wavelets, the reason being that
generally

∑

λ∈Λ ψ̃λ(u)ψλ has no locally finite scaling function representation with
a number of terms that is of the order of #Λ. Actually, for “full-grid” collections
Λ = {λ ∈ ∇ : ‖|λ|‖∞ ≤ J} such a scaling function representation does exist, but for
sparse-grid collections Λ = {λ ∈ ∇ : ‖|λ|‖1 ≤ J} it does not.

As in the non-tensor product case, we will impose some structural condition on the
sets Λ. Yet in order to retain the advantages of tensor product approximation, most
prominently being the n-independent rates, this condition should allow for sparse-grid
index sets, as well as for generalizations of that involving local refinements.

To circumvent the problem that a transformation to a locally finite scaling function
representation is prohibitive, our approach to compute a biorthogonal projection of
f(u) – with u being given as a linear combination of tensor product wavelets – will
be based on the use of interpolets, or on tensor products of those. Note that the duals
of interpolets are finite linear combinations of Dirac functionals. Furthermore, instead
of

∑

λ∈Λψλ(f(u))ψ̃λ, we will evaluate
∑

λ∈Λ ψ̃λ(f(u))ψλ, i.e., we will compute a
biorthogonal projection onto a span of primal tensor product wavelets. In addition,
we will assume that f is such that (f(u))(x) depends only on u(x). Note that in this
setting there is no quadrature issue.

Considering first the non-tensor product case, the key property of interpolets is that
ψ̃λ(

∑

|λ′|>|λ| ψ̃λ′ (u)ψλ′) = 0 and so ψ̃λ(f(u)) = ψ̃λ(f(
∑

|λ′|≤|λ| ψ̃λ′(u)ψλ′)). Based on

this, to evaluate {ψ̃λ(f(u)) : λ ∈ Λ}, we develop a one way, bottom-to-top scheme with
a recurrent increment of the coarsest scale by an application of the refinement equation
to ensure that the evaluation of each ψ̃λ(f(u)), i.e., of f(

∑

|λ′|≤|λ| ψ̃λ′(u)ψλ′), takes

O(1) operations. Scaling functions in the expansion for u – that arise in the process
by the recurrent applications of the refinement equation – will be dropped whenever
their supports have empty intersection with supp ψ̃λ for all λ ∈ Λ for which ψ̃λ(f(u))
still has to be evaluated. Assuming that Λ is a tree, the overall scheme will be shown
to take O(#Λ) operations.

The bottom-to-top scheme will be the basis of our scheme to evaluate {ψ̃λ(f(u)) :
λ ∈ Λ} in the n-fold tensor product case. Assuming that Λ is a multiple tree, this
scheme will be shown to take O(#Λ) operations. Here, with Λ being a multiple tree,
we mean that for any m ∈ Λ and 1 ≤ i ≤ n, {k : (m1, . . . ,mi−1, k,mi+1, . . . ,mn) ∈ Λ}
is a tree.

The use of interpolets to evaluate nonlinear terms was already advocated in [11],
mainly because of the absence of quadrature errors. The scheme used in [11] in the
non-tensor product case is essentially equal to that from [6] that we discussed before.

4 Christoph Schwab and Rob Stevenson

Its generalization to the n-fold tensor product case can be found in [12], which scheme,
however, we do expect to have linear computational complexity.

1.3 Extension to tensor products of “true” biorthogonal wavelets

In order to compute in the tensor product wavelet setting a biorthogonal projection of
f(u) in linear complexity, we made some compromises. First of all, we used interpolets
which do not form stable bases in both L2 and, in more than one dimension, in H1.
Secondly, we interchanged the role of primal and dual side. For certain types of “true”
wavelets, this can be remedied as we discuss next.

To distinguish them from “true” biorthogonal wavelets, let us here denote with ψ
(I)
λ

and ψ̃
(I)
λ an interpolet and its dual, and let ψ

(I)
λ = ⊗n

i=1ψ
(I)
λi

and similarly ψ̃
(I)
λ . Let

V
(I)
0 ⊂ V

(I)
1 ⊂ · · · denote the multiresolution analysis corresponding to the interpolets,

and let V0 ⊂ V1 ⊂ · · · and Ṽ0 ⊂ Ṽ1 ⊂ · · · denote the primal and dual biorthogonal
multiresolution analyses corresponding some “true” locally supported biorthogonal
primal and dual wavelet systems Ψ and Ψ̃ .

Let us consider the situation that the interpolets and biorthogonal wavelets are
such that for some constants L and L̃, it holds that

Vj ⊂ V
(I)
j+L, V

(I)
j ⊂ Ṽj+L̃ (j ∈ N0). (1)

Then for u =
∑

λ∈Λ̂ ψ̃λ(u)ψλ, with Λ̂ being a multiple tree and ψλ = ⊗n
i=1ψλi

and

similarly ψ̃λ, f(u) can be approximated in the dual basis by the following 3 steps:

– Re-express u in terms of the interpolets, i.e., as u =
∑

λ∈Λ̄ cλψ
(I)
λ . As we will show,

such a representation exists with Λ̄ being a multiple tree with #Λ̄ = O(#Λ̂), and
it can be computed in linear complexity.

– Approximate f(u) by
∑

λ∈Λ ψ̃
(I)
λ (f(u))ψ

(I)
λ where Λ ⊃ Λ̄ is a multiple tree that is

sufficiently large to meet a prescribed tolerance. The fact that the computation of
this approximation requires only O(#Λ) operations is the main topic of this work,
and was discussed before.

– Re-express the obtained approximation for f(u) in terms of the dual wavelets, i.e.,
in the form

∑

λ∈Λ̂ dλψ̃λ. Analogous arguments that are used in the first step show

that such a representation exists with Λ̂ being a multiple tree with #Λ̂ = O(#Λ),
and that it can be computed in linear complexity.

Note that the first and last steps are exact and so do not introduce additional errors.
As an example of a setting in which (1) holds , for d ∈ {2, 3, . . .}, we consider

V
(I)
j =

∑2j−1
k=0 Pd−1(k2

−j, (k + 1)2−j) ∩ C(0, 1), possibly intersected with H1
0 (0, 1).

Clearly these spaces can be equipped with interpolating basis functions, and so the
corresponding multiresolution analysis with interpolets. As shown in [9], there exists
a multiresolution analysis V0 ⊂ V1 ⊂ · · · that satisfies (1) with Ṽj = Vj , and for which

Vj+1 ∩ V
⊥L2(0,1)

j can be equipped with locally supported orthogonal bases.
Apart from their application to semilinear equations discussed here, these piecewise

polynomial orthogonal wavelets are very well suited for application in tensor product

Fast evaluation of nonlinear functionals 5

wavelet algorithms. Firstly, with respect to a range of Sobolev norms, including L2,
thanks to their orthogonality, the condition numbers of the n-fold tensor product
basis are bounded uniformly in n. Secondly, thanks to their piecewise smoothness, the
representation of differential operators that have smooth coefficients with respect to
the tensor product basis can be very well approximated by sparse matrices.

The condition (1) can also be satisfied by biorthogonal, i.e., non-orthogonal wavelets.
In a forthcoming work, we will construct such wavelets that have their application in
the solution of time-dependent problems.

Finally, we note that the whole setting of this paper can be generalized to the use
of two systems of interpolets, one for the representation of u and the other for the
representation of the approximation for f(u). In this case, condition (1) should read

as Vj ⊂ V
(I1)
j+L and V

(I2)
j ⊂ Ṽj+L̃, where (V

(I1)
j)j and (V

(I2)
j)j are the multiresolution

analyses corresponding to both systems of interpolets. In order that the computation
of the biorthogonal projection can be performed in linear complexity, the interpolation
points, however, should be the same for both systems.

For the case that (f(u))(x) does not only depend on u(x) but also on first order
partial derivatives of u in x, a promising option is to take the first system of interpolets
as being based on Hermite interpolation.

1.4 Organization and notation

This paper is organized as follows: In Sect. 2, we introduce interpolets, and define
parent-child relations on the index set of these functions. Given a nonlinear functional
f , and a u from the span of a set of interpolets, where the index set forms a tree,
we give an algorithm to compute the interpolant of f(u) from the span of this set of
interpolets in linear complexity. In Sect. 3, we extent this algorithm to tensor products
of interpolets, with index sets that form multiple trees. Finally, in Sect. 4, we show
that for certain types of (bi)-orthogonal wavelet bases, basis transformations in linear
complexity can be made between (primal) wavelets and interpolets, and interpolets
and (dual) wavelets, with which the application of the algorithm for evaluating the
nonlinear functional is extended to “true” wavelet systems.

In this paper, with C . D we will mean that C can be bounded by a multiple
of D, independently of parameters on which C and D may depend, possibly with the
exception n being the number of factors in a tensor product. Obviously, C & D is
defined as D . C, and C h D as C . D and C & D.

2 Evaluation of a nonlinear functional in the non-tensor product case

2.1 Interpolating scaling functions and wavelets

Let
V0 ⊂ V1 ⊂ · · ·

be a nested sequence of finite dimensional spaces of real-valued functions on some
domain Ω, where we have in mind a sequence constructed using dyadic refinements.

6 Christoph Schwab and Rob Stevenson

For simplicity, we will assume that Ω is convex, but the results we are going to derive
can be extended straightforwardly to non-convexΩ by re-defining the distance between
points in Ω as the length of the shortest path in Ω connecting them.

We assume to have bases

Φj = {φj,k : k ∈ Ij}

for Vj available, where the φj,k are known as scaling functions, such that

diam suppφj,k . 2−j (localness), (2)

such that any subset of Ω with diameter 2−j has non-empty intersection with the
supports of a uniformly bounded number of φj,k (the bases are locally finite), and such
that the scaling functions are interpolating with respect to a nested sequence of points
in Ω. That is, identifying Ij with a set of points in Ω, we assume that Ij ⊂ Ij+1 and

φj,k(m) = δk,m (m ∈ Ij).

Setting

Jj+1 := Ij+1 \ Ij ,

a further natural assumption is that there exists a constant c1 > 0 such that for j ≥ 1
and all x ∈ Ω,

B(x; c12
−j) ∩ Jj 6= ∅. (3)

Because of the nestedness of the Vj and since Φj+1 is interpolating, each φj,k can
be expressed as

φj,k =
∑

m∈Ij+1

φj,k(m)φj+1,m = φj+1,k +
∑

m∈Jj+1

φj,k(m)φj+1,m, (4)

where the second equality is a consequence of Ij ⊂ Ij+1 and the fact that Φj is inter-
polating. The localness and locally finiteness of the scaling functions shows that the
numbers of non-zero coefficients φj,k(m) in these expansions are bounded, uniformly
in j and k.

From (4), one infers that

Φj ∪ {φj+1,m : m ∈ Jj+1}

is a basis for Vj+1. The functions φj+1,m for m ∈ Jj+1 are also known as the inter-
polatory wavelets or interpolets on level j + 1, and we will denote them as ψj+1,m. A
repetition of the argument shows that for any N0 ∋ ℓ ≤ j + 1,

Φℓ ∪ {ψℓ+1,m : m ∈ Jℓ} ∪ · · · ∪ {ψj+1,m : m ∈ Jj+1}

is a basis for Vj+1. Throughout this work, the integer ℓ will indicate the (current)
“coarsest level”. For convenience, we set ψ0,m := φ0,m for m ∈ J0 := I0.

Fast evaluation of nonlinear functionals 7

Proposition 1 With δm ∈ C(Ω)′ being defined by δm(f) = f(m), and I−1 := ∅, the

collections
∞
⋃

j=0

{ψj,m : m ∈ Jj}

and
∞
⋃

j=0

{

ψ̃j,m := δm −
∑

k∈Ij−1

φj−1,k(m)δk : m ∈ Jj

}

are biorthogonal.

Proof For j < j′ and m ∈ Jj , m
′ ∈ Jj′ , it holds that ψ̃j,m(ψj′,m′) = 0.

For m,m′ ∈ Jj , we have ψ̃j,m(ψj,m′) = δm,m′ .
For m ∈ Jj and m′ ∈ Ij−1, using the refinement equation (4) we obtain that

ψ̃j,m(φj−1,m′) = (δm −
∑

k∈Ij−1

φj−1,k(m)δk)(φj,m′ +
∑

q∈Jj

φj−1,m′ (q)φj,q)

= φj−1,m′(m) − φj−1,m′ (m) = 0,

and so ψ̃j,m(ψj′,m′) = 0 for any j′ < j and m′ ∈ Jj′ .

2.2 Graded trees

The localness assumption (2) implies that there exists a constant c2 > 0 such that

supp ψ̃j+1,m ⊂ B(m, c22
−j). (5)

Definition 1 Let c3 ≥ 0 be some constant such that c1 ≤ c2 + c3, where c1 is from
(3), and let ℓ ∈ N0. Then for j ≥ ℓ and m ∈ Jj+1, all points k in B(m; (c2 + c3)2

−j) ∩
{

Iℓ when j = ℓ

Jj when j > ℓ

}

are called ℓ-parents of m, and m is called an ℓ-child of any of these

parents k. This will be denoted as k ≺ℓ m.
A point k is called an ℓ-ancestor of m, and m an ℓ-descendant of k, denoted as

k ≺≺ℓ m, when m is an ℓ-child of either k or of an ℓ-descendant of k.
A set Λ ⊂ I := ∪j∈N0Ij is called a graded ℓ-tree if whenever for some j ≥ ℓ,

m ∈ Λ ∩ Jj+1, then so are all its ℓ-parents.

Note that the actual grading of an ℓ-graded tree is determined by the value of the
constant c2 + c3.

Remark 1 In above definition, generally a parent has more than one child and a child
has more than one parent. Actually, the condition c2 + c3 ≥ c1 guarantees that for
j ≥ ℓ any m ∈ Jj+1 has an ℓ-parent. In an implementation of the algorithm that we
are going to present it might be more convenient to use a data structure where each
node in a tree has at most one parent. The graded ℓ-tree condition on a collection Λ

can then be enforced by requiring that if m ∈ Jj+1 is in Λ, then so is its parent as well
as all elements in Iℓ or Jj in a sufficiently large neighbourhood this parent.

8 Christoph Schwab and Rob Stevenson

Since the sets J0, J1, J2, . . . are disjoint, for any m ∈ I there exists a unique j =
j(m) such that m ∈ Jj . We set

ψ̃m := ψ̃j(m),m.

At the primal side, besides Φ0 +
⋃∞

j=1{ψj,m : m ∈ Jj}, for varying ℓ ∈ N0 we also

will consider the collections Φℓ +
⋃∞

j=ℓ+1{ψj,m : m ∈ Jj} which have the same spans.
For ℓ ∈ N0 and m ∈ I, we set

ψ(ℓ)
m :=

{

ψj(m),m when j(m) > ℓ,

φℓ,m otherwise.

With this definition, we have

Φℓ +

∞
⋃

j=ℓ+1

{ψj,m : m ∈ Jj} = {ψ(ℓ)
m : m ∈ I}.

Remark 2 The most important concepts in Definition 1 are that of graded ℓ-trees, ℓ-
children, parents or descendants for ℓ = 0. For ℓ > 0, these concepts become relevant
only after the coarsest scale has been changed from 0 into ℓ by a repeated application
of the refinement equation (4).

Obviously, any Ij is a graded 0-tree. For constructing efficient approximations of

(locally) non-smooth functions, it is relevant to consider the spans of collections {φ
(0)
m :

m ∈ Λ} for general Λ ⊂ I, i.e., not necessarily equal to some Ij . It has been shown,
cf. [2], that the class of functions that can be approximated with a certain rate from
the spans of a sequence of such collections becomes only slightly smaller when instead
fully general sets only index sets are considered that are graded 0-trees.

Proposition 2 Let Λ ⊂ I be a graded 0-tree. Then for all m ∈ Λ, supp ψ̃m ⊂ Λ.

Proof In view of c3 ≥ 0 and the definition of c2 in (5), it suffices to show that for j ∈ N0

and m ∈ Λ ∩ Jj+1, B(m; (c2 + c3)2
−j) ∩ Ij ⊂ Λ which we will do using induction.

For j = 0, this property follows from the definition of a graded 0-tree. Suppose the
property is valid for some j−1 ∈ N0. Let m ∈ Λ∩Jj+1 and p ∈ B(m; (c2 +c3)2

−j)∩Ij .
If p ∈ Jj , then p ∈ Λ follows from the definition of a graded 0-tree. If p ∈ Ij−1, then
by (3) there exists a q ∈ Jj with |q −m| ≤ c12

−j ≤ (c2 + c3)2
−j, so that q ∈ Λ by

definition of a graded 0-tree. Since |p− q| ≤ (c2 + c3)2
−(j−1), we conclude that p ∈ Λ

by the induction hypothesis.

Remark 3 The above proof shows that a graded 0-tree is a graded ℓ-tree for any ℓ ∈ N0.
Similarly, a graded ℓ-tree is a graded ℓ′-tree for any N0 ∋ ℓ′ ≥ ℓ.

Proposition 3 Let Λ ⊂ I be a graded 0-tree and g ∈ C(Ω). Then the biorthogonal

projection IΛg :=
∑

k∈Λ ψ̃k(g)ψ
(0)
k is the unique function from span{ψ

(0)
k : k ∈ Λ} that

is equal to g in all points of Λ, i.e., IΛg is the interpolant.

Fast evaluation of nonlinear functionals 9

Proof For m ∈ Λ ∩ I0, g(m) = (IΛg)(m) follows from ψ̃k(g) = g(k) when k ∈ I0 and
the fact that the primal functions are interpolating with respect to nested sequences
of points. Suppose that g(m) = (IΛg)(m) for all m ∈ Λ ∩ Ij−1. Then for m ∈ Λ ∩ Jj ,
from Proposition 2, Proposition 1, the induction hypothesis, and again Proposition 2,
we have

δm(
∑

k∈Λ

ψ̃k(g)φ
(0)
k) = ψ̃m(

∑

k∈Λ

ψ̃k(g)ψ
(0)
k) +

∑

p∈Ij−1∩Λ

φj−1,p(m)δp(
∑

k∈Λ

ψ̃k(g)φ
(0)
k)

= ψ̃m(g) +
∑

p∈Ij−1∩Λ

φj−1,p(m)δp(
∑

k∈Λ

ψ̃k(g)φ
(0)
k)

= ψ̃m(g) +
∑

p∈Ij−1∩Λ

φj−1,p(m)δp(g) = δm(g).

The uniqueness of IΛg follows easily from the basis functions being interpolating.

Proposition 4 Let the constant c3 in Definition 1 be such that

suppφj,k′ ⊂ B(k′; c32
−j) (k′ ∈ Ij) and c1 ≤ c2 + 1

2 c3. (6)

Then for k 6= m ∈ I, suppψ
(ℓ)
k ∩ supp ψ̃m = ∅ whenever k 6≺≺ℓ m.

Proof For j > ′ and k ∈ Ij , m ∈ I′ , or j = ′ and k 6= m ∈ Ij , suppφj,k∩supp ψ̃′,m =
∅. So in view of (5) and our first assumption on c3, it suffices to prove that for k,m ∈ I

with ′ := j(m) > max(j(k), ℓ) := j and k 6≺≺ℓ m, |k −m| > c32
−j + c22

−(′−1).
By definition of an ℓ-child, this statement is valid when ′ = j + 1. Assuming

that it is valid when ′ = j + n, we consider the case that ′ = j + n + 1. Because
of (3), there exists a p ∈ J′−1 in a ball with radius c12

−(′−1) around the point

on the line connecting m and k on distance 1
2c32

−(′−1) to m, see Figure 1. By the

k

m

p

c12
−(′−1)

1
2c32

−(′−1)

Fig. 1 Illustration with the proof of Proposition 4.

triangle inequality and 1
2c3 + c1 ≤ c2 + c3 by the second assumption on c3, we have

|m− p| ≤ (c2 + c3)2
−(′−1) and so p ≺ℓ m.

Necessarily k 6≺≺ℓ p, and so |k−p| > c32
−j +c22

−(′−2) by the induction hypothesis.
From |k−p| ≤ (|k−m|− 1

2c32
−(′−1))+ c12

−(′−1) and 1
2c3 − c1 ≥ −c2 , it follows that

|k −m| > c32
−j + c22

−(′−1).

In the following, silently we will always assume that the constant c3 satisfies the
conditions formulated in (6).

10 Christoph Schwab and Rob Stevenson

2.3 The evaluation algorithm

Let f : C(Ω) → C(Ω) be a function of type

(f(u))(x) = f̄(u(x)),

where f̄ ∈ C(R), i.e., the value of f(u) in x depends only on that of u in x. Given a

graded 0-tree Λ ⊂ I and u =
∑

k∈Λ c
(0)
k ψ

(0)
k , our goal is to compute IΛ(f(u)) in O(#Λ)

operations, where we assume that each f̄ evaluation takes O(1) operations. In view of
Proposition 3, computing IΛ(f(u)) amounts to computing {ψ̃m(f(u)) : m ∈ Λ}.

The advantage of using interpolets instead of general biorthogonal wavelets is that

in view of Proposition 4 only for k = m or k ≺≺0 m a term c
(0)
k ψ

(0)
k might contribute

to ψ̃m(f(u)). Despite of this, since for m ∈ Λ∩Jℓ the number of such terms is of order
ℓ, a direct evaluation of all ψ̃m(f(u)) cannot be performed in linear complexity.

The idea behind the algorithm presented below is that for m ∈ Λ ∩ J0, ψ̃m(f(u))
can be evaluated in O(1) operations, and that for ℓ = 1, 2, . . ., after u is re-expressed

in terms of {ψ
(ℓ)
k : k ∈ I}, the same holds true for m ∈ Λ ∩ Jℓ. These recurrent re-

expressions of u will be performed by applying the refinement equation (4). To ensure
that the total cost of all applications of (4) is O(#Λ), it is needed that at the ℓth stage

of this process, the number of terms in the expansion with respect to {ψ
(ℓ)
k : k ∈ I}

corresponding to k ∈ Iℓ is O(#(Λ ∩ Iℓ)). This will be realized by dropping all terms

corresponding to k ∈ Iℓ for which ψ
(ℓ)
k has no ℓ-children in Λ. In view of Proposition 4,

this is allowed since it will not change u on the supports of ψ̃m for m ∈ Λ \ Iℓ.

Algorithm 1

eval(Λ, (c
(0)
k)k∈Λ)

% Λ has to be a graded 0-tree.

Λ(0) := Λ, u :=
∑

k∈Λ c
(0)
k ψ

(0)
k .

for ℓ = 0, 1, . . . do
% the current u is of the form

P

k∈Λ(ℓ) c
(ℓ)
k
ψ

(ℓ)
k

with Λ ∩ Jℓ ⊂ Λ(ℓ) ∩ Jℓ.

forall m ∈ Λ ∩ Jℓ do compute δm(f(u)) = f̄(u(m)) = f̄(c
(ℓ)
m) and

ψ̃m(f(u)) = δm(f(u)) −
∑

p∈Iℓ−1
φℓ−1,p(m)δp(f(u))

% all δp(f(u)) with p ∈ Iℓ−1 that are used here have been computed previously.

enddo

forall k ∈ Λ(ℓ) ∩ Iℓ that have no ℓ-child in Λ do

remove k from Λ(ℓ), and with that c
(ℓ)
k ψ

(ℓ)
k from the expansion for u

enddo

if Λ(ℓ) = ∅ then goto return-statement endif

forall m ∈ (Λ(ℓ) ∩ Iℓ)\(Λ ∩ Jℓ) do compute δm(f(u)) = f̄(u(m)) = f̄(c
(ℓ)
m)

enddo

by applying (4), write the current u in the form
∑

k∈Λ(ℓ+1) c
(ℓ+1)
k ψ

(ℓ+1)
k .

enddo

return {ψ̃m(f(u)) : m ∈ Λ}

Theorem 2 Algorithm 1 produces {ψ̃m(f(u)) : m ∈ Λ} in O(#Λ) operations.

Fast evaluation of nonlinear functionals 11

Proof Let ℓ > 0 be given. Assume that in the previous iterations all elements of
{ψ̃m(f(u)) : m ∈ Λ ∩ Iℓ−1} have been computed, as well as all those δp(f(u)) with

p ∈ Iℓ−1 that are needed for the computation of {ψ̃m(f(u)) : m ∈ Λ ∩ Jℓ}, and that

the current u, being of the form
∑

k∈Λ(ℓ) c
(ℓ)
k ψ

(ℓ)
k , is equal to the original u on supp ψ̃m

for m ∈ Λ \ Iℓ−1. The arguments that will be given below show that these three
assumptions, in particular the last one, are valid for ℓ = 1.

Then what is left to compute is {δm(f(u)) : m ∈ Λ ∩ Jℓ} – which together with
previously computed δp(f(u)) with p ∈ Iℓ−1 yields {ψ̃m(f(u)) : m ∈ Λ∩ Jℓ} –, as well

as {ψ̃m(f(u)) : m ∈ Λ\Iℓ}.
In the current iteration, after performing the first task, it is allowed to drop all

terms c
(ℓ)
k ψ

(ℓ)
k for those k ∈ Λ(ℓ) ∩ Iℓ that have no ℓ-childs in Λ. Indeed, since Λ is a

graded 0-tree, such k have no ℓ-descendants in Λ, and so ψ
(ℓ)
k vanishes on supp ψ̃m for

any m ∈ Λ\Iℓ by Proposition 4.
Since, besides those that were already computed earlier in this iteration, in the

remainder of this iteration the δp(f(u)) for all remaining p ∈ Λ(ℓ)∩Iℓ are computed, and

the current u is expressed in the form
∑

k∈Λ(ℓ+1) c
(ℓ+1)
k ψ

(ℓ+1)
k , an induction argument

shows that the algorithm produces {ψ̃m(f(u)) : m ∈ Λ}.
The statement about the cost is a consequence of the fact that by the dropping of

indices from Λ(ℓ) before the application of (4), #(Λ(ℓ+1) ∩ Iℓ+1) . #(Λ ∩ Jℓ+1).

3 Evaluation of a nonlinear functional in the tensor product case

3.1 Tensor product bases and multiple trees

Let n ∈ N. For m ∈ I := In and ℓ ∈ N
n
0 , we set

ψ̃m := ψ̃m1 ⊗ · · · ⊗ ψ̃mn
, ψ(ℓ)

m := ψ(ℓ1)
m1

⊗ · · · ⊗ ψ(ℓn)
mn

.

Remark 4 For ease of presentation, we assume that the collections of primal and (thus)
dual functions are the same in all n coordinate directions. The general case that the col-
lections in the various coordinate directions are possibly different causes no additional
difficulties, apart from a more complicated notation.

Clearly, the collections {ψ
(0)
m : m ∈ I} (0 := (0, . . . , 0)) and {ψ̃m : m ∈ I} are

biorthogonal.
Our substitute for the concept of graded ℓ-trees in the non-tensor product case is

given by the following.

Definition 2 For ℓ ∈ N
n
0 , we call Λ ⊂ I a graded ℓ-tree when for all 1 ≤ i ≤ n and

all m ∈ Λ, the collection of all k ∈ I with (m1, . . . ,mi−1, k,mi+1, . . . ,mn) ∈ Λ is a
graded ℓi-tree.

If Λ is a graded ℓ-tree, then Λ1 := {m1 : (m1, . . . ,mn) ∈ Λ} is a graded ℓ1-tree.
For k ∈ Λ1, the collection of p ∈ In−1 with (k,p) ∈ Λ is a graded (ℓ2, . . . , ℓn)-tree,
that will be denoted as Λ(k). Obviously, Λ = ∪k∈Λ1{k} ×Λ(k).

12 Christoph Schwab and Rob Stevenson

Remark 5 Conversely, if Λ is a graded ℓ1-tree, and for each k ∈ Λ, Λ̄(k) is some graded
ℓ̄ := (ℓ2, . . . , ℓn)-tree, then ∪k∈Λ{k} × Λ̄(k) is not necessarily a graded ℓ-tree. Indeed,
if k ≺ℓ1 ǩ ∈ Λ, and p ∈ Λ̄(ǩ), then not necessarily p ∈ Λ̄(k). So, in other words, a
graded ℓ1-tree of graded ℓ̄-trees is not necessarily a graded ℓ-tree.

As we will see, by a combination of Proposition 7 and Corollary 1, if Λ is a graded
ℓ-tree, and k = (k1, k̄) ∈ Iℓ1 ×I

n−1 such that k1 has no ℓ1-child p with (p, k̄) ∈ Λ, then

suppψ
(ℓ)
k ∩ supp ψ̃m = ∅ for all m ∈ Λ with m1 ∈ I\Iℓ1 . This property will turn out

to be essential, and cannot be guaranteed when Λ is only a graded ℓ1-tree of graded
ℓ̄-trees. The application of this property will be in the evaluation of ψ̃m(f(u)) for an f

such that f(u)(x) depends only on u(x). If suppψ
(ℓ)
k ∩supp ψ̃m = ∅ for all m for which

ψ̃m(f(u)) still has to be evaluated, then obviously any multiple of ψ
(ℓ)
k can be removed

from an expansion for u. The key is that the verification whether (k1, k̄) ∈ Iℓ1 × In−1

is such that k1 has no ℓ1-child p with (p, k̄) ∈ Λ requires only local information from
the graded ℓ-tree Λ that, in all but the first coordinate, is “frozen” at k̄.

Remark 6 The question which class of functions can be approximated with a certain

rate from the spans of {ψ
(0)
m } with m running over some graded 0-trees is outside the

scope of this paper. Yet to indicate that this is a relevant class we note the following:

For 1 ≤ i ≤ n, let Λ
(i)
0 ⊂ Λ

(i)
1 ⊂ · · · ⊂ I be a nested sequence of graded 0-trees. Then

with ∆
(i)
j := Λ

(i)
j \ Λ

(i)
j−1 (Λ

(i)
−1 := ∅), and S ⊂ N

n
0 such that if k ∈ S and ki > 0, then

k− ei ∈ S, the set ∪k∈S∆
(1)
k1

× · · ·×∆
(n)
k1

is a graded 0-tree. Sparse grid index sets are
of this type, as well as certain generalizations that involve local refinements, cf. [7].

Remark 7 In the discussion in the introduction, the coarsest scale ℓ was always 0, and
the issue of gradedness was ignored. Apart from the latter, what was called a multiple
tree there corresponds to a graded 0-tree here.

Proposition 5 Let Λ ⊂ I be a graded 0-tree. Then for all m ∈ Λ, supp ψ̃m ⊂ Λ.

Proof For n = 1, the statement is that from Proposition 2. Suppose that the statement
is valid for n − 1 ≥ 1. Let m ∈ Λ. Proposition 2 gives that for all k ∈ supp ψ̃m1 ,
(k,m2, . . . ,mn) ∈ Λ. From the induction hypothesis we conclude that for each of these
k, {k} × supp ψ̃m2 × · · · × supp ψ̃mn

⊂ Λ or supp ψ̃m ⊂ Λ.

Proposition 6 Let Λ ⊂ I be a graded 0-tree and g ∈ C(Ωn). Then the biorthogonal

projection IΛg :=
∑

k∈Λ ψ̃k(g)ψ
(0)
k is the unique function from span{ψ

(0)
k : k ∈ Λ}

that is equal to g in all points of Λ, known as the interpolant.

Proof For n = 1, the statement is that from Proposition 3. As a first induction hy-
pothesis, let us assume that the statement is valid for n− 1 ≥ 1. Let m ∈ Λ ⊂ I = In.
If (j(m1), . . . , j(mn)) = 0, then g(m) = (IΛg)(m). As a second induction hypothesis,
let us assume that for some 1 ≤ i ≤ n and all m′ ∈ Λ with j(m′

k) = j(mk) when
k 6= i and j(m′

i) = j(mi) − 1 ≥ 0 it holds that g(m′) = (IΛg)(m
′). We show that

this implies that g(m) = (IΛg)(m). Without loss of generality we can take i = 1 and
n = 2.

Fast evaluation of nonlinear functionals 13

We write

δm1 ⊗ δm2 = ψ̃m1 ⊗ δm2 +
∑

p∈Ij(m1)−1

φj(m1)−1,p(m1) δp ⊗ δm2 .

Since Λ is a graded 0-tree, Proposition 2 shows that for all p ∈ Ij(m1)−1 for which
φj(m1)−1,p(m1) 6= 0, we have (p,m2) ∈ Λ, and so the second induction hypothesis
shows that for these p, (δp ⊗ δm2)(IΛg) = (δp ⊗ δm2)(g).

With ḡ(y) := ψ̃m1(x 7→ g(x, y)), Proposition 1 and the first induction hypothesis
show that

(ψ̃m1 ⊗ δm2)(IΛg) = (ψ̃m1 ⊗ δm2)(
∑

k∈Λ

(ψ̃k1 ⊗ ψ̃k2)(g)ψ
(0)
k1

⊗ ψ
(0)
k2

)

=
∑

k2∈Λ(m1)

(ψ̃m1 ⊗ ψ̃k2)(g)δm2(ψ
(0)
k2

) = δm2(
∑

k2∈Λ(m1)

ψ̃k2(ḡ)ψ
(0)
k2

)

= δm2(ḡ) = (ψ̃m1 ⊗ δm2)(g).

By a combination of both results, we conclude g(m) = (IΛg)(m).
The uniqueness follows from the basis functions being interpolating.

Proposition 7 Let Λ ⊂ I be a graded ℓ-tree. Let Λ̄ be constructed from Λ by removing

all k = (k1, k̄) ∈ Λ with k1 ∈ Iℓ1 such that k1 has no ℓ1-child p with (p, k̄) ∈ Λ. Then

also Λ̄ is a graded ℓ-tree.

Proof Suppose the statement is false. Then there exists a k that is removed and an i ∈
{2, . . . , n} and a q ∈ I such that ki ≺ℓi

q and (k1, . . . , q, . . . , kn) ∈ Λ̄. But that means
that there exists a p ≻ℓ1 k1 with (p, . . . , q, . . . , kn) ∈ Λ (otherwise (k1, . . . , q, . . . , kn)
would have been removed). But then also (p, . . . , ki, . . . , kn) ∈ Λ but this contradicts
the removement of k from Λ.

A direct consequence of Proposition 4 is the following result:

Proposition 8 Let ℓ ∈ N
n
0 and k,m ∈ I. If for some 1 ≤ i ≤ n, ki 6= mi and

ki 6≺≺ℓi
mi, then suppψ

(ℓ)
k ∩ supp ψ̃m = ∅.

Corollary 1 Let Λ ⊂ I be a graded ℓ-tree. Then for m ∈ Λ and k ∈ I\Λ, suppψ
(ℓ)
k ∩

supp ψ̃m = ∅.

Proof If, for some m ∈ Λ and k ∈ I, suppψ
(ℓ)
k ∩ supp ψ̃m 6= ∅, then for all 1 ≤ i ≤ n,

either ki = mi or ki ≺≺ℓi
mi, but then k ∈ Λ.

3.2 The evaluation algorithm

Let f : C(Ωn) → C(Ωn) be given of the form (f(u))(x) = f̄(u(x)) where f̄ ∈ C(R),
i.e, the value of f(u) in x depends only on that of u in x.

14 Christoph Schwab and Rob Stevenson

Remark 8 Conversely, such an f̄ defines an f : C(Ωn) → C(Ωn) for any n. In the
following, we write “f” for any of these functions.

Given Λ ⊂ I and u =
∑

k∈Λ c
(0)
k ψ

(0)
k , our goal is to compute IΛ(f(u)). Assuming

that Λ is a graded 0-tree, this amounts to computing {ψ̃m(f(u)) : m ∈ Λ}. Since
the number of k with ki ≺≺0 mi or ki = mi (1 ≤ i ≤ m) is of order

∏n
i=1 j(mi),

and for all these k, c
(0)
k ψ

(0)
k might contribute to IΛ(f(u)), a direct evaluation of

{ψ̃m(f(u)) : m ∈ Λ} is prohibitive. Instead we apply the following recursive algorithm.

Algorithm 3

tensoreval(n,Λ, (c
(0)
k)k∈Λ)

% Λ has to be a graded 0-tree.

if n = 1 then eval(Λ, (c
(0)
k)k∈Λ) else

Λ(0) := Λ, u :=
∑

k∈Λ(0) c
(0)
k ψ

(0)
k .

for ℓ = 0, 1, . . . do
% the current u is of the form

P

k∈Λ(ℓ) c
(ℓ)
k
ψ

(ℓ,0,...,0)
k

with

% Λ∩ (Jℓ × In−1) ⊂ Λ(ℓ) ∩ (Jℓ × In−1).

forall m ∈ Λ1 ∩ Jℓ do call tensoreval(n− 1,Λ(m), (c
(ℓ)
(m,p))p∈Λ(m)),

% this yields {(δm ⊗ ψ̃p)(f(u)) : p ∈ Λ(m)}

forall p ∈ Λ(m) do compute

(ψ̃m ⊗ ψ̃p)(f(u)) = (δm ⊗ ψ̃p)(f(u)) −
∑

q∈Iℓ−1

φℓ−1,q(m)(δq ⊗ ψ̃p)(f(u))

% all (δq ⊗ ψ̃p)(f(u)) with q ∈ Iℓ−1 that are used here have been computed

% previously.

enddo

enddo

forall k = (k1, k̄) ∈ Λ(ℓ) with k1 ∈ Iℓ and such that k1 has no ℓ-child p

with (p, k̄) ∈ Λ do remove k from Λ(ℓ), and with that the

term c
(ℓ)
k ψ

(ℓ,0,...,0)
k from the expansion for u

enddo

if Λ(ℓ) = ∅ then goto return-statement endif

forall m ∈ (Λ
(ℓ)
1 ∩ Iℓ)\(Λ1 ∩ Jℓ)

do call tensoreval(n− 1,Λ(ℓ)(m), (c
(ℓ)
(m,p))p∈Λ(ℓ)(m))

% this yields {(δm ⊗ ψ̃p)(f(u)) : p ∈ Λ(ℓ)(m)}

enddo

by applying (4) in the first coordinate direction, write the current u in the

form
∑

k∈Λ(ℓ+1) c
(ℓ+1)
k ψ

(ℓ+1,0,...,0)
k .

enddo

endif

return {ψ̃m(f(u)) : m ∈ Λ}

Theorem 4 Algorithm 3 produces {ψ̃m(f(u)) : m ∈ Λ} in O(#Λ) operations.

Fast evaluation of nonlinear functionals 15

Proof Let ℓ > 0 be given. Assume that in the previous iterations all elements of
{ψ̃m(f(u)) : m ∈ Λ ∩ (Iℓ−1 × In−1)} have been computed, as well as all those (δq ⊗

ψ̃p)(f(u)) with (q,p) ∈ Iℓ−1×I
n−1 that are needed for the computation of {ψ̃m(f(u)) :

m ∈ Λ∩(Jℓ×In−1)}; and that the current u – being of the form
∑

k∈Λ(ℓ) c
(ℓ)
k ψ

(ℓ,0,...,0)
k

for some graded (ℓ, 0, . . . , 0)-tree Λ(ℓ) with Λ(ℓ) \ (Iℓ × In−1) = Λ \ (Iℓ × In−1) – is
equal to the original u on supp ψ̃m for m ∈ Λ \ (Iℓ−1 × In−1). The arguments that
will be given below show that these assumptions are valid for ℓ = 1.

Then what is left to compute is {(δm⊗ψ̃p)(f(u)) : m ∈ Λ1∩Jℓ,p ∈ Λ(m)} – which

together with previously computed (δq ⊗ ψ̃p)(f(u)) with (q,p) ∈ Iℓ−1 × In−1 yields

{ψ̃m(f(u)) : m ∈ Λ ∩ (Jℓ × In−1)} –, as well as {ψ̃m(f(u)) : m ∈ Λ \ (Iℓ × In−1)}.

Concerning the first task, recalling that u =
∑

k∈Λ(ℓ) c
(ℓ)
k ψ

(ℓ,0,...,0)
k , given m ∈

Λ1 ∩ Jℓ let us denote v(m) =
∑

p∈Λ(ℓ)(m) c
(ℓ)
m,pψ

(0)
p1 ⊗ · · · ⊗ ψ

(0)
pn−1 . Then for any y,

we have (f(u))(m, y) = f̄(u(m, y)) = f̄(v(m)(y)) = (f(v(m)))(y), where we used the
convention introduced in Remark 8, and so in particular,

(δm ⊗ ψ̃p)(f(u)) = ψ̃p(f(v(m))).

Since Λ(ℓ)(m) is a graded 0-tree, where 0 ∈ N
n−1
0 , using induction to the number of

factors n and Theorem 2, we conclude that the first task is performed by means of
the recursive call of tensoreval. After the subsequent loop over p, {ψ̃m(f(u)) : m ∈
Λ ∩ (Jℓ × In−1)} has been evaluated.

Next we come to the part in the algorithm in which elements are dropped. Since
Λ(ℓ)\(Iℓ × In−1) = Λ\(Iℓ × In−1), the condition whether k1 ∈ Iℓ has an ℓ-child p

with (p, k̄) ∈ Λ is the same as whether it has such a child with (p, k̄) ∈ Λ(ℓ). As a
consequence, Proposition 7 shows that the resulting Λ(ℓ) after the dropping of terms
is again a graded (ℓ, 0, . . . , 0)-tree. Corollary 1 shows that for any k outside this tree,
so in particular for those that have been dropped, and for any m inside this tree,

suppψ
(ℓ)
k ∩ supp ψ̃m = ∅. Since the tree contains Λ\(Iℓ × In−1), we conclude that

the terms that have been dropped are irrelevant for the forthcoming computation of
{ψ̃m(f(u)) : m ∈ Λ \ (Iℓ × In−1)}.

Besides those that were already computed earlier in this iteration, in the next loop,

the {(δm ⊗ ψ̃p)(f(u)) : p ∈ Λ(ℓ)(m)} for all remaining m ∈ Λ
(ℓ)
1 ∩ Iℓ are computed,

again using a recursive call of tensoreval.
The application of (4) in the first coordinate direction means that for any k ∈

Λ
(ℓ)
1 \ Jℓ+1 and p ∈ Λ(ℓ)(k), c

(ℓ+1)
k,p = c

(ℓ)
k,p, and that for k ∈ Jℓ+1 and p ∈ In−1,

c
(ℓ+1)
k,p = c

(ℓ)
k,p +

∑

q∈Iℓ∩Λ
(ℓ)
1

φℓ,q(k)c
(ℓ)
q,p,

and so
Λ(ℓ+1) = Λ(ℓ) +

⋃

k∈Jℓ+1

⋃

{q∈Iℓ∩Λ
(ℓ)
1 :φℓ,q(k) 6=0}

{k} ×Λ(ℓ)(q).

Since Λ(ℓ) is a graded (ℓ, 0, . . . , 0)-tree, it is a graded (ℓ+1, 0, . . . , 0)-tree (cf. Remark 8).
Since furthermore, for any k ∈ Iℓ+1 and a graded 0-tree Λ̄, where 0 ∈ N

n−1
0 , {k}×Λ̄ is

16 Christoph Schwab and Rob Stevenson

a graded (ℓ+1, 0, . . . , 0)-tree, and the union of graded (ℓ+1, 0, . . . , 0)-trees is a graded
(ℓ+ 1, 0, . . . , 0)-tree, we conclude that Λ(ℓ+1) is a graded (ℓ + 1, 0, . . . , 0)-tree.

By combining above statements, we conclude that Algorithm 3 produces {ψ̃m(f(u)) :
m ∈ Λ}.

The statement about the cost is a consequence of the fact that, by the dropping of
indices from Λ(ℓ), before the application of (4),

#(Λ(ℓ+1) ∩ (Iℓ+1 × In−1)) . #(Λ ∩ (Jℓ+1 × In−1)),

whereas an induction argument shows that the work for each value of the counter ℓ is
O(#(Λ(ℓ) ∩ (Iℓ × In−1)).

4 Transformation from one wavelet basis to another

4.1 The non-tensor product case

Let V0 ⊂ V1 ⊂ · · · be a multiresolution analysis on some domain Ω with Vj spanned
by both Φj := {φλ : λ ∈ ∆j} and, for j > 0, by the two-level collection Ψj := {ψλ : λ ∈

∇j}∪Φj−1; and let Φ̃j and, for j > 0, Ψ̃j be dual collections, i.e., Φ̃j(Φj) = I, Ψ̃j(Ψj) = I

and Ψ̃j(Φj−1) = 0. For convenience, we set ∇0 := ∆0 and Ψ0 := Φ0. W.l.o.g. assuming
that both the ∆j ’s and ∇j ’s are mutually disjoint, we set ∆ := ∪j≥0∆j , ∇ := ∪j≥0∇j ,
Ψ := ∪j≥0Ψj = {ψλ : λ ∈ ∇}, and |λ| := j when λ ∈ ∆ is in ∆j or when λ ∈ ∇ is in
∇j .

Besides (Vj)j , we consider another multiresolution analysis V̆0 ⊂ V̆1 ⊂ · · · on

Ω, and corresponding wavelet collection Ψ̆ = ∪j≥0Ψ̆j = ∪j≥0{ψ̆λ : λ ∈ ∇̆j}, i.e.,

Vj = span∪j
p=0 Ψ̆p. Assuming that the ∇̆j ’s are mutually disjoint, we set ∇̆ := ∪j≥0∇̆j ,

and |λ| := j when λ ∈ ∇̆ is in ∇̆j .
We assume that all above collections are both locally finite – i.e., any subset of

Ω with diameter 2−j has non-empty intersection with the supports of a uniformly
bounded number of functions of Φj , Φ̃j , Ψj, Ψ̃j or Ψ̆j – and local, i.e.,

dΦ := sup
λ∈∆

2|λ|diam suppφλ, dΦ̃ := sup
λ∈∆

2|λ|diamsupp φ̃λ,

dΨ := sup
λ∈∇

2|λ|diam suppψλ, dΨ̃ := sup
λ∈∇

2|λ|diam supp ψ̃λ,

d
Ψ̆

:= sup
λ∈∇̆

2|λ|diam supp ψ̆λ

are all finite. Finally, we assume that for any j ∈ N0

∪λ∈∇̆j
supp ψ̆λ = Ω. (7)

Definition 3 Fixing some constant t ≥ 0, we call µ ∈ ∇ (∇̆) a parent of λ ∈ ∇ (∇̆)
or, equivalently, λ a child of µ, when |λ| = |µ| + 1 and

dist(suppψλ, suppψµ) ≤ t2−|µ|.

Fast evaluation of nonlinear functionals 17

(dist(supp ψ̆λ, supp ψ̆µ) ≤ t2−|µ|). A subset Λ ⊂ ∇ (∇̆) is now called a graded tree or,

to make the dependance on t explicit, a t-graded tree, if whenever λ ∈ ∇ (∇̆) with
|λ| > 0 is in Λ, then so are all its parents.

Remark 9 For the special case that Ψ (or Ψ̆) is a collection of interpolets, in the pre-
ceding sections we gave already a different definition of a graded tree. Whereas in
Definition 3, distances between indices in ∇ (∇̆) are measured in terms of the dis-
tances between the supports of the corresponding wavelets, in Definition 1, ∇ is a
collection of interpolation points, so that the distance between indices could be simply
defined as the distance between these points. Condition (7) can be viewed as a substi-
tute for condition (3) in the interpolet case. Since an interpolation point is inside the
support of the corresponding interpolet, and the interpolets were always assumed to
be local, actually both definitions of graded trees are equivalent. More precisely, with
∇ being a collection of interpolation points, given a gradedness parameter c2 + c3 as
in Definition 1, a set Λ ⊂ ∇ that, for t being sufficiently large, is a t-graded tree, is
also a graded 0-tree according to Definition 1. Conversely, given a t, a set Λ ⊂ ∇ that,
for c2 + c3 being sufficiently large, is a graded 0-tree, is also a t-graded tree.

Assuming that for some constant L,

V̆j ⊂ Vj+L (j ∈ N0), (8)

in this subsection we will show that an expansion u =
∑

λ∈Λ̆
c̆λψ̆λ where Λ̆ ⊂ ∇̆ is

a graded tree, can be rewritten in O(#Λ̆) operations as u =
∑

λ∈Λ cλψλ for some

graded tree Λ ⊂ ∇ with #Λ . #Λ̆. Subsequently, in the next subsection, we prove
a corresponding statement for multiple graded trees. By applying this result with

either Vj = V
(I)
j or V̆j = V

(I)
j , we have proven the claims made in §1.3 about the

possibility to make transformations in linear complexity between representations with
respect to tensor products of interpolets and tensor products of certain types of “true”
biorthogonal wavelet bases.

For notational convenience only, we will assume that (8) is valid with

L = 0.

In the following proposition, it is shown that we may always assume that trees are
sufficiently “fat” or strongly graded.

Proposition 9 Let Λ̆ ⊂ ∇̆ be a t̆-graded tree. Then for t̄ > t̆, Λ̆ can be enlarged to a

t̄-graded tree Λ̄ ⊂ ∇̆ with #Λ̄ . #Λ̆, only dependent on t̆, t̄, and the local finiteness
and localness of Ψ̆ .

Proof Enlarge Λ̆ to Λ̄ by adding to it any λ ∈ ∇̆ for which there exists a λ′ ∈ Λ̆ with
|λ′| = |λ| and dist(supp ψ̆λ, supp ψ̆λ′) ≤ (2(t̄ − t̆) + d

Ψ̆
)2−|λ|. One easily verifies the

claim about #Λ̄.
To show that Λ̄ is a t̄-graded tree, let λ ∈ Λ̄ with |λ| > 0, and let µ ∈ ∇̆ with

|λ| = |µ| + 1 and dist(supp ψ̆λ, supp ψ̆µ) ≤ t̄2−|µ|. Let λ′ ∈ Λ̆ be such that |λ′| = |λ|

and dist(supp ψ̆λ, supp ψ̆λ′) ≤ (2(t̄ − t̆) + d
Ψ̆
)2−|λ|, so that dist(supp ψ̆λ′ , supp ψ̆µ) ≤

t̄2−|µ| + d
Ψ̆
2−(|µ|+1) + (2(t̄− t̆) + d

Ψ̆
)2−(|µ|+1).

18 Christoph Schwab and Rob Stevenson

Let us assume that dist(supp ψ̆λ′ , supp ψ̆µ) > t̆2−|µ| since otherwise we already

know that µ ∈ Λ̆ ⊂ Λ̄. Let x on the shortest path between supp ψ̆λ′ and supp ψ̆µ with

dist(x, supp ψ̆λ′) = t̆2−|µ|. Thanks to (7), x ∈ supp ψ̆µ′ for some µ′ ∈ ∇̆ with |µ′| = |µ|,

and so µ′ ∈ Λ̆. We infer that

dist(supp ψ̆µ′ , supp ψ̆µ) ≤ t̄2−|µ| + d
Ψ̆
2−(|µ|+1) + (2(t̄− t̆) + d

Ψ̆
)2−(|µ|+1) − t̆2−|µ|

= (2(t̄− t̆) + d
Ψ̆
)2−|µ|,

and so µ ∈ Λ̄ which completes the proof.

Although the proof of the next lemma is very similar to that of Proposition 9, since
it is short we include it for convenience.

Lemma 1 Let Λ̆ ⊂ ∇̆ be a t̆-graded tree. For some constant d ≥ 0 such that t :=
1
2d+ t̆− 1

2cΨ ≥ 0, let Λ be the set of λ ∈ ∇ for which there exists a λ̆ ∈ Λ̆ with |λ̆| = |λ|

and dist(supp ψ̆
λ̆
, suppψλ) ≤ d2−|λ|. Then Λ ⊂ ∇ is a t-graded tree with #Λ . #Λ̆

dependent only on t̆, t, the localness of Ψ̆ and the local finiteness and localness of Ψ .

Proof The statement about #Λ is obvious.
Let λ ∈ Λ, |λ| > 0, µ ∈ ∇, with |µ| = |λ| + 1 and dist(suppψλ, suppψµ) ≤

t2−|µ|. Let λ̆ ∈ Λ̆ be such that |λ̆| = |λ| and dist(supp ψ̆
λ̆
, suppψλ) ≤ d2−|λ|, so that

dist(supp ψ̆
λ̆
, suppψµ) ≤ d2−|λ| + cΨ2−|λ| + t2−|µ|. Let x on the shortest path between

supp ψ̆
λ̆

and suppψµ with dist(x, supp ψ̆
λ̆
) = t̆2−|µ|. Thanks to (7), x ∈ supp ψ̆µ̆ for

some µ̆ ∈ ∇̆ with |µ̆| = |µ|, and so µ̆ ∈ Λ̆. We infer that

dist(supp ψ̆µ̆, supp ψ̆µ) ≤ d2−|λ| + cΨ2−|λ| + t2−|µ| − t̆2−|µ| = d2−|µ|,

and so µ ∈ Λ which completes the proof.

Algorithm 5

transform(Λ̆, (c̆
λ̆
)
λ̆∈Λ̆

)

% Let Λ̆ ⊂ ∇̆ be a t̆-graded tree with t̆ ≥ cΦ + cΦ̃. Let V̆j ⊂ Vj (j ∈ N0).
For a constant d ≥ max(cΨ̃ , cΨ − 2t̆), let Λ be the set of λ ∈ ∇ for which

there exists a λ̆ ∈ Λ̆ with |λ̆| = |λ| and dist(supp ψ̆
λ̆
, suppψλ) ≤ d2−|λ|.

J := max
λ̆∈∇̆ |λ̆|, wJ+1 := 0

for j = J, J − 1, . . . , 1 do

v̆j :=
∑

λ̆∈Λ̆∩∇̆j
c̆
λ̆
ψ̆

λ̆

for λ ∈ Λ ∩∇j do cλ := ψ̃λ(wj+1 + v̆j) enddo

wj :=
∑

λ∈∆j−1
φ̃λ(wj+1 + v̆j)φλ

enddo

for λ ∈ Λ ∩∇0 do cλ := ψ̃λ(w1 + v̆0) enddo

return (Λ, (cλ)λ∈Λ)

Theorem 6 Algorithm 5 produces (cλ)λ∈Λ with
∑

λ∈Λ cλψλ =
∑

λ̆∈Λ̆
c̆
λ̆
ψ̆

λ̆
in O(#Λ̆)

operations. Furthermore, with t := 1
2d+ t̆− 1

2cΨ , Λ ⊂ ∇ is a t-graded tree with #Λ .

#Λ̆.

Fast evaluation of nonlinear functionals 19

Proof By the condition d ≥ cΨ − 2t̆, the last statement is shown in Lemma 1.
For j = J, J − 1, . . . , 0, we have

wj+1 + v̆j ∈ Vj (9)

by V̆j ⊂ Vj , as well as

supp (wj+1 + v̆j) ⊂ ∪
λ̆∈Λ̆∩∇̆j

supp ψ̆
λ̆
. (10)

Indeed, the last statement is valid for j = J , let us assume that it is valid for j+1. Now
it suffices to show that suppwj+1 ⊂ ∪

λ̆∈Λ̆∩∇̆j
supp ψ̆

λ̆
. For any x ∈ suppwj+1, there

exists a λ ∈ ∆j and a λ̆ ∈ Λ̆∩ ∇̆j+1 such that x ∈ suppφλ and supp φ̃λ ∩ supp ψ̆
λ̆
6= ∅,

and so dist(x, supp ψ̆
λ̆
) ≤ (cΦ + cΦ̃)2−j ≤ t̆2−j. But then there exists a µ̆ ∈ Λ̆ ∩ ∇̆j

with x ∈ supp ψ̆µ̆.
From (10) and the localness and local finiteness assumptions, it follows that the

number of non-zero terms in the expansion for wj is O(#(Λ̆ ∩ ∇̆j)), and also that the

total number of operations needed for the algorithm is O(#∇̆j). Furthermore, thanks
to d ≥ cΨ̃ , (10) also implies that

ψ̃λ(wj+1 + v̆j) = 0 (λ ∈ ∇j \ Λ). (11)

With, for j ∈ N0, uj :=
∑

{λ∈Λ,|λ|≥j} cλψλ, and w0 := 0, we have

∑

λ̆∈Λ̆

c̆
λ̆
ψ̆

λ̆
= uj + wj +

j−1
∑

p=0

v̆p (j = J + 1, J, . . . , 0). (12)

Indeed (12) is valid for j = J + 1. Now let it be valid for j+ 1. Then (12) is equivalent

to uj + wj +
∑j−1

p=0 v̆p = uj+1 + wj+1 +
∑j

p=0 v̆p or

∑

λ∈Λ∩∇j

cλψλ + wj = wj+1 + v̆j .

This equality is a consequence of (9), (11), and the fact that Ψj ∪ Φj−1 (Φ−1 := ∅) is
a basis for Vj . The equality (12) for j = 0 is the last statement that was to be shown.

4.2 The tensor product case

Let n ∈ N. For λ ∈ ∇ := ∇n and λ̆ ∈ ∇̆ := ∇̆n, we set

ψλ := ψλ1 ⊗ · · · ⊗ ψλn
, ψ̆

λ̆
:= ψ̆

λ̆1
⊗ · · · ⊗ ψ̆

λ̆n
.

In view of Remark 9 and Definition 2, an appropriate definition of a multiple graded
tree is given by the following.

Definition 4 Given t ∈ R
n
≥0, Λ ⊂ ∇ (∇̆) is called a t-graded tree when for all

1 ≤ i ≤ n and λ ∈ Λ, the set of µ ∈ ∇ (∇̆) with (λ1, . . . , λi−1, µ, λi+1, . . . , λn) ∈ Λ is
a ti-graded tree.

20 Christoph Schwab and Rob Stevenson

Given a (t̆, . . . , t̆)-graded tree Λ̆ ⊂ ∇̆ and u =
∑

λ̆∈Λ̆ c̆λ̆ψ̆λ̆, our remaining task is to

represent u, in O(#Λ̆) operations, as u =
∑

λ∈Λ cλψλ, where Λ is a (t, . . . , t)-graded

tree with #Λ . #Λ̆. As we will see, this task can be performed simply by applying
Algorithm 5 in all coordinate directions.

We set P : λ 7→ (λ1, · · · , λn−1). Then

Λ̆ = ∪µ∈P (Λ̆)P
−1({µ}) = ∪µ∈P (Λ̆)(µ, P

−1({µ}) · en),

whereas Definition 4 shows us that for any of these µ, Λ̆(µ) := P−1({µ}) · en is
a t̆-graded tree. Now for any fixed µ ∈ P (Λ̆), if necessary we enlarge Λ̆(µ) to a
max(t̆, cΦ + cΦ̃)-graded tree (cf. Proposition 9), and then apply

(Λ(µ), (cµ,λ)λ∈Λ(µ)) := transform(Λ̆(µ), (c̆
µ,λ̆

)
λ̆∈Λ̆(µ)),

giving
∑

µ∈P (Λ̆)

∑

λ∈Λ(µ)

cµ,λψ̆µ1 ⊗ · · · ⊗ ψ̆µn−1 ⊗ ψλ =
∑

λ̆∈Λ̆

c
λ̆
ψ̆
λ̆
.

As follows from Theorem 6, the total number of operations required by all these calls is
O(#Λ̆), and ∪µ∈P (Λ̆)(µ, Λ(µ)) is a (t̆, . . . , t̆, t)-graded tree, where t = 1

2d+max(t̆, cΦ +

cΦ̃) − 1
2cΨ . Indeed, for any µ ∈ P (Λ̆), Λ(µ) is a t-graded tree. To show the analogous

statement when ∪µ∈P (Λ̆)(µ, Λ(µ)) is frozen in any other set of n− 1 coordinates, it is

sufficient to consider the case that n = 2. Let (µ, λ) ∈ ∪µ∈P (Λ̆)(µ,Λ(µ)) and let γ be

a parent of µ. By construction of Λ(µ) in Algorithm 5, there exists a λ̆ ∈ Λ̆(µ) with

|λ̆| = |λ| and dist(supp ψ̆
λ̆
, suppψλ) ≤ d2−|λ|. Since Λ̆ is a (t̆, t̆)-graded tree, it holds

that (γ, λ̆) ∈ Λ̆, but then also (γ, λ) ∈ ∪µ∈P (Λ̆)(µ,Λ(µ)) as required.
By repeating the application of transform in each of the other n − 1 coordinate

directions, we have proven our claim about the transformation of u =
∑

λ̆∈Λ̆ c̆λ̆ψ̆λ̆
into u =

∑

λ∈Λ cλψλ in linear complexity.

References

1. Barinka, A., Dahmen, W., Schneider, R.: Fast computation of adaptive wavelet expansions. Nu-
mer. Math. 105(4), 549–589 (2007)

2. Cohen, A., Dahmen, W., Daubechies, I., DeVore, R.: Tree approximation and optimal encoding.
Appl. Comput. Harmon. Anal. 11(2), 192–226 (2001)

3. Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods for elliptic operator equations –
Convergence rates. Math. Comp 70, 27–75 (2001)

4. Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods II - Beyond the elliptic case.
Found. Comput. Math. 2(3), 203–245 (2002)

5. Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet schemes for nonlinear variational prob-
lems. SIAM J. Numer. Anal. 41, 1785–1823 (2003)

6. Dahmen, W., Schneider, R., Xu, Y.: Nonlinear functionals of wavelet expansions—adaptive re-
construction and fast evaluation. Numer. Math. 86(1), 49–101 (2000)

7. Dauge, M., Stevenson, R.: Sparse tensor product wavelet approximation of singular functions.
SIAM J. Math. Anal. 42(5), 2203–2228 (2010)

8. Dijkema, T., Schwab, C., Stevenson, R.: An adaptive wavelet method for solving high-dimensional
elliptic PDEs. Constr. Approx. 30(3), 423–455 (2009)

Fast evaluation of nonlinear functionals 21

9. Donovan, G., Geronimo, J., Hardin, D.: Orthogonal polynomials and the construction of piecewise
polynomial smooth wavelets. SIAM J. Math. Anal. 30(5), 1029–1056 (1999)

10. Gantumur, T., Harbrecht, H., Stevenson, R.: An optimal adaptive wavelet method without coars-
ening of the iterands. Math. Comp. 76, 615–629 (2007)

11. Griebel, M., Koster, F.: Adaptive wavelet solvers for the unsteady incompressible Navier-Stokes
equations. In: Advances in mathematical fluid mechanics (Paseky, 1999), pp. 67–118. Springer,
Berlin (2000)

12. Koster, F.: Multiskalen-basierte finite differenzen verfahren auf adaptiven dünnen gittern. Ph.D.
thesis, Institut für Numerische Simulation, Universität Bonn (2002)

13. Nitsche, P.A.: Best N-term approximation spaces for tensor product wavelet bases. Constr.
Approx. 24(1), 49–70 (2006)

14. Schwab, C., Stevenson, R.: Adaptive wavelet algorithms for elliptic PDEs on product domains.
Math. Comp. 77, 71–92 (2008)

15. Schwab, C., Stevenson, R.: A space-time adaptive wavelet method for parabolic evolution prob-
lems. Math. Comp. 78, 1293–1318 (2009)

16. Sickel, W., Ullrich, T.: Tensor products of Sobolev-Besov spaces and applications to approximation
from the hyperbolic cross. J. Approx. Theory 161, 748–786 (2009)

